CD-EXCALIBUR-FMS0043-M2.4.2_SelectionUncertaintyQuantification ============================================================== .. meta:: :description: technical note :keywords: ExCALIBUR,Selection,of,techniques,for,Uncertainty,Quantification,M2.4.2,The,report,describes,work,for,ExCALIBUR,project,NEPTUNE,at,Milestone,2.4.2.,Major,scientific,codes,,among,which,the,output,of,NEPTUNE,is,intended,to,count,,are,subject,to,uncertainty,from,two,main,sources:,systematic,error,(e.g.,in,input,parameters,that,are,not,known,precisely),and,stochastic,error,(arising,e.g.,from,the,presence,of,deterministic,chaos).,The,former,gives,rise,to,what,is,termed,epistemic,uncertainty,,while,uncertainty,due,to,the,latter,is,termed,aleatoric.,Forward,uncertainty,quantification,(UQ),-,well-established,in,the,domain,of,engineering,and,an,emerging,field,in,that,of,scientific,computing,-,aims,to,capture,the,effect,on,model,outputs,of,epistemic,and,aleatoric,uncertainty,,providing,valuable,information,as,to,the,predictive,power,of,a,computational,model.,The,goals,of,this,report,are,to,write,a,concise,set,of,recommendations,as,to,which,particular,UQ,methodologies,to,develop,for,NEPTUNE,and,explicitly,to,describe,the,architecture,of,UQ,workflows,for,co-design,purposes,toward,exascale.,UQ,methods,divide,naturally,into,intrusive,and,non-intrusive,types.,Non-intrusive,methods,involve,no,modification,to,the,subject,code,,using,only,the,outputs,of,the,code;,the,workflow,then,involves,the,specification,of,input,distributions,and,a,sampling,strategy,,running,an,ensemble,of,simula-,tions,,then,post-processing,the,outputs.,By,virtue,of,the,principle,of,separation,of,concerns,,this,approach,is,widely,and,readily,applicable,,in,contrast,to,the,ad,hoc,model,rewrites,needed,for,intrusive,UQ,,which,usually,is,taken,to,be,not,feasible,for,large,scientific,codes.,Semi-intrusive,methods,apply,to,coupled,systems,,where,UQ,for,individual,components,is,non-intrusive.,A,deci-,sion,is,taken,in,favour,of,non-,and,semi-intrusive,methods,for,NEPTUNE.,The,penalty,for,pursuing,a,non-intrusive,approach,is,the,need,for,a,large,ensemble,of,(potentially,extremely,expensive),simulations;,techniques,for,tackling,this,issue,include,advanced,sampling,strategies,and,surrogate,models.,Pitfalls,to,be,avoided,in,sampling,are,the,curse,of,dimension-,ality,(exponential,scaling,of,the,required,number,of,samples,with,the,input,dimensionality,of,the,problem),and,the,slow,convergence,of,ordinary,Monte,Carlo,schemes;,one,answer,to,these,is,to,use,adaptive,stochastic,/,point,collocation,methods,,where,the,aim,is,actively,to,determine,those,directions,in,parameter,space,to,which,the,quantity,of,interest,is,most,sensitive.,Other,poten-,tial,approaches,include,high-dimensional,model,representation,,where,the,strategy,is,to,expand,according,to,the,order,of,interaction,between,input,parameters,,and,active,subspace,methods,,where,gradient,information,is,used,to,project,the,input,state,to,a,lower,dimension,while,capturing,as,much,as,possible,the,behaviour,of,the,full,input,space.,Surrogate,models,find,utility,in,ac-,celerating,ensembles,of,simulations.,They,have,a,natural,division,into,stochastic,surrogates,and,reduced,surrogates:,the,former,apply,to,simulations,with,a,stochastic,component,,in,which,multi-,ple,model,states,correspond,to,the,same,inputs,,the,latter,to,the,case,where,the,output,space,is,of,much,lower,dimension,than,that,of,the,model,state,,e.g.,a,quantity,of,interest