CD-EXCALIBUR-FMS0024-1.00-M3.1.3_ReportUserLayerDesignUncertaintyQuantification =============================================================================== .. meta:: :description: technical note :keywords: ExCALIBUR,Report,on,user,layer,design,for,UQ,-,M3.1.3,Abstract,The,report,describes,work,for,ExCALIBUR,project,NEPTUNE,around,techniques,for,Uncertainty,Quantification,(UQ),that,are,expected,to,prove,important,for,the,project,,arranged,as,they,might,appear,in,a,workflow,to,optimise,plant,design.,Firstly,,efficient,ways,of,identifying,the,major,sources,of,uncertainty,are,identified,,then,secondly,,techniques,for,working,with,this,smaller,number,are,described,,including,the,production,of,surrogates.,Third,and,lastly,,UQ,analysis,is,then,continued,with,the,surrogates,used,to,predict,distributions,of,expected,outcomes,,with,emphasis,upon,producing,optimal,device,designs,,which,are,robust,against,say,installation,errors.,Since,NEPTUNE,software,may,be,required,for,a,range,of,applications,including,comparison,with,theory,,there,is,a,discussion,around,how,UQ,might,best,be,integrated,in,the,context,of,NEPTUNE,,prior,to,completion,of,research,work,external,to,UKAEA.,UKAEA,REFERENCE,AND,APPROVAL,SHEET,Client,Reference:,UKAEA,Reference:,CD/EXCALIBUR-FMS/0024,Issue:,Date:,1.00,14,October,2020,Project,Name:,ExCALIBUR,Fusion,Modelling,System.,Version,1.00,Prepared,By:,Name,and,Department,Wayne,Arter,Ed,Threlfall,Joseph,Parker,BD,Reviewed,By:,Rob,Akers,Modified,By:,Approved,By:,Rob,Akers,Advanced,Computing,Dept.,Manager,BD,Rob,Akers,BD,Signature,Date,14/10/2020,14/10/2020,14/10/2020,14/10/2020,N/A,N/A,N/A,N/A,1,1,Introduction,Uncertainty,quantification,(UQ),is,a,topic,of,interest,to,nuclear,engineers,(where,it,may,feed,into,probabilistic,risk,assessment,studies,of,safety),,chemical,engineers,,systems,engineers,,control,engineers,,meteorologists,,and,probably,many,others,,see,the,book,by,Smith,[1].,This,means,that,there,is,widespread,literature,available,,but,unfortunately,it,also,means,that,the,nomenclature,is,not,standardised.,This,report,will,follow,Smith’s,text,as,far,as,possible,as,to,definitions.,Smith,de-,fines,UQ,as:,“The,synergy,between,statistics,,applied,mathematics,and,domain,sciences,required,to,quantify,uncertainties,in,inputs,and,Quantities,of,Interest,(QoI),when,models,are,too,computa-,tionally,complex,to,permit,sole,reliance,on,sampling-based,methods.”,Implicit,in,Smith’s,definition,is,thus,the,production,of,a,surrogate,,which,immediately,highlights,differences,in,nomenclature,in,that,both,the,COSSAN,[2],and,Dakota,[3],packages,describe,themselves,as,performing,UQ,analysis,without,necessarily,using,a,surrogate.,For,NEPTUNE,,surrogates,will,preferably,have,an,underlying,physics,basis,,and,unless,explicitly,stated,,numerical,errors,due,to,the,discretisation,and,to,round-off,in,finite,precision,computer,arithmetic,will,be,neglected.,The,material,on,UQ,in,the,present,report,will,be,ordered,by,application,to,the,workflow,in,a,generic,,large,scientific-modelling,package,as,presented,by,Habib,Najm,at,the,Workshop,on,“Data,Assimi-,lation,and,Uncertainty,Quantification,at,the,Exascale”,,24-25,September,2020,drawing,extensively,from,ref,[4].,The,first,stage,of,the,workflow,is,to,understand,the,behaviour,of,the,full,model,,as-,sumed,to,be,dependent,on,a,large,number,of,parameters,d,,giving,rise,to,the,so-called,‘curse,of,dimensionality’,,see,Section,2.1.,It,is,notable,that,Najm,prefers,to,proceed,to,use,only,a,small,number,of,techniques,of,global,sensitivity,analysis,,concentrating,on,sparse,sampling,and,does,not,first,examine,sensitivity,to,small,changes,in,input,(ie.,local,sensitivity,analysis).,The,second,stage,is,to,produce,a,surrogate,dependent,only,on,of,order,ten,or,so,parameters,,and,the,third,is,to,use,such,surrogates,to,compute,uncertainty,in,QoI,,which,may,include,solutions,with,optimal,properties.,It,will,of,course,be,seen,that,sampling,techniques,remain,important,because,thay,are,needed,both,for,the,first,and,third,stages.,Before,proceeding,,it,is,worth,remarking,that,two,different,kinds,of,uncertainty,are,distinguished,,namely,aleatory,and,epistemic,uncertainties,,less,confusingly,referred,to,as,‘irreducible’,and,‘re-,ducible’,uncertainty.,The,first,have,been,referred,to,as,the,“unknown,unknowns”,,and,the,second,as,the,“known,unknowns”,,in,that,the,latter,could,be,determined,simply,by,further,measurement.,Patelli,et,al,[2],argue,for,more,of,a,continuum,of,ignorance,,because,for,example,certain,measure-,ments,may,be,available,some,but,not,all,of,the,time.,This,report,will,begin,by,describing,the,mathematical,basis,of,methods,used,in,UQ,,ordered,by,the,above,stages,in,Section,2.,It,will,proceed,in,Section,3,to,outline,how,the,mathematics,might,be,implemented,in,the,NEPTUNE,software,,and,a,brief,summary,is,provided,in,Section,4.,1,2,Mathematics,Background,2.1,Understanding,Model,Behaviour,This,section,describes,techniques,useful,in,global,sensitivity,analysis,,specifically,•,Polynomial,Chaos,Expansion,(PCE),•,Sparse,regression,with,application,to,PCE,,including,LASSO/Basis,Pursuit,(BP),algorithms,•,Multifidelity,Monte-Carlo,(MFMC),•,Multilevel,Monte-Carlo,(MLMC),and,Multi-Index,Monte-Carlo,(MIMC),The,‘curse,of,dimensionality’,The,need,for,special,techniques,arises,from,the,need,to,treat,problems,typically,with,a,large,number,d,of,parameters,that,give,rise,to,the,so-called,‘curse,of,dimensionality’.,The,curse,defeats,simple,uniform,sampling,strategies,where,supposing,that,10,samples,are,taken,for,each,parameter,,the,number,of,samples,required,is,10d.,This,fact,mo-,tivates,use,of,Monte-Carlo,(MC),sampling,which,has,costs,independent,of,d,but,gives,rise,to,a,slowly,reducing,error∝,1/,N,in,the,calculation,of,averages,,where,N,is,the,number,of,samples.,√,To,calculate,more,accurate,statistics,,use,is,made,of,Quasi-Monte-Carlo,(QMC),sampling,,see,the,appended,Section,5.1,,and,sparse,(quadrature),sampling,Section,2.2.1,which,can,achieve,errors∝,(ln,N,)d/N,.,Even,in,this,expression,,the,power-law,dependence,on,d,restricts,use,of,the,technique,to,values,of,d,of,order,ten,or,so,,more,precise,values,depending,on,the,cost,of,a,single,sample,calculation,,hence,the,need,for,techniques,of,sparse,regression,to,identify,a,restricted,set,of,parameters.,2.1.1,Polynomial,Chaos,Expansion,(PCE),Polynomial,Chaos,Expansion,(PCE),,also,known,as,the,Wiener,chaos,expansion,[5],,is,a,method,for,determining,the,evolution,of,uncertainty,in,a,dynamical,system,where,there,is,imperfect,knowl-,edge,of,the,system,parameters.,Uncertain,parameters,and,variables,are,supposed,to,depend,on,a,normally,distributed,random,variable,θ,,and,are,then,expressed,using,a,Hermite,expansion.,For,example,,density,n(x,,t),,usually,a,function,of,position,x,and,time,t,,would,gain,an,additional,θ-dependence,and,be,written,n(x,,t,,θ),=,NH(cid:88),j=0,nj(x,,t)Hj(θ),,(1),where,nj(x,,t),are,deterministic,coefficients,and,Hj,are,the,Hermite,polynomials.,Hermite,poly-,nomials,are,used,as,these,are,orthogonal,with,respect,to,a,Gaussian,(i.e.,normal,distribution),weight,,(cid:104)Hn|Hm(cid:105),=,1,2nn!,(cid:90),∞,−∞,Hn(θ)Hm(θ),e−θ2,√,π,dθ,=,δnm,,(2),2,where,δnm,is,the,Kronecker,which,is,1,if,n,=,m,and,0,otherwise.,Statistical,properties,,which,are,moments,of,n,with,respect,to,θ,,are,then,known,simply,in,terms,of,the,expansion,coefficients.,For,example,,the,expected,value,of,n,is,E(n),≡,(cid:90),∞,−∞,n(x,,t,,θ),dθ,=,n0(x,,t).,(3),Moreover,,by,taking,the,inner,product,of,the,model,equations,with,each,Hermite,polynomial,in,turn,,one,obtains,a,set,of,moment,equations,for,the,evolution,of,the,coefficients,nj.,For,example,,taking,moments,of,the,equation,for,the,conservation,of,density,,yields,the,NH,+,1,equations,∂n,∂t,+,∂(nu),∂x,=,0,,∂nk,∂t,+,NH(cid:88),NH(cid:88),i=0,j=0,eijk,∂(niuj),∂x,=,0,,(4),(5),with,eijk,≡,(cid:82),∞,−∞,HiHjHk,dθ,being,(easily-computable),integrals.,Equation,(5),also,appears,in,the,Equations,document,[6].,Solving,(5),allows,one,to,reconstruct,n(x,,t,,θ),via,(1),,which,gives,the,density,along,with,a,