
ExCALIBUR Project NEPTUNE

Software Developer’s Central Website

Release 0.0.3

Abstract
Web incarnation of a detailed design document for the NEPTUNE software.
It presents background information needed by all developers, common standards
and conventions to be employed, and links to the separate proxyapps and codes
developed.
Practical Points 1. Click on the hamburger (top left) if you don’t see the site
map!
2. Although the DD document is freely available, access to many supporting
reports is restricted to members of the NEPTUNE community, please email
neptune@ukaea.uk if/when you get GitHub 404 errors, to join in.

1

2

Contents

1 Program Identity 5
1.1 Executive summary . 5

2 Business Design 8

3 Requirements Baseline 11
3.1 Physical properties of the edge plasma 11
3.2 Engineering Requirements Baseline 15
3.3 Use Cases . 18
3.4 General Remarks . 23

4 Technical Specification 24
4.1 Response to Tokamak Science Division 24
4.A Order-of-magnitude estimates for tokamak edge modelling . . . 36
4.2 Software Engineering Response 37
4.3 Generating Names for Variables 47

5 Design Justification File 51
5.1 Deprecated Approaches . 51
5.2 UKAEA (Internal) Reports . 53

6 Design Definition File 62
6.1 Design specification . 62
6.2 Objects/classes . 64
6.3 Execution sequence . 68
6.4 Design patterns . 70

7 Management File 72
7.1 Introduction . 72
7.2 Management . 74
7.3 ExCALIBUR Project NEPTUNE Charter 79

8 Maintenance File 81

3

9 Operational Documentation 82
9.1 Documentation Generally . 82
9.2 Developer Manual . 83
9.3 User Manual . 84
9.4 Feedback and Communication 84

10 Proxyapps 86
10.1 Nektar-Driftwave . 86
10.2 Nektar-Diffusion . 87
10.3 Nektar-1D-SOL . 87
10.4 FabNEPTUNE . 88
10.5 Moment_Kinetics . 89
10.6 NESO . 89

11 Reference Material 90
11.1 Conventions for Report Writing 90
11.2 Acronyms . 94
11.3 Symbols . 102

12 Index 115

4

Chapter 1

Program Identity

1.1 Executive summary
The program addresses key plasma modelling issues for reactor design. This new
software should become essential for designing optimal power-handling strate-
gies at the tokamak first wall, both directly (via the simpler proxyapps) and
indirectly by improving detailed physical understanding of the often turbulent,
plasma-wall interaction.

This website was designed following the NEPTUNE workshop minuted
as ref. [1], and the related documents refs. [2, 3]. to cover all aspects of the over-
all NEPTUNE package, as they emerge, beginning with the initial concept,
advancing to detailed design of classes (objects) and interfaces, and ultimately
producing documentation to ensure the software remains usable, maintainable
and relevant for at least 30 years.

Further information

High-level project issues are covered by the project science plan ref. [4]; the
NEPTUNE project is ExCALIBUR funded ref. [5]. Distribution and use
of the software is covered by the extremely permissive MIT licence ref. [6],
regarded as equivalent to the BSD3 licence. Collaboration is encouraged, and
there are many additional benefits of community membership as set out below.
Those interested in joining the community should email neptune@ukaea.uk to
establish a dialogue.

Benefits of community membership

The principal benefit is access to what should ultimately become a powerful
and comprehensive software package for modelling tokamak edge plasma using
finite element and particle methods. In addition members will also gain

• Access to reports as the community produces them, in the access-controlled
github site ref. [7], subdirectories reports and reports/ukaea_reports.

5

(ref. [8] is a searchable public github site containing most of the material.)
These directories already include educational material on

– Finite elements
– Surveys of current software
– Surveys of current HPC machines and performance
– Uncertainty Quantification
– Aspects of software engineering, such as design patterns

• Rights to attend workshops and shape the NEPTUNE software, an-
nounced in the Slack or Zulip channel.

• Right to attend project lectures on work performed by the community, and
on relevant background material such as the spectral/hp element method,
announced in the Slack or Zulip channel.

• The tex subdirectory ref. [9] contains bibtex databases to aid report writ-
ing in subdirectory bib and graphics suitable for producing presentations
in subdirectories pics and png.

The Slack channel is ‘#excalibur-neptune’. (The Slack communication software
is downloadable from https://slack.com/). It is anticipated that Slack will
ultimately replaced by an Opensource option such as Zulip.

(Note that access to some NEPTUNE reports is restricted to community
members.)

Convention on use of IETF Keywords (not yet enforced)

The RFC2119 subset of the Internet Engineering Task Force (IETF) keywords ref.
[10] is used throughout the website, unless stated otherwise. Such usage im-
plies specific meanings for “MUST", “MUST NOT", “REQUIRED", “SHALL",
“SHALL NOT", “SHOULD", “SHOULD NOT", “RECOMMENDED", “MAY",
and “OPTIONAL" when the words are capitalised.

6

https://slack.com/

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0054

Issue: 1.02
Date: 2024 February 19

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Wayne Arter N/A 2024 February 19

Ed Threlfall N/A 2024 February 19
Matthew Barton N/A 2024 February 19
Joseph Parker N/A 2024 February 19
Will Saunders N/A 2024 February 19

CD

Reviewed By: Wayne Arter 2024 February 19

Technical Lead

Approved By: Wayne Arter 2024 February 19

Technical Lead

7

Chapter 2

Business Design

1. CAPABILITIES
The NEPTUNE package will be capable of efficiently contributing ‘ac-
tionable’ results regarding the first wall to the reactor design process,
specifically by speedily modelling the power deposited by the plasma

• subject to uncertainty quantification (UQ)
• using a modular suite of compatible components of minimal neces-

sary complexity so as to ensure a workflow for rapid design, capable
when needed of involving the latest high performance computers
(HPC)

In addition, the package will facilitate research into edge plasma physics
by

• its ease of use, providing a suitable DSL for ‘high-level’ usage in
Python/Julia to enable intuitive additions to existing models or the
incorporation of new models, whereby equations may be defined us-
ing LATEX as explicit PDEs or as Lagrangians, and novel initial con-
ditions imposed and new boundary conditions applied

• its ease of modification and development, by providing a set of well-
defined objects/classes for tokamak plasma physics

• ease of incorporation of its component software into other physics
packages

• offering a careful automatic control of numerical error

2. STRATEGIC FIT
National: The ExCALIBUR project is of national importance to UK
government (represented initially by the BEIS and subsequently the DESNZ
dept.) to demonstrate how to produce software that can exploit all the
latest, most powerful hardware for scientific computation. The Fusion

8

Modelling System (FMS) is one of ExCALIBUR’s principal use cases,
for which project NEPTUNE will explore efficient development of new
software for the Exascale.
UKAEA: The software will facilitate world-leading R&D into fusion en-
ergy by UKAEA physicists and engineers, underpinned by external collab-
orators with a wide range of expertise. Its research contribution will be
to improve detailed physical understanding of the often-turbulent plasma-
wall interaction. Development of tokamak reactors will be facilitated if
Exascale machines can be seamlessly integrated into the design workflow.

3. BUSINESS DRIVERS
Optimal power-handling at the wall will be critical for fusion reactors to
be able to deliver sustainable fusion energy to the grid economically, if
at all. Rapid exploration of parameter space is important to understand
and optimise reactor designs, yet the existing software available to UK is
dated so that it require years of experience to use well and is not suited to
the latest HPC. Its replacement should remove a major handicap in the
race to produce reactor designs.

4. ASSUMPTIONS
Funding of approx. £ 5 M over 5 years has been made available to UKAEA
via the Strategic Priorities Fund under its ExCALIBUR programme to
ready the UK for the Exascale era of computing. It is expected that further
development of the NEPTUNE software will be funded at a similar if
somewhat smaller level after 2025.

5. RISKS
Funding is via UK government and does not depend on the international
situation.

6. IMPACTS
The new software should enable much faster iteration in respect of engi-
neering design of the first wall of tokamak reactors. It should save much
time and effort in the modelling of tokamak edge plasma physics. Gen-
erally, it should greatly reduce the training and computer time needed
to obtain results compared to the existing software. There should also
be benefits to UKAEA’s wider relationships with the Eurofusion E-TASC
programme and with ITER.

7. STAKEHOLDERS
The successful outcome of the project should be a plus for the UK, UKAEA
and most employees. The only losers will be those UKAEA staff and con-
tractors who have devoted often years of their working lives to the dated
software that NEPTUNE is designed to replace, and will undergo a loss

9

of status in consequence. However, their physics skills and understanding
will be valuable for guiding the NEPTUNE development to produce max-
imum benefits, hence they should soon recover position within UKAEA.

8. GOVERNANCE
The NEPTUNE project is overall governed by the UK governance known
as PRINCE2 refs. [11, 12]. which demands oversight by a local commit-
tee known as a project board. Finance is subject to the usual UKAEA
procedures and controls. The NEPTUNE project is further subject to
reporting to UK Met Office as part of wider ExCALIBUR activities,
whence there is a second layer of PRINCE2 oversight.
The planned technical activities are outlined in the Science Plan ref. [4], it
and all major changes and refinements are subject to external refereeing,
following the ExCALIBUR procedures drawn up by UK Met Office con-
sistent with the demands of the UK Strategic Priorities Fund ref. [13]. Ex-
ternal procurements similarly follow the ExCALIBUR procedures drawn
up by UK Met Office.

10

Chapter 3

Requirements Baseline

The Requirements Baseline (RB) expresses the user requirements for the soft-
ware.

The largest input to the process, representing UKAEA Tokamak Science
Department appears under Technical Specification Section 4, so that it may be
accompanied by a detailed response. Instead, there is presented an appreciation
of the properties of the plasma edge in Section 3.1.

The Departmental input, although it deals with other aspects of the spec-
ification, focusses more on the physical processes to be modelled and the ap-
proaches likely to be required. The following Section 3.2 records interactions
with UKAEA Engineers, although a subsequent meeting clarified that the main
demand for NEPTUNE at that time was that it be a modular, component-
based design, equally suitable for integration into ANSYS OptisLangT M as VEC-
MAtk (with more detailed requirements likely to follow when the software be-
came more developed). Thereafter the next Section 3.3 contains use cases,
followed by Section 3.4 describing general requirements deducible from the use
cases.

3.1 Physical properties of the edge plasma

The following scrape-off layer (SOL) parameters (including decay lengths) are
for the L-mode scrape off layer in MAST ref. [14]. For MAST, with the standard
notation, R0 = 1.6 m, BT ≈ 0.6 T, Iϕ ≈ 400 kA and a = 0.6 m, values which
imply that the poloidal field at the plasma edge Bp ≈ 0.1 T. The main result of
the paper ref. [14] is that the decay length of the power deposition at midplane
is λq ≈ 2 cm (range 1 − 3 cm) and Ptot ≈ 350 kW.

Unless stated otherwise, the derived length, timescales and speeds are de-
rived from formulae and graphs in Wesson’s book ref. [15, Chap 10]. The
derived quantities have been checked against SI formulae in ref. [16, Table 2.2],
and also compared with those listed in ref. [17, Appendix]. It is worth noting
that although the latter table describes the SOL of JET (and in addition its

11

separatrix and pedestal), JET values are typically within a factor of 2 of those
for MAST, hence similar numbers could be inferred for reactor designs.

Typical discharge

The edge values found experimentally are Te ≈ 10 eV, Ti ≈ 20 eV, n ≈ 3 ×
1018 m−3. These imply that the Coulomb logarithm Λ ≈ 12.5, and the flow
speed Ud ≈ 105 ms−1 may be estimated using Ptot = 2πRλqn(Te + Ti)Ud.
Sadly there appears to be no reliable determination of the neutral density n.
(Note use of different font to distinguish neutral density from plasma density.)

Length scales

Debye length λD ≈ 10−5 m.
Electron Larmor radius ρte ≈ 7 × 10−5 m.
ρti ≈ 40ρte ≈ 4 mm.
Mean free path for electrons λemfp ≈ 1 m (parallel to field).

Time scales

Collision frequency (electrons with ions) νe ≈ 3 MHz, τe ≈ 3 × 10−7 s ref. [18].
Plasma frequency fpe ≈ 15 GHz, τpe ≈ 7 × 10−11 s.
fpi ≈ 0.4 GHz, τpi ≈ 3 × 10−9 s.
Cyclotron frequency based on Bp = 0.1 T, fce ≈ 2.8 GHz, τce ≈ 4 × 10−10 s.
fci ≈ 1.4 MHz, τci ≈ 7 × 10−7 s.

Speeds

Electron thermal cse ≈ 1.2 × 106 ms−1.
csi ≈ 4 × 104 ms−1.
Alfven speed using BT is UA ≈ 107 ms−1.

Collisionality parameter ν∗
c = q4

e

3m2
pϵ2

0
L0n0/C

4
0

(note that m2
pϵ2

0
e4 = 1

3 s
4m−6.)

Taking L0 ≈ 10 m, n0 = n. Squared sound speed C2
0 = Ti(|e|/me)(me/mi),

C0 ≈ 3 × 104 ms−1, implies
Collisionality parameter ν∗

c ≈ 30.
Peclet number ≈ 0.4ν∗

c ≈ 10, but turbulent coefficients≈ 1 m2s−1 will generally
give a smaller value.

Resistive diffusion ηd = 15m2s−1 ∝ T
−3/2
e .

(Note that there is a notational clash with η; fusion physics and astrophysics
differ by a factor µ0, so that ηd = η(fusion)/µ0.)

12

Applicability of Fluid Models

A key requirement for fluid models is that collision times should be much less
than the timescale of interest, which as the preceding subsections show is true,
except in the case of τe, the electron-ion collision time, and for the electrons
more generally for dynamics along the field-lines. The ion gyroradius is also
uncomfortably large compared to quantities of interest. Note that τe is the
longest timescale in the classical picture of approach to a single fluid picture of
plasma, other timescales, including the timescale for momentum to equilibrate,
are shorter.

Single fluid MHD is widely used in astrophysics consistent with the eloquent
advocacy by Priest and Forbes ref. [19, § 1.7]. They point out that ideal MHD
is consistent with the drift ordering, despite confusion caused by the easy pos-
sibility to misinterpret Hazeltine and Meiss ref. [20] on the subject. (The point
is that although MHD treats a faster timescale, it is valid on longer timescales,
provided relevant smaller/slower terms are retained.) Moreover, SOL timescales
involving filaments are fast, witnessed by the fact that the ion gyro-frequency
is used as normalisation for electrostatic models in ref. [21], which from Sec-
tion 3.1 is a not too dissimilar timescale 10−7 s to the Alfven timescale based on
the poloidal field (1 cm/106 ≈ 10−8 s). Later, Freidberg ref. [22] showed that,
at least in directions perpendicular to B, the dynamical MHD equation applies
to a more general ‘guiding centre’ plasma. The situation may be summarised
by saying that complexity lies mostly in the transport (diffusive) terms as these
attempt to account for low collisionality, finite Larmor radius (FLR) etc.

Perhaps fortunately, the terms predicted by kinetic theory will usually be
small (except for the electrical conductivity) compared to the turbulent transport
expected on the basis of both observation and theory of the SOL plasma. The
simplest way to account for turbulence is to assume ad-hoc isotropic, uniform
‘eddy’ diffusivities in addition to the usual fluid advection terms. Lastly, in a
simple extension of MHD, large τe is accounted for by allowing the electrons and
ions to have different temperatures, consistent with observation. Effects due to
the presence of a large neutral population in the SOL could well be significant,
see next Section 3.1. However neutrals are mainly expected to act as a sink of
momentum and energy.

Effect of Neutrals

Formulae for a weakly ionised plasma are given in the Plasma Formulary ref.
[18]. The collision cross-sections for electrons and ions respectively from ref. [23]
are σe|0

s = 10−19m2 and σi|0
s = 4 × 10−19m2. Hence, the collision frequencies

for electrons and ions respectively are

νen = 1.2 × 10−13n, νin = 2 × 10−14n (3.1)

13

where n is the neutral density. (Note use of different font to distinguish neutral
density from plasma density.) If n = n is assumed, then the corresponding SOL
collision times are

τen = 3 × 10−6s, τin = 2 × 10−5s (3.2)

so that the number of collisions experienced by a typical SOL ion before it hits
a PFC is small. Nonetheless, since 1/me ≫ 1/mi, De ≫ Di and the diffusion
coefficient for both electrons and ions is numerically large

DA ≈ (1 + Te

Ti
)Di ≈ 1023

n (3.3)

The parallel electrical diffusivities are different, for electrons and ions re-
spectively these are

ηen∥ = 4 n
n
, ηin∥ = 0.5 n

n
(3.4)

The implication from the formulae in ref. [24] is that the value for ηe∥ combines
additively with the usual Spitzer value in a more highly ionised plasma. Assuming
n ≈ n, however the correction is seen to be an increase of 4 in 15m2s−1, i.e.
only about 25 %.

Arber refs. [24, 25] further points out that according to the Formulary ref.
[18], in a weakly ionised plasma the conductivity is greatly reduced (and the
magnetic diffusivity correspondingly enhanced) in directions normal to a strong
magnetic field. Typically for Braginskii theory, the factor is x2

e for the perpen-
dicular direction and xe for the other direction, where

xe = 2πfce

νen
≈ 8 × 1023

n (3.5)

For n = n = 3×1018, these are huge increases. However it is worth noting that
if the electromagnetic potential representation is invoked, so that

E = −∇Φ + ∂A
∂t

(3.6)

then, in the direction parallel to B, neglecting the gradient of electric potential Φ

∂A∥
∂t

= ηen∥J∥ (3.7)

Thus the enhanced diffusivities need not signify if this equation is used for
magnetic field evolution, although applying a gauge condition on the potentials
may become difficult in complicated 3-D topologies.

14

3.2 Engineering Requirements Baseline

Introduction

This set of requirements is based on four main sources, namely

• presentation by Chris Jones (CJ) at the NEPTUNE internal workshop
on 16 December 2019

• points made in an email by Michael Kovari (MK) dated 19 December 2019

• interview with Zsolt Vizvary (ZV) on 20 December 2019

• use by author (WA) of SMARDDA-PFC software in tokamak reactor
design 2016-2020

A significant part of CJ’s talk concerned calculations of stress in ‘contact’
problems and in tokamak-relevant materials, particularly those to be used in and
adjacent to the first wall. Mention was also made of nuclear heating and acti-
vation effects in the wall, and their effect on its strength. Since NEPTUNE
is primarily intended as a plasma modelling tool, this material is neglected here
except insofar as it has implications for NEPTUNE interfaces. Similarly ZV
has as high priority, a capability to do magnetic equilibrium calculations so as
to be able to calculate electromagnetic stresses in the wall. CJ emphasised that
engineering design at UKAEA makes heavy use of the ANSYST M software for
multiphysics calculations, and that since plasma effects including neutral beams
and fast ions are not part of any standard finite element toolkit, particular con-
sideration should be given to interfacing NEPTUNE to ANSYS macros and
ACT (Python scripting for ANSYS). CJ stated that ANSYS had been imple-
menting additional physics very slowly, on a timescale of decades, and there is
anyway not a satisfactory licence model for using ANSYS on HPC, nor any to
be expected soon.

Although the SMARDDA software takes as input general surface triangula-
tions, which may therefore represent arbitrary surface topologies, SMARDDA-
PFC calculates power deposition on the basis of a simple, empirical physical
model of transport from the outer midplane. The errors in the model are fre-
quently unquantifiable, given an absence of relevant experimental data, notably
when ‘small’ limiters are proposed, where ‘small’ implies that many lines of mag-
netic field make several mid-plane passes before interacting with the limiter(s).
The NEPTUNE software should provide a better physical model to enable (1)
calculation of the midplane profile of power ‘deposition’ and associated param-
eters such as the e-folding length λq, when an exponential is fitted, and (2)
an assessment of the accuracy of the whole SMARDDA surrogate model in a
wide range of existing and novel configurations.

15

Overall Capabilities

Chris Jones has been led to dream of a
Whole-system full-physics digital twin available for real time in-silicon simulation
and experimentation
but recognised that a more immediately realisable prospect was integration of
plasma software into ANSYS WorkbenchT M .

1. Simulations must be of known, improved accuracy, so that the perfor-
mance of the built designs can be enhanced without sacrificing safety.
Thus the code and data structure should support mesh convergence stud-
ies, and be ‘physics aware’ as described in Section 3.2.

2. The power load should be easily transferable to ANSYS for stress, heat
transfer and other multi-physics analysis.

3. The software should be easy to couple to other physics packages produced
within the fusion community such as RACLETTE and ERO for erosion
calculations, LOCUST and SMARDDA-PFC for power deposition by
particles, and neutronics software such as MCNP.

4. The software should be designed to support easy production of statistics
from ensemble calculations, even when costs limit the size of the ensemble.
The ensembles should be able to include different model selections as well
as different parameter choices.

5. The software should be easy to use on HPC, eg. through cloud-based ser-
vices, where it should be resilient to network bottlenecks. Its performance
should scale well and not depend on the OS used.

6. The software should be able to exploit GPGPUs.

7. The software should use well-defined standard, open formats for both
input and output of data.

8. The code should be easy to extend, without writing new code. Thus
a user should be able to extend (at least virtually) a data structure to
include a new parameter, and add a new physical effect.

9. The following aspects of the software should be open:

(a) data structure requirements and documentation
(b) code and documentation
(c) test cases and their documentation
(d) all results and their documentation

16

Physics Model

The software should be automatically ‘physics aware’, ie. it should

1. be able to test the physical assumptions and orderings used, perhaps
by calculations at randomly placed points, and when this is impossible,
to produce output to enable an independent person to check against a
separate code.

2. be intelligent enough to switch to a simpler assumption when appropriate
or when instructed to do so, for example by using classical transport
coefficients when they apply.

3. be able to test the level of detail used. For example, the code (1) could
carry out an ensemble calculation using a simplified model of radiative
loss, and then check the results in a much shorter time against a fuller
model using a sampling technique, (2) be able to identify automatically
that a fully 3-D field calculation with say 12 or 18 discrete TF coils has
produced a toroidally axisymmetric field in the vacuum vessel.

4. be able to simulate transient behaviour, being able to determine an initial
approximate quasi-static solution, then depending on the length of the
simulation relative to physical timescales of interest, perform either an
implicit or an explicit calculation.

5. distinguish physical time from pseudo-time when relevant, eg. in an im-
plicit calculation.

6. be able to handle incompatible timescales for bulk and local behaviour,
eg. account for particle effects on overall flow.

17

Physics Capabilities

The software should be able to

1. compute the total power load on solid walls, due to plasma, fast ions and
neutral beams

2. compute the production of impurity species by first wall melt and evapo-
ration

3. compute heat conduction in first wall coatings in contact with the plasma

4. perform high frequency electrical and magnetic analysis, accounting for
skin effects

Geometry

1. The software should be able to account for the effect of changes to geom-
etry caused by radiation swelling, erosion and deposition due to plasma
interaction, and corrosion.

2. The code should allow periodic toroidal boundary conditions.

3. The software should be able to handle 0-D, 1-D, 2-D and 3-D repre-
sentations of the same plasma pulse, transferring between the different
representations.

4. A related example concerns the recognition of field axisymmetry as in
Section 3.2.

5. Convexities in the surface, even sharp corners capable of causing singular-
ities in the magnetic and stress fields, should be treatable by the software.

3.3 Use Cases

Use Cases: Tokamak edge physicist

They are early career, and to progress they need to build a professional reputation
by publishing papers, supporting UKAEA’s research programmes and supervising
students. They are a competent developer and experienced HPC user, though
they do not gain any credit directly from developing software.

In their research work, they study different models for the tokamak edge,
and so require code flexibility and a user-friendly DSL to allow them to rapidly
prototype different equation sets. This work would require quick iterations –
perhaps 5 minute simulations performed on a desktop. They will also develop
their own algorithms and add infrastructure to the code. While they will do
this with an understanding of performance implications, they would expect to

18

perform these developments at a higher level that raw performance loops (but
at a lower level than the physics model).

They would expect to contribute their changes back to a community repos-
itory, and also to benefit from changes that other code users have made. They
would be involved in the community – perhaps raising issues, making and re-
viewing git pull requests, answering queries, and having input into future code
releases – but would not be involved “project management” tasks, like main-
taining the repository.

They will also value a user-friendly interface and active user community
when it comes to working with their students. In this context it is valuable to
have software that will run at a high level and produce sensible results without
needing to specify the details of the implementation. This allows the student to
learn about physical systems without simultaneously having to learn the details
of numerical implementations. The active community allows their student to
get support and ask (perhaps trivial) questions without being dependent on
their supervisor.

Finally, in support of experiments, they will need to perform high-fidelity
simulations of tokamaks. These will be highly computationally expensive, either
because they are high-resolution simulations of specific shots, or because they
are parameter scans or UQ campaigns. The simulations will be long-running,
perhaps in the range of a week to a few months, on whichever HPC system that
they have access to. The software must therefore be performance portable in
order to facilitate high performance on a range of systems. The software also
needs to be robust to numerical instabilities, hardware node failures, etc, as one
may not have the resource allocation to repeat failed runs.

Use Cases: Engineers

As a thermomechanical engineer I:

• work with a large range of open source and proprietary codes which re-
quires bindings to other tools, eg:̇

– FMU
– Python (Jupyter and regular)
– OptiSLang
– Twinbuilder

• work with CAD software to generate geometries which I want to propagate
through my workflow.

• am interested in heat fluxes in all forms: from time and space averages
to high resolution 3D time and data.

• need to be able iterate on designs quickly and in an automated way.

19

• am neither an HPC expert nor a plasma / tokamak physicist.

and I want to:

• know, given a sensible physics model provided by other experts, what the
transient peak and average heat loads are on plasma facing components.

• not have to understand software dependencies and be able to install and
run easily eg. “in the cloud”.

• be able to configure the software to undertake parameter scans.

• have a handle on the sensitivity of the solution to the inputs and sources
of error / uncertainty.

• be able to re-use the spatio-temporal heat fluxes as a model in more
thermo-mechanical calculations. This means:

– reading in the solution after the calculation.

– using a fit to the data in the form of eg. a reduced order model of
the heat fluxes, surrogates etc.

– being able to export CAD geometries and import solutions back into
engineering tools eg. ANSYS.

• have reproducible workflows to save and share with colleagues (eg. databases
of inputs / outputs / config).

• export results flexibly to inter-operate with multiple surrogate frameworks.

• be in the loop with development process so it is possible to keep other
workflows up to date.

This would mean I can:

• design components with colleagues within eg. STEP.

• make use of the NEPTUNE software in combination with proprietary
tools that engineers know inside out.

• be insulated, to a sensible extent, from the complexities of the numerics,
plasma physics and HPC.

20

Use Cases: Particle Specialists

As a particle specialist I:

• am very familiar with particle based methods.

• may not be familiar with FEM implementation details but have a working
understanding of the approach.

• may not be familiar with low level languages.

• may not be familiar with HPC hardware and architectures.

• understand how to describe complex physical processes such as radiation,
recombination, ionisation, charge exchange using both particle and FEM
data.