,may,be,a,single,scalar,(perhaps,a,global,mean,temperature).,It,is,anticipated,that,surrogates,will,be,used,to,re-,place,the,most,expensive,components,of,a,coupled,model,(those,typically,representing,physics,at,the,smallest,scale),as,part,of,a,semi-intrusive,UQ,effort.,The,report,contains,an,overview,of,existing,applications,of,UQ,to,plasma,fusion,codes;,echoing,the,status,quo,for,general,multi-physics,workflows,,rather,little,work,has,thus,far,been,done,on,the,coupled,,multi-scale,fusion,case.,Specific,problems,have,been,treated,,e.g.,by,applying,the,COSSAN,toolkit,to,the,outputs,of,the,SMARDDA,software,,and,(non-intrusive),polynomial,chaos,methods,and,advanced,sampling,have,been,applied.,A,summary,of,existing,tools,showcases,the,VECMA,toolkit,,an,open-source,framework,maintained,by,the,authors,of,the,report,,offering,various,capabilities,for,UQ,and,also,for,coordinating,UQ,campaigns,on,modern,HPC,(the,acronym,stands,for,Verified,Exascale,Computing,for,Multi-scale,Applications).,One,key,aim,is,the,provision,of,stable,interfaces,and,data,formats;,another,is,to,surpass,existing,frameworks,in,scope,of,applicability,,ease,of,use,,and,in,utility,for,managing,large,job-count,ensemble,runs.,A,description,of,a,promising,application,of,the,toolkit,in,an,existing,fusion,modelling,system,implemented,by,the,Max,Planck,Institute,for,Plasma,Physics,is,given.,Attention,is,drawn,also,to,other,existing,UQ,softwares,,some,of,which,are,incorporated,within,VECMA,,and,also,frameworks,for,Gaussian,process,emulation.,During,the,course,of,the,grant,,three,VECMA,hackathons,were,organized,with,the,objective,of,training,UKAEA,and,other,NEPTUNE,partners,in,adding,UQ,to,existing,codes,using,the,VECMA,toolkit,,thereby,cultivating,valuable,expertise,and,harnessing,the,extensive,capability,and,HPC,focus,of,the,toolkit.,Though,the,ultimate,vision,for,NEPTUNE,is,UQ,of,a,coupled,multi-scale,,multi-physics,application,,this,initial,work,has,focussed,on,representative,single-scale,proxyapps,,namely,the,codes,BOUT++,(plasma,fluids,using,finite,difference),,Nektar++,(fluids,,spectral/hp),,and,EPOCH,(particles,,particle-in-cell).,The,section,on,EPOCH,is,accompanied,by,reference,to,the,authors’,work,on,molecular,dynamics,,in,which,one,firm,conclusion,is,the,need,for,ensem-,ble,averaging,in,particle-based,simulations,in,order,to,counter,the,aleatoric,uncertainty,immanent,to,these,methods.,In,aggregate,,the,work,done,in,the,hackathons,includes,the,construction,of,non-intrusive,surrogates,using,stochastic,collocation,,polynomial,chaos,expansion,,Gaussian,pro-,cesses,,and,artificial,neural,networks,,with,concomitant,sensitivity,analyses,and,the,extraction,of,lower-order,statistical,moments,from,these,outputs.,Feedback,from,hackathon,participants,has,also,led,to,the,augmentation,of,the,toolkit,with,additional,relevant,features.,A,list,of,specific,NEPTUNE,challenges,is,identified,in,the,report,and,potential,solutions,are,pro-,posed,,including,the,replacement,with,surrogates,of,the,expensive,microscopic,components,in,a,coupled,model,,gradient-free,active,subspace,methods,for,reducing,input,space,dimensionality,,and,a,steer,in,the,direction,of,Gaussian,processes,for,surrogates,(all,of,these,synergistic,with,other,NEPTUNE,grants,targetting,reduced-order,models).,A,strategy,to,allow,the,incorporation,of,experimental,data,involves,future,overlap,with,the,forthcoming,RADDISH,project,(Real-time,Ad-,vanced,Data,assimilation,for,Digital,Simulation