quantification,of,its,uncertainty,through,θ.,This,method,may,be,generalised,to,include,a,set,of,random,variables,{θi},,in,which,case,an,expansion,analogous,to,(1),is,made,using,tensor,Hermite,polynomials.,The,Hermite,expansion,approach,is,appropriate,only,for,θ,a,normally,distributed,random,variable,(or,certain,similar,types,,like,log-normal,distributions).,For,other,distributions,,convergence,of,the,expansion,(1),with,NH,can,be,extremely,slow.,However,using,non-normal,distributions,is,often,desirable;,for,example,,it,might,be,known,that,errors,are,non-negative,,or,uniformly,distributed.,To,allow,modelling,with,non-normal,distributions,,Xiu,[7],introduced,Generalised,Polynomial,Chaos,(gPC).,In,gPC,,the,random,variable,θ,is,generalised,to,be,a,random,variable,with,any,distribu-,tion,function,f,.,The,Hermite,polynomial,expansion,is,then,replaced,with,an,expansion,in,the,set,of,orthogonal,polynomials,whose,weight,function,is,f,.,For,example,,if,θ,is,uniformly,distributed,,the,expansion,is,in,Legendre,polynomials.,The,gPC,theory,also,supports,discrete,random,vari-,ables,,such,as,the,Poisson,and,the,binomial,distributions;,a,list,of,random,variables,and,their,corresponding,orthogonal,polynomials,are,given,in,[7,,Table,2.1].,The,method,described,above,is,intrusive,,that,is,,if,one,only,has,software,to,solve,the,original,problem,(4),for,n,,then,non-trivial,changes,are,likely,required,in,order,to,solve,(5),for,nk.,An,alternative,non-intrusive,approach,may,be,derived,as,follows.,Suppose,the,solution,is,sampled,at,a,set,of,N,random,points,{θj}N,j=1,,and,construe,n,as,a,distribution,in,probability,space,,viz.,n(x,,t,,θ),=,N,(cid:88),j=0,nsj(x,,t)δ(θ,−,θj).,Equating,(6),with,(1),in,the,weak,sense,,there,obtains,(cid:42),N,(cid:88),j=0,nsj(x,,t)δ(θ,−,θj),(cid:43),(cid:12),(cid:12),(cid:12),Hk(θ),(cid:12),(cid:12),=,(cid:42),NH(cid:88),j=0,(cid:12),(cid:12),(cid:12),nj(x,,t)Hj(θ),(cid:12),(cid:12),(cid:43),Hk(θ),,,3,(6),(7),where,(cid:104)·|·(cid:105),is,the,inner,product,defined,in,(2),,so,that,nk(x,,t),=,1,√,2kk!,π,NH(cid:88),j=0,nsj(x,,t)Hk(θj)e−θ2,j,.,(8),This,expression,for,nk,may,be,calculated,using,only,knowledge,of,n,from,solving,the,original,equation,(4).,2.1.2,Sparse,linear,regression,Linear,regression,Suppose,a,data,set,{yi,,x1i,,.,.,.,,,xP,i}N,i=1,to,consist,of,N,observations,of,the,dependent,variable,y,and,the,d,independent,variables,x,,supposed,related,by,the,model,y,=,xβ,,where,βT,=,(β1,,.,.,.,,,βd),is,a,vector,of,unknown,coefficients,of,the,model.,The,classical,linear,regression,problem,determines,β,by,minimising,the,L2-norm,error,,(cid:107)y,−,xβ(cid:107)2.,min,β∈Rd,(9),When,there,are,more,observations,than,parameters,,N,>,d,,this,has,the,well-defined,solution,β∗,=,(xT,x)−1xT,y.,Sparse,linear,regression,In,some,applications,there,are,many,more,observations,than,parame-,ters,N,(cid:29),d,,and,moreover,expect,many,of,the,observation,points,xj,to,be,irrelevant,for,determining,y.,In,this,case,,expect,many,of,the,coefficients,βi,would,be,expected,to,be,zero,,but,will,not,known,a,priori,which,can,be,neglected.,Many,approaches,have,been,developed,to,incorporate,sparsity,into,linear,regression.,This,section,focusses,on,•,Sequential,Least-Squares’,Thresholding,(SLSQT),•,Best,Subset,Selection,•,Ridge,Regression,•,LASSO,The,last,three,of,these,may,all,be,formulated,as,regularised,least-squares,optimisation,,i.e.,least-,squares,subject,to,an,additional,inequality,constraint.,For,simplicity,,the,following,discussion,is,restricted,to,the,case,when,the,independent,variables,xi,are,orthonormal,,(cid:104)xi|xj(cid:105),=,δij,,which,ap-,plies,when,the,independent,variables,are,the,basis,functions,from,a,polynomial,chaos,expansion.,is,simply,described,as,a,sequence,of,least-,Sequential,Least-Squares’,Thresholding,(SLSQT),squares’,fits,in,which,after,each,fit,regression,coefficients,that,drop,below,some,researcher-fixed,threshold,are,set,and,remain,zero,thereafter.,This,has,proved,very,successful,for,Brunton,et,al,[8].,4,Best,subset,selection,A,natural,formulation,for,seeking,a,sparse,coefficient,vector,β,is,to,re-,strict,β,to,having,a,small,number,of,non-zero,entries.,The,linear,regression,problem,(9),is,modified,to,min,β∈Rd,(cid:107)y,−,xβ(cid:107)2,2,subject,to,(cid:107)β(cid:107)0,≤,C.,(10),where,(cid:107)β(cid:107)0,is,the,“0-norm”,which,simply,counts,the,number,of,non-zero,elements,of,β.,This,is,known,as,“Best,Subset,Selection”,as,the,constraint,on,β,restricts,the,nonzero,coefficients,to,a,k-dimensional,subspace,of,the,original,problem.,Equation,(10),may,be,written,in,Lagrangian,form,,which,is,solved,by,(cid:18),1,N,min,β∈Rd,(cid:107)y,−,xβ(cid:107)2,2,+,λ(cid:107)β(cid:107)0,(cid:19),,,βj,=,H√,N,λ(β∗,j,),=,β∗,j,I,(cid:16),|β∗,j,|,>,√,N,λ,(cid:17),(11),(12),where,I,is,the,indicator,function,that,is,unity,if,its,argument,is,true,,and,zero,otherwise,,and,β∗,=,(xT,x)−1xT,β,is,the,solution,to,the,ordinary,least-squares,problem.,Here,Hα,is,the,“hard,thresholding,function”,,which,sets,coefficients,to,zero,once,they,are,sufficiently,small,,but,leaves,other,coefficients,untouched.,This,approach,is,however,computationally,infeasible.,This,is,because,the,“0-norm”,,the,d,→,0,limit,of,the,d-norm,,(cid:107)β(cid:107)d,=,(cid:0)(cid:80),,,is,not,actually,a,norm,(as,,for,example,,(cid:107)2β(cid:107)0,(cid:54)=,2(cid:107)β(cid:107)0).,This,means,one,cannot,minimise,(cid:107),·,(cid:107)0,except,by,exhaustive,search.,Therefore,other,methods,replaces,the,“0-norm”,with,d-norms,that,are,computationally,tractable.,i,βd,i,(cid:1)1/d,Ridge,regression,In,ridge,regression,,also,known,as,L2,regularisation,,the,“0-norm”,might,be,replaced,with,the,Euclidean,2-norm,,(cid:18),1,N,min,β∈Rp,(cid:107)y,−,xβ(cid:107)2,2,+,λ(cid:107)β(cid:107)2,2,(cid:19),,,(13),This,approach,,a,variant,of,Tikhonov,regularisation,,mitigates,the,problems,due,to,dependencies,among,the,variables,xi.,However,,because,∇(cid:107)x(cid:107)2,2,is,invariant,under,a,rescaling,of,x,,Equation,(13),has,the,solution,2,=,−x/(cid:107)x(cid:107)2,βj,=,(1,+,N,λ)−1β∗,j,.,(14),Evidently,,this,solution,does,not,increase,the,sparsity,of,the,solution,and,so,does,not,reduce,the,number,of,model,parameters,,leading,to,consideration,of,use,of,the,1-norm,in,Equation,(13).,LASSO,The,LASSO,method,,also,called,basis,pursuit,denoising,or,L1,regularisation,,and,indeed,‘compressed,sensing’,(CS),,turns,out,to,yield,the,favourable,features,of,Best,Subset,Selection,5,and,Ridge,Regression.,In,LASSO,,the,“0-norm”,is,replaced,with,the,1-norm,,(cid:107)β(cid:107)1,=,(cid:80),equation,(10),,i,|βi|,,in,(cid:18),1,N,min,β∈Rd,(cid:107)y,−,xβ(cid:107)2,2,+,λ(cid:107)β(cid:107)1,(cid:19),.,(15),Although,not,obvious,,it,may,be,shown,using,the,Karush-Kuhn-Tucker,conditions,for,constrained,optimisation,that,the,1-norm,is,also,minimised,by,values,of,β,containing,exact,zeros;,moreover,,smaller,values,of,C,in,(10),yields,β,with,more,zeros.,The,1-norm,,being,a,norm,,is,also,computa-,tionally,tractable.,The,solution,to,(15),is,βj,=,Snλ,(cid:0)β∗,j,(cid:1),=,β∗,j,max,(cid:32),0,,1,−,(cid:33),,,N,λ,|β∗,j,|,(16),where,Sα,is,the,“soft,thresholding,function”.,This,solution,both,shifts,coefficient,values,towards,zero,,and,sets,the,smaller,values,to,zero,,increasing,the,sparsity.,2.1.3,Multifidelity,Monte-Carlo,Multifidelity,modelling,In,conventional,modelling,,normally,a,“high-fidelity”,model,is,produced,which,captures,as,faithfully,as,possible,the,system,being,modelled.,Such,models,can,be,compu-,tationally,expensive,,motivating,the,use,of,low-fidelity,,or,reduced,,models,which,approximate,the,same,system,but,that,,for,example,,describe,simplified,physics,,or,use,a,lower,resolution,grid.,Re-,duced,models,are,much,cheaper,,but,may,be,much,less,able,to,predict,the,behaviour,of,a,physical,system.,Moreover,it,may,be,difficult,to,certify,the,model,by,quantifying,uncertainties.,Multifidelity,modelling,is,an,approach,between,these,two,extremes.,It,uses,both,high-fidelity,and,(possibly,multiple),low-fidelity,models,in,an,attempt,to,place,guarantees,on,the,properties,of,the,solution.,Monte-Carlo,sampling,In,Monte-Carlo,sampling,,there,is,an,uncertain,input,(random,variable,Z),to,a,high-fidelity,model,,f,(1).,The,outputs,from,the,model,f,(1)(Z),are,also,uncertain,,so,the,goal,is,to,calculate,statistics,,such,as,the,expected,value,of,the,output,,s,=,E(f,(1)(Z)).,Estimators,for,this,statistic,are,made,by,making,N,evaluations,of,the,model,,that,is,,taking,N,realisations,zi,from,Z,and,computing,ˆs,=,¯y(1),N,=,1,N,N,(cid:88),i=1,f,(1)(zi).,(17),If,the,work,of,evaluating,the,model,once,is,W1,,then,the,Monte-Carlo,process,costs,N,W1,work.,In,multifidelity,Monte-Carlo,,the,single,high-fidelity,model,Multifidelity,Monte-Carlo,(MFMC),f,(1),supplemented,with,a,collection,of,K,−1,lower-fidelity,“surrogate”,models,,f,(2),,.,.,.,,,f,(K),,where,6,fidelity,decreases,with,increasing,index.,Model,i,is,evaluated,ni,times,,where,higher,fidelity,models,are,evaluated,fewer,times,,n1,≤,n2,≤,.,.,.,≤,nK.,Define,mean,estimators,¯y(j),i=1,f,(j)(zi),(from,calling,the,jth,model,n,times),,and,from,these,construct,the,MFMC,estimator,for,s,,n,=,1,n,(cid:80)n,ˆs,=,¯y(1),n1,+,K,(cid:88),i=2,(cid:16),αi,ni,−,¯y(i),¯y(i),ni−1,(cid:17),.,(18),Compared,to,(17),,this,requires,many,fewer,evaluations,of,the,high-fidelity,model,(n1,(cid:28),N,),,but,additional,evaluations,of,the,surrogate,models.,In,(18),,the,brackets,term,expresses,the,change,in,mean,estimator,of,¯y(i),that,results,from,calling,model,i,more,times,relative,to,model,i,−,1,,the,model,that,is,one-level,higher-fidelity.,The,estimator,is,unbiased,,and,moreover,gives,the,freedom,to,choose,the,model,evaluations,n1,,n2,,.,.,.,,nK,and,the,coefficients,α2,,.,.,.,,,αK.,The,cost,of,evaluating,ˆs,is,(cid:80)K,i=1,Wini.,Because,surrogate,models,are,cheaper,to,compute,(W1,>,Wi,for,all,i,>,1),and,many,fewer,evaluations,of,the,high-fidelity,model,(n1,(cid:28),n),are,anticipated,,this,cost,is,significantly,less,than,the,cost,N,W1,of,the,conventional,Monte-Carlo,cal-,culation.,Peherstorfer,et,al.,[9],used,this,approach,to,obtain,the,same,accuracy,as,a,high-fidelity,MC,simulation,,but,with,a,reduction,in,runtime,of,four,orders,of,magnitude.,Multi-Level,Monte-Carlo,(MLMC),Multi-level,Monte-Carlo,(MLMC),is,a,more,efficient,way,of,estimating,averages,and,other,statistics,than,by,means,of,random,or,Monte-Carlo,(MC),sampling.,MLMC,is,usually,associated,with,the,name,of,Mike,Giles,[10].,Suppose,that,a,model,or,surrogate,problem,may,be,solved,with,a,range,of,spatial,and/or,temporal,resolutions.,The,basic,idea,is,that,sample,solutions,computed,with,different,levels,of,resolution,may,be,combined,to,produce,means,and,other,statistics,(giving,estimates,of,uncertainty),as,accurately,as,though,all,solutions,had,been,obtained,using,the,finest,level.,In,more,detail,,for,the,example,of,a,steady,solution,obtained,with,different,spatial,levels,of,resolu-,tion,[11],,the,MLMC,algorithm,is,1.,Construct,a,hierarchy,of,meshes,,spacings,hl,,where,l,=,0,is,the,coarsest,level,and,l,=,L,is,the,finest.,2.,For,each,l,,draw,a,level-dependent,number,Nl,of,samples,from,the,parameters/fields,to,be,sampled,,eg.,U,denoting,a,single,solution,depending,on,d,spatial,variables,alone.,3.,Solve,the,model,or,surrogate,problem,Nl,times,at,each,level,,giving,an,ensemble,of,solu-,tions,Uk,l,,,k,=,1,,.,.,.,Nl,,4.,Estimate,the,mean,(other,moments,of,the,distribution,follow,similarly),as,EL[U],=,using,simple,averages,El,with,U−1,=,0,L,(cid:88),l=0,7,El[Ul,−,Ul−1],(19),Large,gains,occur,when,Nl,=,N04lp,where,the,solution,scheme,is,of,order,p,≤,(d,+,1)/2.,A,refine-,ment,of,MLMC,,referred,to,as,Multi-Index,Monte-Carlo,(MIMC),[12],allows,for,hl,to,be,different,by,factors,of,2,in,different,coordinate,directions.,As,illustrated,in,Figure,1,,the,differences,of,function,values,in,Equation,(19),on,two,isotropic,meshes,may,be,replaced,by,differences,between,values,on,several,different,anisotropic,meshes.,Figure,1:,Different,meshes,for,use,in,MLMC,and,MIMC,in,2-D.,In,MLMC,,only,the,bottom,right,and,top,left,would,be,differenced,in,the,Equation,(19),,whereas,all,four,might,be,differenced,in,MIMC,,depending,on,choice,of,‘index,set’.,Note,that,Najm,et,al’s,work,[13],often,focusses,on,quantities,of,interest,(QoIs),Q,rather,than,the,whole,solution.,They,also,point,out,that,the,error,in,the,standard,deviation,is,not,available,in,closed,form,and,its,calculation,involves,a,complicated,approximation,which,they,describe,[13,,§,III.B.1].,2.2,Producing,Surrogates,By,this,stage,,the,parameters,that,contribute,most,to,the,uncertainty,have,been,reduced,to,a,more,manageable,number,,so,that,a,global,examination,can,be,made,of,this,remainder.,Relevant,techniques,employed,during,this,stage,are,•,Sparse,quadrature,sampling,,especially,adaptive,•,Forward,UQ,•,Sobol,Analysis,2.2.1,Sparse,Quadrature,Sampling,The,idea,of,sampling,on,sparse,grids,seems,to,have,supplanted,QMC,sampling,(see,Appendix,Sec-,tion,5.1),for,many,applications,,presumably,because,it,can,be,made,to,adapt,to,the,functional,de-,pendence,of,outputs,suggested,by,the,sampling,,unlike,QMC,or,indeed,Latin,hypercube,sampling,8,Figure,2:,Sparse,grid,sampling.,The,point,sets,lying,below,the,diagonal,drawn,dashed,are,omitted.,(see,Appendix,Section,5.2).,The,review,article,[14],is,remarkable,for,the,wide,range,of,references,on,the,subject,of,sparse,sampling,,not,just,in,application,to,quadrature,(evaluating,integrals,of,functions).,The,key,idea,is,best,illustrated,graphically,,see,Figure,2,,and,is,that,provided,the,inte-,grand,is,well,behaved,,it,is,sufficient,to,have,sample,or,quadrature,points,concentrated,along,the,coordinate,axes,in,the,centre,of,the,domain.,(There,is,a,variant,which,includes,samples,at,the,edge,of,the,domain,of,integration.),The,resulting,set,of,sample,points,is,shown,in,Figure,3(a).,The,locations,of,the,points,in,the,higher,order,sets,are,always,determined,by,bisecting,the,positions,of,those,in,the,lower,order,sets.,Provided,that,integrands,are,sufficiently,smooth,,integrals,can,be,proved,[14],to,converge,at,a,rate,O(log(N,)d−1/N,),(20),where,d,is,the,number,of,dimensions,over,which,the,integral,is,performed.,Indeed,,by,careful,choice,of,point,sets,,excluding,some,which,lie,above,the,equivalent,of,the,diagonal,in,Figure,2,for,greater,sampling,density,than,shown,there,,it,is,possible,to,achieve,convergence,of,the,integral,at,a,rate,There,is,the,important,caveat,that,this,rate,is,achieved,only,in,the,‘energy’,norm:,O(N,−1),(cid:32)(cid:90),(cid:118),(cid:117),(cid:117),(cid:116),(cid:107),Q,(cid:107)E=,(cid:19)2,(cid:33),dx,d,(cid:88),i=1,(cid:18),∂Q,∂xi,9,(21),(22),Figure,3:,On,the,left,is,an,example,of,isotropic,sparse,grid,sampling.,The,diagram,on,the,right,indicates,how,the,vertical,direction,may,be,more,coarsely,sampled,than,the,horizontal,,by,omitting,further,the,point,set,labelled,(c),in,Figure,2.,and,in,other,norms,the,d-dependent,rate,Equation,(20),is,found.,Nonetheless,this,implies,that,the,number,of,samples,needed,to,characterise,the,parameter,space,is,O(N,log(N,)d−1),(23),If,singularities,are,present,,then,sparse,grids,can,be,locally,adapted,[14,,end,§,4],,most,easily,using,the,fact,their,construction,by,bisection,naturally,leads,to,error,estimates,based,on,the,difference,between,the,solutions,on,the,mesh,before,and,after,subdivision.,As,explained,in,ref,[15],sparse,grids,can,also,be,dimension,adaptive,,placing,more,points,in,some,coordinate,directions,than,others,,as,illustrated,in,the,right,diagram,of,Figure,3.,2.2.2,Forward,UQ,“Forward,UQ”,is,conceptually,the,easiest,kind,of,uncertainty,quantification,,in,that,it,is,assumed,that,the,uncertainties,are,known,at,the,outset.,Thus,in,the,case,of,a,physics-based,problem,,all,the,important,physical,processes,are,regarded,as,having,been,identified,,so,that,they,can,be,parameterised.,These,parameters,will,in,turn,have,known,uncertainties,,specified,via,probability,distributions,denoted,p(x).,The,commonest,distribution,is,the,Gaussian,,as,a,consequence,of,the,Central,Limit,Theorem,,which,states,that,the,probability,distribution,for,the,sum,of,an,increasing,number,of,independently,and