• may not have applied UQ techniques before but may have an understand-
ing of distributions/ensembles from statistical mechanics.

I want to:

• describe particle based operations both collectively and per particle, eg. :

– creation and deletion of particles potentially from complex distribu-
tions.

– computation with particle data - per particle and collectively.
– identification of groups of particles.
– representation of arbitrary per particle data.

• visualise particle and FEM data - snapshots and trajectories.

• create new finite element functions on appropriate function spaces.

• add source/sink terms to governing equations (solved with FEM).

• define particle source and sink regions using the simulation domain geom-
etry.

• define regions of interest, eg. surfaces, as part of diagnostics.

• identify particles near surfaces/points/volumes of interest.

• create and use global data structures for computation, eg. diagnostics.

• represent particle data as FE functions:

1. through pointwise projection.
2. line integration over particle trajectory.

21

• use non-trivial functions in my loops, eg. erfc, gamma.

• define functions using expansion coefficients, eg. ionisation rate function
approximated by an exponential expansion.

• evaluate these functions using both particle and FEM data.

• describe pairwise operations that implement physical processes.

• describe and sample from non-trivial statistical distributions.

• perform simulations in a reproducible manner.

So that I can:

• use particles as a kinetic description for plasma and neutrals.

• represent highly-collisional regimes by fluid approximations.

• describe plasma-neutral and plasma-plasma interactions.

• use abstractions/DSLs to write once, run anywhere as much as possible.

• experiment with models quickly and efficiently.

• perform ensemble computations and averages.

• perform UQ and verification.

Use Cases: Finite Element Background

I am a user with perhaps some grasp of plasma physics but with a more extensive
knowledge of finite-element software (I might be an experienced user / developer
of Nektar++). My background may be either physics or engineering; I may be
a new recruit to the NEPTUNE team and needing to learn the code with a
view to taking a future role as a NEPTUNE developer.

I need the interface / DSL to provide access to typical FEM parameters eg.
choice of intra-element basis functions and their polynomial order, continuous
/ discontinuous Galerkin, choice of numerical flux, stabilization options; also
whether diffusion and advection terms are explicit or implicit. In line with eg.
Nektar++ I expect the choice of time-stepper to be largely “orthogonal” to
most details mentioned above (the exception is explicit / implicit choice). I
would like the option to specify the timestep in terms of the CFL number. In
addition I require control over relevant meshing parameters eg. element spatial
density and approximation order of any curvilinear elements. I would like the
DSL to be able to generate a range of regular meshes internally (at least for
trivial cases eg. boxes meshed with quads).

22

I should like some simple, physically-motivated canonical examples that
might assist with learning plasma physics.

I expect the performance of the code to be at least commensurate with other
FEM packages eg. Nektar++ and to remain so going forward (and obviously
must be scalable to the latest hardware, which means foreseeably an efficient
GPU implementation, supporting ideally NVidia, AMD, and Intel Xe / Ponte
Vecchio).

I am unused to velocity-space effects. I would like the particles aspects of the
code to be expressible, insofar as is possible, in FEM language: the conversion
from discrete to continuum should ideally not be visible to me eg. converting
particles to FEM forcing terms. Further to this, it would be good if a set of
default particle parameters could be produced based on FEM parameters, as
required (perhaps a reasonable value for the number of particles can be derived
automatically based on FEM resolution).

If there is an issue from PIC compatibility (eg. constrained choice of basis
functions), the DSL should make this clear in an explicit error message, plus
hopefully advice how to remedy.

3.4 General Remarks
Particular, important general aspects of the use cases and Section 4 require-
ments may be stated as follows:

Calculations may need be (re)started, perhaps from databases of calculations
as envisaged by the IMAS development. Someone from the experimental side
might want to specify input parameters by duplicating those of a particular say
JET shot at a given time, using an database of experimental results. Physicists
of either stamp (theoretical or experimental) will likely want compatibility with
analysis software such as OMFIT ref. [26] and tools to speed publication in the
scientific literature of results obtained. An engineer may simply want to “change
surface A to another design and repeat calculation".

Generally, minimising the number of new languages and systems people have
to learn, especially in view of the need to attract people to the project and com-
munity, seems a good idea, so that a Domain Specific Language (DSL) should
for example be based on one or more language(s) that are already well-known
to many technical people, such as Julia, Python or LATEX. Equally NEPTUNE
software cannot be allowed to ossify, so the suggestion is everywhere to have a
preferred option and an allowed option where this makes sense.

23

Chapter 4

Technical Specification

The Technical Specification (TS) contains the developer’s response to the re-
quirements baseline.

4.1 Response to Tokamak Science Division

Introduction

This section is Project NEPTUNE’s response to Tokamak Science and MAST
Upgrade Division’s Requirements Specification document. This specification
was received by Wayne Arter on 5/11/20 via Rob Akers and its authorship
was confirmed to be Fulvio Militello and James Harrison at the NEPTUNE
Project Board. It is intended that this document helps to frame expectations
of the capabilities of NEPTUNE code, as well as highlighting challenges and
areas of potential collaboration. Since the main focus herein is on aspects of
the physical model, the next Section 4.2 goes into more detail regarding the
software engineering needed to deliver the code successfully.

The physics requirements are summarised as:

“The new UKAEA Exhaust code needs to be able to capture paral-
lel and perpendicular transport of charged and neutral particles in
3D, full geometry and in a time dependent way. Turbulence should
be self-consistently modelled, as well as energy transfer physics be-
tween charged particles, neutrals and photons (radiation). While
perturbations need to be 3D, a minimal requirement for the code
is that it can simulate realistic axisymmetric equilibrium configu-
rations with complex topologies and wall designs. The aim of the
code should be to:

1. Efficiently and reliably model exhaust in next generation ex-
periments, like eg. MAST-U, JT60-SA, and especially ITER
(the latter is a stringent requirement for the code).

24

2. Allow predictive exhaust capability for future reactor relevant
machines like STEP or DEMO.”

More detailed specifications are given in the following sections either as block
quotations or as bold paragraph headers.

NEPTUNE Science Plan

The Science Plan for NEPTUNE ref. [4] is available online. The stated goal
of the project is to:

“develop new algorithms, software and related e-Infrastructure that
will result in the efficient use of current Petascale and future Exas-
cale supercomputing hardware in order to

1. draw insights from ITER “Big Data”
2. to guide and optimise the design of the UK demonstration

nuclear fusion power plant STEP and related fusion technology

in the approach to the Exascale. The aims of the work are to
deliver expertise in, and tools for, “in-silico” reactor interpretation
and design.”

The Science Plan also describes the software development and theory de-
velopment that is being and will be undertaken under NEPTUNE.

Software development. The aim of NEPTUNE software development is
to provide a flexible framework for implementing different physical models in
an Exascale-targeted manner. In particular, the project does not envisage a
“NEPTUNE system of equations” so much as NEPTUNE providing the
ability to solve a class of relevant equations, with models described relatively
simply using a Domain-Specific Language (DSL). This flexibility enables the
hierarchy of models of varying fidelity and computational costs. It also allows
engagement from different classes of user with different levels of physics and
software expertise.

Theory development. The above framework approach notwithstanding, NEP-
TUNE is also supporting theory development in two of its four work packages:
FM-WP2 Plasma Multiphysics Model and FM-WP3 Neutral Gas and Impurity
Model. These will develop two close coupled models, with FM-WP2 seeking to
include kinetic effects in existing and new edge plasma models, and FM-WP3
developing particle-based models for describing the region outside and just inside
the plasma (neutral atoms/molecules and partially ionised impurities).

Another work package, FM-WP1 Numerical Representation, is addressing
related numerical issues, such as the accurate modelling of highly anisotropic

25

dynamics, the accurate representation of first wall geometry, and the numerical
preservation of conservation laws from the underlying models.

As such the NEPTUNE plan is aligned with all the points in the summary
requirements quoted above, though there are minor issues regarding the details
as discussed in the following sections. It should be noted that the Science
Plan outlines a five-year programme that explicitly requires user involvement
for fuller development of surrogate models (such as turbulent friction) and to
specify the detailed physics of ionisation and excitation reactions. It follows
that development of many of the physics capabilities listed below will benefit
greatly from a strong collaboration between Tokamak Science and Advanced
Computing.

Overall Capabilities

Hierarchical approach with multiple models

“Hierarchical approach with multiple models, going from low fidelity (eg. lam-
inar fluid and fluid-kinetic runs in 2D) to medium fidelity (eg. fluid runs with
neutrals and turbulence multispecies, but with reduced number of species) and
high fidelity (eg. full kinetic or hybrid kinetic/fluid runs with turbulence and
multispecies approach).”

The plan is for NEPTUNE to provide a framework for solving relevant
physics models, and a user-friendly Domain-Specific Language (DSL) for doing
this. This allows UKAEA to develop its own physics models in a manner signifi-
cantly independent of NEPTUNE development and code distribution, see Fig-
ure 4.1. This is the same approach as currently used by UKAEA for BOUT++,
where UKAEA has ownership of physics models in the STORM software, while
other organisations have ownership of the BOUT++ framework.

Project NEPTUNE intends to provide a suite of examples of physics mod-
els as part of the code distribution. As addressed in §4.1, there is also develop-
ment of a physics model under NEPTUNE that could be adaptive, displaying
a range of fidelities within different regions of the domain during a single simu-
lation.

Numerical efficiency

“Numerical efficiency obtained for example through scalability to large num-
ber of cores (given the expected computational resources, the code should be
designed to take: ∼1 week for low fidelity parametric scans; ≲1 month for
medium-high fidelity runs for advanced design; ≲3 months for high fidelity
physics studies).”

Order of magnitude estimates for the cost of code execution (see Sec-
tion 4.A), indicate that these timings are possible but challenging.

The plan is to target Exascale simulations that can support high-fidelity
physics simulations. Project NEPTUNE aims to do this in a performance

26

Figure 4.1: Development of NEPTUNE software via a sequence of proxyapps.

portable fashion using abstraction layers to separate the physics from the com-
putation details. However, the challenges of Exascale mean that a degree of
specialisation of the code towards available Exascale machines is expected. At
some point this will probably entail trade-offs that are detrimental to perfor-
mance on smaller machines. Despite this, we still anticipate that the software
should be reasonably performant for small-scale runs.

Stability of the code

“Focus on stability of the code, using (preferably) unconditionally stable numer-
ical schemes and capability to diagnose and re-start failed runs. Ensure a small
failed simulation rate for common configurations.”

The focus will be on accuracy rather than stability. An accurate solution
will be a stable one, whereas the converse is not true. The use of bifurcation
tracking techniques is expected to help with numerical stability. Moreover, the
use of ensemble techniques (as part of uncertainty quantification) should provide
information on stability as a function of parameters, as well as making it likely
that at least a subset of calculations produces usable results.

In addition, there are some planned technical solutions for diagnosing prob-
lems with runs. The simplest functionality is to allow users to change parameters
when restarting a job using checkpoint files. The code can also be made to au-
tomatically check input files (to catch user misspellings), and to output a file
containing the parameters that were actually used in a simulation (in case some
were accidentally overwritten). Simulations may also be given a Universally
Unique Identifier (UUID) to allow provenance tracking of simulations.

27

Exhaust physics modelling capability

“Provide capability to model exhaust physics all the way from sheath limited to
strongly detached regimes.”

This capability follows from (1) the implemented physics models/boundary
conditions, and (2) the lengthscales the code can resolve in simulations of fea-
sible run times. Project NEPTUNE anticipates that this will be feasible. See
§4.1 for further details for the physical models.

Modern software design

“Modern software design with modular approach (independent and efficient
libraries).”

Project NEPTUNE is certainly adopting a modular approach to software
design. This is crucial for enabling many of the desired features, as noted below.
The use of reliable third-party libraries is also vital for enabling a small team of
developers to leverage the work of others, and to allow code flexibility and ease
of prototyping.

Ability to integrate with other codes (eg. with IMAS).

This feature is anticipated, and will be facilitated by writing the code in object-
oriented C++.

Integration with IMAS (and other data formats/standards) can be achieved
by writing a module to translate between NEPTUNE’s internal data structures
and IMAS format. NEPTUNE developers are involved in TSVV software which
will also integrate with IMAS, so will have experience in this area.

Modern visualisation tools

Integration with modern visualisation tools is not specifically addressed in the
science plan. However, this is enabled by using standard data formats such as
netCDF/HDF5. Auxiliary tools (similar to BOUT++’s xBOUT library) could
also be developed.

The issue of in situ visualisation will also be important at the Exascale,
with the need to interrogate large quantities of data without moving it, perhaps
during a simulation. Project NEPTUNE does not have specific plans for
enabling this. However, the need for this will be widespread, and we expect
third-party tools/libraries to become available to support this, particularly in
C++.

Accessibility (output easily catalogued and interrogated big data)

Given the constraint of producing Exascale volumes of data, it is expected that
NEPTUNE will default to using the Met Office practice of only saving the files

28

necessary for repeating a simulation, rather than full outputs. It is intended that
key aspects will be captured by surrogates, descriptions of which will be saved
and indexed. Users however will be able to choose to output more data and to
define custom diagnostics. A modular approach to software design and the use
of standard libraries will ease the implementation of these.

In time, there will likely be a move towards creating simulation databases
in preference to repeating expensive simulations. Such projects are nascent,
but we have collaborators who are working in this area. Again, the modular
approach and use of standard data structures will enable interfacing with such
databases as the technology matures.

Version control and user support.

Version control is a fundamental part of modern software development, and
will certainly be used in NEPTUNE. More generally, the project will use best
software practices, including protected branches, peer reviewed pull requests,
issue trackers and automated testing. The main code contributors are familiar
with such practices; we have heavy involvement from the projects BOUT++
and Nektar++ which have very high quality software practices. Project NEP-
TUNE also have involvement from UKAEA RSEs.

User support will be provided through issue trackers, a project Slack or Zulip
channel, and where relevant, through training sessions. Project NEPTUNE
anticipates supporting several classes of user, from those with limited software
knowledge, to users with appreciation of different numerical/algorithm choices,
through to numerical/software specialists who might edit the code on a granular
level. Support for such a wide range of uses is enabled by a highly modular
separation-of-concerns approach.

29

Physics model

General requirements

“Equations need to be applicable to arbitrary aspect ratio devices.”

The equations employed will not generically make the assumption of small
inverse aspect ratio.

The collision operators between plasma components, plasma and
impurities and plasma and neutrals have to be sufficiently accurate
to properly describe the radiation generated and the energy transfer
between species.

These operators may be included in the model being derived in FM-WP2,
but at this stage simpler model operators are being used.

“Photon opacity effects need to be included in the model.”

The treatment of effects due to radiation are discussed in Annex A of ref.
[27] (“the equations document"). Initial implementation will account only for
usage (1) the calculation of source/loss terms, with usage (2) the production
of synthetic spectra, depending very much on input from experimentalists, as
anticipated in the science plan ref. [4, p˙ 11].

“The equations need to be capable of dealing with multiple species
in non-trace amounts (at least D, T, He and seeding impurities).”

The models being derived support distribution functions for multiple species.

“The equations should not rely on the Boussinesq approximation.”

The model derived in FM-WP2 does not use the Boussinesq approxima-
tion. Technically, this means NEPTUNE will need to be able to invert three-
dimensional elliptic operators with non-constant coefficients. This capability
will be available.

“The code should evolve both the electron and ion energy (temper-
ature).”

This is the case with the FM-WP2 model.

“It would be acceptable to have only axisymmetric equilibria, po-
tentially corrected through small perturbations.”

This is answered by the discussion in Section 4.1.

30

Figure 4.2: NEPTUNE software will use finite elements and particles to
represent different atomic species as needed.

High fidelity simulations

“In high fidelity simulations, the kinetic/fluid transition for both
plasma and neutrals has to be properly captured, potentially using
a multi-region approach exploiting different models in different parts
of the machine could be considered (for both neutrals and plasma);
Boundary conditions need to consider improved sheath physics (col-
lisional & shallow angles); Ideally, the model should be able to treat
de-magnetized ions in the divertor region; Electromagnetic effects
should be included, but a perturbation approach would be accept-
able.”

The Science Plan states that “FM-WP2 and FM-WP3 will concentrate upon
development of the two close coupled models of the NEPTUNE programme,
specifically FM-WP2 around the inclusion of kinetic effects into existing and
new edge plasma models, and FM-WP3 of particle based models for describing
the region outside and just inside the plasma (neutral atoms/molecules and
partially ionized impurities).” See Figure 4.2.

In FM-WP2, a novel “moment-based” approach is being developed (for
both plasma species and neutrals). This approach is a variant on gyrokinetics
(though at present, the derivation exists only for drift kinetics). Instead of the
stationary background Maxwellian of the usual gyrokinetics, this approach uses
a dynamically-varying background Maxwellian, where the particle density, bulk
velocity and temperatures are allowed to vary with time. The result is a hybrid
approach, where the software evolves both a fluid system and a modified kinetic
system. One of the benefits of this approach is that it gives a natural means to
capture the fluid/kinetic transition, by switching between the fluid+kinetic and
fluid-only descriptions. Moreover this approach allows the software to detect
which of the fluid and kinetic descriptions is valid in any region based on the
properties of the modified distribution function, and therefore to automatically
evolve the relevant model.

31

The favourable properties of this approach are valuable, but as with any
novel approach there is an inherent risk of the scheme not working. Thus as
described in ref. [27, § 1.1], in the event that this approach is not feasible, the
kinetic calculations will use a Particle-in-Cell (PIC) approach. While full orbit
PIC is potentially extremely expensive relative to gyrokinetics, it has been very
well-studied both in terms of theory and numerical implementation. Moreover
the issue of how to treat the transition from fluid to a particles in a coupled
model is well-understood, at least in classical fluid dynamics.

Relevant sheath physics boundary conditions are being derived as part of
this work, including shallow angles and collisions. Ions which exit the domain
re-enter as neutrals with the Knudsen cosine distribution.

While the current derivation is electrostatic, there is nothing which precludes
the derivation of an electromagnetic model.

Neutrals and impurities

Different levels of multispecies capabilities should be considered. The
framework nature of the code means this will be the case.

In medium to high fidelity models, neutrals and heavy species should be
treated fully kinetically (the former have potentially low collisionality and
they are not bound by the magnetic field, the latter have a large Larmor
radius). Development of a neutral gas and impurity model is ongoing under
FM-WP3. Page 7 of the Science Plan states: “Kinetic levels of complexity are
. . . necessary . . . for modelling the burning plasma regime, due to the inherent
uncertainty in the fluid codes. The plasma in a fusion reactor may well behave
significantly differently to plasma in existing devices because it will in general
contain two main ionic species (Deuterium and Tritium), neutral fuel particles
and ionised Helium ash (or alpha particles), as well as impurity ions originating
from the wall.” That is, kinetic models will be derived and implemented, though
it is hoped that this will facilitate the development of fluid models.

In high fidelity models, dynamical neutral evolution on the turbulence
time scale would be preferable, if possible. High-fidelity simulations will
use a kinetic model for neutrals where appropriate.

Ability to model pumps (either directly or via pumping surfaces) should
be included. Pellets: the code should enable simulation of, or coupling
to models that can model, pellet fuelling. Models for these aspects are
not included in the Science Plan. As we will use an unstructured mesh, it will
be possible to describe arbitrary pumping surfaces.

The role of sources and sinks is recognised to be crucial in NEPTUNE
physics so that modelling of pellets as a source will be possible. The tool

32

CWIPI (Coupling With Interpolation Parallel Interface) may be used for coupling
to more complicated pellet models.

33

Physics capabilities

“The code needs to be able to give reliable predictions of:

• Divertor loads:

• Reliable calculation of upstream particle and heat flux profiles: proper
drift physics and upstream turbulence;

• Divertor turbulence: turbulence spreading in the divertor region, ef-
fect of magnetic shear next to the X-point(s) to understand up-
stream/downstream connection;

• Multifluid capacity to model radiation and detachment physics;

• Reliable calculation of the electric field (collisionless physics near the
separatrix, proper reflection of neutrals at the target);

• Able to capture in/out and top/down asymmetries (geometry, drifts,
radiation and detachment)

• Wall loads:

• Should be able to predict filamentary transport and role of hot ion
confinement (wall erosion)

• Should calculate radiation and neutral loads (may require dedicated
modules, same for divertor loads);

• Impurity transport, pumping and fueling:

• Ability to track low (He Be), medium (C, N, Ne) and high Z impu-
rities (W, Ar, Xe) with multiple charge states;

• Reliable kinetic modelling of neutrals to assess fueling and pumping
capacity;

• Ability to handle non-trace species (D, T, He, seeded species), which
requires new closures for the equations (if fluid, beyond Braginskii
=⇒ Zhdanov or better);

• Accurate model of friction forces (turbulence + neoclassical on open
field lines);

• In high fidelity models, the code should be able to simulate localized
gas puffs, via injection of neutral particles.

• Dust the code should enable coupling to codes to simulate dust gen-
eration, transport and ablation, via exchange of fluxes and sources.”

34

Figure 4.3: Project software will integrate a range of models of different
complexity, here indicated by their dimensionality.

Physics models. Many points in this section relate to the physics model. As
we have alluded to above, the actual physics model used is the responsibility of
the user; so, for example, it will necessary for users to derive an accurate model
for turbulent friction. Moreover, as NEPTUNE will initially be an edge code,
only electromagnetic radiation from the edge plasma will be calculated, and an
additional model will be required for radiation for the core plasma. Nonetheless,
we plan to facilitate models which have the listed properties. In particular, our
meshing approach will allow accurate representation of the walls and divertor.
Thus powerful and flexible source/sink models may be used, for both volumes
and surfaces.

NEPTUNE code will also be capable of representing scales on which fil-
amentary transport has been calculated to occur. The code will only produce
fluxes however, and it will be up to the user to calculate wall erosion.

Validation, Verification and Uncertainty Quantification (VVUQ). Natu-
rally, when the solution of a problem is unknown, it is difficult to assess whether
the provided answer is reliable as requested in the first line of the current sec-
tion. Therefore we are integrating NEPTUNE with a suite of tools for VVUQ
to enable validation of code outputs against experimental results, and provide a
error bars for code outputs due to the uncertainty in the code inputs. As allowed
by error estimates, models of different complexity will be used to predict key
properties of the SOL, see Figure 4.3.

35

Geometry

“Ability to handle complex topologies and novel geometries:

• Capacity to treat different topologies with multiple X-points
(>2), possibly in a dynamic way, or at least implemented in a
way that does not preclude time-varying equilibria being mod-
elled in future;

• Ability to handle singularities in the grid (null points) or to
develop accurate scheme(s) that do not have singularities;

• Ability to interface with 3D CAD designs of the machine;
• Capability to handle conformal grids that go all the way to the

wall for both neutrals and plasma;
• Capability to treat subdivertor structures (only neutrals).”

NEPTUNE will use a spectral/hp finite element approach. This allows
considerable flexibility in meshing, with elemental tetrahedra, hexahedra or
prisms being used to describe complex geometries. In addition to refinement
of the elemental grid sizes (h-adaptivity), the order of the piecewise polyno-
mial basis functions used on each element may also be changed (p-adaptivity).
The production of finite element griddings conforming to CAD descriptions is
standard for virtually all meshing packages. Project NEPTUNE will specially
aim to use the small number of packages that may produce finite elements with
curved edges and faces to exploit fully the higher order basis. This gives a
framework which can achieve spectral convergence on complicated, conforming
grids, while still being able to handle discontinuities in the solution.

Should it prove necessary to produce a meshing conforming to surfaces of
an equilibrium magnetic field, then because the finite element approach does
not require a structured grid, it should be able to treat arbitrary geometries and
topologies, in particular including multiple X-points. The approach could be
extended by further use of adaptive meshing to allow for time-varying equilibria.

4.A Order-of-magnitude estimates for tokamak edge
modelling

Suppose plasma number density n ≈ 1018 m−3. Order of magnitude dimensions
are L0 ≈ 0.1 m for SOL thickness, reactor minor and major radii say a = 3 m
and R0 = 10 m, so the volume of SOL ≈ 4π2aR0L0 ≈ 100 m3. It follows that
the total number of electrons ≈ 1020.

The shortest timescale is inverse |e|B/me, the electron cyclotron frequency,
where the ratio of charge to mass for the electron is |e|/me = 1.76 × 1011 C
kg−1, and B ≈ 10 T, so τce ≈ 10−12 s. Hence the number of particle-steps to
evolve 1 s of physical time is 1020+12+1 (assuming of order 10π timesteps per

36

orbit), which assuming 1000 flop per update, needs a total of 1036 flop. Thus to
complete a computation in 1 s on Exascale machine, only one 1 particle-step in
1018 is allowed. This implies for example only 100 superparticles in the volume
can be used supposing each has a weight 1018, which is unlikely to be adequate
because electrostatic and other effects will produce a noise level that swamps
any physical effects. However if 3 or 4 months (approx. 107 s) are allowed, then
a calculation with 109 particles may be performed if memory-access bandwidth
constraints can be satisfied, when the noise levels may be manageable.

The situation may be shown to be a million times easier for neutrals con-
sidered separately, assuming neutral density n = n, particle mass mp and
temperature Tn = 10 eV, for a timescale of τn = Lmfp/vn where the mean
free path Lmfp ≈ L0 and the neutral speed typically is vn. For then vn =√

|e|Tn/mp =
√

|e|/me ·
√
me/mp

√
Tn, ie. vn ≈ 4 × 105 × (1/40) ×

√
10 ≈

3×104. Thus τn ≈ 10−6 s, ie. a million times longer than the electron cyclotron
timescale.

Suppose a fluid model is employed instead, ie. the electron distribution is
represented by its first 3 moments. If the electron temperature Te ≈ 10 eV,
then the thermal speed cse ≈ 40vn ≈ 106 m s−1. Supposing the SOL to be
sampled at a uniform 1 mm interval, then the number of sample-points ≈ 1011,
and the timestep for an explicit scheme ≈ (10−3/106) ≈ 10−9 s, so the number
of sample-point updates is 1011+9. Assuming 1000 flop each update, this means
one second of physical time needs 1023 flop or 105 s≈ 1 d of Exascale machine
time, if memory-access bandwidth constraints can be satisfied. If an implicit
scheme is used to simulate plasma ions as a fluid on a drift type timescale≈
L0/csi, then possibly the timestep τi ≈ τn ≈ 10−6 s, ie. a thousand times larger,
and calculations lasting only a few minutes might suffice.

Another way of looking at this is to suppose that numerical problem is D-
dimensional, 1000 flop are needed for each sample update and ND samples per
spatial dimension and N2

D time samples are allowed. Then to update such a
model in 1 s requires ND+2

D ≈ 1015. Thus if D = 3, N3 ≈ 1 000, and N5 ≈ 100.
It seems that accuracy controlled, unstructured, implicit fluid models should be
possible, although for the more complex models 1000 flop per update may be
an underestimate by orders of magnitude.