,of,Numerical,Twins,on,HPC);,brief,mention,is,given,to,ways,of,mitigating,the,problems,associated,with,data,assimilation,in,nonlinear,,non-Gaussian,systems,,and,proposed,new,techniques,include,a,particle,filter,and,a,geometrically-driven,ensem-,ble,Kalman,filter.,2,Acknowledgement,The,support,of,the,UK,Meteorological,Office,and,Strategic,Priorities,Fund,is,acknowledged.,References,UKAEA,REFERENCE,AND,APPROVAL,SHEET,Client,Reference:,UKAEA,Reference:,CD/EXCALIBUR-FMS/0043,Issue:,Date:,1.00,September,8,,2021,Project,Name:,ExCALIBUR,Fusion,Modelling,System,Prepared,By:,Name,and,Department,Ed,Threlfall,Wayne,Arter,Signature,N/A,N/A,Date,September,8,,2021,September,8,,2021,BD,Reviewed,By:,Rob,Akers,September,8,,2021,Advanced,Dept.,Manager,Computing,Approved,By:,Rob,Akers,September,8,,2021,Advanced,Dept.,Manager,Computing,3,Report,number:,2047352_1-TN-01,Title:,Review,of,methods,and,toolkits,for,uncertainty,quantification,of,single,and,coupled-,model,applications,Authors:,Maxime,Vassaux,,Wouter,Edeling,,Peter,V.,Coveney,University,College,London,Executive,summary:,The,present,report,draws,a,concise,review,of,uncertainty,quantification,methods,classified,according,to,their,intrusiveness.,Attentions,is,paid,to,non-intrusive,and,later,semi-intrusive,methods,which,enable,to,define,procedures,which,are,independent,of,the,models,equations,,thus,enabling,full,separation,of,concern.,The,report,also,presents,upto-date,toolkits,,libraries,and,pieces,of,software,that,enable,the,high-throughput,ensemble-based,computations,required,for,verification,,validation,and,uncertainty,quantification.,The,report,concludes,with,a,brief,review,of,direct,attempts,to,quantify,uncertainties,with,existing,plasma,fusion,codes.,1,Introduction,Uncertainty,quantification,,verification,and,validation,processes,are,crucial,in,order,to,demonstrate,the,robustness,of,all,forms,of,simulation.,Code,results,can,be,"validated",by,comparison,with,experiment,in,a,number,of,ways,,ranging,from,qualitative,(subjective),measures,to,quantitative,measures,which,apply,a,validation,metric.,Verification,(confirmation,that,the,mathematical,model,has,been,coded,correctly),and,validation,of,computer,simulations,have,been,discussed,at,length,for,fluid,dynamics,[1].,Applications,to,fusion,have,been,made,in,a,number,of,subsequent,papers,,including,"Validation,in,fusion,research:,Towards,guidelines,and,best,practices",[2],,"Verification,and,validation,for,magnetic,fusion",[3],and,"Validation,metrics,for,turbulent,plasma,transport",[4].,Computer,modelling,is,widely,used,in,science,and,engineering,to,study,systems,of,interest,and,to,predict,their,behaviour.,These,systems,are,usually,multi-scale,or,multi-physics,in,nature,,as,their,accuracy,and,reliability,depend,on,the,correct,representation,of,processes,taking,place,on,several,length,and,time,scales,involving,different,physics,[5–8].,The,resulting,code,often,simulates,a,collection,of,coupled,models.,Moreover,,these,systems,can,be,stochastic,,since,there,are,always,some,unresolved,scales,whose,effects,are,not,taken,into,account,due,to,lack,of,knowledge,or,limitations,of,computational,power,[6,9].,Additionally,,measurements,of,model,parameters,,model,validation,,and,initial,and,boundary,conditions,themselves,can,be,rarely,if,ever,achieved,with,perfect,accuracy,[10].,Therefore,,the,simulation,model,and,its,output,results,inevitably,contain,uncertainties,,and,one,needs,to,estimate,their,magnitudes,by,applying,a,forward,uncertainty,quantification,(UQ),method.,UQ,is,familiar,in,engineering,and,applied,mathematics,communities,but,quite,immature,at,lower,length,and,time,scales,relevant,of,physics,and,chemistry,,let,alone,in,combinations,which,arise,in,multiscale,applications.,Handling,a,large,multiscale/multiphysics,problem,is,arguably,among,the,most,complex,one,can,address.,Collectively,speaking,,verification,,validation,and,UQ,for,such,systems,is,an,active,research,topic,and,off-the-shelf,solutions,remain,absent.,It,is,standard,practice,in,UQ,to,distinguish,two,sources,of,uncertainty,–,“epistemic”,and,“aleatoric”.,The,former,addresses,systematic,errors,(caused,by,parameter,values,,etc.),,the,latter,random,ones,,which,are,linked,to,the,use,of,random,numbers,generators,and,random,seeds.,Importance,must,be,attached,to,intrinsic,stochasticity,coming,from,chaos.,Turbulence,is,the,primary,source,in,fusion,research,,but,it,is,also,present,in,many,particle-based,methods,(such,as,classical,molecular,dynamics).,Our,current,investigations,of,binding,affinity,calculations,using,molecular,dynamics,show,that,aleatoric,uncertainty,can,more,than,double,the,variability,of,predictions,compared,with,studies,performed,without,ensemble,averaging.,For,epistemic,UQ,,information,about,the,distribution,of,the,uncertainty,in,the,parameters,must,be,specified,,but,such,information,is,rather,rarely,known.,In,our,own,work,,we,have,often,had,to,assume,uniform,distributions,across,a,fixed,range,(say,up,to,20%,changes,in,the,parameter,of,interest).,The,purpose,of,the,present,report,is,to,provide,a,short,overview,of,approaches,to,uncertainty,quantification,including,recommendations,as,to,which,are,likely,to,be,of,most,relevance,to,the,Neptune,project.,This,report,draws,heavily,upon,the,experience,gathered,over,recent,years,including,the,past,three,years,running,the,VECMA,project,(www.vecma.eu).,The,goal,of,the,project,is,to,provide,an,open,source,toolkit,(VECMAtk,,www.vecma-toolkit.eu),containing,a,wide,range,of,tools,to,facilitate,the,use,of,VVUQ,techniques,in,multiscale,,multi-physics,applications,[39].,Approaches,are,classified,by,degree,of,intrusiveness,,and,we,focus,on,ones,suited,to,enable,separation,of,concerns,,that,is,avoiding,the,development,of,methods,on,a,per-application,basis.,The,report,then,provides,a,review,of,existing,toolkits,enabling,the,execution,of,UQ,workflows,on,high-performance,computing,infrastructures.,2,Classification,of,methods,by,intrusiveness,Usually,a,distinction,is,made,between,intrusive,UQ,methods,,where,one,substitutes,the,original,model,with,its,stochastic,representation,,and,non-intrusive,methods,,where,the,original,model,is,used,as,a,black-box,[11,12].,Intrusive,methods,are,efficient,and,relatively,easy,to,apply,to,linear,models,,e.g.,[13].,This,,however,,represents,only,a,relatively,small,class,of,models.,They,can,be,applied,to,non-linear,models,as,well,,but,the,solution,of,the,resulting,equations,may,become,very,demanding.,Non-intrusive,methods,can,be,applied,to,any,type,of,non-linear,model.,However,,if,a,single,model,run,requires,large,execution,times,,these,UQ,methods,may,be,ineffective,,or,even,computationally,intractable.,Non-intrusive,uncertainty,propagation,methods,consider,the,entire,system,as,one,black,box,,see,Figure,1.,The,main,advantage,is,that,the,(legacy),simulation,code,is,left,completely,untouched,,hence,the,name,‘non-intrusive’.,This,allows,users,to,quickly,add,a,UQ,component,to,their