,identically,distributed,random,variables,with,appropriately,normalised,finite,mean,and,vari-,ance,tends,to,the,“Normal”,(ie.,Gaussian),distribution.,In,practice,the,theorem,is,found,to,apply,to,most,measurements,,implying,it,is,accurate,for,numbers,less,than,ten,,as,the,measurement,chain,from,experiment,to,observer,typically,involves,the,compounding,of,a,relatively,small,num-,ber,of,errors.,If,parameters,are,expressed,in,terms,of,bounds,on,their,extreme,values,,this,of,course,corresponds,to,uniform,distributions.,“Interval,analysis”,[16],includes,this,case,,but,also,the,Dempster-Shafer,structure,,whereby,uncertainty,is,described,by,overlapping,parameter,inter-,vals,with,different,uniform,probabilities.,10,It,is,straightforward,,given,a,random,number,generator,(RNG),that,is,equally,likely,to,return,any,number,ξi,within,the,unit,interval,[0,,1],to,scale,the,outputs,to,be,uniformly,distributed,in,an,arbitrary,finite,interval,[a,,b],,and,relatively,straightforward,to,arrange,so,that,numbers,are,output,with,a,given,frequency,distribution.,Both,commercial,(such,as,matlabT,M,),and,opensource,packages,(eg.,Python,NumPy,Generator,[17]),are,available.,They,rely,on,the,fact,that,the,cumulant,(ie.,definite,integral),of,a,probability,distribution,is,uniformly,distributed,,so,that,if,the,Cumulant,P,(x),is,defined,as,(cid:90),x,P,(x),=,p(x(cid:48))dx(cid:48),(24),−∞,then,samples,xi,=,P,−1(ξi),,i,=,1,,2,,.,.,.,,,N,become,distributed,according,to,p(x),as,N,becomes,large.,Forward,UQ,most,easily,proceeds,by,constructing,an,ensemble,of,realisations,of,the,detailed,models,at,parameters,sampled,according,the,specified,distributions.,A,distribution,for,each,QoI,may,be,estimated,using,the,ensemble,,from,which,follows,an,average,and,a,standard,deviation,estimate,for,the,QoI.,Thus,it,is,customary,to,talk,of,uncertainty,as,being,propagated,through,the,system.,2.2.3,Sobol,The,use,of,adaptive,sparse,grids,is,a,well-established,procedure,,see,ref,[18],to,perform,the,Sobol,ANOVA-like,analysis.,The,approach,described,by,Sobol,[19],(based,on,a,Russian,paper,from,1990),is,based,on,a,function-theoretic,result,which,applies,to,a,function,which,must,at,least,be,continuous.,The,‘Sobol’,decomposition,generalises,ANOVA,,where,ANOVA,stands,for,‘Analysis,of,Variance’,,a,family,of,statistical,methods,for,quantifying,how,the,outputs,of,a,system,depend,on,its,inputs,,usually,based,on,linearity,assumptions.,Suppose,that,the,function,is,f,(x),=,f,(x1,,x2,,.,.,.,,,xd),where,x,∈,I,d,(i.e.,0,≤,xk,≤,1,,k,=,1,,.,.,.,,,d),,then,the,Sobol,decomposition,is,f,(x1,,.,.,.,,,xd),=,f0,+,d,(cid:88),k=1,fk,(xk),+,d−1,(cid:88),d,(cid:88),j=1,k=j+1,fjk,(xj,,xk),+,·,·,·,+,f12...d(x),(25),where,f0,is,a,constant,and,the,integral,of,each,term,in,the,sums,is,zero,,i.e.,(cid:90),1,0,fj1j2...jr,(xj1,,xj2,,.,.,.,,,xjr,),dxjk,=,0,,1,≤,k,≤,r,(26),There,is,the,expectation,that,this,latter,property,ensures,that,the,term,of,higher,order,in,r,become,negligible.,The,applicability,to,statistical,analysis,is,evident,when,it,is,realised,that,Equation,(25),may,be,interpreted,as,an,expansion,for,the,joint,probability,distribution,f,(x1,,.,.,.,,,xd),since,,inte-,grating,over,the,variables,xjr,as,appropriate,and,using,Equation,(26),gives,f0,=,E(f,),fi(xi),=,E(f,|xi),−,f0,fij(xi,,xj),=,E(f,|xi,,xj),−,f0,−,fi(xi),−,fj(xj),(27),(28),11,so,that,the,numbered,equations,give,successively,the,effect,of,variation,of,one,variable,,two-way,interactions,,etc.,Similarly,,squaring,Equation,(25),and,integrating,gives,relations,for,the,variances,Vi(xi),=,Varxi,(cid:0)Exk(cid:54)=i(f,|xi)(cid:1),Vij(xi,,xj),=,Varxij,(Ek(cid:54)=i,l(cid:54)=j(f,|xi,,xj)),−,Vi,−,Vj,(29),(30),(k,(cid:54)=,i,denotes,that,the,expectation,E,is,computed,by,integrating,over,all,the,xk,except,for,xi),which,normalised,by,the,variance,Var(f,),are,equal,to,the,Sobol,sensitivity,indices,Si,,Sij,,.,.,.,,,respectively.,As,noted,by,Huan,et,al,[4,,§,3.2],,the,Sobol,indices,may,be,expressed,directly,as,sums,of,squares,of,the,coefficients,of,a,PCE.,It,will,be,evident,that,Si,gives,a,normalised,measure,of,the,sensitivity,of,the,distribution,of,f,to,the,parameter,xi,,so,that,small,Si,justifies,neglect,of,xi,in,subsequent,analysis.,2.3,Efficient,Use,of,Surrogates,Once,a,PC,surrogate,has,been,constructed,,it,can,be,used,in,Bayesian,inference,on,model,pa-,rameters,and,optimisation,under,uncertainty.,The,relevant,mathematical,techniques,are,•,Surrogate,models,in,general.,•,Bayesian,inference,,with,application,to,model,parameters,•,Optimisation,under,uncertainty,2.3.1,Surrogate,Models,The,current,trend,for,forward,UQ,(Section,2.2.2),in,large-scale,computational,models,,where,the,aim,is,to,quantify,the,statistics,of,simulation,outputs,based,on,the,assumed,statistics,of,uncertain,model,parameters,,has,led,to,a,need,to,perform,large,numbers,of,simulations,in,order,to,chart,high-,dimensional,input,parameter,spaces,(see,,for,example,[20]).,Brute-force,application,of,Monte-,Carlo,using,full,accuracy,in-silico,models,is,impractical,due,to,the,requirement,to,perform,possibly,millions,of,simulations,,if,each,is,required,for,one,sample,since,the,convergence,rate,of,MC,scales,as,1√,for,N,samples.,One,solution,is,to,view,the,simulation,(regardless,of,its,microscopic,physics,N,and,myriad,degrees,of,freedom),as,a,black,box,that,takes,input,parameters,and,produces,outputs,,and,then,replace,the,full,simulation,by,a,surrogate,model,whose,purpose,is,to,reproduce,the,outputs,of,the,simulator,with,an,adequate,degree,of,fidelity,and,at,low,cost.,Surrogate,models,(also,called,response,surfaces,,metamodels,,or,emulators),must,be,calibrated,using,past,knowledge,of,the,simulator,and,by,a,limited,number,of,full,simulations,for,judiciously-chosen,input,parameter,sets.,Modern,methods,for,constructing,surrogate,models,divide,fairly,neatly,into,regressions,against,sets,of,random,variables,,and,machine,learning,based,approaches.,A,few,examples,of,both,types,follow,(further,information,can,be,found,by,following,the,links,in,[21]).,12,Kriging,also,known,as,Gaussian,process,regression,,involves,the,assumption,that,the,un-,derlying,uncertainty,in,the,sample,data,follows,a,Gaussian,process,,that,is,,a,stochastic,process,Zx;,x,∈,X,such,that,for,every,finite,set,of,indices,x1,,...,,xK,Zx1,...,xK,=,(Zx1,,...ZxK,),(31),is,a,multivariate,Gaussian,variable.,An,equivalent,definition,is,the,statement,that,there,exist,real-,valued,σjk,,µj,for,any,s1,,...,,sK,∈,R,such,that,the,expectation,is,(cid:32),E,exp,(cid:32),i,K,(cid:88),k=1,(cid:33)(cid:33),,skZxk,=,exp,−,1,2,(cid:88),j,k,σjksjsk,+,i,,µjsj,,.,(cid:88),j,(32),The,µj,are,the,means,of,the,process,and,the,σjk,=,C(xi,,xj),the,covariances.,The,latter,are,typically,chosen,from,a,standard,dictionary,of,functions.,Common,choices,correspond,to,well-,known,stochastic,processes,and,include,Gaussian,white,noise,,C(xi,,xj),=,σ2δ(xi,−,xj);,(33),Ornstein-Uhlenbeck,,which,is,used,to,describe,the,velocity,of,a,particle,under,the,influences,of,damping,and,Brownian,motion,,C(xi,,xj),=,exp,−,(cid:18),|xi,−,xj|,L,(cid:19),;,and,Mat,´ern,,C(xi,,xj),=,σ2,21−ν,Γ(ν),(cid:18)√,2ν,xi,−,xj,L,(cid:18)√,(cid:19)ν,Kν,(cid:19),2ν,xi,−,xj,L,(34),(35),which,has,a,number,of,desirable,properties,,for,example,the,ability,to,model,a,process,that,is,discontinuous,at,a,chosen,order,of,derivative,(Kν,is,the,modified,Bessel,function,of,the,second,kind).,In,the,above,Equations(33),and,(35),,σ,,L,and,ν,are,examples,of,hyperparameters,,which,are,typically,determined,by,use,of,Bayesian,methods.,In,simple,kriging,the,mean,µ,is,known,in,advance,and,the,estimator,for,the,value,of,the,process,at,point,x0,is,constructed,as,a,weighted,linear,combination,of,the,existing,set,of,N,samples,Z∗(x0),=,µ,+,N,(cid:88),i=1,wi,(Z(xi),−,µ),;,(36),minimisation,of,the,prediction,variance,leads,to,a,simple,expression,(actually,a,least-squares,estimator),for,the,weights,in,terms,of,the,matrix,of,covariances,between,the,sample,points,Cij,≡,C(xi,,xj),and,the,vector,of,covariances,between,the,estimation,point,and,the,sample,points,Di,≡,C(x0,,xi),as,w,=,C−1