4.2 Software Engineering Response

The above scientific response Section 4.1 indicates that the NEPTUNE suite
will have the capability to describe the tokamak edge in a comprehensive set of
levels of detail using a large range of possibly heterogeneous computer hardware,
will be straightforwardly modifiable to include additional physical effects, and
will aim to include under all circumstances, the level of error in computed results.
Evidently, eveloping the suite represents a major challenge to current software
engineering practices thanks to its scientific difficulty as indicated in Section 4.A,

37

and perhaps less obviously, its scientific complexity due to the need to treat large
numbers of atomic and molecular species, descending to the level of isotopes
with a range of charge states and electronic excitations.

The last makes NEPTUNE a significantly harder development than the
BOUT++ code discussed in Section 4.1. The difficulty motivated studies of
software engineering practices outside as well as in the scientific context. The
studies of scientific work are summarised in reports concerning frameworks,
scientific UQ etc. Ideas from these studies are combined with non-technical
works such as Hewitt ref. [28] and Sommerville ref. [29] and summarised in the
report ref. [2].

The outcome is the present report and website, which augment the pro-
cedures of Dudson and BOUT++ collaborators ref. [3] to govern the devel-
opment of NEPTUNE. Management aspects of the development are treated
in Section 7.1 and operational aspects in Section 9.1. The remainder of this
section focusses on the generic details of a software implementation, the so-
called non-functional aspects, with BOUT++ instructions augmented to allow
for the greater complexity of NEPTUNE, following the D3.3 reports ref. [30],
here with Section 4.3 adding a way to handle a multitude of variable names to
accommodate the much increased number of physical variables.

Following D3.3 ref. [30], Section 4.2 discusses high-level constraints on the
structure of software. where the concept of division into packages and modules
(which may represent libraries) is promoted. Section 4.2 explores the impli-
cations of these constraints for NEPTUNE. At the opposite extreme to Sec-
tion 4.2 and Section 4.2, Section 4.2 describes the desirable contents for a single
module, and Section 4.2 discusses the question of what best to output when
developing software for the Exascale.

General Considerations

It is important that individual units of code are manageable and the overall struc-
ture is comprehensible, so that developers and users can navigate the codebase
and determine where new work is to be located. This simple consideration
implies that NEPTUNE software should be divided into units that it will be
convenient to refer to as modules, ie. sections of code containing everything
necessary to perform one (and only one) aspect of the desired functionality.

The suggested content of a module describing a single class in the UML
sense (see Section 4.2, Table 4.1) implies a minimum of 13 methods described by
separate subroutines/functions, with examples extending up to 50, although the
latter is there regarded as an excessively large number of methods. Many small
software libraries also fall into this size range. Supposing that each subroutine
is of a length to fit within one computer window, ie. up to about 60 lines, the
desirable maximum length of a well-designed module file is 30×60 = 1 800 lines
which is a manageable size of file given editing software that remembers on
restart, the last line accessed (so that it possible to return immediately to a

38

Figure 4.4: Sketch of relationship between units of large code.

particular subroutine). The magnitude of the D3.3 exercise follows from the
fact that comparable software packages probably of somewhat lesser complexity
than NEPTUNE written in high level languages such as C++ range in size
up to 1 000 000 lines. Clearly 400 separate modules is too unwieldy, and there
is a need to organise further into packages which might contain in turn 10-50
modules. As a way of providing further indication to developers, it is helpful to
talk of packages as being arranged into layers, as discussed in ref. [31, §§ 2.4,
3.2], see Figure 4.4. Then, as prefigured in ref. [31, Annex A], it should be
possible to encapsulate the necessary complexity in one, albeit large diagram.

Considerations for Scientific Software

Structural Considerations

In both refs. [32, 33], a figure from Dubey et al ref. [34] is reproduced that
illustrates how scientific software may be developed by beginning with an “in-
frastructure" capability into which initially exploratory scientific software is in-
tegrated as its worth is established. Unfortunately for NEPTUNE, it is not
clear initially what aspects of the infrastructure will be durable and stable, al-
though once the software is more mature, Dubey et al’s methodology appears
attractive.

The literature referenced in ref. [31] indicates that scientific software should
be produced by aggregation, but is less helpful as to what is to be aggregated,
ie. the modular decomposition as to what should constitute a single module etc.

Since the NEPTUNE development will proceed as a series of proxyapps,
there is a chance to refine and redefine an initial modular decomposition with
each successive proxyapp, recording the results as a UML structure diagram.
When generating the corresponding sequence diagram (ie. procedural descrip-
tion), the proxyapp-based units should be preserved to facilitate the use of the
simpler ones as surrogates for the later more complex proxyapps.

To help understand the aggregation of the software, it should be layered in
the obvious manner, with the higher layers corresponding to greater numbers of

39

aggregated objects. It is also expected to be useful to classify the modules. The
modules should be arranged into a relatively small number of packages according
to, eg. whether they treat particle generation, matrix coefficient calculation, the
main matrix solution, or visualisation.

Interactions between Modules

Concerning logical interconnections between modules, the use of a directed,
acyclic graph (DAG) structure might be thought mandatory, particularly to
process the input data in order to specify coherently the construction of the
elements of the solution matrix. However, as prefigured in ref. [31] for the
gyrokinetics code GS2, the tightly coupled nature of the central edge physics
problem means that input is more about gathering all the data, for only at that
point can fields be computed and only after that may matrix coefficients be
computed.

(TODO) “Information hiding principle" eg. input data module “hides" infor-
mation about how this is done from the calculation module: it just passes along
parameters in an agreed format. Can extend this idea on to every level - eg.
Parnas advocates hiding the hardware from the code - cf. performance porta-
bility. Such modularity enables work to be efficiently assigned to a programmer
or group.

Design of a Module

Notation

UML nomenclature is preferred herein, for which Table 4.1 provides a limited
translation into C++ and Object Fortran.

Table 4.1: UML interpreted as Object Fortran and C++

UML Fortran 2003 C++
Class Derived type Class
Part - Component
Attribute Component Data member
Method Type-bound procedure Virtual Member function
Feature Component and Type-bound

procedure
Data and Virtual Member func-
tion

Structured class Extended type Subclass
Specialisation Class Dynamic Polymorphism
Generalisation Generic interface Function overloading
Further insight into UML terminology may be gained from the description of

the patterns in refs. [31, 33].

40

Module design

The focus herein is the structure within a module. Specifically, the module
describes a single class or object (strictly speaking in UML terms, objects are
instances of a class), which is fundamental in that it is defined without use
of aggregation. The software - consistent with Clerman and Spector ref. [35,
§ 11] - that is promoted by Arter et al ref. [36] for an object-oriented language,
recognises two sizes of fundamental class and it is easier to start by considering
the smaller, denoted smallobj_m.

Module smallobj_m does not have a separate attributes file, but will typically
still use or access three or more yet more fundamental classes, namely

• log_m for logging errors or warnings in code execution, and checkpointing
values of selected variables

• const_numphys_h for numerical values of important mathematical and
physical constants relevant to plasma physics

• const_kind_m to specify precision of representation of real and integer
values, together with formatting to be used for their output (in fact con-
tains no executable code)

• date_time_m to return the date and time in either a verbose or minimal
format

• misc_m to form miscellaneous operations found to be common to many
modules

In outline, the methods or operations associated with smallobj allow data to
be read from a named file, used in the construction of an object, and output
to disc file. The file is given a numeric identifier ninso (file unit) when it is
opened. Data used to construct the object forms a single namelist block, viz.
a list of arbitrary code variables that may (or not) be assigned values in the
input file using a attribute-value notation. Namelist variables should have long
names that promote a good user interface, and be given default values in case
they are not input. The style encourages checking that inputs have acceptable
values, for example lie in expected ranges, but there is no equivalent of eg.
the Cerberus Python data validation package ref. [37], users must explicitly
code checks and calls to log_m if the values are questionable or erroneous. (It
is hoped that this can be automated based on a LATEX table describing input
symbols. After successful checks, the values in the namelist are copied into
the data type sonumerics_t, whence it is supposed that a single subroutine
then instantiates the smallobj_t object. Another routine performs output of
this object, either to a directly specified file unit, or to the standard output by
default, in the simple text format of a variable name followed by its value on
the following line. As might be expected, there are also routines to ‘delete’ the

41

object, ie. to deallocate any constituent arrays, and to close the input file. The
precise list of member functions (or methods in the UML nomenclature) is

• initfile, open input file

• readcon, read data from input file

• generic, generic subroutine to instantiate object

• write, write out object to standard output, or to file opened by another
object

• delete, delete object

• close, close input file

Module bigobj_m has a separate file for its attributes (aka namespace),
which it will normally still use or access like the yet more fundamental objects
listed for smallobj_m. However the data types defined in bigobj_h are of the
same kind as those in smallobj_m, viz. bonumerics_t to hold input data which
is used to define bigobj_t by calling the solve subroutine (rather than the
subroutine generic in the case of smallobj_m). Apart from this last exception,
the methods in bigobj_m are a superset of those in smallobj_m. The additional
methods recognise that instantiation may involve more than one routine and in
particular may involve use of a specially defined function fn, demonstrating the
STRATEGY Pattern or possibly TEMPLATE Pattern. This function may be
determined by a formula identified in the input, giving the option for a developer
or determined user of adding their own code to define a new function. The range
of allowable outputs is much extended. Thus there is a separate routine provided
for output to the log file using what will probably be a lengthy list of calls to
log_value_m. More likely to be useful is a routine to open an .out file on a
file unit given the number noutbo on opening, which becomes the default unit
for writing out the object in bigobj_write. There are also provided separate
skeleton routines intended to provide output in a format suitable respectively
for visualisation by gnuplot and ParaView, and of course routines to close
files and delete the object. The precise list of member functions for bigobj_m
is as follows where those also found in smallobj_m are enclosed in parenthesis:

• (initfile), open input file

• (readcon), read data from input file

• solve, generic subroutine to manage instantiation of object

• userdefined, user-defined method or function

• fn, general external function call

• dia, write object diagnostics to log file

42

• initwrite, open new file, making up name which defaults to having .out
suffix

• (write), write out object to standard output, or to file opened by bigobj

• writeg, write out object suitable for visualisation by gnuplot

• writev, write out object suitable for visualisation by ParaView

• (delete), delete object

• (close), close input file

• closewrite, close write file opened by initwrite

Thus the skeleton object is defined by a formula plus data input from disc,
and since both are saved internally as features, the instantiation may be deferred
as necessary, so-called ‘lazy initialisation’. It will be noticed that other variables
in bigobj_m such as unit number are hidden, ie. cannot be accessed by other
modules. In fact a common addition to the default modules is a method function
getunit that returns ninbo, illustrating the approved way of accessing such
data.

The reason for the emphasis on input and output from and to disc (I/O)
is to facilitate the construction of a test harness for an objects in the style of
bigobj_m, and indeed the aggregations of such objects. The use of “attribute-
value" in I/O gives flexibility to the developer, since new variables may be added
without the need to modify existing input files or output processing. Output
processing is further discussed in Section 4.2.

Processing Module Output

The number of I/O subroutines can be criticised. For many testing purposes
an interactive debugger is adequate, and for most others that one output file
is sufficient provided it is in a attribute-value format such as JavaScript Object
Notation (JSON) or in a self-documenting format such as the Network Common
Data Form (netCDF), to be interpreted by any suitable visualisation software.

The problem with scientific software, worse at Exascale, is the volume of
data to be handled so that the ability to visualise large arrays as well as large
numbers of small arrays is essential (no debugger as far as is known has such a
visualisation feature). Moreover, the actionable aspect of NEPTUNE further
means that any postprocessing of a generic file must also be carefully performed.
Thus while a generic output file could be processed by say Linux awk script into
a form suitable for gnuplot processing, this gives rise to a need for providing
documentation and provenance for the script, which is at minimum a nuisance.
Worse is the risk that the amount of data to be processed may be so large as
to lead to significant delay and maybe even system or other issues not handled

43

well if at all by the script, all of which may be extremely time-consuming to
resolve. Other conversion software may not be available or properly implemented
on the target machine. Thus even for debugging purposes, it seems desirable
that as much as possible of the processing is done within the main code, and
for production runs, output in a format directly readable by say ParaView
should also speed the post-processing. Since netCDF may be read directly
by ParaView, this is recommended.

Code licence and availability

Code should be made available to collaborators at the earliest opportunity, to
maintain close alignment between groups.

• To minimise friction and unnecessary legal restrictions on combining code
components, a common, MIT licence has been adopted. This may be
regarded as equivalent to the BSD3 licence in the NEPTUNE Charter,
see Section 7.3.

• Code development should be carried out in public repositories. The ben-
efits of minimising delay to code use, feedback and peer review, outweigh
any potential for embarrassment or code misuse.

Code style

There are many different code styles, each of which have their proponents,
and can be debated at length. While everyone has their own favourite style, it
seems likely that the choice of style makes little difference to objective quality
or productivity. Anecdotal experience and experience from the gaming world
in developing large, complicated packages (eg. Gregory ref. [38, § 3]), indicate
however that it is very important that there is a well-defined code style and that
developers stick to it, since a mixture of styles in a code base adds unnecessary
mental load and overhead. The ultimate choice is down to the project Lead,
under advice from major code contributors, leading websites and textbooks, eg.
in the case of the C++ language, the C++ core guidelines ref. [39] and more
compactly Stroustrop’s “Tour of of C++" ref. [40].

The following style choices have been made and efforts will be made to
enforce them in NEPTUNE repositories.

1. Formatting of C++ and Python will follow the style used by Nektar++

• Developer tools: Code formatting tools should be used to automat-
ically format code. For C++ clang-tidy ref. [41] should be used
while, and for Python Black ref. [42] is recommended. Similar tools
should be chosen for any other languages adopted by the project.

44

• Enforcement: Tests run on pull requests and code pushes to the
shared repository should include code formatting: The automated
formatter is applied to the code, and if the output is different from
the input then the code is incorrectly formatted, and the test fails.

• Documentation: LATEX or Markdown should be used and conven-
tions enforced regarding a maximum line length of 120 characters,
restriction to ASCII character set, abbreviations, hyphenation, capi-
talisation, minimal use of ‘z’, and use of fonts to denote code names.
The LATEX lwarp package is used to generate this website.

2. Naming
Naming of code components (modules, classes, functions, variables etc.)
is less easy to enforce automatically than formatting, but is arguably essen-
tial for NEPTUNE, because of the complexity of the physical processes
to be modelled. Widely applicable good practices to be adopted are as
follows:

• Consistency: Whatever convention is used, stick to it.
• Be descriptive: Names should be meaningful, not cryptic, and need

not be very short, although brevity consistent with frequency of usage
is recommended.

– Variable names, used only on input, might consist of 3−4 words
primarily describing the variable, using ‘pot-hole’ convention

– Loop or indexing variables, might consist of single characters,
eg. i, j, k

– Mathematical symbols, eg. those defined in Section 11.3, should
be converted from LATEX into variable names using the conven-
tions of Section 11.1.

– Where mathematical symbols are converted for use in larger
expressions, the mathematical expression should be in the doc-
umentation within or linked to the code.

• Generally prefer nouns for variables, and verbs for functions

Given a need to mix with Object Fortran, which is not case-sensitive,
the ‘pot-hole’ convention for naming C++ variables, ie. separating name
elements by underscores, is recommended.
Occasionally a convention is used where the name includes a part which
indicates the type of the variable. For example, the JSF style for C++ ref.
[43, § 6.6] recommends that pointer names begin ‘p_’ and that private
or protected (‘member’) variables should have names beginning with ‘m’.
In general naming conventions are probably not essential, since the type
can be read in the code, and modern IDEs will easily provide this infor-
mation to the developer. Nonetheless, there is no objection to employing

45

a convention, and NEPTUNE recommend the following one for coders
who wish to do so.
For C++, based on the recommendations of the book “Professional C++"
(eg. ref. [44, § 7], the following prefix strings should be employed: ‘m_’
for member (particularly useful for indicating scope), ‘p_’ for pointer,
‘s_’ for static, ‘k_’ for constant, ‘f_’ for flag (Boolean value), ‘d_’ for
buffers/pointers on an accelerator device, and aggregations thereof, eg.
‘ms_variable’. Use of global variables is deprecated, so the ‘g_’ prefix
should not be used.
For Object Fortran naming conventions, Arter et al ref. [36] codifies best
practice. It may also be useful to reserve the single letters ‘i’, ‘j’, ‘k’
etc. for the names of loop-count variables. Loop counting should start at
unity, consistent with everyday practice, unless there are good reasons for
starting at zero or using offset values.

Programming languages

A small set of “approved" languages is to be used in the project consistent with
the rule of ‘two’ described in Section 7.1. This rule covers the high performance
code itself and also the input/output, testing scripts and other infrastructure
included in the code repository.

Important factors in the choice made included:

1. Widespread use. It must be possible for several project members at any
one time to understand the language, and be able to maintain the code.

2. Stability. The code developed will potentially have a long life-span, and
there are insufficient resources to continually update code to respond to
upstream changes.

3. Previous usage in HPC and scientific computing. There should be an
existing ecosystem of code packages, tutorials, and potential users.

The above considerations implied that the following options were extensively
discussed.

• C++14, Fortran (eg. 2008), C and Python all satisfy the above criteria.
For configuration, CMake, Autotools and Bash also qualify.

• SYCL (building on C++) and Julia are both less widely adopted so far,
but both appear to be heading towards satisfying the above criteria and
might be considered.

The recommended languages are

• As higher level DSL : Python and Julia

46

• For lower level HPC compatibility/DSL: Kokkos and SYCL

• General scientific work : the latest versions of C++ and (Object) For-
tran, provided they are compatible with pre-existing packages and reliable
compilers are available (eg. as of mid-2021 usage of SYCL implies a need
for C++17.)

• For code compilation and linking etc. : CMake

Other languages may have technical merits in particular areas, or are being
adopted outside scientific computing but not to a significant degree within the
community. Use of these languages should be limited to isolated experiments,
rather than core components. If shown to be useful in these experiments, to a
level which is worth the additional overhead and risk of maintaining it, then the
Lead should consider expanding the list of approved languages, consistent with
the ‘rule of two’.

4.3 Generating Names for Variables

The success of the project depends on an ability to code up vast numbers of
complicated mathematical expressions containing a wide range of mathematical
variables or symbols, illustrated by over 250 entries in Annex B to ref. [45].
Coding must be done as automatically, reliably and unambiguously as possible,
starting with source expressions that are presumed to be in the LATEX markup
language. Unfortunately, the character set for names of C++ variables is re-
stricted to letters of upper and lower case plus underscore ’_‘. Underscore will
be reserved to separate words, ie. to enable use of ’pothole’ convention. There
is thus a challenge as to how to represent the names of variables as set out using
LATEX conventions, which involve heavy use of the escape character backslash.
To enable conversion, to produce C++ equivalents, reserve ‘o’ as the escape
character, demanding that no mathematical variable is allowed to use the letter,
or its Greek equivalent omicron, even as a suffix or superfix.

A list in alphabetical order of the conventions as two character codes is
provided by Table 11.1.

Two character variables

Each keyboard character will be represented by one or two lowercase letters,
normally those which form the first two letters of its name, omitting ‘o’, thus :

• ‘a’ will represent ‘a’

• ‘aa’ will represent ‘A’

• ‘as’ will represent ’*’ (for asterisk)

47

• ‘bl’ will represent bracket on left [

• ‘br’ will represent bracket on right]

• ‘pl’ will represent parenthesis on left {

• ‘pr’ will represent parenthesis on right }

• ‘ti’ will represent tilde

• ‘ci’ will represent circumflex

• ‘sq’ will represent single quote

• ‘dq’ will represent double quote

• ‘st’ will represent stop or dot

• ‘ds’ will represent double stop or double dot

• ‘pu’ will represent ‘+’

• ‘mn’ will represent ‘-’

• ‘gt’ will represent >

• ‘lt’ will represent <

• ‘vb’ will represent |

Should it be necessary to use ‘o’, then ‘ooo’ will represent lowercase ‘o’ and
‘oooo’ will represent ‘O’.

Greek lowercase letters and other special characters will similarly be repre-
sented by two lowercase letters, apart from ‘o’, thus:

• ‘al’ will represent α

• ‘be’ will represent β

• ‘me’ will represent ω

• ‘ar’ will represent arrow to right →

• ‘pa’ will represent parallel ∥

• ‘pe’ will represent perpendicular ⊥

• ‘un’ will represent underscore _

Variant Greek letters will begin with ‘v’, followed by the first letter of their
transliteration into Roman letters, and uppercase Greek letters will be repre-
sented by the first and third letters, except for Π, Φ and Ψ where this is not
possible, thus:

48

• ‘ve’ will represent ε

• ‘dl’ will represent ∆

• ‘mg’ will represent Ω

• ‘py’ will represent Π

• ‘pf’ will represent Φ

• ‘pj’ will represent Ψ

If storage of an expression is required, the following will be useful, thus:

• ‘pt’ denotes ∂

• ‘ml’ denotes multiplication

• ‘dv’ denotes division

A single letter followed by a digit will have that as a suffix, thus:

• ‘n1’ will denote n1

Escape sequences

Use of different fonts will be denoted by ‘o’ followed by one or two digits,
preceding the above codes, thus :

• ‘o1’ will denote uppercase, for use in conjunction with Greek alphabet

• ‘o2’ will denote bold(math)

• ‘o3’ will denote calligraphic, (math)cal

• ‘o4’ will denote sans-serif, (math)sf

• ‘o5’ will denote typewriter, (math)tt

Some of the higher integer values might be used to denote members of the
same ‘namespace’, cf. the way sf is used to denote neutral quantities.

Positioning of suffixes and prefixes will be denoted by ‘o’ followed by a single
letter, thus:

• ‘os’ indicates underneath, S for South

• ‘on’ denotes above, N for North

• ‘oe’ denotes suffix, E for East

49

• ‘ow’ denotes prefix, W for West

• ‘or’ denotes superfix, R for Right

• ‘ol’ denotes preceding superfix, L for Left

Other LATEX commands will simply see their leading backslash replaced by
‘o’, thus:

• ‘onabla’ indicates ∇

• ‘otimes’ indicates ×

50

Chapter 5

Design Justification File

The Design Justification File (DJF) is generated and reviewed at all stages of
the development and review processes. It contains the documents that describe
the trade-offs, design choice justifications, verification plan, validation plan,
validation testing specification, test procedures, test results, evaluations and
any other documentation called for to justify the design of the software. A
wide range of ideas for NEPTUNE has been considered both by UKAEA
and NEPTUNE grantees, as indicated by the titles in Table 5.1, and choices
described in the DDF will be found supported by by the minutes of meetings
which form part of many reports. To see what has been considered before, it is
recommended that the access-controlled github repository ref. [7] be cloned to
a local directory and its subdirectories reports and reports/ukaea_reports
be indexed using software such as DocFetcher ref. [46] or Recoll ref. [47].

A number of algorithmic approaches were ruled out very early from consider-
ation and are only discussed briefly or not at all in the supporting documentation.
The reasons for rejection relate to the stringent demands of the NEPTUNE
project, which may be regarded as serving as a ‘corner case’ for other fusion
modelling projects, ie. they should not use ideas that make them incompatible
with NEPTUNE. These currently deprecated approaches are described in the
following section, after which the detailed reports are listed.

5.1 Deprecated Approaches

A prime consideration for edge modelling is accurately to represent the surface
normal, not just the surface itself, since good power-handling demands that
plasma flows in close to tangency, typically within 2o. Unless there is to be spe-
cial coding at boundaries, the educational material for finite difference modellers
explains why this approach is unsatisfactory, and the same objection also applies
to AMR type meshes, although in view of the unexpected success of AMR in
fluid and PIC codes, it was carefully discussed as detailed in ref. [48]. The most
serious objection appeared to be the need to represent plasma diffusion which

51

is strongly anisotropic due to an applied magnetic field. (Moreover, if hanging
nodes are allowed in the FEM, then AMR behaviour may be reproduced by FEM
codes, whereas the converse is not true.)

Similar objections also apply to Lattice Boltzmann methods (LBM), where
there is the simple objection that since their complexity arises from treating dif-
fusive transport, why not code the diffusive operators directly? Equally when it
is significant that the dissipation operator is mathematically extremely complex
as in many plasma transport problems, why not use a more accurate represen-
tation of velocity-phase space effects than is provided by a small number of
LBM constants? Although proponents claim that apparently fundamental inef-
ficiencies in the approach, such as the need for explicit time advance, may be
overcome, the ideas needed have invariably been already explored in the finite
volume or finite element context, so as LBM approaches the efficiency of say
FEM, it increasingly resembles it algorithmically.

Smoothed particle hydrodynamics (SPH) may be eliminated as a general
approach to plasma modelling on purely mathematical grounds, namely that for
small dimensionality problems it is provably more accurate to use a mesh-based
approximation to reconstruct a function than a set of point samples, see for
example Niederreiter’s textbook ref. [49]. For supposing NS samples are taken,
then Monte-Carlo sampling has an error∝ N

−1/2
S , ie. an error exponent of 1/2

and never as large as unity even for Quasi-Monte-Carlo sampling, whereas it
might be assumed that the spacing of samples on a regular d−dimensional
lattice is h ∝ N

−1/d
S , so a p−th order scheme has error exponent p/d, thus

taking p > d ensures that a mesh-based approximation is always more accurate
than one with more randomised sampling. In practice the situation is not as
clear cut as this argument indicates, since spectral schemes may exhibit gross
error if h exceeds the smallest scale of the function whereas Monte-Carlo errors
increase more gradually with decreasing NS . Exactly where equality of error
bound occurs depends on details of the problem, but it seems in practice to be
at least for d > 4, so that particle methods may become attractive for treating
kinetic effects in 5 −D or 6 −D position-plus-velocity phase spaces.

Both SPH and LBM may have niches when mesh production is difficult,
such as strong surface deformation cracks, however these niches do not seem
presently to need occupation in order to design a fusion reactor. Gentler defor-
mations due to thermal expansion and melt may be handled by moving finite
element methods which have been introduced into existing FEM packages as
required. Moreover, if indeed rapid boundary changes are concerned, the envis-
aged combined particle and mesh NEPTUNE software would anyway seem to
offer an excellent foundation for handling the whole range of shape variation.

Lastly, ‘particle shaping’ has been mentioned in the context of particle meth-
ods (regarded as methods directly capturing some aspect of velocity space, ie.
not SPH). To most mathematicians and physicists, giving a particle a ‘shape’
would seem unnatural, and the only benefit that it seems to offer, namely a

52

reduced level of noise, is more efficiently handled by filtering in physical space
alone, in the NEPTUNE context by smoothing any related mesh-based quan-
tities.

5.2 UKAEA (Internal) Reports

Table 5.1: NEPTUNE REPORT TITLES For full filenames,
prepend the string ‘CD-EXCALIBUR-FMS’. Source is in subdi-
rectory ‘tex’.