,existing,simulation,framework.,The,one,thing,any,application,user,must,do,is,write,an,encoder/decoder,to,allow,a,code,of,interest,to,connect,to,EasyVVUQ.,To,facilitate,this,,several,non-intrusive,methods,are,considered,in,the,VECMAtk,[14],and,more,specifically,in,EasyVVUQ,[15],(which,will,be,described,in,section,5):,quasi,Monte,Carlo,(qMC),,Polynomial,Chaos,(PC),and,the,stochastic,collocation,(SC),methods,[16].,All,these,methods,follow,a,similar,pattern,,namely:,1.,Specify,the,input,distributions,and,draw,samples,(create,a,so-called,“design-of-experiment”).,2.,Run,the,ensemble.,3.,Perform,post-processing,analysis.,Figure,1:,Schematic,of,non-intrusive,uncertainty,propagation,through,a,multiscale,system,of,coupled,single-scale,solvers,,mapping,input,distributions,to,a,distribution,of,any,output,Quantity,of,Interest,(QoI).,The,propagation,technique,is,agnostic,with,respect,to,the,structure,of,the,multiscale,system,and,treats,it,as,a,black,box.,The,stochastic,Galerkin,method,[17,,18],is,often,labelled,as,intrusive,,due,to,the,fact,that,dedicated,solvers,have,to,be,developed,in,order,to,tackle,the,stochastic,problem,at,hand.,The,equations,of,the,problem,are,rewritten,directly,with,stochastic,variables.,The,additional,programming,effort,is,usually,regarded,as,a,major,disadvantage,,especially,in,the,case,of,complex,computational,models,whose,software,and,underlying,solvers,are,difficult,to,be,accessed,,modified,or,otherwise,manipulated.,Therefore,,and,despite,the,fact,that,stochastic,Galerkin,methods,have,appealing,properties,for,error,analysis,and,estimation,,collocation,methods,are,generally,preferred,,as,they,allow,for,non-intrusive,,black-box,use,of,the,original,computational,models.,It,must,be,noted,that,the,separation,into,intrusive,and,non-intrusive,methods,is,an,ongoing,topic,of,discussion,,see,e.g.,[19].,An,intermediate,class,of,methods,exist,for,codes,which,couple,multiple,models.,Such,methods,are,called,semi-intrusive,UQ,algorithms,[20].,These,algorithms,are,intrusive,only,on,the,level,of,the,multiscale,model,,that,is,,in,the,way,the,single,scale,components,are,coupled,together.,The,single,scale,components,themselves,are,,however,,treated,as,black-boxes,,see,Figure,2.,Semi-intrusive,algorithms,will,be,discussed,in,more,detail,in,section,6.,None,Figure,2:,Intrusiveness,of,UQ,methods.,The,different,levels,of,intrusiveness,are,associated,with,the,components,of,an,application,which,need,to,be,modified,to,quantify,uncertainty.,3,Enhanced,sampling,methods,Most,commonly,,UQ,studies,rely,on,sampling,methods.,Monte,Carlo,(MC),sampling,converges,irrespective,of,the,number,of,random,variables,(RVs),or,the,regularity,of,the,given,problem,,albeit,with,a,slow,convergence,rate,in,the,mean-square-error,sense.,Improved,cost-error,ratios,can,be,achieved,with,multilevel,MC,methods,[21].,Spectral,UQ,approaches,converge,much,faster,,exponentially,in,the,most,favourable,cases,,for,a,small,to,moderate,number,of,random,inputs,and,smooth,input-to-output,map,[22].,Typical,methods,of,this,type,are,stochastic,collocation,[16,23,24],or,point,collocation,[25,26],methods.,Comparisons,between,stochastic,and,point,collocation,methods,,see,e.g.,[27],,indicate,that,the,former,tends,to,provide,superior,accuracies,and,convergence,rates,for,smooth,quantities,of,interest,(QoI).,However,,since,these,approaches,differ,significantly,,a,fair,comparison,between,the,two,is,still,an,open,research,topic,,as,also,indicated,in,[26].,A,common