D.,13,Figure,4:,Kriging,estimator,(red,curve),and,its,associated,standard,deviation,(grey).,The,dotted,line,shows,a,plausible,spline,fit,that,nevertheless,departs,from,the,Maximum,Likelihood,kriging,fit.,Taken,from,[22].,In,the,case,of,a,constant,unknown,mean,,one,has,ordinary,kriging,(note,it,still,involves,the,as-,sumption,that,the,mean,is,constant),,and,the,formulae,above,are,supplemented,by,a,condition,that,the,estimator,be,unbiased,(this,is,simply,the,constraint,that,the,weights,sum,to,unity),,which,can,be,incorporated,using,a,Lagrange,multiplier.,The,variance,of,the,estimator,can,be,computed,,leading,to,an,intuitive,plot,that,resembles,a,string,of,sausages,(Figure,4).,There,are,successively,more,involved,kriging,varieties,based,on,further,generalisation,,for,example,general,polynomial,models,of,the,underlying,trend.,Note,that,there,is,also,gradient-enhanced,kriging,,which,uses,an,estimate,of,the,local,gradient,to,reduce,the,variance,of,a,kriging,estimator.,involves,expanding,model,outputs,Y,in,terms,of,or-,Generalised,Polynomial,Chaos,(gPC),thogonal,polynomials,of,random,variable,inputs,X,(orthonormality,being,defined,with,respect,to,the,measure,associated,to,the,distribution,of,the,X,-,e.g.,Hermite,polynomials,in,the,normal-,distributed,case).,Construction,of,the,surrogate,is,then,reduced,to,the,task,of,determining,the,coefficients,in,the,expansion,(which,obviously,is,truncated,at,some,polynomial,order);,this,can,be,accomplished,by,means,of,least-squares,analysis.,Once,the,coefficients,are,available,,the,truncated,PCE,can,be,sampled,at,negligible,cost,and,thus,the,full,probability,density,function,of,the,output,is,available,,as,is,access,to,the,sensitivity,analysis,via,Sobol,indices,which,represent,the,portion,of,the,output,variance,due,to,each,input,parameter,or,combination,of,parameters,(see,Section,2.1,for,more,details).,Artificial,Neural,Networks,(ANNs),are,models,consisting,of,arrays,of,interconnected,nodes,(artificial,neurons),that,react,to,inputs,in,a,non-linear,way.,The,neurons,(nodes),and,connecting,edges,have,weights,associated,to,them,that,control,the,output,for,a,given,set,of,inputs:,these,weights,are,dynamically,adjusted,in,response,to,training,feedback,taking,the,form,of,an,error,measure,,a,process,called,unsupervised,learning.,Such,general,models,abandon,any,attempt,to,14,match,the,model,to,the,specific,problem,,with,specificity,emerging,as,a,result,of,what,is,usually,extensive,training.,The,input,to,a,typical,neural,network,is,a,vector,of,elements,xk,,which,are,combined,by,a,series,of,linear,filters,to,give,inputs,to,the,hidden,unit,neurons,hj,=,(cid:88),k,wjkxk,,the,output,of,which,is,a,function,of,the,input,Xj,=,g(hj),,(37),(38),where,the,activation,functions,g,are,nonlinear.,Typically,chosen,to,suppress,large,outputs,,they,are,frequently,sigmoid,in,form;,one,such,choice,is,tanh(βh).,The,topology,of,the,network,often,corresponds,to,a,number,of,‘layers’,followed,by,a,final,set,of,output,nodes,,see,[23],,[24,,§,6.7].,Such,a,generality,of,models,provides,potential,surrogates,for,a,wide,range,of,problems,including,situations,where,the,model,exhibits,discontinuities,in,its,derivatives.,The,selection,of,an,appro-,priate,member,of,the,neural,network,zoo,[25],is,a,further,challenge.,Both,the,‘zoo’,and,ref,[24,,§,6.7],give,brief,indications,as,to,which,ANN,topologies,might,be,most,appropriate.,Within,a,given,topology,,it,of,course,desirable,to,identify,the,number,of,minimum,number,of,neurons,needed,,although,this,is,probably,less,critical,in,application,to,NEPTUNE.,Reduced-order,models,(ROMs),are,commonly,produced,using,projection,methods,in,which,the,dynamics,of,the,full,forward,problem,are,projected,onto,a,reduced-dimensional,subspace.,The,latter,is,generally,assembled,using,proper,orthogonal,decomposition,or,reduced,basis,methods,,and,using,a,set,of,full,simulation,outputs,(‘snapshots’).,The,success,of,these,methods,is,connected,with,the,merits,of,‘diagonalising’,the,problem,to,a,set,of,uncorrelated,degrees,of,freedom,and,identifying,the,components,that,have,the,biggest,eigenvalues,,a,procedure,known,generically,as,principal,components,analysis.,As,with,the,methods,outlined,above,,the,reward,is,a,more,parsimonious,way,of,calculating,the,model,dynamics,,see,[26].,These,models,will,be,discussed,in,more,detail,as,part,of,the,Milestone,Report,M2.5.2,scheduled,for,August,2021.,2.3.2,Bayesian,Inference,as,Applied,to,Model,Parameters,The,general,problem,of,modeling,a,physical,system,involves,the,need,to,fit,a,model,of,some,kind,to,existing,data:,there,is,a,model,architecture,,m,,with,a,set,of,adjustable,parameters,θ,,as,well,as,some,measured,data,x,,and,the,goal,is,to,choose,(or,,in,statistics,jargon,,infer),θ,so,as,to,provide,the,best,agreement,to,x.,This,is,also,referred,to,as,“Inverse,UQ”,,to,be,contrasted,with,“Forward,UQ”,where,the,input,distributions,are,given,and,the,aim,is,to,estimate,the,the,uncertainties,in,the,outputs.,The,Bayesian,formulation,of,this,inverse,problem,relies,on,evaluating,the,θ,that,are,most,likely,,given,the,model,,the,measured,data,,and,,crucially,,our,prior,beliefs,about,what,parameters,are,plausible,-,leading,to,conditional,probability.,The,fundamental,tool,for,performing,this,sort,of,15,‘turnaround’,of,conditional,probabilities,is,Bayes’,rule,,which,gives,us,the,following,quantity,to,maximise,,called,the,posterior,distribution:,max,(p(θ|x,,m)),=,max,(cid:18),p(x|θ,,m)p(θ|m),p(x|m),=,(cid:82),p(x|θ,,m)p(θ|m)xdθ,(cid:19),,,(39),the,right-hand,side,of,which,(whose,term,p(x|θ,,m),represents,the,probability,of,having,obtained,the,data,x,given,parameters,θ,and,model,m;,p(θ|m),represents,advance,belief,about,which,val-,ues,of,the,parameters,are,reasonable,-,the,Bayesian,prior;,the,denominator,being,essentially,a,normalising,factor),can,be,expressed,illustratively,as,max,(cid:18),likelihood,×,prior,evidence,(cid:19),.,(40),A,full,Bayesian,model,such,as,this,involves,,potentially,,a,great,amount,of,work.,Not,only,must,a,high-dimensional,normalisation,integration,be,performed,,but,there,are,two,optimisation,loops,,one,over,the,set,of,parameters,,and,also,a,maximisation,over,possible,model,architectures,as,well.,To,reduce,the,workload,,the,decision,might,be,taken,to,use,only,one,model,architecture,,leading,to,the,problem,max,(p(θ|x)),=,max,(cid:18),p(x|θ)p(θ),p(x),(cid:19),.,(41),This,is,called,Maximum,A,Posteriori,(MAP),estimation,(note,that,it,uses,the,modal,value,-,the,maximum,of,the,distribution).,An,additional,simplification,is,to,note,that,the,normalisation,integral,in,the,denominator,can,be,disregarded,as,it,does,not,affect,the,position,of,the,maximum.,Further,assuming,a,uniform,prior,leads,to,the,simplest,kind,of,model,estimation,,Maximum,Likeli-,hood,(which,one,might,also,say,is,not,really,Bayesian,at,all):,max,(p(θ|x)),=,max,(p(x|θ)),.,(42),Maximum,Likelihood,leads,to,the,familiar,and,much-used,least-squares,error,measure,,which,is,the,Maximum,Likelihood,estimator,for,data,with,normally,distributed,errors,(another,detail,is,that,the,sums,of,squared,normal,variables,obey,the,chi-squared,distribution,ubiquitous,in,elementary,goodness-of-fit,testing).,Model,fitting,using,least-squares,is,achieved,by,using,the,matrix,pseudo-,inverse,(cid:0)M,†M,(cid:1)−1,M,†,to,derive,(few),model,parameters,from,(many),data,points,,actually,a,case,of,singular,value,decomposition,(SVD).,There,are,other,worthwhile,tricks,e.g.,writing,strictly,positive,parameters,as,the,square,of,something,else,before,fitting,(this,can,be,used,to,avoid,getting,e.g.,negative,fitted,variance,hyperparameters).,For,more,details,,see,,for,example,,[23].,2.3.3,Optimisation,Under,Uncertainty,(OUU),The,problem,of,Optimisation,Under,Uncertainty,(OUU),is,an,expanding,area,in,the,wider,field,of,Operational,Research,,and,also,in,engineering,where,it,may,be,the,case,that,simple,deterministic,16,Figure,5:,Workflow,for,optimisation,under,uncertainty,(after,[27]).,optimisations,turn,out,not,to,be,sufficiently,robust,when,say,devices,are,built,with,the,tolerances,typical,of