No. Key Title Filename Source
bibtex PDF .tex file

0001 sciplanref.
[4]

ExCALIBUR Fusion Modelling System Science Plan 0001 sciplan/rp1

0004 y12actsref.
[50]

ExCALIBUR Fusion Modelling System Activities Y1-2 0004 -

0010 y1re111bref.
[51]

NEPTUNE : Report on Y1 2020 External Workshop (RE-
PORT1)

0010-
M1.1.1b

-

0011 y1re121ref.
[52]

Year One Summary Report 0011-1.00-
M1.2.1

t12/rp1

0012 y1re211ref.
[48]

Options for Geometry Representation 0012-1.00-
M2.1.1

t21/rp1

0013 y1re231ref.
[53]

Options for Particle Algorithms 0013-1.01-
M2.3.1

t23/rp1

0014 y1re311ref.
[54]

NEPTUNE : Report on system requirements 0014-1.00-
M3.1.1

-

0015 y1re331ref.
[32]

NEPTUNE : Background information and user requirements
for design patterns

0015-1.00-
M3.3.1

-

0016 y1re351ref.
[55]

Benchmarking requirements for NEPTUNE and available
tools

0016-1.00-
M3.5.1

-

0018 y1re111aref.
[56]

NEPTUNE : Report on Y1 2019 Internal Workshop 0018-
M1.1.1a

-

0020 charterref.
[57]
EXCAL-
IBUR
NEP-
TUNE
Charter

0020 chart/rp

53

0021 pappeqs3ref.
[45]
Equa-
tions for
EXCAL-
IBUR/NEPTUNE
Prox-
yapps

0021-1.20-M1.2.1 rp21/rpc

0022 y2re312ref.
[58]

Report on user frameworks for tokamak multiphysics 0022-M3.1.2 t31/rp2

0023 y2re332ref.
[33]

Report on design patterns specifications and prototypes 0023-M3.3.2 t33/rp2

0024 y2re313ref.
[59]

Report on user layer design for Uncertainty Quantification 0024-M3.1.3 t31/rp3

0025 y2grantref.
[60]

ExCALIBUR Fusion Modelling use case: contract award rec-
ommendation report

0025-M1.3.1 docx

0026 y2re333ref.
[31]

Design patterns evaluation report 0026-M3.3.3 t33/rp3

0027 y3actref.
[61]

ExCALIBUR Fusion Model SPF Research Plan Y3 0027-M1.5.1 y3act/genpdf

0030 y2re141ref.
[62]

Winter 2020-21 Workshop 0030-M1.4.1 t14/rp1

0030a y2closeref.
[63]

ExCALIBUR NEPTUNE Project analysis to date: close
out Y2

0030a-
M1.6.1

docx

0031 y2re251ref.
[64]

Select techniques for MOR (Model Order Reduction) 0031-M2.5.1 t25/rp1

0032 y2d33ref.
[30]

Module Guide 0032-D3.3 d33/rpc

0033 y2d34ref.
[2]

Development Plan 0033-D3.4 d34/rpc

0034 y2re221ref.
[65]

Performance of spectral-hp element methods for the referent
plasma models

0034-M2.2.1 t22/rp1

0035 y2re241ref.
[66]

Assessment of which UQ methods are required to make NEP-
TUNE software actionable

0035-M2.4.1 t24/rp1

0036 y2re271ref.
[67]

Identification of suitable preconditioner techniques 0036-M2.7.1 t27/rp1

0037 y2re281ref.
[68]

Selection of the physics models 0037-M2.8.1 t28/rp1

0038 y2re261ref.
[69]

Identification of a preferred overall numerical scheme 0038-M2.6.1 t26/rp1

0039 y3re321ref.
[70]

Survey of code generators and their suitability for NEPTUNE 0039-M3.2.1 t32/rp1

0040 y3re51ref.
[71]

Management of external research. Supports UQ Procurement 0040-M5.1 t51/rpc

54

0041 y3re322ref.
[72]

Survey of Domain Specific Languages 0041-M3.2.2 t32/rp2

0042 y3re314ref.
[3]

Specification and Integration of Scientific Software 0042-M3.1.4 t31/rp4

0043 y3re242ref.
[73]

Selection of techniques for Uncertainty Quantification 0043-M2.4.2 t24/rp2

0044 y3re252ref.
[74]

Selection of techniques for Model Order Reduction 0044-M2.5.2 t25/rp2

0045 y3re272ref.
[75]

Identification of suitable preconditioner techniques 0045-M2.7.2 t27/rp2

0046 y3re212ref.
[76]

Surface mesh generation 0046-M2.1.2 t21/rp2

0047 y3re222ref.
[77]

Finite Element Models: Performance 0047-M2.2.2 t22/rp2

0048 y3re232ref.
[78]

Options for Particle Algorithms 0048-M2.3.2 t23/rp2

0049 y3d32ref.
[79]

Domain-Specific Language (DSL) and Performance Portability
Assessment

0049-D3.2 d32/rpc

0050 y3d35ref.
[80]

Verification and Benchmarks Methodology 0050-D3.5 d35/rpc

0051 y3re61ref.
[81]

Finite Element Models: Complementary Activities I 0051-M6.1 t61/rpc

0052 y3re71ref.
[82]

Literature review for Call T/AW086/21: Mathematical Support
for Software Implementation

0052-M7.1 t71/report

0053 y3re72ref.
[83]

Code coupling and benchmarking 0053-M7.2 t72/rpc

0054 y2d31ref.
[84]

Software Specification Web-site 0054-D3.1 d31/rpc

0055 y3re181ref.
[1]

Report of NEPTUNE Workshop 7 October 2021 0055-M1.8.1 t18/rp1

0056 y3grantref.
[85]

ExCALIBUR Fusion Modelling use case: contract award rec-
ommendation report

0056-M1.7.1 docx

0057 y3re262ref.
[86]

Fluid Referent Models 0057-M2.6.2 t26/rp2

0058 y3re282ref.
[87]

Technical report on Physics model selection 0058-M2.8.2 t28/rp2

0059 y45actref.
[88]

ExCALIBUR -Fusion Model System Y4-Y6 0059-M1.9.1 y45act/genpdf

0060 y3closeref.
[89]

Analysis to Date: Close out Y3 0060-M1.10 t110/rpc

0061 y3re42ref.
[90]

2-D Model of Neutral Gas and Impurities 0061-M4.2 t42/rpc

0062 y3re43ref.
[91]

High-dimensional Models Complementary Actions 2 0062-M4.3 t43/rpc

55

0063 y3re52ref.
[92]

Selection of techniques for Uncertainty Quantification 0063-M5.2 t52/rpc

0064 y3re62ref.
[93]

Finite Element Models Complementary Actions 2 0064-M6.2 t62/rpc

0065 y3re73ref.
[94]

Software Support Complementary Actions 2 0065-M7.3 t73/rpc

0066 y3re41ref.
[95]

Support High-dimensional Procurement 0066-M4.1 t41/rpc

Brief Survey of Reports to end FY 2020/21

For Activity 2, UKAEA produced three milestone reports, namely

• CD/EXCALIBUR-FMS/0012-M2.1.1 - Options for Geometry Representa-
tion

• CD/EXCALIBUR-FMS/0013-M2.3.1 - Options for Particle Algorithms

• CD/EXCALIBUR-FMS/0031-M2.5.1 - Select techniques for MOR (Model
Order Reduction)

together with the Activity 1 Report (’Equations document’)
CD/EXCALIBUR-FMS/0021-1.00-M1.2.1 - Equations for NEPTUNE/ExCALIBUR
proxyapps

The first two (Reports 12 and 13) describe the problems presented by the
fusion use case in respect of geometry and strong magnetic field in the first,
and of generally but not invariably low collisionality of the edge plasma in the
second. They set out issues that needed to be urgently addressed and possi-
ble lines of research. Report 31 discusses in depth a wide range of options for
research into Model Order Reduction, drawing attention to the possibility of
producing scalable algorithms by borrowing ideas from the field of Data Assimi-
lation. Report 21 sets out equations to be studied using the first six proxyapps,
beginning with relatively simple models for anisotropic transport and advancing
to complex models of plasma-neutral interaction.

For Activity 3, UKAEA produced six milestone reports, namely

• CD/EXCALIBUR-FMS/0022-M3.1.2 - User frameworks for tokamak mul-
tiphysics

• CD/EXCALIBUR-FMS/0024-M3.1.3 - User layer design for uncertainty
quantification

• CD/EXCALIBUR-FMS/0023-M3.3.2 - Design patterns specifications and
prototypes

• CD/EXCALIBUR-FMS/0026-M3.3.3 - Design patterns evaluation

56

• CD/EXCALIBUR-FMS/0032-D3.3 - Module Guide

• CD/EXCALIBUR-FMS/0033-D3.4 - Development Plan

and there were three earlier milestone reports from FY2019/20, namely

• CD/EXCALIBUR-FMS/0014-M3.1.1 - NEPTUNE: Report on system
requirements

• CD/EXCALIBUR-FMS/0015-M3.3.1 - NEPTUNE: Background infor-
mation and user requirements for design patterns

• CD/EXCALIBUR-FMS/0016-M3.5.1 - Benchmarking requirements for NEP-
TUNE and available tools

These reports are concerned principally with assessing the state-of-the-art
in software design with a particular emphasis on design of scientific software,
and of course paying attention to Exascale applicability. Selected textbooks
and the wider literature were examined for the factors important for success-
ful software developments. This examination threw up the importance of (1)
software frameworks described in Report 22 as an integrated set of software
artefacts that collaborate to provide a reusable architecture for a family of re-
lated applications, (2) software layering in Report 24 as a more widely useful
technique than just one enabling ‘separation of concerns’, and (3) design pat-
terns in Reports 15, 23 and 26 as an approach to reusing and communicating
reliable software structures. The importance of building a community and the
techniques for doing so were also described in Report 22.

Report 32 describes how the concept of module or class should be integrated
into a structure of frameworks, layers and design patterns, so that a large,
complex code can be partitioned into manageable segments. The utility of the
Unified Modeling Language (UML 2) to describe not just software structure,
but also code use in a wider based engineering structure, through model-based
systems engineering (MBSE) was noted. Report 33 attempts a preliminary
synthesis of the material presented in the previous Activity 3 reports into a plan
for the NEPTUNE software life-cycle, with focus on the subdivision of the plan
into documents expected to be arranged as a web-site. Report 24 also includes
an introduction to a wide range of uncertainty quantification (UQ) techniques.

Brief Survey of Reports FY 2021/22

For Deliverable 4, UKAEA produced three milestone reports, namely

• CD/EXCALIBUR-FMS/0066-M4.1 Support High-dimensional Procurement

• CD/EXCALIBUR-FMS/0061-M4.2 2-D Model of Neutral Gas and Impu-
rities

57

• CD/EXCALIBUR-FMS/0062-M4.3 High-dimensional Models Complemen-
tary Actions 2

The first (Report 66) supports the usefulness of the call for development of
higher dimensional elements, suitable for solution of a continuum kinetic model
of plasma, by demonstrating Nektar++ solution of a 1d1v model. The second
(Report 61) considers the use of the Julia language as a means to coding particle
models of plasma and neutral gas at HPC, with broadly favourable conclusions.
The third and final (Report 62) outlines critical physics expected to require
treatment using particle-based and/or Monte-Carlo methods. Its principal con-
tent examines how best to treat inter-processor communication of particle-based
information at the Exascale. There is also a brief description of a proxyapp for
the exploration of 1d1v solution by particles.

For Deliverable 5, UKAEA produced two milestone reports, namely

• CD/EXCALIBUR-FMS/0040-M5.1 Management of external research. Sup-
ports UQ Procurement

• CD/EXCALIBUR-FMS/0063-M5.2 Selection of techniques for Uncertainty
Quantification

The first (Report 40) begins with a reminder of the high level of “noise" in
tokamak data, and the kind of comparisons with simulation required. It is
pointed out that although spline interpolants are provably optimal, they may
perform poorly for classes of functions relevant to the tokamak edge. The main
content is the use of the VECMA toolkit for UQ of BOUT++ and Nektar++
for two 2-D fluid dynamical models. There is also derivation of simplified model
by dimension reduction, by integration in one coordinate and/or by use of the
Lie derivative. The report finishes with a summary of UQ-related PhD projects
sponsored by NEPTUNE.

The second (Report 63) pursues the use of splines for NEPTUNE, indicat-
ing utility in the case of noisy data, and explores the use of Gaussian processes,
including derivation of key formulae, and highlighting their strengths relative to
splines. There is a brief comparison with neural network surrogates in an annex.

For Deliverable 6, UKAEA produced two milestone reports, namely

• CD/EXCALIBUR-FMS/0051-M6.1 Finite Element Models: Complemen-
tary Activities I

• CD/EXCALIBUR-FMS/0064-M6.2 Finite Element Models Complemen-
tary Actions 2

The first (Report 51) details the application of the Nektar++ spectral / hp
finite-element software to the classic problem of two-dimensional vertical natural
convection - physically a model for the heat transfer that takes place within
the cavity of a double-glazing unit and also relevant to heat transport in a

58

plasma. A brief survey of results from the literature is followed by a numerical
investigation showing transitions between conducting, laminar convective, and
turbulent regimes. Small extensions to the existing Nektar++ framework, aimed
at extracting engineering-relevant quantities such as the maximum near-wall
temperature, are given. The second (Report 64) builds on these results with
a quantitative comparison to the well-established MIT numerical convection
benchmark and also the reproduction of some detailed flow-fields from a recent
publication; excellent agreement between results from Nektar++ and those
from the literature is obtained in both cases. Also included in this report is
a preliminary study of a numerical implementation of discrete exterior calculus
with a demonstration of spectral convergence for a simple test problem, work
motivated by the favourable properties of such schemes when coupled to particle
kinetic codes.

For Deliverable 7, UKAEA produced three milestone reports, namely

• CD/EXCALIBUR-FMS/0052-M7.1 Literature review for Call T/AW086/21:
Mathematical Support for Software Implementation

• CD/EXCALIBUR-FMS/0053-M7.2 Code coupling and benchmarking

• CD/EXCALIBUR-FMS/0065-M7.3 Software Support Complementary Ac-
tions 2

The first of these (Report 52) is a literature review performed to support the Call
T/AW086/21: Mathematical Support for Software Implementation. It describes
recent advances in algorithm development for hyperbolic and elliptic equations.
In particular, the report describes developments in IMEX schemes, Deferred Cor-
rection methods, Asymptotic Preserving (AP) methods, and Variable Stepsize,
Variable Order (VSVO) timestepping for hyperbolic problems, and AP methods
and nested solvers for elliptic problems.

The second (Report 53) provides a commentary on the present state of
Exascale hardware and software, and discusses the available tools and technolo-
gies available for benchmarking and code coupling. The hardware and software
landscape of HPC systems is becoming increasing diverse, with a proliferation
of vendors and different technologies. To perform well at Exascale, software
will likely need be able to target multiple heterogeneous systems. In such an
environment, it is crucial for developers to have access to benchmarking infras-
tructure to measure performance and highlight regressions. This environment
and the separation of concerns approach taken to navigate it necessitates the
development of discrete proxyapps which will need to be drawn together into a
single software suite. Thus the issue of code coupling will also be important at
Exascale.

The final (Report 65) describes aspects of coordination within the NEP-
TUNE project not covered in previous reports, namely, the development of a
GitHub repository for infrastructure code and project planning; the development

59

of a project website for knowledge transfer within NEPTUNE ; and a descrip-
tion of collaborations arising from NEPTUNE -related interactions, including
the Fusion Modelling Use Case working group established create a connection
between Project NEPTUNE and the wider ExCALIBUR programme.

Parallelism Abstraction

To exploit parallelism most effectively on any given architecture, data must be
arranged in arrays to which the same operations can be applied to many (Nadj)
adjacent elements. The arrangement of data describing, say, the magnetic
field or a particle distribution function can nonetheless make a big difference to
ultimate speed of execution which can depend sensitively on Nadj . Thus a good
API could be defined at the array level, taking away from the developer the
decision as to whether the data is arranged as nx ×ny ×nz or nz ×nx ×ny, ie.
as to which array index runs the fastest. Further, extremely large first indices nx

might for example be factored so that the first index is of order 64 to exploit
caching, whereas the final index might be used to map array contents to different
nodes of the machine.

Address of array
General indexing (start at 0)
I(0)*INC(0)+I(1)*INC(1)+I(2)*INC(2)+I(3)*INC(3)+...
Suppose I index from 0 to N0-1
J index from 0 to N1-1
K index from 0 to N2-1
L index from 0 to N3-1
Address :
(I,J,K,L,...), I=0,N(0), J=0,N(1), K=0,N(2), L=0,N(3)
Set INC(0)=1, INC(1)=N0, INC(2)=N0*N1, INC(3)=N0*N1*N2
N(0)=N0-1, N(1)=N1-1, N(2)=N2-1, N(3)=N3-1
Address :
(L,I,J,K,...) Set INC(0)=1, INC(1)=N3, INC(2)=N0*N3, INC(3)=N0*N1*N3
N(0)=N3-1, N(1)=N0-1, N(2)=N1-1, N(3)=N2-1
(0123)->(3012) is permutation
integer value 1, labels 3, 30, 301,.. give increments
Set N(i)=1 to suppress dependence on index i

In a physics modelling code, it seems reasonable that physics should have
a say as to how the data is arranged, with the special implication that all in-
formation relating to a particular position in space should be as close together
as possible. However, particularly for edge physics, this may lead to conflict
with an array level API. There are two main problems, namely that at a given
spatial point (1) some species may be represented as particles and others as
finite elements and some as both, and (2) not all species need be present at
a given point. The issue at (1) arises when the species collisionality varies so

60

that a fluid and a high-dimensional representation that accounts more accu-
rately for non-Maxwellian effects are needed in different spatial regions, with
the different representations allowed to overlap. Situation (2) may occur with
a neutral species that becomes fully ionised with distance into the plasma, or
when say singly-charged ions of a certain species are only present in the diver-
tor. The problem is intensified when p-adaptive finite elements are used such
that adjacent elements may have different orders of polynomial discretisation.
It may also be desirable when working with ensembles to have samples from dif-
ferent solutions but for the same spatial region to be physically close together
in storage.

The plasma physical constraint may be met by domain decomposition in
position space, so that within each subdomain, fluid species can be represented
by one set of arrays, one per species, and particles or other high-dimensional
representations as other set(s) of arrays. The optimality of this arrangement,
and certainly the size of subdomain, depends on machine architecture. For ex-
ample, on a node with both conventional CPU cores and a GPU, it might be
good to store finite elements adjacent to the CPU and use the GPU for particles.
Another option might be to take the localisation concept to its extreme, and
arrange together quantities that are close in the 6-D phase velocity and position
space, perhaps using an hierarchy of elements in velocity space. Fluid species
might be represented by pointers in these elements, without too much wastage
of store, even if there is only one species that requires a high-dimensional rep-
resentation.

Since the main work of a NEPTUNE solver is expected to be the numer-
ical inversion of a large matrix to obtain field values at a new time or iteration,
there is even a question mark over how much weight should be attached to the
localisation constraint. At the Exascale, the matrix and especially its precon-
ditioner must be virtual in the sense that it will be too large to store all the
coefficients simultaneously, given the size of field discretisation. Hence the ease
of computation of the coefficients of the matrix may be more important for
performance.

61

Chapter 6

Design Definition File

The Design Definition File (DDF) is a developer-generated file that documents
the result of the design engineering processes.

6.1 Design specification

Template given. Describe modules and hierarchy of modules. Also describes
likely and unlikely changes to the code. Anticipated changes guide the design:
ideally a change affects only one module

The design specification may need to be supplemented by a Module Interface
Specification (MIS). More concrete in defining access routines and syntax, but
still abstract in not defining how things are done.

Use of VECMA/SEAVEA as framework UQ by ensembles, active subspaces
(from ref. [73]) and GPs for surrogates (from ref. [74]).

The proposed NEPTUNE development is of sufficient complexity that the
production of code should be as automatic as as possible, and the ‘write once,
use many times’ principle implies that the starting point for code generation will
often be LATEX or Markdown format documents from the DJF or indeed DDF.

For NEPTUNE, the initial write should be in LATEX format representing an
extension of the tabular layout used to generate Table 11.3, for conversion to
Doxygen input format for documentation and C++ source, specifying:

• variable name, which for NEPTUNE should be generated from LATEX
using substitutions set out in Table 11.1.

• brief description, to remind user what is the purpose of the variable

• units

– physical units should be SI, except eV for temperatures and mm for
CAD inputs

62

– scale factors for extreme-valued fields, eg. 1018 for number densities,
or for quantised fields, eg. position expressed in units of separation
of a uniform grid.

• default value(s) on input

• simple constraints on variable values

– whether real number or integer-valued
– range specification, eg. 0 < n ≤ 10 if n must be a positive, small

integer

• detailed description of what variable does, if not covered by group de-
scription.

• constraints in terms of other variables

Input variables are grouped according to the objects/classes which they help
define.

smardda-misc illustrates how to produce software that auto-generates the
equivalent of .h files to describe objects and and .cpp or .m files for

1. setting default values of variables

2. dumping inputs to .log text-files if required

3. checking constraints on input variables

4. saving acceptable values

63

Figure 6.1: NEPTUNE base classes.

6.2 Objects/classes
Notes Procedures denoted in boldface, as separate sections.
n-D does not include time
ref. [4] in exc.bib

Base classes

The proposed base classes for NEPTUNE are listed below and shown graphi-
cally in Figure 6.1.

• Timepoint : point in physical time Attributes of time, units, offset (Al-
ternatively just real scalar)

• Point : point in n-D space
many make curve, shape;
is particle location in n-D ; Attributes of n-vector, units, coordinate system
(Alternatively just real n-vector)

• Curve : parts are one or more points, straight lines or textures or from
CAD input or CSG input;
many make shape;
is shape boundary, is particle trajectory, is ray

• Shape : parts are curves and textures, planar rectangles, or surfaces from
CAD input or CSG input;
many make Shapeset;
is surface which aggregates as BC

• Shapeset : parts are shapes, regular lattice, or volumes from CAD input
or CSG input;
is finite element geometry, is unstructured mesh, is surface geometry of
body, is volume in n-D, n ≥ 3 ;
helps defines field
Attributes of degree of toroidal symmetry

64

Figure 6.2: Aggregation of base classes to form a class ‘Source’.

• Tensor : parts are m numbers at a point, order o, type eg. udd, and
density r in n-D coordinate system of type c;
is (m = 3, o = 1, n = 3) velocity, is (m = 1, o = 3, n = 3) density,
is (m = 1, o = 0, n = 3) temperature, is (m = 3, o = 0, n = 0) is array;
many help make field (u denotes contravariant, d denotes covariant, c
defines cartesian, cylindrical, toroidal coordinates, r = 0 usually)

• Material : from database input ;
helps make body, particle, many make matexture, plasma
Attributes of charge, excitation level and mass

• Texture : parts are mathematical library functions, particularly mathe-
matical library interpolation functions - see Section 6.3
aggregates as matexture, BC

• Transformation : mathematical formula defining geometry transforma-
tions on point and tensor (co- and contra-variant) x̄ → x

• Orchestration : parts are from configuration file input see Orchestration,
model, framework

Aggregates

• Particle : parts are location, velocity, material;
Attributes of particle weight

• Interpolant : parts are points, curves, shapes, textures, or timepoints,
textures

• Diagnostic : parts are DSL input instructions Diagnostic Processing,
fieldset

65

• FE (Finite element) : parts are shape, interpolant, material

• Field : parts are tensors and finite elements, or particles;
many make fieldset

• Fieldset : parts are fields

• DE (Differential equation) : parts are operators (DSL input), IC, BC and
source

• Model : parts are Solution of DEs

• Source : parts are shapeset, fieldset. See Figure 6.2.

• Matexture : parts are materials, textures

• Body : parts are shapeset, matexture

• BC (Boundary Condition) : parts are surface, material, texture

• GEOQ (Geometry plus B-Equil) : parts are shapeset, field

Simple inherits

• HDS (Hierarchical Data Structure) : multi-octree, is a shapeset

• Trajectory : particle position as time varies, is a curve

• IC (Initial Condition) : is a fieldset

Solution of Differential Equations

Use in part ABSTRACT CALCULUS and PUPPETEER patterns (cf. GoF FA-
CADE) from Rouson et al. ref. [96], see Section 6.4.

Diagnostic Processing

1. Read configuration file

2. Determine whether any diagnostic needed at present physical time

3. Select input fieldset

4. Select diagnostic type, use in part ABSTRACT CALCULUS from Rouson
et al. ref. [96]

• Initial logs
– UUID
– Key input data

66

– Key properties, eg. LCFS
• Combinations of

– Field / quadratic field (eg. power, flux quantity) / general for-
mula

– Point, line integral, surface integral, volume integral
• Mass/charge, momentum/current and power balances
• Turbulence statistics - cross-correlations, spectra (not particle, ray)
• Difference between solutions/experiment (RMS as ‘skill’) (not par-

ticle, ray)
• See “emergent physics as diagnostic” in imas_objects.tex

5. Calculate output fieldset

6. Set output format

7. Output fieldset to disk, screen

Orchestration

1. UQ Framework VECMAtk and FabNEPTUNE

2. GUI

3. CLI

4. Possible restart (OLYMPUS logic, Fig.1 of ref. [58])

5. Initialise from functions.md

6. Solution from functions.md

67

6.3 Execution sequence

Preprocessing and components

• Convert equilibrium B-field to standard format (ie. a standard resembling
EQDSK)

• Convert n-D geometry (NURBS) to opensource format

Initialise

• Convert n-D mesh to readable format

• Assign boundary conditions to mesh (finite element by finite element)

• Validate inputs (eg. Python Cerberus)

• Initialise fields, possibly exploiting toroidal symmetry

– using sources, calculate with possibly simplified dynamics
– semi-analytically (Gaussian in vel. space)
– random perturbations
– from disk file
– from previous calculation
– apply operators to field (eg. EQDSK data → B-Equil)
– combine vacuum field and B-Equil

• Calculate LCFS

• Normalise field

• Distribute mesh across processors

• Distribute particles across processors

Solution

• Extra outer loop over parameters (UQ Framework)

• Outer loop over time

• Inner loop over solver

– loop over particles
– loop over rays

• More deeply nested iteration

68

• Convergence test

• Rouletting particles

• Particle collision

– with geometry
– with other particle

• Adaptive meshing

• Construct surrogates (UQ Framework)

– Reduce in n-D (n → n− 1)
– Combine particles
– Replace particles by FE
– Smoothing
– Gyro-averaging
– Sparse models for Data Assimilation (via SINDy)
– Gaussian Process
– Polynomial Chaos Expansion
– Active Subspaces
– PGD

• Connect surrogates (UQ Framework)

Assortment

• Calculate HDS from Field geometry data

• Intersect triangle with cuboid

• Calculate surface normal and tangents, curvatures

• Calculate curve tangent and normals, torsion, curvature

• Calculate volumes

• Locate point in field element geometry data

• Select algorithms

• Label with physical units, array dimensions, transformations

• Increase in n-D (n → n+ 1)

• Replace FE by particles

• Evaluate FE representation at set of points

69

Diagnostics

• Calculate terms in power balance

Utilities

• Format conversion

• sorting

Mathematical library operations

• FFT (FFTW package)

• linear algebra

• quadrature

• optimisation

• geometry transformations on point and tensor

• Interpolation STRATEGY to select among

– splines (2-D, 3-D)
∗ regular (de Boor)
∗ local
∗ Weiland

– Fourier interpolation
– rational interpolation
– Lagrange interpolation (after Trefethen)

6.4 Design patterns
The design patterns likely to be most relevant to NEPTUNE are described
in refs. [31, 33].

The PUPPETEER pattern appears to be exclusive to the works of Rou-
son et al, hence is described further here. It is directed towards the calculation of
the Jacobian of multi-component systems typically needed for Newton-Raphson
type solution of update equations. The idea is that the puppeteer need only
know which blocks of the Jacobian matrix are nonzero, although the puppets
need to be capable of forming derivatives with respect to all state variables.

70

Figure 6.3: PUPPETEER pattern. Each puppet (‘Fluid 1’, ‘Fluid 2’, ‘Parti-
cles 1’) may include terms involving the other puppets. For example, suppose
the puppet for ‘Fluid 1’ has terms involving also ‘Particles 1’ variables (but not
‘Fluid 2’), then the puppeteer can request derivatives of the puppet’s terms
both with respect to ‘Fluid 1’ and ‘Particles 1’ variables, but knows not to ask
for derivatives with respect to ‘Fluid 2’ variables.

71

Chapter 7

Management File

The Management File (MGT) is a developer generated file that describes the
management features of the software project notably, organizational breakdown
and responsibilities, work activities breakdown, selected life cycle, deliveries,
milestones and new risks. Note that the report ref. [2] entitled “Develop-
ment Plan" is primarily concerned with the documents needed for managing
the project, and how they should be arranged as a website.

The range of levels of detail and implicitly computational cost (from Exascale
down to laptop) will follow from the projected development via a sequence of
proxyapps of increasing complexity and detail. This process is expected to enable
an enhanced selection through experience and feedback, of

• a common set of software objects/classes

• computer languages suitable for design with ’separation of concerns

• numerical algorithms

• user interfaces

• interfaces to databases and coupling to codes not conforming to NEP-
TUNE standards

Selections will be recognised as better if they lead to improvements in scalability
and portability, reliability and resilience, extensibility, and ease-of-use.

7.1 Introduction

Webpages on this site concerning management details are taken from the re-
port ref. [3], based largely on the work of Ben Dudson, which presents guidance
concerning the mechanics of an opensource development by a community dis-
tributed across different sites and organisations, intended to produce software
intended for widespread long-term usage. Parts of ref. [3] relate more to the

72

technical specification (TS) and are reproduced in Section 4.2, another part
concerns operational aspects (OP), see Section 9.1. Its recommendations are
broadly consistent with those laid out by Bungarth & Heister ref. [97], and in
particular those for the usage of git conform to practice recommended by the
ITER organisation. This document is not the place for a general discussion of
software engineering practices, and does not cover code coupling, both of which
topics are discussed in the open literature, see in particular Lawrence et al ref.
[98] for HPC software engineering and Belete et al ref. [99] for code coupling,
also see other NEPTUNE reports, particularly refs. [31, 58, 83].

ref. [3] assumes that all the community has signed up to a “Charter" which
for NEPTUNE appeared as report ref. [57], reproduced in Section 7.3. The
guidanceref. [3] includes important issues that need to be agreed as early as
possible. These include practical points concerning frequency of meetings, code
review etc., designed to ensure efficient collaboration between a wide group
of project partners. The guidance documentref. [3] also seeks not merely to
prescribe, but to give compelling arguments for the choices made in respect
of guidelines. Acknowledging the possibility of disagreements, it states that
efforts will be made to ensure consensus or at least agreement between the
two most affected project partners on any decisions taken. However, in the
event of continuing disagreement, the technical leader or ‘Lead’ for the project
will ultimately decide on the basis of technical evidence presented, subject to
ratification by higher management.

One general rule is always to allow two options (‘rule of two’), intended to
enable exploitation and possible incorporation of any promising new software
(eg. package, library or language) or relevant algorithm which emerges during
the course of the project. Since however, each option doubles the potential cost
of developing and maintaining software, a good case must be made to the Lead
for a new option, and the innovator include provision for retiring one of the
existing options should there already be two. Implicitly thereby, as discussed at
the end of Section 4.2, a third exploratory option is also allowed.

A similar recommendation (rather than rule) regarding both code and docu-
mentation is to ‘write once, re-use many times’. This to a large extent explains
a preference for the LATEX lwarp package as enabling multiple reuse of the same
text and mathematical expressions in different documents and on different web-
pages.

73

7.2 Management
Meetings, whether on-line or in-person are regarded as critical for good collab-
oration, and are discussed in Section 7.2. The other key collaborative element
centres naturally on the software, where use of the git control system, see
Section 7.2 and consequent use of repositories, see Section 7.2, is becoming
universal.

Meetings and Workshops

To start the project and any notable identifiable piece of work within it, a kick-off
meeting should bring together all partners who will contribute significant code
to the project. The aim of this meeting will be to build personal links among the
team, and to establish community practices consistent with the charter. Efforts
should be made to build consensus and a community spirit within the project
team.

A regular project planning and monitoring meeting should be set up, at least
monthly. Its agenda should include short updates on progress of each project
component, and focus on the project planning and coordination. In addition, a
separate series of seminars and training should be organised, where each partner
might give a longer talk on an aspect of their work, for example showing other
partners how to use recently developed capabilities.

Development and collaboration mechanisms should include:

1. A system of code repositories for version control (eg. github)

2. Automated testing infrastructure (eg. github actions)

3. Documentation infrastructure, ie. as a website

4. A repository for long-term storage of large files, records of meetings, pre-
sentations etc. (eg. Google shared drive)

5. A chat/messaging service such as Slack or Zulip, to facilitate interactions
between developers

As these are established, a series of training workshops should be arranged.
These should include talks on the “high level" objectives, on the near-term
plans of each partner, and also hands-on training in the tools being used.

Version control

The standard git version control system should be used; there is no viable
competitor to this in terms of capabilities, widespread adoption, or integration
into other tools and services (eg. github).

A common complaint against git is the user interface, which can be in-
timidating to new users. There are very strong reasons why even programmers

74

with plenty of other experience, should seek guidance and preferably training in
use of the command line interface (CLI). For those who have time enough to
attempt to do so without, a few hints are provided:

1. The complexity of the interface can be mitigated by restricting usage to a
few well-chosen subcommands such as clone, add, commit, push, pull,
diff, log and status.

2. Exercise caution before using other subcommands or new options to the
core subcommands, eg. by first committing all files, adding a suboption
which indicates what will be done without actually modifying any files,
and avoiding forcing options.

3. For the purpose of the key subcommands such as ‘pull’ and ‘push’, it is
important to remember than these are are defined from the user’s point-of-
view, so that ‘pull’ brings source from the repo towards the user, and ‘push’
sends it away. There are other non-intuitive aspects so that it is important
to study very carefully the description of any new sub-command/option
and particularly its ordering of options.

4. Since the software is widely used, error messages can invariably be ‘googled’
for further explanation.

5. Should conflicts occur, these are recorded by the insertion of strings
‘+++. . . ’, ‘>>>>...’ and ‘<<<<...’ in disc files to indicate lines where
the clashes lie. Many users find resolving conflicts very difficult on the
basis of such information, however making up for the absence of a GUI
mechanism within git to do this, it is possible to integrate GUIs such as
meld, being aware of possible system dependences.

Otherwise, the experience of git can be mitigated through:

• Training: Links to training material for adopted tools should be made
available as part of the project documentation. This should be supple-
mented by training, both one-to-one and as part of a programme of talks
and training.

• Adoption of, and training in, tools to provide easier interfaces. github
itself allows browsing of history; Magit is an excellent interface integrated
into Emacs; and similar tools exist for eg. Visual Studio Code. The ITER
organisation uses bitbucket and UKAEA uses gitlab.

Code repositories

The structure of ExCALIBUR will result in a number of different components,
experimental proxyapps, and increasingly complex applications. There are two
main different approaches as to how these different components could be split

75

between git repositories, namely (1) Several large code bases are kept in a single
repository (a ‘monorepo’) and (2) projects are kept in separate repositories, with
dependencies being included as git submodules.

Adopted is a compromise approach whereby:

• A github ‘organisation’ https://github.com/ExCALIBUR-NEPTUNE was
created to host new repositories. Organisations allow permissions for
groups of administrators and developers to be managed, and this is cur-
rently restricted to community members, so that it is important to be
‘logged in’ to access their components.

• Individual components and proxyapps are hosted in separate repositories
under this organisation. These contain the code, unit tests, documenta-
tion etc. specific to these components.

• Reports produced as part of the NEPTUNE project, unless they contain
commercially sensitive information, are to be found in the repository ref.
[7].

• A central repository under this organisation includes components as sub-
modules. These could be organised into a directory structure, with doc-
umentation explaining the relations or coupling between components. In
this repository should go:

– Integration tests which couple components and ensure that they
work together

– Documentation of the interfaces between components, project con-
ventions (eg. style guides), and overall project aims.

Sub-modules are pinned to a particular git commit, so that at any point
the versions included are those which are known to work with each other.
A developer who wants the latest version of a component should clone the
individual repository, while a user who wants something that “just works"
should clone the central repository.

(There is the disadvantage of a tie specifically to github, but loss of the ‘or-
ganisation’ capability would be expected to be an inconvenience rather than a
disaster for a project.)

Development workflow

The standard git work flow has been adopted, since this is widely familiar and
has been developed as best practice based on industrial experience. Exceptions
are allowed for minor issues, such as typographical errors and broken links in
documentation.

76

https://github.com/ExCALIBUR-NEPTUNE

Each code component maintains a main branch (often referred to as the
‘master’ as in ‘master copy’), which can only be modified through a pull re-
quest mechanism which ensures peer review and testing. Bug fixes and feature
development are done in separate branches, either in the same repository, or in
forked repositories. When someone encounters a bug, or wishes to develop a
new feature, the recommended approach is:

1. An issue is opened, describing the bug or feature request or proposal. This
allows discussion of the issue, and possible approaches to addressing it.

2. A pull request is opened as early as possible, marked “Work in progress"
or similar. This can contain only minimal code or outline of the code
structure. This links to the issue, lets other people know that it is be-
ing worked on, and enables peer review and input into the development
direction.

3. Once ready for merging, and consensus has been reached that the pro-
posed change should be made, then it is merged.

If a code is sufficiently large, then a further degree of separation between
the stable main branch and active development is needed. A common pattern
is to only branch off and merge features into a next branch. Periodically this
branch is merged into main as a new release, once the new features are judged
to be sufficiently mature and tested.

Whether into main or next, pull requests should be reviewed using a check-
list the remind the reviewers. Review involves testing, aspects of which are
addressed in Section 9.2.

It must be stressed that code review is not a job separate from code de-
velopment: All developers should be expected to participate in and carry
out code reviews. Reviewing code benefits not only the original author, but
also the reviewer. Through the discussion, it contributes to a sense of shared
ownership of the code base, and spreads good practices. There is the impli-
cation that code should be written ‘for the other guy’, ie. so that the other
guy can understand it without much difficulty. It also ensures that at least two
developers know how each part of the code works.

Code release

Code releases should be a regular occurrence. Code release helps with project
branding and user engagement, and ensures that the project is seen as active. It
also helps project administration by ensuring new features are shared in a timely
fashion, and by reducing the number of long-lived divergent branches.

The project NEPTUNE codebase contains proxyapps, and infrastructure
code that interfaces them. A code release will consist of a version of this
infrastructure code, plus commit hashes that fix the versions of the proxyapps.

77

As proxyapps might be independent projects with their own established release
cycle, the following release policy applies only to the infrastructure code. It is
the recommended policy for new proxyapps written under Project NEPTUNE.

Release numbering should follow (a modified) Semantic Versioning approach ref.
[100], summarized as

“Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.”

Here it is understood that “API” refers to user-facing interfaces; APIs to func-
tions internal to proxyapps may break backwards compatibility in MINOR re-
leases. There is however an absolute guarantee that no backwards incompatible
changes are made for end users in MINOR and PATCH releases, except those
that arise from fixing a bug. That is, physics results are permitted to change in
such releases if the new release’s results are “correct” and the previous release’s
results were “wrong”.

It is also understood that releases with MAJOR number 0 are considered
beta releases, for which there are no guarantees of backwards compatibility.

Each release will be uploaded as a Zenodoref. [101] record with its own
DOI. This gives a clear citation for the project (to be included in the project’s
README or CITATION.cff file), while ensuring that developers receive credit
for their work, without the need for associating each release with a publication.
Encouraging researchers to use release versions and to cite by version number
also aids scientific reproducibility.

While some technical aspects of the release process can be automated, many
of the tasks, such as curating issues and writing release notes, are inherently
manual. To prevent NEPTUNE relying on a single person to make releases,
the exact workflow will be codified and included in the project documentation.
An example of such a workflow for the GS2 project may be found online ref.
[102].

78

7.3 ExCALIBUR Project NEPTUNE Charter

All members of the ExCALIBUR NEPTUNE team should be aware that
to meet the challenges of the NEPTUNE project, and the ExCALIBUR
overarching pillars, a distributed team of scientists, software engineers and ar-
chitecture specialists from different UK institutions will be required to form
a community around the NEPTUNE project (and will connect across the
overarching ExCALIBUR programme). A high-level objective is to ensure
that developed software is of the highest quality, implying a rigid requirement
around the production of high-quality documentation and reproducible verifi-
cation and validation tests for the codebase as it evolves. Since development
work may transfer between institutions, it is important that common standards
for documentation and testing be available and easy to deploy. The initial
NEPTUNE exploratory Proxyapps may be written in a range of languages in-
cluding for example Python, C++/DPC++, Object Fortran or Julia, however
it is envisaged that there will be an emerging steer towards a reduced set of
languages and technologies to ensure interoperability across the NEPTUNE
software stack, ultimately leading to coupled simulations covering all the physics
necessary to deliver an “actionable” simulation for the plasma edge. It is not
yet clear for example whether SYCL, Kokkos or OpenMP 5 will offer the most
performance portable and sustainable solution for NEPTUNE. The team is
therefore expected to be agile and amenable to change once it is clear which are
the most promising long–term solutions. For example, a selection of SYCL for
the long-term framework/code(s) would force refactoring of any code that is not
consistent with a NEPTUNE library and code base instantiated in DPC++,
and where feasible, team members should support this process.

Source code for all development should be accessible by the entire NEP-
TUNE team and all tests should be repeatable by different workers without
the need for re-training and/or any possible confusion as to the procedures and
metrics needed to declare a test successful.

NEPTUNE will be developed as a sequence of ‘core’ Proxyapps (to be
distinguished from other Proxyapps designed to test some novel technique).
Core Proxyapps will all need a documentation and testing framework, which
must be agreed between all partners for the entire project. This will require
developers to work closely with UKAEA and other team members.

A commitment is also expected by all parties to help UKAEA and the Met
Office (as SRO for ExCALIBUR) to publicise the project and build a fully con-
nected community across the ExCALIBUR programme, UKRI and Academia,
focused upon a team of approximately twenty UK Fusion use case experts. This
will be essential for meeting the grand challenge goal of developing a state-of-
the-art, Exascale targeted, UK-based plasma physics simulation capability for
the tokamak edge plasma (see Science Plan ref. [4]).

All Core Proxyapps and related infrastructure/documentation across the
NEPTUNE project should meet the demands of the Code Structure and Co-

79

ordination work package FM-WP4 in so far as the developing project standards:

• adopt a consistent choice of definitions (ontology) of objects or equiva-
lently classes,

• adhere to clearly defined common file formats and interfaces to compo-
nents for data input and output.

• provide suitably flexible data structures for common use by all developers,

• are established through good scientific software engineering best practice,

• demonstrate performance portability and exploit agreed DSL-like inter-
faces where possible targeting Exascale-relevant architectures,

• can be integrated into a VVUQ framework and

• are embedded within a coordination and benchmarking framework for
correctness testing and performance evaluation.

In order to meet Strategic Priorities Fund terms around eligibility, and to
steer the project towards a modular platform where developments across all part-
ners can be integrated into an eventual code or platform available for open use by
the European fusion community, a requirement is that all ExCALIBUR NEP-
TUNE Grant beneficiaries make technology / source code developed through
the programme (foreground Intellectual Property) available as open source un-
der a programme–wide permissive license (currently selected as 3-clause BSD for
core/foundational infrastructure ref. [103]). Government Digital Service guid-
ance (to which the project subscribes), discussing the benefits of open versus
closed technology/software/data can be found in refs. [104, 105].

80

Chapter 8

Maintenance File

The Maintenance File (MF) is a developer generated file that describes the
planning and status of the maintenance, migration and retirement activities.

81

Chapter 9

Operational Documentation

The Operational Documentation (OP) consists of the Developer Manual Sec-
tion 9.2 and the User Manual Section 9.3. It is important that the user’s
experience of the software feeds back into the instructions as to how to use the
software, and mechanisms for achieving this end appear in Section 9.4.

9.1 Documentation Generally

Documentation

Documentation refers to a particular version of the code. It should therefore be
dynamic, under version control, and tightly coupled to the source code itself.

• All new code features should be documented, and this should be checked
as part of the peer review process.

• Within the code, comments should use a convention, such as that ac-
cepted by Doxygen, to document the intent of functions, and any as-
sumptions on their environment, input or outputs.

• Alongside the code README files explaining the file/directory layout typi-
cally use the Markdown format due to its simplicity, standardising on the
variant defined by Pandoc as described in ref. [2].

• The more formal documentation should be in a format which can include
elements such as equations, code blocks, graphs and figures. It should
also be easily convertible to other formats, and in particular online docu-
mentation. LATEX as used to produce the current document can be easily
converted to .html as explained in ref. [2] provided the restrictions (as to
accepted packages) noted in the reference are observed.

82

9.2 Developer Manual

Testing

Requirements before merging changes in git include:

• Tests must pass. (Merge blocking can be enforced eg. on github.)

• The code must be in the standard style, which will be at least partly
enforced as part of the automated testing.

• Documentation must be updated or added to reflect changes in the code.

Source code testing

Testing of code is essential to ensure correctness, reduce incidents of accidental
breakage or regression of code features, and enable code changes to be made
with confidence. These tests must be automated, and as far as possible be
“unit" tests, which test isolated components of the code. A strictly Test Driven
Development (TDD) approach is not always appropriate, but encouraging incre-
mental development and testing in small pieces has several advantages in terms
of the resulting code structure and maintainability:

1. It encourages the writing of code which has “clean" interfaces ie. a well
defined set of inputs and outputs, with minimal side channels (eg. global
state).

2. Having to test components individually discourages strong coupling be-
tween code, because then these dependency components have to be
“mocked" up in testing.

3. Good code test coverage makes later maintenance, modification and refac-
toring of the code easier. The tests also function as a type of documen-
tation of the intended use of the code, and also of the corner-cases which
may not be obvious to a new user or developer.

The most important types of tests are for correctness. These can use stan-
dard services such as github actions, Travis etc. Performance is however a
crucial property of the code, and should also be monitored.

Performance testing

It is useful to include timing information in test output, which is then contained
in the test logs. This is valuable as a quick way for developers to observe the
impact of changes on performance. It is however not very accurate, especially
under virtual machines on shared hardware as is typical for testing services.
These tests also only typically use a small number of processors (less than four),

83

usually without accelerator support, making them of limited use in evaluating
performance of high performance code for the Exascale.

Periodic testing of code versions on a range of hardware will be needed to
monitor performance, and catch performance regressions. This could be carried
out by a researcher, but the possibility of automating this process and making
use of services such as Amazon AWS HPC and GPU servers. Studies carried to
date indicate a lack of appropriate software for ensuring performance portability
and a consequent need at least to enhance existing packages.

Object Identification

Douglass ref. [106, § 5] has a description of object analysis which is well-suited
project NEPTUNE. His approach is to take the use cases, which for this
purpose should include the proxyapps separately, and treat them carefully one
after the other using the strategies indicated in Table 9.1. Each proxyapp
should be carefully analysed and classes produced from the list of objects before
proceeding to the next.

9.3 User Manual
ICD Interface Control Document (User Manual)

With video tutorial, quick start, installation, examples. Examples use Jupyter
- has Python and Julia interfaces. Binder shares a Jupyter notebook so recipient
can immediately execute in a browser

9.4 Feedback and Communication
• Matrix chat - Slack or Zulip?

• Discourse group

• Mailing list

• Suggestion box

• Weekly community meetings

84

Table 9.1: Key Strategies for Object Identification. After Table 5.1 from ref.
[106], slightly amended. All the strategies except the last, are concerned with
identifying the objects listed.

Strategy Description
Nouns Used to gain a first-cut object list, the analyst underlines each noun or noun

phrase in the problem statement and evaluates it as a potential object, class,
or attribute.

Causal agents Identify the sources of actions, events, and messages; includes the coordi-
nators of actions.

Services (passive con-
tributors)

Identify the targets of actions, events, and messages as well as entities that
passively provide services when requested.

Messages and infor-
mation flow

Messages must have an object that sends them and an object that receives
them as well as, possibly other objects that process the information con-
tained in the messages. There are many ways to identify the objects within
a collaboration.

Real-world items Real-world items are entities that exist in the real world, but are not nec-
essarily electronic devices. Examples include objects such as gases, forces,
blanket modules, etc.

Physical devices Physical devices include the sensors and actuators provided by the system as
well as the electronic devices they monitor or control. The resulting objects
are almost always the interfaces to the devices. Note: this is a special kind
of “Identify real-world items".

Key concepts Key concepts may be modeled as objects. Physical theories exist only con-
ceptually, but are critical scientific objects. Frequency bins for an on-line
autocorrelator may also be objects. Contrast with the “identify real-world
items" strategy.

Transactions Transactions are finite instances of interactions between objects that persist
for some significant period of time. An example is queued data.

Persistent information Information that must persist for significant periods of time may be objects
or attributes. This persistence may extend beyond the power cycling of the
device.

Visual elements User-interface elements that display data are objects within the user-
interface domain such as windows, buttons, scroll bars, menus, histograms,
waveforms, icons, bitmaps, and fonts.

Control elements Control elements are objects that provide the interface for the user (or some
external device) to control system behavior.

Apply scenarios Walk through scenarios using the identified objects. Missing objects will
become apparent when required actions cannot be achieved with existing
objects and relations.

85

Chapter 10

Proxyapps

A number of proxyapps have been written in order to provide initial NEPTUNE
proofs-of-concept and to test relevant numerical physics. This section provides
brief outlines and links to relevant code repositories.

10.1 Nektar-Driftwave

Nektar-Driftwave solves the 2D Hasegawa-Wakatani equations describing drift-
wave turbulence. The equations are, for vorticity ζ, number density perturbation
n, and electrostatic potential ϕ,

∂ζ

∂t
+ [ϕ, ζ] = α(ϕ− n) (10.1)

∂n

∂t
+ [ϕ, n] = α(ϕ− n) − κ

∂ϕ

∂y
, (10.2)

where [a, b] ≡ ∂a
∂x

∂b
∂y − ∂a

∂y
∂b
∂x .

In the above, α is the adiabaticity operator (taken to be constant) and κ
is the background density gradient scale length. The electrostatic potential is
related to the vorticity by Poisson’s equation ∇2ϕ = ζ.

The main system is implemented as an advection problem using a discontin-
uous Galerkin formulation which provides numerical stabilization meaning that
the usual hyperviscosity term is not required. The Poisson solve is implemented
in a continuous Galerkin formulation.

The example provided tracks the nonlinear evolution of an initial Gaussian
spatial density perturbation to a turbulent quasi-steady state. See the internal
report ref. [77] for a presentation of the output and a comparison with published
results.

Nektar-Driftwave is publicly available at https://github.com/ExCALIBUR-NEPTUNE/
nektar-driftwave.

86

https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave
https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave

10.2 Nektar-Diffusion

Proxyapp capable of simulating 2D diffusion with arbitrary symmetric diffusivity
tensor, based on Nektar++. The equation solved, for diffusivity tensor D,
temperature T (in the case where the diffusing quantity is heat), and time t, is

∂T

∂t
= ∇ · (D∇T) . (10.3)

The problem is motivated by the fact that a characteristic of magnetically-
confined fusion devices is that diffusive transport is strongly anisotropic, with
heat transport in the direction of the magnetic field lines being favoured (ra-
tios in the components of the diffusivity tensor of up to approximately 106 are
physically-motivated).

A typical scenario for the proxyapp is a domain containing linear, parallel
magnetic fieldlines making angle θ with the horizontal axis, with a heat source
implemented as a Dirichlet boundary condition on the left-hand-side vertical
boundary, resulting in the diffusive transfer of heat to the lower domain bound-
ary. The interest is in small incident angles as these represent configurations in
which the power incident on the wall of a nuclear fusion reactor (and hence the
likelihood of damage) is minimized.

A number of examples are included, including time-dependent and steady-
state problems in the type of geometry described above. There is also an
example of 2D semi-annulus in which the field-lines are circular arcs. See the
internal report ref. [77] for an presentation of the relevant outputs.

Nektar-Diffusion is publicly available at https://github.com/ExCALIBUR-NEPTUNE/
nektar-diffusion.

10.3 Nektar-1D-SOL

The Nektar-1D-SOL proxyapp models plasma transport in the scrape-off layer
(SOL). The SOL is treated as a 1D flux tube, with mass being added continu-
ously near the centre of the domain and flowing out to a divertor at either end.
Neutral species are ignored and the plasma is assumed to have an ideal-gas
equation of state.

The proxyapp was built using Nektar’s solver framework and is based on
existing solver types that were designed for unsteady advection problems. It
adopts a similar approach to that used in the soldrake code described in
section 4 of the internal report ref. [77]. The starting point is a set of non-
dimensionalised equations describing the evolution of SOL density, momentum
and energy, which were derived in ref. [107]:

87

https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion
https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion

Ur
∂n

∂t
= − ∂

∂s
(nu) + Sn, (10.4)

Ur
∂

∂t
(nu) = − ∂

∂s
(nu2) − ∂

∂s
(nT) + Su, (10.5)

Ur
∂

∂t

(
(g − 2)nT + nu2

)
= − ∂

∂s
(gnuT + nu3) + κd

∂2T

∂s2 + SE . (10.6)

The relative weight of time-dependent terms, Ur, is set to unity and the dif-
fusivity coefficient, κd, to zero, yielding a system that closely resembles the
compressible Euler equations. Source terms and boundary conditions are then
chosen so as to simulate mass deposition at the domain centre due to cross-
field-line transport, and sonic outflow at each end (see ref. [77] for a detailed
description). The domain is discretised using the Discontinuous Galerkin method
and time integration is performed using a 4th order Runge-Kutta scheme.