,bottleneck,of,all,aforementioned,methods,is,the,so-called,“curse,of,dimensionality”,[28],,i.e.,convergence,rates,deteriorate,,and,computational,costs,increase,with,the,number,of,considered,input,parameters,,by,definition,,exponentially.,As,a,possible,remedy,,state-of-the-art,methods,employ,sparse,,adaptively,constructed,polynomial,approximations,,see,e.g.,[29,30],for,adaptive,stochastic,collocation,methods,and,[25],for,adaptive,point,collocation,methods.,While,generally,not,free,of,the,curse,of,dimensionality,,adaptive,methods,exploit,possible,anisotropies,among,the,input,parameters,regarding,their,impact,upon,the,QoI.,Assuming,that,such,anisotropies,exist,,adaptivity,may,enable,studies,with,a,comparably,large,number,of,input,parameters.,More,recently,,tensor,decompositions,(see,[31],and,the,references,therein),have,been,used,to,exploit,possible,low-rank,structures,of,parametric,problems,in,order,to,tackle,the,curse,of,dimensionality.,In,several,cases,,again,relying,on,high,regularity,,superior,asymptotic,convergence,rates,have,been,obtained,compared,to,sparse,grid,methods,[32].,However,,comparisons,between,these,methods,remain,an,active,field,of,research.,In,EasyVVUQ,only,adaptive,stochastic,collocation,methods,were,considered,and,applied,to,the,large-scale,UQ,of,the,CovidSim,code,[69].,In,the,search,for,an,acceptable,compromise,between,computational,work,and,approximation,accuracy,,such,approaches,are,receiving,increasing,attention,in,uncertainty,quantification.,Dimension-adaptive,methods,are,based,on,nested,univariate,collocation,points,,e.g.,Clenshaw-Curtis,and,Genz-Keister,nodes,are,typical,choices,for,uniform,and,normal,input,distributions,,respectively.,The,aforementioned,adaptive,algorithms,don’t,break,the,curse,of,dimensionality,,they,postpone,it.,Although,the,sampling,plan,is,iteratively,refined,in,directions,that,are,found,to,be,more,important,than,others,,they,ultimately,still,create,a,sampling,plan,in,a,high,dimensional,space.,A,class,of,methods,that,attempts,to,circumvent,this,are,the,so-called,High-Dimensional,Model,Representation,(HMDR),models,[59].,Without,going,into,detail,,the,basic,idea,is,to,write,the,model,response,as,an,expansion,of,component,functions,of,increasing,dimension,(akin,to,the,ANOVA,expansion).,The,assumption,is,then,made,that,in,most,physical,models,,(very),high-order,interaction,effects,between,parameters,are,not,important.,This,is,not,proven,,but,often,observed,in,practice.,One,can,then,truncate,the,expansion,at,for,instance,second-,order,interactions.,Each,remaining,component,function,must,now,be,approximated,by,,for,instance,,QMC,or,stochastic,collocation,,which,can,be,readily,performed,since,each,function,is,at,most,two-dimensional.,Thus,,instead,of,trying,to,sample,a,single,high-dimensional,space,as,efficiently,as,possible,,the,problem,is,broken,up,into,a,series,of,low-dimensional,subproblems.,This,could,potentially,be,implemented,in,EasyVVUQ,,since,the,machinery,to,approximate,each,component,function,is,already,in,place.,Note,that,instead,of,manually,choosing,the,order,at,which,to,truncate,the,expansion,,the,order,can,also,be,found,adaptively,[60].,Although,the,number,of,component,functions,can,be,large,,this,algorithm,does,have,a,high,degree,of,parallelism,,as,all,component,functions,of,a,given,order,can,be,approximated,in,parallel.,Thus,far,we,have,discussed,adaptivity,in,the,stochastic,dimensions.,Another,type,of,adaptivity,relates,to,locally,