,many,construction,methods.,Obtaining,solutions,which,provide,the,optimal,value,for,a,given,‘objective,function’,normally,involves,many,simulation,runs,,which,now,have,to,cover,the,set,of,parameters,characterising,uncertainty,,thereby,‘inheriting,and,magnifying,all,the,difficulties,of,forward,UQ’,([27]).,It,is,clear,that,this,motivates,the,use,of,lower,fidelity,and,surrogate,models,to,the,fullest,practical,extent.,Najm,and,coworkers,[13],have,integrated,the,well-known,DAKOTA,package,for,UQ,[3,,28],with,the,package,SNOWPAC,(Stochastic,Nonlinear,Optimisation,with,Path-Augmented,Constraints),to,perform,OUU,,see,the,example,in,Figure,5.,The,workflow,begins,on,the,left,,with,an,offline,model,reduction,using,global,sensitivity,analysis,(GSA),,compressed,sensing,techniques,(CS),applied,to,polynomial,chaos,expansions,(PCE),and,multi-level,Monte-Carlo,(MLMC),as,described,in,the,preceding,Section,2.1,and,Section,2.2.,The,inclusion,of,uncertainty,means,that,the,objective,func-,tion,and,the,constraints,have,to,become,functions,of,the,parameters,θi.,In,ref,[13],the,objective,function,is,eg.,taken,to,be,a,robustness,measure,given,by,a,linear,combination,of,the,expectation,value,and,the,standard,deviation,i.e.,E(Q),+,cVar[Q],,for,some,constant,c,>,0.,The,optimisation,driven,by,the,DAKOTA,plus,SNOWPAC,combination,,incorporates,forward,uncertainty,quantifica-,tion,using,MLMC,or,adaptive,sparse,quadrature,multi-level,multi-fidelity,(ASQ-MLMF),modeling.,Note,the,‘simulator’,used,during,the,optimisation,is,likely,to,be,a,surrogate,model.,17,3,Outline,Implementation,The,work,of,ref,[4],is,important,for,NEPTUNE,in,that,simultaneous,use,is,made,of,both,a,2-D,and,a,3-D,fluid,model,,referred,to,as,MFMC,(Multi-Fidelity,Monte-Carlo,,Section,2.1.3).,Samples,from,different,planes,are,used,to,produce,a,low-fidelity,2-D,model,with,stochastic,parameters,as,described,in,ref,[4,,§,4.1],,using,Bayesian,Inference,as,described,in,Section,2.3.2.,There,is,an,important,physical,underpinning,that,the,flow,modelled,by,Huan,et,al,[4],is,primarily,in,a,single,direction,,variation,in,which,is,neglected,to,produce,the,2-D,model.,This,is,encouraging,for,NEPTUNE,,as,similar,arguments,relating,to,variation,along,the,magnetic,field,are,used,to,justify,use,of,2-D,edge,codes,for,the,tokamak,scrape-off,layer,(SOL).,Indeed,,for,SOL,application,,it,is,conceivable,that,multi-fidelity,work,involving,1-D,fluid,models,may,be,efficient,,when,it,is,remembered,that,the,so-called,‘Onion-skin’,models,[29],,have,found,a,good,deal,of,utility,in,SOL,physics.,The,‘onion’,is,the,plasma,imagined,to,consist,of,separate,skins,,ie.,layers,delineated,by,equilibrium,flux,surfaces.,Typically,experiment,provides,boundary,conditions,at,the,wall,for,transport,along,the,flux,tubes,of,which,each,such,layer,may,be,supposed,to,be,composed.,Thanks,to,the,axisymmetry,of,the,magnetic,field,it,is,only,necessary,to,consider,a,1-D,problem,for,each,tube.,The,solutions,of,these,1-D,problems,for,the,different,layers,are,then,combined,to,produce,a,2-D,‘onion-skin’,solution,for,which,agreement,to,within,20,%,of,an,explicitly,2-D,fluid,model,is,obtained,in,many,cases,[29].,The,3-D,fluid,models,of,NEPTUNE,approximate,in,turn,5-D,gyro-averaged,or,6-D,full,phase-,space,dynamics.,These,more,complex,models,may,be,needed,particularly,when,the,plasma,collisionality,is,low,,but,then,there,is,a,change,in,physical,emphasis,in,that,the,influence,of,the,boundaries,may,be,directly,transmitted,throughout,the,low,collisionality,region.,For,the,spatially,5-,D/6-D,models,,even,at,higher,collisionality,,theoretical,analysis,produces,series,of,correction,terms,to,be,added,into,the,fluid,models.,These,are,in,addition,to,other,physical,effects,such,as,plasma-,neutral,particle,interaction,,radiative,loss,etc.,,all,adding,up,to,a,substantial,additional,challenge,for,usage,of,MFMC,in,NEPTUNE.,The,works,of,Najm,and,collaborators,[4,,13],have,delivered,a,workflow,primarily,aimed,at,produc-,ing,at,an,optimal,design,under,uncertainty:,1.,Global,sensitivity,analysis,,to,identify,key,parameters,,see,Section,2.1,2.,Forward,UQ,using,adaptive,sparse,sampling,,see,Section,2.2,3.,PCE,surrogate,for,inverse,UQ,and,OUU,,see,Section,2.3,Whilst,the,above,workflow,has,very,sophisticated,components,,it,does,not,cover,all,NEPTUNE,applications.,For,instance,,the,physicist,seeking,to,gain,better,understanding,of,the,SOL,may,not,be,immediately,interested,in,a,particular,optimisation.,Such,usage,might,require,only,relatively,simple,scans,in,one,or,two,parameters,to,compare,with,theory,,for,which,a,local,sensitivity,ap-,proach,(ie.,examining,the,effect,of,small,changes,to,other,parameters,one,at,a,time),could,provide,adequate,UQ.,More,demanding,is,to,improve,understanding,of,the,often,highly,nonlinear,dynamics,of,the,SOL,,where,it,is,possible,for,small-scale,structures,such,as,internal,layers,or,local,hot-spots,to,form.,An,18,example,of,the,former,might,be,the,radiative,fronts,which,develop,as,the,plasma,detaches,from,the,first,walls,,where,it,could,conceivably,be,critical,for,the,numerical,solution,to,resolve,these,fronts.,One,approach,to,reduce,the,uncertainty,as,to,whether,the,discrete,representation,is,adequate,is,‘bifurcation-tracking’,whereby,a,branch,of,solutions,is,followed,from,where,it,emerges,by,initial,linear,instability,on,well-characterised,physical,scales,,into,the,nonlinear,regime.,The,physicist,user,may,thus,,after,examining,surrogate,behaviour,,want,NEPTUNE,to,produce,many,more,higher,fidelity,solutions.,These,solutions,could,usefully,provide,feed-back,that,the,parameters,of,the,surrogate,require,modification,,and,hence,this,user’s,particular,workflow,might,become,very,involved,as,it,seeks,to,‘home,in’,on,detachment,processes.,Hence,there,are,different,potential,workflows,aimed,at,optimising,designs,,improving,physical,understanding,,and,indeed,to,produce,optimal,surrogates,for,use,in,device,control,[24].,The,final,decisions,as,to,what,should,be,implemented,in,NEPTUNE,,await,the,production,of,the,Milestone,Reports,M2.4.2,and,M2.5.2,scheduled,for,August,2021.,19,4,Summary,This,report,has,arranged,the,statistical,and,applied,mathematical,techniques,of,UQ,according,to,a,likely,NEPTUNE,workflow,for,device,optimisation.,Other,workflows,have,been,considered,,see,Section,3,where,a,need,is,recorded,to,treat,code,validation,against,theoretical,models,including,comparison,with,experiment.,Other,authors,arrange,the,subject,of,UQ,rather,differently,,thus,the,textbook,of,Smith,[1],treats,additional,topics,under,the,headings,of,“Model,Calibration”,and,“Parameter,Selection”,,which,loosely,correspond,to,Stages,1,and,2,respectively,,“Uncertainty,Propagation”,which,corresponds,to,Stage,2,and,“Model,Discrepancy”,which,corresponds,to,Stage,3.,Regarding,the,COSSAN,software,[2],,there,is,a,toolbox,arrangement.,Thus,sampling,(grouped,with,interval/subset,meth-,ods,under,the,heading,of,“Reliability”),,meta-modelling,,sensitivity,and,optimisation,are,treated,under,separate,headings.,Under,each,heading,there,is,found,a,range,of,possible,tools,or,meth-,ods,,partly,to,provide,a,check,,but,also,because,newer,methods,may,be,worth,exploration,,or,because,the,best,method,may,be,problem,dependent.,For,instance,,for,sparse,system,identifi-,cation,,SLSQT,(see,Section,2.1.2),proved,very,successful,for,Brunton,et,al,[8],,but,selecting,an,appropriate,threshold,value,for,SLSQT,may,not,as,easy,in,other,applications.,Each,software,tool,may,employed,in,different,combinations,with,the,others,at,different,stages,,eg.,optimisation,may,be,used,both,in,Stage,2,,to,fit,surrogate,models,better,,and,in,Stage,3,in,conjunction,with,sampling,to,treat,uncertainty,,to,improve,a,design.,The,nub,of,UQ,is,finding,an,affordable,,good,surrogate,for,the,full,model.,The,applicability,of,a,lower-dimensional,surrogate,model,often,results,from,the,fact,that,a,physical,system,,in,normal,operation,,behaves,‘smoothly’,ie.,the,sensitivity,of,its,output,function,to,changes,in,input,parame-,ters,is,rather,low.,The,work,of,Trefethen,[30,,31,,32],indicates