Running the proxyapp produces a number of output files containing the val-
ues of the n, nu, and E fields for each fluid element, which can be postprocessed
using Nektar’s ‘FieldConvert‘ tool to produce equilibrium profiles for n, u, and
T . These profiles closely match the analytical solutions derived in ref. [107] and
the results obtained using the soldrake code.

Nektar-1D-SOL is publicly available at https://github.com/ExCALIBUR-NEPTUNE/
nektar-1d-sol.

10.4 FabNEPTUNE
Intended as a general tool for running NEPTUNE workloads, FabNEPTUNE is
a plug-in for the FabSim3 Python-based toolkit for scientific workflow automa-
tion. The framework generally enables the execution of simulation and analysis
workloads on HPC via one-liner commands, automation of coupled models, fa-
cilities for reproducibility, and tools for ensemble execution. The framework
offers also integration with the VVUQ toolkit SEAVEAtk.

The current implementation of FabNEPTUNE is set-up to run simulations
of heat transport by fluid convection, in 2D and 3D, using the incompressible
Navier-Stokes solver of the Nektar++ spectral/hp finite element framework.
The test problem simulates a fluid-filled rectangular cavity subject (via Dirichlet
boundary conditions) to a specified horizontal temperature gradient, which leads
to the generation of a convective circulation as fluid rises up the hot side and
descends the cold. There are two main control parameters represented by the
dimensionless Nusselt and Prandtl numbers, with the former being a measure
of the size of the applied temperature gradient - tuning this allows access to
conductive, laminar-convective, and turbulent regimes. This problem is relevant
to fusion by analogy (ref. [108]) and is also a demonstration of the Nektar++
code. See the internal reports refs. [81, 93] for numerical studies of the 2D
convection problem using Nektar++.

88

https://github.com/ExCALIBUR-NEPTUNE/nektar-1d-sol
https://github.com/ExCALIBUR-NEPTUNE/nektar-1d-sol

FabNEPTUNE is publicly available at https://github.com/UCL-CCS/FabNEPTUNE.

10.5 Moment_Kinetics
The moment kinetics proxyapp solves the kinetic-type equations derived in the
Oxford project (Parra et al.). The proxyapp prototypes three features:

The code implements a “moment kinetics" approach to kinetic equations,
where the particle distribution function is modified to remove the density, par-
allel bulk velocity and/or temperature. These fluid moments are then evolved
separately from the distribution function. This approach allows a simulation to
dynamically switch between a kinetic and a fluid model.

The code is implemented using a Chebychev spectral element approach in
both physical space and velocity space. This gives spectral convergence with
grid resolution while still allowing the flexibility to model complicated physical
domains. For comparison, the code is also implemented using a standard finite
difference approach.

The code is implemented in the Julia language. Thus by leveraging Julia
community packages, the code can execute on CPUs and GPUs with minimal
input from the developer (e.g. no explicit domain decomposition between MPI
ranks). This may provide an alternative approach to performance portability, as
opposed to the current expected approach of using C++ with code generation
and domain-specific languages (DSLs).

dynamics.
Moment_Kinetics is publicly available at https://github.com/mabarnes/

moment_kinetics.

10.6 NESO
NESO is an implementation of a 1+1D solver for the Vlasov-Poisson problem in
which the matter component is treated using particle-in-cell (PIC). The electric
field is taken to be purely electrostatic and is calculated by solving a 1D Poisson
equation using a Fourier transform.This is a prototype for the particle prob-
lem to be treated by more advanced NEPTUNE proxyapps and also provides
a demonstration for the use of multiple repositories and workflows for different
code components.

The code is implemented in SYCL (DPCPP and hipSYCL).
NESO is publicly available at https://github.com/ExCALIBUR-NEPTUNE/NESO.

89

https://github.com/UCL-CCS/FabNEPTUNE
https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics

Chapter 11

Reference Material

11.1 Conventions for Report Writing
The project has strict standards in respect of conventions even in reports that
contain no code, ultimately to support the ‘write once, use many times’ concept,
so that text may be cut, edited and pasted into source code, or indeed used
safely to define variable names, constraints on their values and physical dimen-
sions. Thus, since many compilers support only ASCII characters, only ASCII
is allowed in reports. Similarly, very long lines (typically arising from MS Win-
dows wordprocessing) should be split at the ends of sentences, and preferably
so that maximum line length is 120 characters. A number of tools are available
in tex/importools. Contributors may use their style of choice for both reports
(and code) provided they follow systems that allow for automatic conversion to
the conventions expected in the NEPTUNE repositories, and are prepared to
help construct gitlab runners and github hooks to this end. However, it will be
generally found easier to use LATEX and bibtex as indicated below.

For shorter documents it is acceptable to use Markdown in the ‘dialect’
defined by PANDOC, see Annex A of ref. [3]. Resulting .md files frequently
convert straightforwardly to LATEX format, using the md2tex.bash script from
tex/importools.

General textual issues

It is helpful to use LATEX newcommand for certain keywords where they have
a special format or because the terminology is not fully established. Although
some do not, most people do find variations in use of spelling, punctuation,
capitalisation etc. to be irritating, and so the following conventions will be
enforced where possible:

• use of LATEX newcommand for , viz. \papp and \exc instead of explicit
proxyapp or mini-app and ExCALIBUR respectively

• punctuation, viz. eg.\ rather than e.g.

90

• hyphenation, generally to be avoided because LATEX may use it to break
lines, viz. finite element rather than finite-element (or simply FE), open-
source rather than open source, major exception is abbreviation of dimen-
sions (below).

• capitalisation, eg. Exascale rather than exascale

• abbreviation of dimensions, 2-D and 3-D preferred to 2D and 3D or 2d
and 3d

• spelling, UK English preferred, and ’-ise’ etc. preferred to ’-ize’

• no spaces between authors’ initials in bibtex files (see also Section 11.1)

• consistent usage of acronyms, employing the table of Section 11.2

• consistent usage of mathematical symbols, employing the table of Sec-
tion 11.3

Citations

Regarding citations, those for unpublished reports MUST include a link to a
website, such as arXiv, and it would be helpful if links to other open-access
material were also given. Use of the following conventions for constructing the
keys of citations should help avoid clashes:

1. For published papers, use where possible an 8-character alphanumeric for
published papers, consisting of the first two letters of the first author’s
name, the last two digits of the year in the Gregorian calendar, and the
first 4 letters of the first significant word (ie. not ‘The’ or ‘On’) of the
title, preserving capitalisations. Thus the paper ref. [97] by Bangerth and
Heister, published in 2013 and entitled ‘What makes computational open
source software libraries successful?’, has key ‘Ba13What’.

2. Books and theses should be keyed with the full second-name(s) of the au-
thor(s) strung together without capitalisation, up to a limit of approx. 30
characters, using ‘etal’ to indicate any omitted author-names. As an ex-
ample, the book by Rouson, Xia and Xu ref. [96] has key ‘rousonxiaxu’.

3. If there are duplicates in different files, then preface each key with the
name of the .bib file it is in, for other duplicates within a file, add ‘2’, ‘3’
etc. to the end of the key.

Software Compatibility

When discussing software in the text, the following conventions in LATEX are
proposed:

91

• Small capitals denote a package name, use {\textsc or abbreviation
\F{

• Italics denote a program name, use {\textit or abbreviation \I{

• Fixed width font denotes any code name or fragment which is not
otherwise obviously source code, use {\texttt or abbreviation \T{

There is no need for special fonts if the object is identified by a suitable suffix,
thus “_m" for a module containing executable code, “_h" or “.h" for an object
description or namespace code, “.cpp" for name of file containing C++ source,
“.exe" for an executable, etc. Similarly file suffices that imply a particular format
or software for their interpretation, may simply be written with a leading stop,
eg. “.html" and “.exe".

In order to ensure smooth transliteration from mathematical symbols to the
names of the software variables, Table 11.1 lists the recommended two-character
equivalents for LATEX symbols used in the definition of mathematical symbols.

92

Table 11.1: TWO CHARACTER EQUIVALENTS of LATEX symbols and com-
mands.

aa A al α ar →
as ∗ bb B be β
bl [br] cc C
ch χ cl :
cm , cs ; dd D
de δ dl ∆ dq "
ds \ddot dv / ee E
el ℓ
ep ϵ et η ff F
ga γ gg G gm Γ
gt > hh H ii I
in ∞
it ι jj J ka κ
kk K la λ ll L
lm Λ lt < me ω
mg Ω ml × mm M
mn − mu µ n1 n1 etc.
nn N nu ν o2 \boldmath
o3 \mathcal o4 \mathsf o5 \mathtt
o6 \mathbb o7 \mathfrak o8 \mathrm
ob \bar oh \hat
oe suffix ol preceding superfix on above
or superfix os underneath ow prefix
pa ∥ pe ⊥ pf Φ
ph ϕ pi π pj Ψ
pl { pp P pr }
ps ψ pt ∂ pu +
py Π qq Q rh ρ
rr R sg Σ si σ
sq ′ ss S st .
ta τ te Θ th θ
ti tt T un _
up υ
us Υ uu U vb |
ve ε vf φ vp ϖ
vr ϱ vs ς vt ϑ
vv V ww W xi ξ
xj Ξ xx X
yy Y ze ζ zz Z

See Section 4.3 for a guide explaining the reasons for the above choices.

93

11.2 Acronyms

Table 11.2: TABLE OF ACRONYMS Nearly all the acronyms
refer to technical terms. A debt is acknowledged to the book by
Brunton and Kutz ref. [109].

ACM Association for Computing Machinery
ADC Analogue to digital converter
ADM Alternating directions method
AIC Akaike information criterion
ALM Augmented Lagrange multiplier
AMR Adaptive mesh refinement
AMReX Software framework for block-structured AMR
ANL Argonne National Laboratory
ANN Artificial Neural Network
ANOVA Analysis of Variance
API Application Programming Interface
ARMA Autoregressive moving average
ARMAX Autoregressive moving average with exogenous input
ASQ Adaptive sparse quadrature
ATS Advanced Terrestrial Simulator, previously Arctic Terrestrial Simulator
BC Boundary Condition
BEIS (UK government) Department for Business, Energy and Industrial Strategy
BG/L IBM Blue Gene / L supercomputer platform
BIC Bayesian information criterion
BOUT++ Tokamak edge plasma modelling framework https://boutproject.

github.io/
BPOD Balanced proper orthogonal decomposition
BSD Opensource software licence
CAD Computer-Aided Design, geometry including NURBS, usually “CAD

database" implied
CCA Canonical correlation analysis
CCFE Culham Centre for Fusion Energy
CEA The French Alternative Energies and Atomic Energy Commission
CESM Community Earth System Model
CFD Computational fluid dynamics
CI Continuous integration
CLI Command Line Interface
CNN Convolutional neural network
COGENT LLNL continuum plasma simulation code
COMPAT Computing patterns for multiscale HPC (project)
CoSaMP Compressive sampling matching pursuit
COSMO Framework for regional weather prediction in Europe

94

https://boutproject.github.io/
https://boutproject.github.io/

COSSAN UQ and risk analysis package (Uni. Liverpool)
CPP C plus plus programming language
CPU Central Processing Unit
CRUD Create, Read, Update, Delete
CS Compressed sensing
CSE Computational science and engineering
CSG Constructive Solid Geometry
CSMP Computer science, mathematics, and physics
CTO Chief Technology Officer
CUDA Compute Unified Device Architecture
CWIPI Coupling with interpolation parallel interface (coupling library)
CWT Continuous wavelet transform
DA Data Assimilation
DAG Direct Acyclic Graph
DAKOTA UQ and optimization package (Sandia)
DCT Discrete cosine transform
DDA Digital Differential Analyser
DDD Document-Driven Design
DE Differential equation
DEIM Discrete Empirical Interpolation Method
DESNZ Department for Energy Security and Net Zero
DFT Discrete Fourier Transform
DiMDc Dynamic mode decomposition with control
DL Deep learning
DMD Dynamic mode decomposition
DMDc Dynamic mode decomposition with control
DNS Direct numerical simulation
DOE Department of Energy
DOI Digital Object Identifier
DPC++ Data Parallel C++, Intel compiler for C++ with SYCL extension
DRAM Delayed Rejection Adaptive Metropolis
DSL Domain-Specific Language
DWT Discrete wavelet transform
ECOG Electrocorticography
ECP Exascale Computing Project
ECP-copa Co-design centre for particle applications (part of ECP)
eDMD Extended DMD
EIM Empirical interpolation method
EIRENE name of neutral package
EM Expectation maximization
EOF Empirical orthogonal functions
ERA Eigensystem realization algorithm
ESC Extremum-seeking control
ESI name of software company https://www.esi-group.com/

95

https://www.esi-group.com/

ESMF Earth System Modeling Framework
E-TASC EUROfusion Theory and Advanced Simulation Coordination
ETS European Transport Simulator
EU European Union
FCI Flux-Coordinate Independent (method)
FELTOR name of edge code
FEM Finite Element Method
FEniCS name of PDE software project https://fenicsproject.org
FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West (library)
FLASH name of Multiscale physics code
GA General Atomics
GBS Global Braginskii Solver (software)
GCR Generalied Collisional Radiative (framework)
GDB Global Drift-Ballooning
GDB GNU debugger
GDPR General Data Protection Regulation
GENE name of gyrokinetic code
GMM Gaussian mixture model
GMRES Generalized Minimal Residual method
GNU GNU’s Not Unix!
GP Gaussian Process
gPC Generalised polynomial chaos (Xiu and Karniadakis https://doi.org/10.

1016/S0021-9991(03)00092-5
GPU Graphics Processing Unit
GRILLIX name of 3D turbulence code based on the flux-coordinate independent ap-

proach
GSA Global sensitivity analysis
GUI Graphical User Interface
HAGIS HAmiltonian GuIding centre System
HAVOK Hankel alternative view of Koopman
HDF5 Hierarchical Data Format (version 5)
HDS Hierarchical Data Structure
HLA High Level Architecture
HPC High Performance Computing
HTC High Throughput Computing
IBM International Business Machines Corp., but really known as IBM
IC Initial Condition
ICA Independent component analysis
ICON ICOsahedral Nonhydrostatic, the global numerical weather prediction model

of the German weather service
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Taskforce
IMAS Integrated Modelling & Analysis Suite, promoted by ITER

96

https://fenicsproject.org
https://doi.org/10.1016/S0021-9991(03)00092-5
https://doi.org/10.1016/S0021-9991(03)00092-5

IMEX Implicit-Explicit Methods
IO Input/Output
ITER name of International Thermonuclear Experimental Reactor
ITG Ion Temperature Gradient
ITM Ion Tearing Mode
ITPA International Tokamak Physics Activity (ITER research programme)
JET Joint European Torus
JIT Just In Time
JL JohnsonLindensfrauss
JOREK name of nonlinear MHD code
JSON JavaScript Object Notation
KL Kullback Leibler
KLT Karhunen-Loeve transform
LAD Least absolute deviations
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LANL Los Alamos National Laboratory
LASSO Least Absolute Shrinkage and Selection Operator
LCFS Last Closed Flux Surface
LDA Linear discriminant analysis
LGPL GNU Lesser General Public License
LHSamp Latin Hypercube Sampling
LLNL Lawrence Livermore National Laboratory
LOO Leave One Out
LQE Linear quadratic estimator
LQG Linear quadratic Gaussian controller
LQR Linear quadratic regulator
LTI Linear time invariant system
MAP Maximium A Posteriori
MBSE Model-based systems engineering
MC Monte-Carlo (methods)
MCMC Markov chain Monte-Carlo
MCT Model Coupling Toolkit
MD Molecular Dynamics
MECE Mutually exclusive and collectively exhaustive
MF Multi-fidelity, Matrix-free
MFMC Multi-fidelity Monte-Carlo
MHD Magnetohydrodynamics
MIMC Multi-Index Monte-Carlo
MIMO Multiple input, multiple output
MIS Module Interface Specification
MIT Massachusetts Institute of Technology
MIT licence Opensource software licence ref. [6]
ML Machine Learning
MLC Machine learning control

97

MLMC Multi-Level Monte-Carlo
MLMF Multi-Level Multi-Fidelity
MMF Multiscale Modeling Framework
MMS Method of Manufactured Solutions
MOOSE Multiphysics Object Oriented Simulation Environment
MOR Model Order Reduction
MPE Missing point estimation
MPI Message Passing Interface
mrDMD Multi-resolution dynamic mode decomposition
MSSC Materials Science and Scientific Computing
MUMPS MUltifrontal Massively Parallel Sparse direct Solver
MUSCLE 3 Multiscale Coupling Library and Environment version 3
NAG Numerical Algorithms Group
NARMAX Nonlinear autoregressive model with exogenous inputs
NEMO Nucleus for European Modelling of the Ocean
NEPTUNE Neutrals and Plasma Turbulence Numerics for the Exascale
NetCDF Network Common Data Form
NLS Nonlinear Schroedinger equation
NROY Not ruled out yet
NUCODE Software: SMARDDA/NUCODE for Neutral Beam Duct Calculations
NURBS NonUniform Rational B-Spline
OASIS Ocean Atmosphere Sea Ice Soil
OASIS4 Ocean Atmosphere Sea Ice Soil version 4
ODE Ordinary Differential Equation
OKID Observer Kalman filter identification
OLYMPUS OLYMPUS Programming System
OMFIT One Modeling Framework for Integrated Tasks
OneAPI A Unified, Standards-Based Programming Model, https://software.

intel.com/en-us/oneapi
OP2 API with associated libraries and preprocessors for performance-portable

parallel computations on unstructured meshes https://github.com/
OP-DSL/OP2-Common

OpenMP Open Multi-Processing
OU Oxford University
OUU Optimisation under uncertainty
PASTIX Parallel Sparse matriX package
PBH PopovBelevitchHautus test
PC Polynomial chaos
PCA Principal components analysis
PCE Polynomial chaos expansion
PCP Principal component pursuit
PDE Partial Differential Equation
PDE-FIND Partial differential equation functional identification of nonlinear dynamics
PDF Probability distribution function

98

https://software.intel.com/en-us/oneapi
https://software.intel.com/en-us/oneapi
https://github.com/OP-DSL/OP2-Common
https://github.com/OP-DSL/OP2-Common

PETSc Portable Extensible Toolkit for Scientific Computation https://www.mcs.
anl.gov/petsc/

PFC Plasma Facing Component
PGD Proper Generalised Decomposition
PIC Particle-In-Cell
PICPIF Particle-In-Cell-Particle-In-Fourier
PID Proportional-integral-derivative control
PIV Particle image velocimetry
POD Proper Orthogonal Decomposition
POOMA Parallel Object-Oriented Methods and Applications
PP20 SIAM Conference on Parallel Processing for Scientific Computing 2020
PPMD Performance-Portable Framework For Atomistic Simulations
PR git Pull Request
PSyclone PSyclone is a code generation system that generates appropriate code for

the PSyKAl code structure developed in the GungHo project. https://
github.com/stfc/PSyclone

PyOP2 Framework for performance-portable parallel computations on unstructured
meshes http://op2.github.com/PyOP2

QA Quality Assurance
QCG Quality in Cloud and Grid, see QCG Pilot Job
QMC Quasi-Monte-Carlo
QoI Quantity of interest
QoS Quality of Service
RAID Risks, Assumptions, Issues, Dependencies
RAJA RAJA Performance Portability Layer (C++) https://github.com/LLNL/

RAJA
REST Representational State Transfer (Resources as simple CRUD objects)
RIP Restricted isometry property
RKF23 Runge-Kutta-Fehlberg (aka Embedded Runge-Kutta), 23 denotes orders of

scheme
RKHS Reproducing kernel Hilbert space
RMS Root-mean-square
RNG Random Number Generator
RNN Recurrent neural network
RO Responsible Officer
ROM Reduced-Order Model
RPCA Robust principal components analysis
rSVD Randomized SVD
SAMRAI Structured Adaptive Mesh Refinement Application Infrastructure
SD1D name of 1-D edge code
SDLC Software Development Life Cycle
SGD Stochastic gradient descent
SIAM Society for Industrial and Applied Mathematics
SINDy Sparse identification of nonlinear dynamical systems

99

https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://github.com/stfc/PSyclone
https://github.com/stfc/PSyclone
http://op2.github.com/PyOP2
https://github.com/LLNL/RAJA
https://github.com/LLNL/RAJA

SISO Single input, single output
SLA Service-level Agreement
SLE Software Language Extensions
SLE System Level Engineering
SLEPc name of Scalable Library for Eigenvalue Problem Computations
SLSQT Sequential Least-Squares’ Thresholding
SMARDDA name of Ray-tracing algorithm, hybrid of SMART and DDA
SMART name of Ray-tracing algorithm based on use of octree
SMITER SMARDDA modules with ITER interface
SNOWPAC Stochastic Nonlinear Optimisation with Path-Augmented Constraints (soft-

ware package)
SOL Scrape-Off Layer
SOLEDGE name of edge modelling code
SOLPS name of edge modelling code combines B2 and EIRENE
SpH Spatial Hybridisation
SPH Smoothed Particle Hydrodynamics
SRC Sparse representation for classification
SRO Senior Responsible Owner role in UK government project delivery
SRS Software Requirements Specification
SSA Singular spectrum analysis
SSD Scientific Software Development
StarPU Runtime system supporting heterogeneous multicore architectures http:

//starpu.gforge.inria.fr/doc/html/
STARWALL name of vacuum field code
STFT Short time Fourier transform
STIX Scientific And Technical Information eXchange
STLS Sequential thresholded least-squares
STORM Scrape-off layer Transport ORiented Module
STRUMPACK STRUctured Matrix PACKage
SUNDIALS name of ODE package
SVD Singular Value Decomposition
SVM Support Vector Machine
SYCL C++-single-source heterogeneous programming for acceleration offload,

https://www.khronos.org/sycl/
SysML Systems Modeling Language
TAE Toroidal Alfven Eigenmode
TDD Test Driven Development
TICA Time-lagged independent component analysis
TM TradeMark
TOKAM name of set of edge modelling codes
TOKAM3X name of Edge modelling software
TOMS Transactions on Mathematical Software
TORPEX TORoidal Plasma Experiment

100

http://starpu.gforge.inria.fr/doc/html/
http://starpu.gforge.inria.fr/doc/html/
https://www.khronos.org/sycl/

Trilinos Object-oriented software framework for the solution of large-scale, com-
plex multi-physics engineering and scientific problems https://trilinos.
github.io/

TRIMEG TRIangular MEsh based Gyrokinetic code
TSVV Theory, Simulation, Validation and Verification, tasks of the E-TASC pro-

gramme of Eurofusion
TUM Technical University Munich
UK United Kingdom
UKAEA United Kingdom Atomic Energy Authority
UKRI United Kingdom Research and Innovation, a non-departmental public body

encompassing the research councils and Innovate UK
UML Unified Modelling Language
UQ Uncertainty quantification
US United States
USA United States of America
UTF-8 Unicode Transformation Format (Unicode denotes Universal Coded Char-

acter Set)
UUID Universally Unique IDentifier is a 128-bit label used for information in com-

puter systems
VAC Variational approach of conformation dynamics
VDE Vertical Dispacement Event
VECMA Verified Exascale Computing for Multiscale Applications
VECMAtk VECMA toolkit
VORPAL name of Electromagnetic Particle-in-Cell code
VSVO variable stepsize, variable order solver of differential equation
VVUQ Verification, Validation and Uncertainty Quantification
XGC1 name of Particle-based gyrokinetic code
XML eXtensible Markup Language
XMSF eXtensible Modeling and Simulation Framework
XPN ExCALIBUR Project NEPTUNE

101

https://trilinos.github.io/
https://trilinos.github.io/

11.3 Symbols

Table 11.3: TABLE OF MATHEMATICAL SYMBOLS If no
units are given, then quantity is dimensionless, or if the units are
given as ?, then the dimensions depend on context. Generally,
the usage of symbols tries to follow that from the Plasma For-
mulary ref. [18], in SI units, with temperatures specified as kT
which returns J . The Formulary also give the fundamental di-
mensions of the SI units, which should enable checking of di-
mensional consistency of equations, eg. magnetic field induction
is in Tesla (T) whence the fundamental dimension expression
gives T = kgs−1C−1. Note that the symbols are sorted by font
as well as alphabet, so that boldface symbols appear immedi-
ately after ‘b’ (backslashes ignored). The main source for the
symbols is the Equations document ref. [110], also included are
those listed as used in the text by Karniadakis and Sherwin ref.
[111], prefaced by (K+S), plus symbols used in the report ref.
[59].