,that,approximately,80,%,of,functions,encountered,in,practice,(most,likely,meaning,related,to,use,of,the,matlabT,M,software),may,be,effi-,ciently,and,accurately,approximated,as,sums,of,products,of,functions,of,a,single,variable,,suggest-,ing,they,are,representable,by,say,,of,order,100-1000d,samples,if,there,are,d,parameters.,Nonlinear,systems,exhibiting,bifurcation,self-evidently,do,not,behave,smoothly,,particularly,when,determin-,istic,chaos,arises,as,an,infinite,sequence,of,bifurcations,,and,lack,of,smoothness,also,may,arise,due,to,a,failure,of,numerics,,such,as,the,overfitting,of,functions,by,polynomial,interpolation,known,as,the,Runge,phenomenon.,Unfortunately,there,appears,to,be,no,easy,way,to,determine,whether,an,arbitrary,output,function,can,be,approximated,succinctly,over,the,whole,range,of,interest.,A,good,approach,is,to,start,by,examining,local,approximations,and,seeking,to,patch,them,together,to,cover,the,whole,ranges,,so,called,‘Machine,Learning,ROMs’,[24,,§,12.7].,Techniques,of,this,kind,,eg.,also,‘Reservoir,Computing’,[33],are,currently,the,subject,of,much,research,,for,which,it,is,expected,that,the,timing,of,the,appearance,of,the,Milestone,Reports,M2.4.2,and,M2.5.2,reports,will,be,such,as,to,permit,them,to,provide,a,more,complete,description.,Acknowledgement,The,support,of,the,UK,Meteorological,Office,and,Strategic,Priorities,Fund,is,acknowledged.,20,5,Appendices,5.1,Quasi-Monte-Carlo,The,principal,source,for,Quasi-Monte-Carlo,methods,is,the,book,by,Niederreiter,[34],,which,how-,ever,is,highly,mathematical,in,tone.,This,section,should,also,serve,as,an,informal,introduction,to,Niederreiter’s,book.,In,1-D,,it,is,easy,to,show,that,the,discrepancy,(the,error,made,in,calculating,the,size,of,an,object,based,on,the,sampling),is,at,least,(cid:15)N,∝,1/N,when,the,sample,points,xl,are,uniformly,distributed.,The,key,fact,is,that,there,exist,sets,of,points,(‘low,discrepancy,sequences’),for,which,the,discrep-,ancy,does,not,increase,very,much,as,the,number,of,dimensions,increases.,The,simplest,of,these,sets,to,describe,is,that,due,to,Halton.,In,1-D,,it,is,identical,to,a,van,der,Corput,sequence,,which,involves,generating,numbers,on,the,unit,interval,,using,the,reversed,bit,patterns,of,the,positive,integers.,It,is,best,illustrated,by,example.,Thus,2,has,the,binary,representation,10,,so,the,2nd,element,in,the,van,der,Corput,sequence,is,.012,or,1/4,,3,=,112,so,the,3rd,element,in,the,van,der,Corput,sequence,is,.112,or,3/4,,4,=,1002,so,the,4th,element,in,the,van,der,Corput,sequence,is,.0012,or,1/8.,Hence,the,first,7,elements,of,the,van,der,Corput,sequence,are,(in,eighths),4,,2,,6,,1,,5,,3,,7,(43),It,will,be,seen,that,there,is,a,kind,of,fractal,pattern,about,the,above,distribution.,Van,der,Corput,sequences,may,be,defined,for,any,prime,b,,by,representing,the,integers,in,the,base,b,,then,using,the,reversed,representation,as,above,to,generate,values,on,the,unit,interval.,The,Halton,sequence,in,2-D,contains,pairs,of,numbers,,the,first,in,the,lth,pair,being,the,lth,element,from,a,van,der,Corput,sequence,with,base,2,and,the,second,being,the,corresponding,element,in,a,base,3,van,der,Corput,sequence.,In,fact,any,two,distinct,primes,could,be,used,,and,the,generalisation,to,many,dimensions,should,be,obvious.,The,discrepancy,of,the,Halton,sequence,in,2-D,is,bounded,by,a,formula,which,may,be,approxi-,mated,as,(cid:15)N,=,A2(ln,N,)2/N,(44),√,where,A2,=,0.66.,It,will,be,seen,that,this,is,smaller,than,the,Monte-Carlo,value,of,(cid:15)N,=,1/,N,for,N,>,1000.,It,is,therefore,also,competitive,with,uniform,sampling,on,a,rectangular,lattice,of,N,2-D,points,,which,in,general,gives,an,error,proportional,to,lattice,spacing,,ie.,1/,N,.,√,The,explanation,for,the,superior,performance,of,the,Halton,sequence,is,illustrated,by,comparison,between,Figure,6,and,Figure,7.,Both,show,100,2-D,vectors,on,the,unit,square,,in,fact,the,last,hundred,of,a,length,2000,vector,sequences,starting,at,zero.,In,Figure,6,,the,components,of,the,random,vectors,are,generated,using,the,ranlux,random,number,generator,(luxury,level,of,3,where,4,is,the,highest),supplied,by,F.,James,[35].,Figure,7,plots,the,2-D,Halton,sequence,generated,with,base-2,and,base-3,van,der,Corput,sequences,,using,a,modified,version,of,software,due,to,J.,Burkardt,[36],based,on,ref,[37].,It,will,be,seen,that,,comparing,the,number,of,points,which,are,close,together,,the,random,vectors,are,much,less,uniformly,distributed,than,the,Halton,sequence.,The,Halton,sequence,is,important,because,it,can,be,defined,without,setting,a,definite,number,of,samples,Na,in,advance,,hence,it,can,be,used,just,like,sequences,from,standard,Monte-Carlo,21,Figure,6:,Two-dimensional,vectors,plotted,by,position,in,the,unit,square.,The,ranlux,random,number,generator,was,used,to,produce,200,coordinates,,paired,to,make,100,vectors.,Figure,7:,Two-dimensional,vectors,plotted,by,position,in,the,unit,square.,The,halton,quasi-random,number,generator,was,used,to,produce,100,vectors.,22,random,number,generators.,This,contrasts,with,the,Hammersley,sequence,,where,the,first,compo-,nent,of,each,vector,is,l/Na,,then,other,components,contain,van,der,Corput,sequences.,However,,much,of,Niederreiter’s,book,is,concerned,with,cases,where,Na,is,specified,in,advance,,when,it,transpires,for,example,that,A2,may,be,reduced,to,as,little,as,0.26,,using,a,(t,,s),sequence.,The,definition,of,(t,,s),sequences,is,quite,involved.,The,main,idea,is,to,generate,the,quasi-random,sequences,as,sets,of,vectors,of,dimension,s,(hence,the,s,in,the,name),rather,than,as,in,Halton,where,the,components,of,the,vectors,are,computed,independently,as,1-D,van,der,Corput,se-,quences.,The,t,denotes,the,fact,that,,instead,of,each,integer,being,represented,in,base,b,prior,to,bit,reversal,,it,is,represented,in,base,bt+1.,Hence,,in,the,(t,,s),notation,,van,der,Corput,sequences,are,(0,,1),sequences,,and,anyway,apparently,t,=,0,has,optimally,small,error.,Returning,to,Halton,sequences,,the,expression,for,discrepancy,in,d-D,is,(cid:15)N,=,Ad(ln,N,)d/N,(45),where,the,values,of,Ad,are,tabulated,in,Niederreiter’s,Table,4.4.,[34,,p.96].,The,first,few,are,Ad,=,0.66,,0.82,,1.26,,2.62,,for,d,=,2,,3,,4,,5.,At,higher,d,,Ad,increases,rapidly,so,that,for,example,,A12,=,16,800,and,A20,=,6.62,×,1010,,whereas,the,corresponding,value,Cd,for,the,best,(t,,s),sequence,decreases,almost,as,rapidly,(C6,=,0.0186).,This,is,the,benefit,gained,from,the,greater,complexity,of,calculating,the,(t,,s),sequences.,Despite,the,theory,,much,practical,experience,with,QMC,as,reported,and,performed,by,Morokoff,et,al,[38,,39],suggests,that,QMC,frequently,performs,little,better,than,MC,when,d,is,large.,Mo-,rokoff,et,al,considered,Halton,sequences,and,(t,,s),sequences,in,base,b,=,2,(referred,to,as,Sobol,sequences),and,in,other,prime,number,bases,(Faure,sequences).,It,seems,that,for,the,variety,of,methods,tested,,the,number,of,sample,points,required,for,the,asymptotic,discrepancy,estimates,to,be,realised,can,increase,exponentially,with,dimension,d,,so,the,curse,of,dimensionality,remains.,There,is,evidence,however,that,in,some,problems,,where,only,a,relatively,small,number,of,dimen-,sions,is,apparently,important,,QMC,performance,can,be,greatly,improved,[40].,One,important,point,to,make,is,that,Morokoff,et,al,tended,to,explore,more,those,QMC,rules,which,had,the,best,asymptotic,behaviour.,Their,results,do,not,exclude,the,possibility,that,the,simpler,techniques,of,lattice,rules,,see,ref,[34,,§,5.1],,might,have,better,behaviour,in,practice,,especially,if,the,lattice,basis,g,is,well,chosen.,Note,that,NAG,uses,the,simple,Korobov,rule,,in,which,the,components,of,g,are,given,as,gk,=,a(k−1)(,mod,p),(46),for,specially,chosen,real,a,>,1,and,prime,number,p.,5.2,Latin,Hypercube,Sampling,One,of,the,cheapest,sampling,strategies,is,stratified,sampling.,The,easiest,variant,to,describe,,viz.,Latin,hypercube,[41],is,illustrated,in,Figure,8,,after,Steinberg,as,quoted,in,ref,[42,,§,4].,The,sample,space,is,gridded,,but,now,sample,points,are,required,to,lie,within,the,grid,squares,,and,in,fact,their,precise,location,within,a,square,in,determined,randomly.,The,selection,of,grid-square,is,also,random,,but,heavily,constrained,by,the,fact,that,no,other,sampled,square,should,have,the,same,discrete,co-ordinate,values,in,any,co-ordinate.,For,example,,in,Figure,8,,the,fact,that,there,is,a,sample,point,in,the,square,three,along,from,the,left,in,the,bottom,row,,discrete,coordinate,(3,,1),,23,Figure,8:,Latin,hypercube,sampling.,means,that,no,sample,will,be,placed,in,cells,with,coordinates,(3,,j),or,(i,,1),for,any,i,or,j.,If,there,are,N1,cells,in,each,coordinate,,the,total,number,of,samples,needed,is,also,N1.,This,is,very,cheap,,but,the,method,is,known,to,become,unreliable,when,the,parameters’,variations,are,correlated.,References,[1],R.C.,Smith.,Uncertainty,Quantification:,Theory,,Implementation,,and,Applications.,SIAM,,2014.,[2],E.,Patelli,,M.,Broggi,,M.,de,Angelis,,and,M.,Beer.,OpenCossan:,An,efficient,open,tool,for,dealing,with,epistemic,and,aleatory,uncertainties.,In,M.,Beer,,S.-K.,Au,,and,J.W.,Hall,,edi-,tors,,Vulnerability,,Uncertainty,,and,Risk,:,Quantification,,Mitigation,,and,Management,,pages,2564–2573.,American,Society,of,Civil,Engineers,,2014.,DOI,10.1061/9780784413609.258.,[3],B.M.,Adams,,M.S.,Ebeida,,M.S.,Eldred,,J.D.,Jakeman,,L.P.,Swiler,,J.A.,Stephens,,D.M.,Vigil,,T.M.,Wildey,,W.J.,Bohnhoff,,K.R.,Dalbey,,J.P.,Eddy,,,,K.T.,Hu,,L.E.,Bauman,,and,P.D.,Hough.,DAKOTA,,A,Multilevel,Parallel,Object-Oriented,Framework,for,Design,Optimization,,Parame-,ter,Estimation,,Uncertainty,Quantification,,and,Sensitivity,Analysis:,Version,6.0,User’s,Man-,ual.,Technical,report,,Sandia,Technical,Report,SAND2014-4633,,Sandia,National,Laborato-,ries,,Albuquerque,,NM,,2014.,[4],X.,Huan,,C.,Safta,,K.,Sargsyan,,G.,Geraci,,M.S.,Eldred,,Z.P.,Vane,,G.,Lacaze,,J.C.,Oefelein,,and,H.N.,Najm.,Global,sensitivity,analysis,and,estimation,of,model,error,,toward,uncertainty,quantification,in,scramjet,computations.,AIAA,Journal,,56(3):1170–1184,,2018.,[5],N.,Wiener.,The,homogeneous,chaos.,American,Journal,of,Mathematics,,60(4):897–936,,1938.,[6],W.,Arter.,Equations,for,EXCALIBUR/NEPTUNE,Proxyapps.,Technical,Report,CD/EXCALIBUR-FMS/0021-1.00-M1.2.1,,UKAEA,,2020.,24,[7],D.,Xiu.,Generalized,(Wiener-Askey),Polynomial,Chaos.,PhD,thesis,,Brown,University,Provi-,dence,,RI,,2004.,[8],S.L.,Brunton,,J.L.,Proctor,,and,J.N.,Kutz.,Discovering,governing,equations,from,data,by,sparse,identification,of,nonlinear,dynamical,systems.,Proceedings,of,the,National,Academy,of,Sciences,,113(15):3932–3937,,2016.,[9],B.,Peherstorfer,,K.,Willcox,,and,M.,Gunzburger.,Optimal,model,management,for,multifidelity,monte,carlo,estimation.,SIAM,Journal,on,Scientific,Computing,,38(5):A3163–A3194,,2016.,[10],M.B.,Giles.,Multilevel,Monte-Carlo,methods.,Acta,Numerica,,24:259–328,,2016.,[11],S.,Mishra,,C.,Schwab,,and,J.,ˇSukys.,Multi-level,Monte-Carlo,finite,volume,methods,for,un-,certainty,quantification,in,nonlinear,systems,of,balance,laws.,In,H.,Bijl,,D.,Lucor,,S.,Mishra,,and,C.,Schwab,,editors,,Uncertainty,quantification,in,computational,fluid,dynamics,,pages,225–294.,Springer,,2013.,[12],A.-L.,Haji-Ali,and,R.,Tempone.,Multilevel,and,multi-index,monte,carlo,methods,for,the,mckean–vlasov,equation.,Statistics,and,Computing,,28(4):923–935,,2018.,[13],G.,Geraci,,F.,Menhorn,,X.,Huan,,C.,Safta,,Y.M.,Marzouk,,H.N.,Najm,,and,M.S.,Eldred.,Progress,in,scramjet,design,optimization,under,uncertainty,using,simulations,of,the,hifire,direct,connect,rig.,Conference,paper;,AIAA,Scitech,2019,Forum,,2019.,AIAA,paper,2019-,0725.,[14],H.J.,Bungartz,and,M.,Griebel.,Sparse,grids.,Acta,Numerica,,13:147–269,,2004.,[15],T.,Gerstner,and,M.,Griebel.,Dimension–adaptive,tensor–product,quadrature.,Computing,,71(1):65–87,,2003.,[16],E.,Patelli,,D.A.,Alvarez,,M.,Broggi,,and,M.,de,Angelis.,Uncertainty,management,in,multi-,disciplinary,design,of,critical,safety,systems.,Journal,of,Aerospace,Information,Systems,,12(1):140–169,,2015.,[17],NumPy,Random,Generator.,https://numpy.org/doc/stable/reference/random/,generator.html#numpy.random.Generator,,2020.,Accessed:,October,2020.,[18],M.,Hegland.,Adaptive,sparse,grids.,ANZIAM,Journal,,44(E):C335–C353,,2003.,[19],I.M.,Sobol.,Global,sensitivity,indices,for,nonlinear,mathematical,models,and,their,Monte,Carlo,estimates.,Mathematics,and,Computers,in,Simulation,,55(1-3):271–280,,2001.,[20],B.,Sudret,and,S.,Marelli.,an,Overview.,https://www.researchgate.net/publication/317396793_Surrogate_models_,for_uncertainty_quantification_An_overview,,2017.,European,Conference,on,Anten-,nas,and,Propagation,(EUCAP,,2017).,Surrogate,Models,for,Uncertainty,Quantification:,[21],Surrogate,model,wiki.,cessed:,October,2020.,https://en.wikipedia.org/wiki/Surrogate_model,,2020.,Ac-,[22],Kriging,wiki.,https://en.wikipedia.org/wiki/Kriging,,2020.,Accessed:,October,2020.,25,[23],N.,Gershenfeld.,The,Nature,of,Mathematical,Modeling.,Cambridge,University,Press,,1999.,[24],S.L.,Brunton,and,J.N.,Kutz.,Data-driven,science,and,engineering:,Machine,learning,,dynam-,ical,systems,,and,control.,CUP,,2019.,[25],Neural,network,zoo,website.,https://www.asimovinstitute.org/neural-network-zoo/,,2020.,Accessed:,October,2020.,[26],Model,order,reduction,wiki.,https://en.wikipedia.org/wiki/Model_order_reduction,,2020.,Accessed:,October,2020.,[27],H.,Najm.,Uncertainty,Quantification,in,Computational,Models,of,Large,Scale,Physical,Sys-,tems.,https://www.osti.gov/servlets/purl/1593073,,2018.,Seminar,,NRC,Institure,of,Marine,Engineering,,Rome,,Italy.,[28],DAKOTA,website.,https://dakota.sandia.gov,,2020.,Accessed:,October,2020.,[29],P.C.,Stangeby,,J.D.,Elder,,W.,Fundamenski,,A.,Loarte,,L.D.,Horton,,R.,Simonini,,A.,Taroni,,O.F.,Matthews,,and,R.D.,Monk.,Code-code,comparisons,of,DIVIMP’s,‘onion-skin,model’and,the,EDGE2D,fluid,code.,Journal,of,nuclear,materials,,241:358–362,,1997.,[30],A.,Townsend,and,L.N.,Trefethen.,Continuous,analogues,of,matrix,factorizations.,Pro-,the,Royal,Society,A:,Mathematical,,Physical,and,Engineering,Sciences,,ceedings,of,471(2173):20140585,,2015.,[31],B.,Hashemi,and,L.N.,Trefethen.,Chebfun,in,three,dimensions.,SIAM,Journal,on,Scientific,Computing,,39(5):C341–C363,,2017.,[32],L.N.,Trefethen.,John,von,Neumann,Prize,Lecture.,Off-the-cuff,remarks,,July,6–17,,2020.,The,Second,Joint,SIAM/CAIMS,Annual,Meeting,(AN20).,[33],J.,Pathak,,A.,Wikner,,R.,Fussell,,S.,Chandra,,B.R.,Hunt,,M.,Girvan,,and,E.,Ott.,Hybrid,forecasting,of,chaotic,processes:,Using,machine,learning,in,conjunction,with,a,knowledge-,based,model.,Chaos:,An,Interdisciplinary,Journal,of,Nonlinear,Science,,28(4):041101,,2018.,[34],H.,Niederreiter.,Random,Number,Generation,and,Quasi-Monte,Carlo,Methods.,Society,for,Industrial,Mathematics,,1992.,[35],F.,James.,RANLUX:,a,Fortran,implementation,of,the,high-quality,pseudorandom,number,generator,of,Luscher.,Computer,Physics,Communications,,97(3):357–357,,1996.,[36],J.,Burkardt.,The,http://people.sc.fsu.edu/˜jburkardt/f,src/halton/halton.html.,quasirandom,halton,sequence.,URL,[37],B.L.,Fox.,Algorithm,647:,Implementation,and,relative,efficiency,of,quasirandom,sequence,generators.,ACM,Transactions,on,Mathematical,Software,(TOMS),,12(4):362–376,,1986.,[38],W.J.,Morokoff,and,R.E.,Caflisch.,Quasi-random,sequences,and,their,discrepancies.,SIAM,Journal,on,Scientific,Computing,,15:1251,,1994.,[39],W.J.,Morokoff,and,R.E.,Caflisch.,Quasi-Monte,Carlo,integration.,Journal,of,Computational,Physics,,122(2):218–230,,1995.,26,[40],R.E.,Caflisch,,W.,Morokoff,,and,A.,Owen.,Valuation,of,mortgage,backed,securities,using,Brownian,bridges,to,reduce,effective,dimension.,J.,Computational,Finance,,1(1):27–46,,1997.,[41],M.D.,McKay,,R.J.,Beckman,,and,W.J.,Conover.,A,comparison,of,three,methods,for,selecting,values,of,input,variables,in,the,analysis,of,output,from,a,computer,code.,Technometrics,,42(1):55–61,,1979.,[42],M.H.,Kalos,and,P.A.,Whitlock.,Monte,Carlo,Methods.,Vol.,1:,basics.,Wiley-Interscience,New,York,,NY,,USA,,1986.,27 :pdfembed:`src:_static/CD-EXCALIBUR-FMS0024-1.00-M3.1.3_ReportUserLayerDesignUncertaintyQuantification.pdf, height:1600, width:1100, align:middle`