Symbol Description Units
a minor radius of the torus (horizontal) m
aij coefficient of matrix A
A atomic mass of ion
Ai atomic mass of ion
Aα atomic mass of ion species α
[a, b] arbitrary finite interval
α as suffix is species label or index
αn perturbation amplitude
αZp→Z partial dielectronic recombination rate coefficient m3s−1

αZ→Zm partial dielectronic recombination rate coefficient m3s−1

b minor radius of the torus (vertical) m
B0 used to make B dimensionless T
Bs characteristic magnetic field used to make B dimensionless T

N̄Z average number of charge states
B = |B| amplitude of the imposed magnetic field T
BT amplitude of the imposed toroidal magnetic field T
β as suffix is species label
β (Glossary) Ratio of plasma pressure to pressure in magnetic

field
a = d2x/dt2 acceleration experienced by a particle m2s−1

A(x, t) magnetic vector potential Tm
B(x, t) magnetic field T
b unit vector giving the direction of the magnetic field

102

E(x, t) electric field V m−1

Es characteristic electric field used to make E dimensionless V m−1

E+ modified electric field m−2

F force vector N
u∧ pseudo / thermal velocity component in flux surface normal to

field direction
ms−1

v generic velocity ms−1

vα velocity of species α ms−1

v∥ fluid velocity directed along fieldline ms−1

v⊥ fluid velocity component normal to flux surface ms−1

v∧ fluid velocity component in flux surface normal to field direction ms−1

v0 initial fluid velocity ms−1

vcx ‘charge exchange’ perpendicular fluid velocity component ms−1

vE×B ‘E cross B’ perpendicular fluid velocity component ms−1

ve velocity of the electrons ms−1

vi velocity of the ion species ms−1

ve∇B ‘grad B’ perpendicular fluid velocity component for electrons ms−1

vi∇B ‘grad B’ perpendicular fluid velocity component for ions ms−1

vdiff ‘diffusive’ perpendicular fluid velocity component ms−1

x =
(x1, x2, . . . , xd)

is a d-dimensional vector

x position m
bn ‘b-factors’ ref. [112, slide 21]
ξ(θ) multi-dimensional random variable with a specific probability

distribution as a function of the random parameter 0 ≤ θ ≤ 1
B (K+S) Basis matrix
Dξ (K+S) Elemental derivative matrix with respect to ξ
f e (K+S) Force vector of the eth element
H (K+S) Helmholtz matrix (= AT HeA))
He (K+S) Elemental Helmholtz matrix
L (K+S) Laplacian matrix (= AT LeA))
Λ(u) (K+S) Diagonal matrix of u(ξi, ξ2) evaluated at quadrature

points
Le (K+S) Elemental Laplacian matrix
M (K+S) Mass matrix (= AT M eA)
AT (K+S) Matrix global assembly
M e (K+S) Elemental mass matrix
n (K+S) Unit outward normal
ω (K+S and plasma models) Vorticity s−1 or Cm−3

ue (K+S) Vector containing function evaluated at quadrature
points

W (K+S) Diagonal weight / Jacobian matrix
ξ(θ) multi-dimensional random variable with a specific probability

distribution as a function of the random parameter 0 ≤ θ ≤ 1

103

Bp amplitude of the poloidal magnetic field T
C0 =

√
KMAT0 used to make velocities dimensionless ms−1

∩ (Sets) Set intersection
χ (K+S) Space of trial solutions
χδ (K+S) Finite-dimensional space of trial solutions
χi(ξ) (FE Basis) Local Cartesian to global coordinate mapping
cp specific heat at constant pressure Jkg−1K−1

cs =
√

kTi+ZikTe
mi

approx. plasma acoustic speed ms−1

cs =
√

p
ρm

plasma acoustic speed ms−1

cse =
√

kTe
me

acoustic speed of electrons ms−1

csi =
√

kTi
mi

acoustic speed of ions ms−1

CS sound speed coefficient in radiation equation ms−1

∪ (Sets) Set union
C(xi, xj) covariance of random variables xi, xj

d number of dimensions over which the integral is performed
δpi stress tensor Nm−2

δ Kronecker delta
δD Dirac delta function
δe energy flux factor at boundary of the electrons
δ = 1

2(δe + δi) energy flux factor at boundary of ‘mean’ species
δi energy flux factor at boundary of the ion species
δα (Glossary) Magnetisation parameter, species α gyroradius nor-

malised to L
δ(x) Dirac delta function of continuous real variable x
D spatial dimensionality of problem
DA diffusion coefficient for plasma charges in a background of neu-

trals
m2s−1

De diffusion coefficient for electrons, eg. in a background of neu-
trals

m2s−1

Dfvα scale dissipation in equation for evolution of species velocity vα

Dn neutral diffusion coefficient m2s−1

Dfpα scale dissipation in equation for evolution of species pres-
sure/energy pα

Di diffusion coefficient for ions, eg. in a background of neutrals m2s−1

|e| absolute value of the charge on the electron C
e (K+S) Finite element number 1 ≤ e ≤ Nel

eijk weighted integral of triple products of Ψi of the ion species
∅ (Sets) Empty set
ϵ0 permittivity of free space Fm−1

ϵr = ts/t0 scale factor for transient term
η1, η2, η3 (FE Basis) Local collapsed Cartesian coordinates
ηB plasma resistivity after Braginskii Ωm

104

ηd = ηB/µ0 plasma resistivity, as diffusivity m2s−1

ηen contribution to plasma resistivity, as diffusivity, from electron-
neutral interactions

m2s−1

ηen∥ contribution to plasma parallel resistivity, as diffusivity, from
electron-neutral interactions

m2s−1

ηin contribution to plasma resistivity, as diffusivity, from ion-neutral
interactions

m2s−1

ηin∥ contribution to plasma parallel resistivity, as diffusivity, from
ion-neutral interactions

m2s−1

f0 constant in the expansion of f (x1, . . . , xd)
f0 initial distribution function of the electrons m−6s3

fα distribution function of species α m−6s3

fe distribution function of the electrons m−6s3

fi distribution function of the ion species m−6s3

fij(xi, xj) coefficient in the expansion of f (x1, . . . , xd)
fce = ωce

2π electron cyclotron frequency s−1

fci = ωci
2π ion cyclotron frequency s−1

fpe = ωpe

2π electron plasma frequency s−1

fpi = ωpi

2π ion plasma frequency s−1

fi(xi) coefficient in the expansion of f (x1, . . . , xd)
f (x1, . . . , xd) joint probability distribution
fE flux term (fieldline integrated source) for plasma energy
F E flux term (fieldline integrated source divided by field) for plasma

energy
m−1s−2C

fn flux term (fieldline integrated source) for plasma number den-
sity

Fn flux term (fieldline integrated source divided by field) for plasma
number density

m−3C

fu flux term (fieldline integrated source) for plasma momentum
F u flux term (fieldline integrated source divided by field) for plasma

momentum
m−2s−1C

f(x,v, t) generic distribution function m−6s3

fn,Kn(v) Knudsen distribution function m−4s4

Γ(x) gamma function of continuous variable x
g factor in (twice) the heat flux
g(hj) activation function (of input hj) of a neuron in a neural network
G Green’s function
Hα Hamiltonian for species α
ûe (K+S) Vector of expansion coefficients
v̂g (K+S) Global list of coefficients
v̂g (K+S) List of all elemental coefficients (= ve)
h mesh or inter-node spacing m
hj real-number input to a neuron in a neural network
hp(ξ) (FE Basis) One-dimensional Lagrange polynomial of order p

105

i as suffix denotes ions
i as suffix denotes regular excited state
i as suffix generic label
I as suffix labels Monte-Carlo interactions
Iϕ ϕ− or toroidal component of plasma current A
IH Hydrogen reionisation potential as defined in ref. [113] eV
i, j, k (K+S) General summation indices
IFiσ coefficient of ionisation for the transition from metastable

state σ to regular excited state i
∈ (Sets) Is a member of; belongs to
I(ψ) = BT /R function giving the toroidal field as a function of ψ Tm−1

IZ power per atom released in dielectronic recombination W
j as suffix is generic label
jext(R,Z) electric current density induced in plasma by external coils Am−2

jϕ ϕ− or toroidal component of plasma current density Am−2

j∥ component of plasma current density parallel to fieldline Am−2

jsh sheath plasma current density Am−2

k as suffix is generic label
k chosen to scale so that kT0, kTd is an energy ?
κα thermal diffusivity of species α m2s−1

κe∥ parallel thermal diffusivity of electrons m2s−1

κe⊥ perpendicular thermal diffusivity of electrons m2s−1

κi∥ parallel thermal diffusivity of ions m2s−1

κi⊥ perpendicular thermal diffusivity of ions m2s−1

κ = kc/ρmcp thermal diffusivity tensor of solid m2s−1

kB Boltzmann’s constant JK−1

kc thermal conductivity tensor Jm−1s−1K−1

Kcx (ni, Ti) reaction rate of charge exchange reactions m3s−1

Ki ionization reaction rate m3s−1

KMA chosen as kB/mi or |e|/mi so that
√
KMTd is an ion speed ?

KM chosen as kB/mu or |e|/mu so that
√
KMTd/A is an ion speed ?

Kr recombination reaction rate m3s−1

kT0 T0 in energy units J
kTd Td in energy units J
Kv(x) modified Bessel function of the second kind, order v
kw wavenumber vector m−1

λ arbitrary quantity ?
λ Coulomb logarithm
λ (K+S) Helmholtz equation constant
Λ Coulomb logarithm
λq e-folding length of midplane profile of power loss when an ex-

ponential is fitted
m

Λb sheath potential drop normalized to Te eV

106

λD (Glossary) Debye lengthscale above which local electrostatic
fluctuations due to presence of discrete charged particles are
negligible

m

λmfp,α (Glossary) Mean free path of particle species α m
⟨σv⟩CX reaction rate for charge exchange m3s−1

⟨σv⟩ION reaction rate for ionisation m3s−1

⟨σv⟩REC reaction rate for recombination m3s−1

⟨σv⟩ generic reaction rate m3s−1

L0 typical lengthscale m

LNm
i (ξ) (FE Basis) Two-dimensional Lagrange polynomial through Nm

nodes ξi

Ls typical lengthscale along fieldline m
L∥ connection length of typical fieldline m

m species particle mass kg
M0 Mach number at s = 0 boundary
M1 Mach number at s = 1 boundary
mα mass of species α kg
E expectation
Ek ̸=i,l ̸=j expectation computed by integrating over all the xk except

for xi and xj

Exk ̸=i
expectation computed by integrating over all the xk except
for xi

L(u) (K+S) Linear operator in u
P (K+S) Projection operator
Pδ (K+S) Discrete projection operator
v (K+S) Velocity [u, v, w]T
Eα energy of species α Jm−3

Ee energy of the electrons Jm−3

Ei energy of the ion species Jm−3

ER total plasma radiation Wm−3

F generic coefficient of excitation, ionisation or recombination m3s−1

Fα functional of moments of species α m−6s3

I (K+S) Interpolation operator
Iδ (K+S) Discrete interpolation operator
K∥ parallel thermal conductivity of plasma m−1s−1

K thermal conductivity of plasma m−1s−1

K⊥ thermal conductivity of plasma perpendicular to field and flux
surface

m−1s−1

K∧ thermal conductivity of plasma perpendicular to field in flux
surface

m−1s−1

L7 7-D Lie derivative (space, velocity-space and time make up the
3 + 3 + 1 = 7 dimensions)

s−1

PP (Ω) (K+S) Polynomial space of order P over Ω

107

Q coefficient in radiation equation m3s−1

QZ→Z
σ→ρ parent-metastable cross-coupling coefficient m3s−1

S coefficient in radiation equation m3s−1

SZm→Z ionisation coefficient m3s−1

SZ→Zp ionisation coefficient m3s−1

T generic tensor ?
V (K+S) Space of test functions
Vδ (K+S) Finite-dimensional space of test functions
X coefficient in radiation equation m3s−1

X Z→Z
σ→ρ generalised collisional-radiative (GCR) excitation coefficient m3s−1

R Real numbers
Var(f) variance of the distribution of f computed by integrating over

all variables xi

Var[Q] variance in random variable Q
me mass of electron kg
mi mass of ion species particle mi = Amu kg
mn neutral species particle mass kg
mp mass of proton kg
mu atomic mass unit 1.6605 × 10−27 kg
Ms Mach number, allowed to take either sign
MS number of energy states of an atom
µ, ν (K+S) Dynamic, kinematic viscosities
µcx = ωc/νcx measures strength of magnetization with respect to charge ex-

change reaction
µm reduced mass of two particles kg
MZ number of metastable states for species α (which includes the

ground state)
n number density m−3

nref reference number density of the plasma ions m−3

Nref normalising or reference number density 1018

N number density, may be scaled by Nref = 1018 m−3

n0 initial number density m−3

∇· (K+S) Divergence
∇× (K+S) Curl
∇2 (K+S) Laplacian
Nb (K+S) Number of global boundary degrees of freedom
nB = N/B number density divided by field strength m−3T−1

ND Number of degrees of freedom per dimension, D = 1, 2, . . . 6
Ndof (K+S) Number of global degrees of freedom
ncon blob contrast factor
ne number density of the electrons m−3

Nel (K+S) Number of finite elements
Neof (K+S) Total number of elemental degrees of freedom Neof ≃

NelNm

108

ni number density of the plasma ions m−3

nj(x, t) member of the set of deterministic coefficients of the “random
trial basis"

Nm (K+S) Number of elemental degrees of freedom
nn neutral density m−3

/∈ (Sets) Is not a member of; does not belong to
̸⊂ (Sets) Is not a subset of
np number density of the plasma ions m−3

NQ (K+S) Total number of quadrature points NQ = Q1Q2Q3
ns number density of isotope s m−3

Ns number density of isotope s m−3

NT number of samples in temperature used to define typically a
crossection in the ADAS database refs. [114, 115]

ν plasma kinematic viscosity m2s−1

να kinematic viscosity of species α m2s−1

νcx = Kcxnn charge exchange ‘frequency’ s−1

νe0 electron kinematic viscosity caused by neutrals m2s−1

νe∥ parallel kinematic viscosity of electrons m2s−1

νe⊥ perpendicular kinematic viscosity of electrons m2s−1

νi∥ parallel kinematic viscosity of ions m2s−1

νi ion kinematic viscosity m2s−1

νi0 ion kinematic viscosity caused by neutrals m2s−1

νi⊥ perpendicular kinematic viscosity of ions m2s−1

ν∗
α (Glossary) Normalised collision frequency for species α
ν∗

c =
q4

e

3m2
pϵ2

0
L0n0/C

4
0

Collisionality parameter

να (Glossary) Collision frequency for species α s−1

ναn Collision frequency for species α with neutrals s−1

ναβ Collision frequency for species α with species β s−1

nZ number density for charge state Z m−3

NP number of particles in a calculation
NP α number of particles of species α in a calculation
NZ number of charge states for an ion species
nZ

i number density for charge state Z, excited state i m−3

nZ
σ number density for charge state Z, metastable state σ m−3

ωce = |e|B/me electron cyclotron angular frequency radianss−1

ωci = ZieB/mi ion cyclotron angular frequency radianss−1

ωpe =
√

nq2
e

ϵ0me
plasma angular frequency for electrons radianss−1

ωpi = Zi

√
nq2

e
ϵ0mi

plasma angular frequency for ions radianss−1

Ω (K+S) Solution domain
Ωe (K+S) Elemental region

109

p(A|B) conditional probability of event A given event B is known or
assumed to have occurred

pα pressure of species α Nm−2

∥ Q ∥E the ‘energy’ norm
(∂f/∂t)C source in Boltzmann due to inter-particle interactions m−6s2

∂Ωe (K+S) Boundary of Ωe

∂Ω (K+S) Boundary of Ω
∂ΩD (K+S) Domain boundary with Dirichlet conditions
∂ΩN (K+S) Domain boundary with Neumann conditions
PC number of modes in basis for polynomial chaos
pe pressure of the electrons Nm−2

ϕ angle in toroidal direction radians c

Φ electr(ostat)ic potential V
ϕpq, ϕpqr (FE Basis) Expansion basis
ϕe,ξ (FE Basis) expansion basis as a function of global position x
p (K+S) pressure Nm−2

p =
∑

α nαkTα plasma pressure Nm−2

p as suffix labels (super-)particles
pi pressure of the ion species Nm−2

Pi (FE Basis) Polynomial order in the ith direction
p(ψ) function giving the pressure as a function of ψ of the magnetic

flux
Nm−2

p, q, r (K+S) General summation indices
Pr Prandtl number
PrM magnetic Prandtl number
ψ poloidal magnetic flux Tm2

ψa
p , ψ

b
pq, ψ

c
pqr (FE Basis) Modified principal functions

Ψi ith member of a set of basis functions, typically multi-
dimensional Hermite polynomials

P (T) emitted power integrated over all wavelengths Wm3

p(x) probability distributions
P (x) Cumulant probability distribution
PZ radiated power per atom of nZ W
Q∥ combined energy flux at a boundary Jm−2s−1

qα charge on a particle of species α C
qe charge on an electron, negative by convention C
Q(fα, fβ) Boltzmann collision operator m−6s2

QH cooling rate due to excitation as defined in ref. [113] Km−3s−1

qi charge on an ion C
q∥e electron energy flux along fieldline Jm−2s−1

q∥i ion energy flux along fieldline Jm−2s−1

qe electron energy flux Jm−2s−1

qi ion energy flux Jm−2s−1

110

Qi (FE Basis) Quadrature order in the ith direction
Qie collisional energy equipartition term kgm−1s−3

r order of higher order term
r0 radius used in initial condition, such as blob size m
R cylindrical coordinate m
R0 major radius of torus m
Rp recycling coefficient for particles
RE recycling coefficient for particle energy
ρ as suffix is label of metastable state
ρ (K+S) Density
ρc =

∑
α Zα|e|nα charge density of the medium Cm−3

ρm =∑
αAαmunα

mass density of the medium kgm−3

ρtα (Glossary) Gyroradius or Larmor radius of orbit of charged par-
ticle of species α about magnetic field direction

m

RFiσ coefficient of recombination for the transition from metastable
state σ to regular excited state i

s∥ arclength along fieldline m

s as suffix, isotope label (α preferred for species)
s parameterises distance along the fieldline 0 ≤ s ≤ 1
Sα source term in Boltzmann equation for species α m−6s2

SC total source term in Boltzmann equation m−6s2

Sana(x, t) explicit/analytic source term in fluid equation(s) m−3s−1 ?
Sn

ana(x, t) numerically convenient source term in fluid equation(s) m−3s−1 ?
Sexp(x,v, t) explicit source term in Boltzmann equation m−6s2

n neutral density
T neutral temperature
u neutral velocity
si arclength parameter for boundary (i = 1 inner, i = 2 outer)
sE source term in plasma energy equation
sE

e energy density source term for electrons
sE

i energy density source term for ions
sE

n source term in neutral energy equation
sE

⊥e energy cross-field source term for electrons
sE

⊥i energy cross-field source term for ions
sE

⊥n energy cross-field source term for neutrals
sn source term in plasma density equation
sn

n source term in neutral density equation
sn

e number density source term for electrons
sn

i number density source term for ions
su source term in plasma momentum equation
su

n source term in neutral momentum equation
su

⊥n momentum cross-field source term for neutrals

111

Si Sobol sensitivity index, gives a normalised measure of the sen-
sitivity of the distribution of f to the parameter xi

σ as suffix labels metastable state
σ reaction cross-section m2

σC reaction rate for charge exchange
σE cooling rate due to excitation
σE electrical conductivity Ω−1m−1

σI reaction rate for ionisation
σ

i|0
s collision cross-section for ions with neutrals m2

σ
e|0
s collision cross-section for electrons with neutrals m2

Sij Sobol sensitivity index, gives a normalised measure of the sen-
sitivity of the distribution of f to the parameters xi and xj

SE source term in plasma energy equation kgm−1s−3

SE
e energy density source term for electrons kgm−1s−3

SE
i energy density source term for ions kgm−1s−3

SE
n source term in neutral energy equation kgm−1s−3

SE
⊥e energy cross-field source term for electrons kgm−1s−3

SE
⊥i energy cross-field source term for ions kgm−1s−3

SE
⊥n energy cross-field source term for neutrals kgm−1s−3

Sn source term in plasma density equation m−3s−1

Sn
e number density source term for electrons m−3s−1

Sn
i number density source term for ions m−3s−1

Sn
n source term in neutral density equation m−3s−1

Sn
⊥n number density cross-field source term for neutrals m−3s−1

Sn
⊥ number density cross-field source term for plasma m−3s−1

S⊥n generic cross-field source term for neutrals m−3s−1

Su source term in plasma momentum equation kgm−2s−2

⊂ (Sets) Is a subset of
Su

n source term in neutral momentum equation kgm−2s−2

Su
⊥n momentum cross-field source term for neutrals kgm−2s−2

SZ
ρ particle source for ion of metastable state σ (species α) with

charge state Z
m−3s−1

SZ
α particle source for ion of species α with charge state Z m−3s−1

t time usually in seconds s
t′ offset time usually in seconds s
T plasma temperature eV
t0 characteristic evolutionary timescale usually in seconds s
ts characteristic timescale usually in seconds s
tH Numerical hand-off time interval usually in seconds s
tR Numerical ramp-up time interval usually in seconds s
T0 initial temperature (prefixed by k implies energy in SI) eV
TKn reference temperature of Knudsen distribution (prefixed by k

implies energy in SI)
eV

112

Tref reference temperature (prefixed by k implies energy in SI) eV
Ts characteristic temperature (Ts = (Ls/ts)2/KM) eV
Tα temperature of species α eV
τ optical depth m
τα collision or relaxation time of species α s
τe electron collision or relaxation time s
τi ion species collision or relaxation time s
τen electron-neutral collision time s
τin ion species-neutral collision time s
τce = 1/fce electron cyclotron timescale s
τci = 1/fci ion cyclotron timescale s
τpe = 1/fpe plasma timescale for electrons s
τpi = 1/fpi plasma timescale for ions s
τEe loss time of energy density for electrons s
τEi loss time of energy density for ions s
τne loss time of number density for electrons s
τni loss time of number density for ions s
Td = Ti + Te combined temperature of the electrons and ions eV
Te electron temperature (prefixed by k implies energy in SI) eV
TH the Hydrogen reionisation potential
θ angular coordinate radians c

θ random parameter 0 ≤ θ ≤ 1
Ti ion temperature eV
ã scaled matrix coefficient
b̃ = B/B0 dimensionless magnetic field
ψ̃a

p , ψ̃
b
pq, ψ̃

c
pqr (FE Basis) Orthogonal principal functions

u generic first velocity component ms−1

U velocity component (flow) along fieldline ms−1

Uα velocity component (flow) along fieldline of species α ms−1

Ud = Ls/t0 speed measuring the importance of the transient term ms−1

Us = Ls/ts characteristic speed ms−1

UA Alfvén speed ms−1

f e (K+S) Concatenation of elemental vector f e

W e (K+S) Block-diagonal extension of matrix W e

uR = 1/R Radial component of Grad-Shafranov ‘flow’
v generic second velocity component ms−1

v∥ fluid velocity component along fieldline ms−1

V e spatial volume occupied by finite element e m3

Vi variance of the distribution of f as the parameter xi varies
Vij variance of the distribution of f as the parameters xi and xj

vary
w generic third velocity component ms−1

wjk weight in neural network indexed by neuron j and input k

113

wp weight of particle p
wα,ref normalising or reference weight of particle of species α
wref normalising or reference number for superparticles 1010

W weighting function for particle-in-cell
x Cartesian coordinate m
x0 coordinate value used in specifying initial condition, eg. blob

position
m

x1, x2, x3,x (FE Basis) Global Cartesian coordinates
xα collisionality factor of species α
xe = ωceτe collisionality factor of electrons
xi = ωciτi collisionality factor of ions
xi generic parameter or variable
ξ1, ξ2, ξ3, ξ (FE Basis) Local Cartesian coordinates
ξi random number within the unit interval [0, 1]
XFiσ coefficient of excitation for the transition from metastable

state σ to regular excited state i
y Cartesian coordinate m
y0 coordinate value used in specifying initial condition, eg. blob

position
m

z Cartesian coordinate m
z0 coordinate value used in specifying initial condition m
Z Cartesian coordinate m
Z charge state of the ion
Z cylindrical coordinate m
Z0(α) number of charge states of species α included in the model
Za Gaussian random process, index a
ζ magnetic Prandtl number as defined in Cambridge
ζ = −ϕ toroidal angle coordinate radians c

Zeff effective charge state of plasma ions
Zi charge state of ion
Zα charge state of ion species α
Zm = Z − 1 where Z is ion charge state
Zp = Z + 1 where Z is ion charge state
Zsum =

∑
α Z0(α) where Z0 is number of charge states of species α

114

Chapter 12

Index

115

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is
acknowledged.

116

Bibliography

[1] E. Threlfall and W. Arter. Report of NEPTUNE Workshop 7 Octo-
ber 2021. Tech. rep. CD/EXCALIBUR-FMS/0055-M1.8.1. https://
github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/
ukaea_reports/CD-EXCALIBUR-FMS0055-M1.8.1.pdf. UKAEA, Oc-
tober 2021.

[2] W. Arter, J. Parker and E. Threlfall. Development Plan. Tech. rep.
CD/EXCALIBUR-FMS/0033-D3.4. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0033-1.10-D3.4.pdf. UKAEA, October 2021.

[3] E. Threlfall and W. Arter. Specification and Integration of Scientific
Software. Tech. rep. CD/EXCALIBUR-FMS/0042-M3.1.4. https://
github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/
ukaea_reports/CD-EXCALIBUR-FMS0042-M3.1.4.pdf. UKAEA, Oc-
tober 2021.

[4] W. Arter et al. ExCALIBUR Fusion Modelling System Science Plan.
Tech. rep. CD/EXCALIBUR-FMS/0001. https://www.metoffice.
gov.uk/binaries/content/assets/metofficegovuk/pdf/research/
spf/ukaea-excalibur-fms-scienceplan.pdf. UKAEA, November
2019.

[5] ExCALIBUR Hardware and Enabling Software programme. https://
excalibur.ac.uk/excalibur. Accessed: May 2021. 2021.

[6] MIT License. https://en.wikipedia.org/wiki/MIT_License.
Accessed: January 2022. 2022.

[7] ExCALIBUR-NEPTUNE Bid Documents, Calls, Reports and Notes. https:
//github.com/ExCALIBUR- NEPTUNE/Documents. Accessed: March
2021. 2021.

[8] ExCALIBUR-NEPTUNE Reports in Searchable Repo. https://excalibur-
neptune.github.io/Documents. Accessed: November 2023. 2023.

[9] ExCALIBUR-NEPTUNE UKAEA Documents in LATEX format. https:
//github.com/ExCALIBUR-NEPTUNE/Documents/tree/main/tex.
Accessed: January 2022. 2022.

117

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M1.8.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M1.8.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M1.8.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0033-1.10-D3.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0033-1.10-D3.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0033-1.10-D3.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0042-M3.1.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0042-M3.1.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0042-M3.1.4.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://excalibur.ac.uk/excalibur
https://excalibur.ac.uk/excalibur
https://en.wikipedia.org/wiki/MIT_License
https://github.com/ExCALIBUR-NEPTUNE/Documents
https://github.com/ExCALIBUR-NEPTUNE/Documents
https://excalibur-neptune.github.io/Documents
https://excalibur-neptune.github.io/Documents
https://github.com/ExCALIBUR-NEPTUNE/Documents/tree/main/tex
https://github.com/ExCALIBUR-NEPTUNE/Documents/tree/main/tex

[10] Keywords for documentation. https://www.ietf.org/rfc/rfc2119.
txt. Accessed: March 2021. 2021.

[11] Axelos Staff et al. Managing Successful Projects with PRINCE2, 6th
Edition. ALEXOS, 2017.

[12] PRINCE2 (PRojects IN Controlled Environments) is a structured project
management method. https://en.wikipedia.org/wiki/PRINCE2.
Accessed: January 2022. 2022.

[13] Strategic Priorities Fund. https://www.ukri.org/our-work/our-
main - funds / strategic - priorities - fund/. Accessed: January
2022. 2022.

[14] F. Militello et al. “Experimental and numerical characterization of the
turbulence in the scrape-off layer of MAST”. In: Plasma Physics and
Controlled Fusion 55.2 (2013), p. 025005.

[15] J.A. Wesson. Tokamaks, 3rd Edition. Oxford: Clarendon Press, 2003.
[16] K. Miyamoto. Controlled fusion and plasma physics. Taylor & Francis,

2006.
[17] G.S. Xu et al. “Intermittent convective transport carried by propagat-

ing electromagnetic filamentary structures in nonuniformly magnetized
plasma”. In: Physics of Plasmas 17.2 (2010), p. 022501.

[18] J.D. Huba. NRL Plasma Formulary. Tech. rep. NRL/PU/6790–07-500.
Online version dated 2009 at https://apps.dtic.mil/dtic/tr/
fulltext/u2/a499299.pdf. Naval Research Laboratory, Washington,
2007.

[19] E.R. Priest and T. Forbes. Magnetic Reconnection: MHD theory and
applications. CUP, 2000.

[20] R.D. Hazeltine and J.D. Meiss. Plasma Confinement. Redwood City:
Addison-Wesley, 1992.

[21] F. Militello et al. “Simulations of edge and scrape off layer turbulence
in mega ampere spherical tokamak plasmas”. In: Plasma Physics and
Controlled Fusion 54.9 (2012), p. 095011.

[22] J.P. Freidberg. Plasma Physics and Fusion Energy. Cambridge University
Press, 2007.

[23] F.A. Haas, L.M. Lea and A.J.T. Holmes. “A ’hydrodynamic’ model of
the negative-ion source”. In: Journal of Physics D: Applied Physics 24.9
(1991), p. 1541.

[24] J.E. Leake and T.D. Arber. “The emergence of magnetic flux through a
partially ionised solar atmosphere”. In: Astronomy & Astrophysics 450.2
(2006), pp. 805–818.

118

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://en.wikipedia.org/wiki/PRINCE2
https://www.ukri.org/our-work/our-main-funds/strategic-priorities-fund/
https://www.ukri.org/our-work/our-main-funds/strategic-priorities-fund/
https://apps.dtic.mil/dtic/tr/fulltext/u2/a499299.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a499299.pdf

[25] T.D. Arber, M. Haynes and J.E. Leake. “Emergence of a flux tube
through a partially ionized solar atmosphere”. In: The Astrophysical
Journal 666.1 (2007), pp. 541–546.

[26] One Modeling Framework for Integrated Tasks. https://omfit.io.
Accessed: December 2021. 2021.

[27] W. Arter. Equations for EXCALIBUR/NEPTUNE Proxyapps. Tech. rep.
CD/EXCALIBUR-FMS/0021-1.01-M1.2.1. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0021-1.01-M1.2.1.pdf. UKAEA, May 2021.

[28] E. Hewitt. Semantic Software Design: A New Theory and Practical Guide
for Modern Architects. O’Reilly Media, 2019.

[29] I. Sommerville. Software Engineering. 5th Edition (10th Edition, 2017).
Addison-Wesley, 1997.

[30] W. Arter, J. Parker and E. Threlfall. Module Guide. Tech. rep. CD/EXCALIBUR-
FMS/0032-D3.3. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0032-
D3.3.pdf. UKAEA, March 2021.

[31] E. Threlfall, J. Parker and W. Arter. Design patterns evaluation report.
Tech. rep. CD/EXCALIBUR-FMS/0026-M3.3.3. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0026-M3.3.3.pdf. UKAEA, December
2020.

[32] L. Anton. NEPTUNE: Background information and user requirements for
design patterns. Tech. rep. CD/EXCALIBUR-FMS/0015-1.00-M3.3.1.
https : / / github . com / ExCALIBUR - NEPTUNE / Documents / blob /
main/reports/ukaea_reports/CD- EXCALIBUR- FMS0015- 1.00-
M3.3.1.pdf. UKAEA, March 2020.

[33] W. Arter et al. Report on design patterns specifications and prototypes.
Tech. rep. CD/EXCALIBUR-FMS/0023-M3.3.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD- EXCALIBUR- FMS0023- M3.3.2.pdf. UKAEA, August
2020.

[34] A. Dubey and L.C. McInnes. Idea Paper: The Lifecycle of Software
for Scientific Simulations. Tech. rep. Argonne National Lab.(ANL), Ar-
gonne, IL (United States), 2016.

[35] N.S. Clerman and W. Spector. Modern Fortran. Style and Usage. Cam-
bridge University Press, 2012.

[36] W. Arter et al. Fortran 95 Programming Style. Tech. rep. CCFE-R(15)34.
http://dx.doi.org/10.13140/RG.2.2.27018.41922,https:
//scientific-publications.ukaea.uk/wp-content/uploads/
CCFE-R-1534.pdf. CCFE, 2015.

119

https://omfit.io
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.01-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.01-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.01-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0032-D3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0032-D3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0032-D3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0026-M3.3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0026-M3.3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0026-M3.3.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0015-1.00-M3.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0015-1.00-M3.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0015-1.00-M3.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0023-M3.3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0023-M3.3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0023-M3.3.2.pdf
http://dx.doi.org/10.13140/RG.2.2.27018.41922
https://scientific-publications.ukaea.uk/wp-content/uploads/CCFE-R-1534.pdf
https://scientific-publications.ukaea.uk/wp-content/uploads/CCFE-R-1534.pdf
https://scientific-publications.ukaea.uk/wp-content/uploads/CCFE-R-1534.pdf

[37] Cerberus Python data validation. https : / / github . com / pyeve /
cerberus. Accessed: March 2021. 2021.

[38] J. Gregory. Game engine architecture 3rd Ed. AK Peters/CRC Press,
2017.

[39] B. Stroustrop and H. Sutter, eds. C++ Core Guidelines. http : / /
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines. Ac-
cessed: January 2022. 2022.

[40] B. Stroustrop. A Tour of C++. 2nd Ed. Pearson, 2018.
[41] clang-tidy provides an extensible framework for diagnosing and fixing

typical programming errors, like style violations, interface misuse, or bugs
that can be deduced via static analysis. https://clang.llvm.org/
extra/clang-tidy/. Accessed: January 2022. 2022.

[42] Black is the uncompromising code formatter for Python. https : / /
black.readthedocs.io. Accessed: January 2022. 2022.

[43] J. Pitt-Francis and J. Whiteley. Guide to scientific computing in C++.
Springer, 2017.

[44] N.A. Solter and S.J. Kleper. Professional C++. 5th edition dated 2021
exists in Wrox series with different author M. Gregoire. John Wiley &
Sons, also https:/www.wrox.com, 2005.

[45] W. Arter. Equations for EXCALIBUR/NEPTUNE Proxyapps. Tech. rep.
CD/EXCALIBUR-FMS/0021-1.23-M1.2.1. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0021-1.23-M1.2.1.pdf. UKAEA, October 2022.

[46] DocFetcher is an Open Source desktop search application. http://
docfetcher.sourceforge.net/en/index.html. Accessed: January
2022. 2022.

[47] Recoll finds documents based on their contents as well as their file
names. https://www.lesbonscomptes.com/recoll. Accessed: Jan-
uary 2022. 2022.

[48] W. Arter, L. Anton and D. Samaddar. Options for Geometry Repre-
sentation. Tech. rep. CD/EXCALIBUR-FMS/0012-1.00-M2.1.1. https:
/ / github . com / ExCALIBUR - NEPTUNE / Documents / blob / main /
reports/ukaea_reports/CD-EXCALIBUR-FMS0012-1.00-M2.1.
1.pdf. UKAEA, March 2020.

[49] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial Mathematics, 1992.

[50] W. Arter et al. ExCALIBUR Fusion Modelling System Activities Y1-
2. Tech. rep. CD/EXCALIBUR-FMS/0004. https://github.com/
ExCALIBUR - NEPTUNE / Documents / blob / main / reports / ukaea _
reports/CD-EXCALIBUR-FMS0004.pdf. UKAEA, September 2019.

120

https://github.com/pyeve/cerberus
https://github.com/pyeve/cerberus
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://black.readthedocs.io
https://black.readthedocs.io
https:/www.wrox.com
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.23-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.23-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.23-M1.2.1.pdf
http://docfetcher.sourceforge.net/en/index.html
http://docfetcher.sourceforge.net/en/index.html
https://www.lesbonscomptes.com/recoll
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0012-1.00-M2.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0012-1.00-M2.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0012-1.00-M2.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0012-1.00-M2.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0004.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0004.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0004.pdf

[51] D. Samaddar. NEPTUNE: Report on Y1 2020 External Workshop (RE-
PORT1). Tech. rep. CD/EXCALIBUR-FMS/0010-M1.1.1b. https://
github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/
ukaea_reports/CD-EXCALIBUR-FMS0010-M1.1.1b.pdf. UKAEA,
March 2020.

[52] W. Arter, L. Anton and D. Samaddar. Year One Summary Report. Tech.
rep. CD/EXCALIBUR-FMS/0011-1.00-M1.2.1. https://github.com/
ExCALIBUR - NEPTUNE / Documents / blob / main / reports / ukaea _
reports/CD- EXCALIBUR- FMS0011- 1.00- M1.2.1.pdf. UKAEA,
March 2020.

[53] W. Arter, L. Anton and D. Samaddar. Options for Particle Algorithms.
Tech. rep. CD/EXCALIBUR-FMS/0013-1.01-M2.3.1. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD- EXCALIBUR- FMS0013- 1.01- M2.3.1.pdf. UKAEA,
September 2020.

[54] L. Anton. NEPTUNE: Report on system requirements. Tech. rep. CD/EXCALIBUR-
FMS/0014-1.00-M3.1.1. https://github.com/ExCALIBUR-NEPTUNE/
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0014-1.00-M3.1.1.pdf. UKAEA, March 2020.

[55] L. Anton. Benchmarking requirements for NEPTUNE and available tools.
Tech. rep. CD/EXCALIBUR-FMS/0016-1.00-M3.5.1. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD- EXCALIBUR- FMS0016- 1.00- M3.5.1.pdf. UKAEA,
March 2020.

[56] D. Samaddar. NEPTUNE: Report on Y1 2019 Internal Workshop. Tech.
rep. CD/EXCALIBUR-FMS/0018-M1.1.1a. https : / / github . com /
ExCALIBUR - NEPTUNE / Documents / blob / main / reports / ukaea _
reports/CD-EXCALIBUR-FMS0018-M1.1.1a.pdf. UKAEA, March
2020.

[57] W. Arter. EXCALIBUR NEPTUNE Charter. Tech. rep. CD/EXCALIBUR-
FMS/0020. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0020.pdf.
UKAEA, June 2020.

[58] W. Arter et al. Report on user frameworks for tokamak multiphysics.
Tech. rep. CD/EXCALIBUR-FMS/0022-M3.1.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0022-M3.1.2.pdf. UKAEA, June 2020.

[59] W. Arter, E. Threlfall and J. Parker. Report on user layer design for Un-
certainty Quantification. Tech. rep. CD/EXCALIBUR-FMS/0024-M3.1.3.
https : / / github . com / ExCALIBUR - NEPTUNE / Documents / blob /

121

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0010-M1.1.1b.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0010-M1.1.1b.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0010-M1.1.1b.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0011-1.00-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0011-1.00-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0011-1.00-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0013-1.01-M2.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0013-1.01-M2.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0013-1.01-M2.3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0014-1.00-M3.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0014-1.00-M3.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0014-1.00-M3.1.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0016-1.00-M3.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0016-1.00-M3.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0016-1.00-M3.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0018-M1.1.1a.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0018-M1.1.1a.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0018-M1.1.1a.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0020.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0020.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0022-M3.1.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0022-M3.1.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0022-M3.1.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.pdf

main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.
pdf. UKAEA, October 2020.

[60] M. Barrabino. ExCALIBUR Fusion Modelling use case: contract award
recommendation report. Tech. rep. CD/EXCALIBUR-FMS/0025-M1.3.1.
UKAEA, November 2020.

[61] W. Arter and M. Barrabino. ExCALIBUR Fusion Model SPF Research
Plan Y3. Tech. rep. CD/EXCALIBUR-FMS/0027-M1.5.1. undated and
untitled. UKAEA, September 2021.

[62] E. Threlfall et al. Winter 2020-21 Workshop. Tech. rep. CD/EXCALIBUR-
FMS/0030-M1.4.1. https : / / github . com / ExCALIBUR - NEPTUNE /
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0030-M1.4.1.pdf. UKAEA, March 2021.

[63] M. Barrabino. ExCALIBUR NEPTUNE Project analysis to date: close
out Y2. Tech. rep. CD/EXCALIBUR-FMS/0030a-M1.6.1. UKAEA, March
2021.

[64] E. Threlfall and W. Arter. Select techniques for MOR (Model Order
Reduction). Tech. rep. CD/EXCALIBUR-FMS/0031-M2.5.1. https :
/ / github . com / ExCALIBUR - NEPTUNE / Documents / blob / main /
reports/ukaea_reports/CD-EXCALIBUR-FMS0031-M2.5.1.pdf.
UKAEA, March 2021.

[65] E. Threlfall and W. Arter. Performance of spectral-hp element methods
for the referent plasma models. Tech. rep. CD/EXCALIBUR-FMS/0034-
M2.2.1. https://github.com/ExCALIBUR- NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0034-
M2.2.1.pdf. UKAEA, April 2021.

[66] E. Threlfall and W. Arter. Assessment of which UQ methods are required
to make NEPTUNE software actionable. Tech. rep. CD/EXCALIBUR-
FMS/0035-M2.4.1. https : / / github . com / ExCALIBUR - NEPTUNE /
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0035-M2.4.1.pdf. UKAEA, April 2021.

[67] E. Threlfall and W. Arter. Identification of suitable preconditioner tech-
niques. Tech. rep. CD/EXCALIBUR-FMS/0036-M2.7.1. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0036-M2.7.1.pdf. UKAEA, April 2021.

[68] E. Threlfall and W. Arter. Selection of the physics models. Tech. rep.
CD/EXCALIBUR-FMS/0037-M2.8.1. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0037-M2.8.1.pdf. UKAEA, April 2021.

122

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0024-M3.1.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0030-M1.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0030-M1.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0030-M1.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0031-M2.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0031-M2.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0031-M2.5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0034-M2.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0034-M2.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0034-M2.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0035-M2.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0035-M2.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0035-M2.4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0036-M2.7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0036-M2.7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0036-M2.7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0037-M2.8.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0037-M2.8.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0037-M2.8.1.pdf

[69] E. Threlfall and W. Arter. Identification of a preferred overall numer-
ical scheme. Tech. rep. CD/EXCALIBUR-FMS/0038-M2.6.1. https:
/ / github . com / ExCALIBUR - NEPTUNE / Documents / blob / main /
reports/ukaea_reports/CD-EXCALIBUR-FMS0038-M2.6.1.pdf.
UKAEA, June 2021.

[70] E. Threlfall and W. Arter. Survey of code generators and their suitabil-
ity for NEPTUNE. Tech. rep. CD/EXCALIBUR-FMS/0039-M3.2.1.
https : / / github . com / ExCALIBUR - NEPTUNE / Documents / blob /
main/reports/ukaea_reports/CD-EXCALIBUR-FMS0039-M3.2.1.
pdf. UKAEA, June 2021.

[71] W. Arter and E. Threlfall. Management of external research. Supports
UQ Procurement. Tech. rep. CD/EXCALIBUR-FMS/0040-M5.1. https:
/ / github . com / ExCALIBUR - NEPTUNE / Documents / blob / main /
reports / ukaea _ reports / CD - EXCALIBUR - FMS0040 - M5 . 1 . pdf.
UKAEA, August 2021.

[72] E. Threlfall et al. Survey of Domain Specific Languages. Tech. rep.
CD/EXCALIBUR-FMS/0041-M3.2.2. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0041-M3.2.2.pdf. UKAEA, July 2021.

[73] E. Threlfall et al. Selection of techniques for Uncertainty Quantification.
Tech. rep. CD/EXCALIBUR-FMS/0043-M2.4.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0043-M2.4.2.pdf. UKAEA, September
2021.

[74] E. Threlfall et al. Selection of techniques for Model Order Reduction.
Tech. rep. CD/EXCALIBUR-FMS/0044-M2.5.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0044-M2.5.2.pdf. UKAEA, September
2021.

[75] W. Saunders and W. Arter. Identification of suitable preconditioner
techniques. Tech. rep. CD/EXCALIBUR-FMS/0045-M2.7.2. https://
github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/
ukaea_reports/CD-EXCALIBUR-FMS0045-M2.7.2.pdf. UKAEA, Au-
gust 2021.

[76] W. Arter and E. Threlfall. Surface mesh generation. Tech. rep. CD/EXCALIBUR-
FMS/0046-M2.1.2. https : / / github . com / ExCALIBUR - NEPTUNE /
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0046-M2.1.2.pdf. UKAEA, September 2021.

123

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0038-M2.6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0038-M2.6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0038-M2.6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0039-M3.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0039-M3.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0039-M3.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0040-M5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0040-M5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0040-M5.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0041-M3.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0041-M3.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0041-M3.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0043-M2.4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0043-M2.4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0043-M2.4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0044-M2.5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0044-M2.5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0044-M2.5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0045-M2.7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0045-M2.7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0045-M2.7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M2.1.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M2.1.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M2.1.2.pdf

[77] W. Saunders and E. Threlfall. Finite Element Models: Performance.
Tech. rep. CD/EXCALIBUR-FMS/0047-M2.2.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0047-M2.2.2.pdf. UKAEA, September
2021.

[78] W. Saunders and W. Arter. Options for Particle Algorithms. Tech. rep.
CD/EXCALIBUR-FMS/0048-M2.3.2. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0048-M2.3.2.pdf. UKAEA, September 2021.

[79] J. Parker and W. Arter. Domain-Specific Language (DSL) and Perfor-
mance Portability Assessment. Tech. rep. CD/EXCALIBUR-FMS/0049-
D3.2. https : / / github . com / ExCALIBUR - NEPTUNE / Documents /
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0049-
D3.2.pdf. UKAEA, September 2021.

[80] W. Arter. Verification and Benchmarks Methodology. Tech. rep. CD/EXCALIBUR-
FMS/0050-D3.5. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0050-
D3.5.pdf. UKAEA, September 2021.

[81] E. Threlfall and W. Arter. Finite Element Models: Complementary Activi-
ties I. Tech. rep. CD/EXCALIBUR-FMS/0051-M6.1. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0051-M6.1.pdf. UKAEA, September
2021.

[82] J.T. Parker and W. Arter. Literature review for Call T/AW086/21: Math-
ematical Support for Software Implementation. Tech. rep. CD/EXCALIBUR-
FMS/0052-M7.1. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0052-
M7.1.pdf. UKAEA, September 2021.

[83] J.T. Parker et al. Code coupling and benchmarking. Tech. rep. CD/EXCALIBUR-
FMS/0053-M7.2. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0053-
M7.2.pdf. UKAEA, September 2021.

[84] W. Arter et al. Software Specification Web-site. Tech. rep. CD/EXCALIBUR-
FMS/0054-D3.1. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/ukaea_reports/CD- EXCALIBUR- FMS0054-
D3.1.pdf. UKAEA, October 2021.

[85] M. Barrabino. ExCALIBUR Fusion Modelling use case: contract award
recommendation report. Tech. rep. CD/EXCALIBUR-FMS/0056-M1.7.1.
UKAEA, August 2021.

124

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0047-M2.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0047-M2.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0047-M2.2.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0048-M2.3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0048-M2.3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0048-M2.3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0049-D3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0049-D3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0049-D3.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0050-D3.5.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0050-D3.5.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0050-D3.5.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0051-M6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0051-M6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0051-M6.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0052-M7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0052-M7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0052-M7.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0053-M7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0053-M7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0053-M7.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0054-D3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0054-D3.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0054-D3.1.pdf

[86] E. Threlfall and W. Arter. Fluid Referent Models. Tech. rep. CD/EXCALIBUR-
FMS/0055-M2.6.2. https : / / github . com / ExCALIBUR - NEPTUNE /
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0055-M2.6.2.pdf. UKAEA, November 2021.

[87] J. T. Parker and W. Arter. Technical report on Physics model selection.
Tech. rep. CD/EXCALIBUR-FMS/0058-M2.8.2. https : / / github .
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0058-M2.8.2.pdf. UKAEA, December
2021.

[88] W. Arter. ExCALIBUR-Fusion Modelling System Y4-Y6. Tech. rep. CD/EXCALIBUR-
FMS/0059-M1.9.1. UKAEA, March 2022.

[89] W. Arter. Analysis to Date: Close out Y3. Tech. rep. CD/EXCALIBUR-
FMS/0060-M1.10. https : / / github . com / ExCALIBUR - NEPTUNE /
Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-
FMS0060-M1.10.pdf. UKAEA, March 2022.

[90] W. Saunders, J. Cook and W. Arter. 2-D Model of Neutral Gas and Impu-
rities. Tech. rep. CD/EXCALIBUR-FMS/0061-M4.2. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD- EXCALIBUR- FMS0061- M4.2.pdf. UKAEA, December
2021.

[91] W. Saunders, J. Cook and W. Arter. High-dimensional Models Com-
plementary Actions 2. Tech. rep. CD/EXCALIBUR-FMS/0062-M4.3.
https : / / github . com / ExCALIBUR - NEPTUNE / Documents / blob /
main/reports/ukaea_reports/CD- EXCALIBUR- FMS0062- M4.3.
pdf. UKAEA, March 2022.

[92] W. Arter and J. Parker. Selection of techniques for Uncertainty Quantifi-
cation. Tech. rep. CD/EXCALIBUR-FMS/0063-M5.2. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0063-M5.2.pdf. UKAEA, March 2022.

[93] E. Threlfall. Finite Element Models Complementary Actions 2. Tech. rep.
CD/EXCALIBUR-FMS/0064-M6.2. https://github.com/ExCALIBUR-
NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-
EXCALIBUR-FMS0064-M6.2.pdf. UKAEA, March 2022.

[94] J.T. Parker and W. Arter. Software Support Complementary Actions
2. Tech. rep. CD/EXCALIBUR-FMS/0065-M7.3. https://github.
com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_
reports/CD-EXCALIBUR-FMS0065-M7.3.pdf. UKAEA, March 2022.

[95] E. Threlfall and W. Saunders. Support High-dimensional Procurement.
Tech. rep. CD/EXCALIBUR-FMS/0066-M4.1. https://github.com/
ExCALIBUR - NEPTUNE / Documents / blob / main / reports / ukaea _
reports/CD-EXCALIBUR-FMS0066-M4.1.pdf. UKAEA, March 2022.

125

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M2.6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M2.6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0055-M2.6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0058-M2.8.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0058-M2.8.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0058-M2.8.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0060-M1.10.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0060-M1.10.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0060-M1.10.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0062-M4.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0062-M4.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0062-M4.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0063-M5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0063-M5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0063-M5.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0064-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0064-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0064-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0065-M7.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0065-M7.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0065-M7.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf

[96] D. Rouson, J. Xia and X. Xu. Scientific Software Design: The Object-
Oriented Way. Cambridge University Press, 2011.

[97] W. Bangerth and T. Heister. “What makes computational open source
software libraries successful?” In: Computational Science & Discovery
6.1 (2013), 015010 (18 pages). url: %5Curl%7Bhttps://doi.org/
10.1088/1749-4699/6/1/015010%7D.

[98] B.N. Lawrence et al. “Crossing the chasm: how to develop weather and
climate models for next generation computers?” In: Geoscientific Model
Development 11.5 (2018), pp. 1799–1821.

[99] G.F. Belete, A. Voinov and G.F. Laniak. “An overview of the model in-
tegration process: From pre-integration assessment to testing”. In: En-
vironmental modelling & software 87 (2017), pp. 49–63.

[100] Semantic Versioning 2.0.0. https://semver.org. Accessed: November
2021. 2021.

[101] Zenodo, to ensure that everyone can join in Open Science. https :
//zenodo.org. Accessed: November 2021. 2021.

[102] A fast, flexible, physicist’s toolkit for gyrokinetics. https://gyrokinetics.
gitlab.io/gs2/page/admin_manual/release_instructions/
index.html. Accessed: November 2021. 2021.

[103] Open source licensing. https://opensource.org/licenses/BSD-3-
Clause. Accessed: August 2020. 2020.

[104] Government open source guidance. https://www.gov.uk/government/
publications/open-source-guidance/when-code-should-be-
open-or-closed. Accessed: August 2020. 2020.

[105] Government open source advice. https://www.gov.uk/guidance/be-
open-and-use-open-source. Accessed: August 2020. 2020.

[106] B.P. Douglass. Real Time UML Workshop for Embedded Systems. El-
sevier, Amsterdam, 2006.

[107] W. Arter. Study of source terms in the SOLF1D edge code. Tech. rep.
CCFE-DETACHMENT-RP2-Draft. CCFE, 2015.

[108] F. Wilczynski et al. “Stability of scrape-off layer plasma: A modified
Rayleigh–Bénard problem”. In: Physics of Plasmas 26.2 (2019). https:
//doi.org/10.1063/1.5064765, p. 022510.

[109] S.L. Brunton and J.N. Kutz. Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. CUP, 2019.

[110] W. Arter et al. Equations for EXCALIBUR/NEPTUNE Proxyapps. Tech.
rep. CD/EXCALIBUR-FMS/0021-1.31-M1.2.1. https://github.com/
ExCALIBUR - NEPTUNE / Documents / blob / main / reports / ukaea _
reports/CD- EXCALIBUR- FMS0021- 1.30- M1.2.1.pdf. UKAEA,
October 2023.

126

%5Curl%7Bhttps://doi.org/10.1088/1749-4699/6/1/015010%7D
%5Curl%7Bhttps://doi.org/10.1088/1749-4699/6/1/015010%7D
https://semver.org
https://zenodo.org
https://zenodo.org
https://gyrokinetics.gitlab.io/gs2/page/admin_manual/release_instructions/index.html
https://gyrokinetics.gitlab.io/gs2/page/admin_manual/release_instructions/index.html
https://gyrokinetics.gitlab.io/gs2/page/admin_manual/release_instructions/index.html
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/guidance/be-open-and-use-open-source
https://www.gov.uk/guidance/be-open-and-use-open-source
https://doi.org/10.1063/1.5064765
https://doi.org/10.1063/1.5064765
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf

[111] G. Karniadakis and S. Sherwin. Spectral/hp element methods for compu-
tational fluid dynamics 2nd Ed. https://doi.org/10.1093/acprof:
oso/9780198528692.001.0001. Oxford University Press, 2005.

[112] M. O’Mullane. Atomic Processes in Plasmas. Slides from 45th Culham
Plasma Physics Summer School. CCFE intranet, not publicly available.
2008.

[113] E. Havlıéčková et al. “Benchmarking of a 1D scrape-off layer code
SOLF1D with SOLPS and its use in modelling long-legged divertors”.
In: Plasma Physics and Controlled Fusion 55.6 (2013), p. 065004.

[114] The ADAS Project. Atomic Data and Analysis Structure ADAS website.
http://www.adas.ac.uk/. Accessed: July 2020. 2020.

[115] The ADAS Project. Dissemination of Atomic Data and Analysis Struc-
ture ADAS website. https://open.adas.ac.uk/. Accessed: July
2020. 2020.

127

https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
http://www.adas.ac.uk/
https://open.adas.ac.uk/

	Program Identity
	Executive summary

	Business Design
	Requirements Baseline
	Physical properties of the edge plasma
	Engineering Requirements Baseline
	Use Cases
	General Remarks

	Technical Specification
	Response to Tokamak Science Division
	Order-of-magnitude estimates for tokamak edge modelling
	Software Engineering Response
	Generating Names for Variables

	Design Justification File
	Deprecated Approaches
	UKAEA (Internal) Reports

	Design Definition File
	Design specification
	Objects/classes
	Execution sequence
	Design patterns

	Management File
	Introduction
	Management
	ExCALIBUR Project NEPTUNE Charter

	Maintenance File
	Operational Documentation
	Documentation Generally
	Developer Manual
	User Manual
	Feedback and Communication

	Proxyapps
	Nektar-Driftwave
	Nektar-Diffusion
	Nektar-1D-SOL
	FabNEPTUNE
	Moment_Kinetics
	NESO

	Reference Material
	Conventions for Report Writing
	Acronyms
	Symbols

	Index