refining,the,stochastic,space,(of,a,given,dimension),,in,the,case,when,the,response,in,this,space,is,not,entirely,regular.,The,stochastic,collocation,and,polynomial,chaos,methods,write,the,code,output,as,an,expansion,over,global,polynomials.,However,,if,say,a,discontinuity,exists,in,the,stochastic,domain,,an,expansion,over,global,polynomials,can,lead,to,the,well-known,Runge,phenomenon.,Various,methods,exist,that,instead,use,a,(polynomial),basis,with,local,support,,e.g.,,Adaptive,Sparse,Grid,methods,[61],or,the,Simplex,Stochastic,Collocation,method,[62].,Adaptivity,in,this,case,means,placing,more,samples,in,regions,of,the,stochastic,space,where,the,solution,is,not,regular.,It,is,also,possible,to,combine,dimension,adaptivity,with,local,adaptivity,,see,e.g.,[63].,Active,subspace,methods,[64],are,a,more,recent,class,of,UQ,methods,that,deal,with,high,dimensional,input,spaces.,These,are,not,adaptive,in,nature,,but,instead,use,gradient,information,to,find,a,matrix,that,projects,the,high-dimensional,input,vector,to,a,low-dimensional,`active,subspace’,,in,which,most,of,the,variation,takes,place.,Although,certainly,promising,,the,classical,active,subspace,method,requires,the,gradient,of,the,output,with,respect,to,the,inputs,to,be,available,,which,will,not,always,be,the,case.,At,the,Turing,Institute,,work,has,been,performed,which,combines,active,subspace,ideas,with,Gaussian,Processes,,without,the,need,for,computing,the,gradients,[65].,Finally,,machine-learning,methods,for,finding,active,subspaces,have,recently,also,been,developed,,for,instance,the,“Deep,active,subspaces”,[66],or,“Deep,UQ”,frameworks,[67].,These,also,work,without,the,need,for,gradients.,An,early,implementation,is,in,development,within,the,EasySurrogate,module,within,the,VECMA,Toolkit.,4,Surrogate,modelling,methods,The,construction,and,use,of,surrogate,models,(also,referred,to,as,metamodels,or,emulators),is,a,central,computational,strategy,in,UQ,[11].,A,surrogate,model,is,trained,or,fitted,to,the,output,of,a,limited,number,of,evaluations,of,an,expensive,computational,model.,Once,trained,,the,surrogate,can,replace,the,expensive,model,and,thereby,enable,tasks,that,require,many,model,evaluations,,e.g.,detailed,assessment,of,forward,uncertainty,propagation,,or,Bayesian,model,calibration.,Techniques,to,construct,surrogates,that,are,well-established,in,the,UQ,domain,include,Non-Intrusive,Spectral,Projection,(based,on,Polynomial,Chaos,Expansion),,interpolating,polynomials,resulting,from,stochastic,collocation,,and,Gaussian,Process,regression,(also,known,as,“kriging”).,They,are,not,specifically,aimed,at,the,multi-model,setting,,however.,A,step,forward,was,the,semi-intrusive,approach,(detailed,in,section,6),where,it,was,shown,that,these,existing,techniques,can,be,successfully,used,as,elements,in,a,multi-model,UQ,framework.,Below,we,give,an,overview,of,newly,developed,,advanced,techniques,to,obtain,a,surrogate,model,𝜇",from,an,original,model,𝜇.,Specifically,,we,discuss:,1.,Stochastic,surrogates,2.,Reduced,surrogates,4.1,Data,driven,stochastic,surrogates,When,given,parametric,states,can,correspond,to,multiple,𝜇,model,states,methods,,stochastic,surrogate,modelling,(or,stochastic,parameterization),of,the,model,are,necessary,to,account,for,the,uncertainty,in,the,𝜇,state.,In,the,VECMA,project,,methods,have,been,developed,that,resample,𝜇,data,coming,from,a,reference,simulation,,conditioned,on,given,parametric,states.,In,our,case,of,multi,scale,modelling,,µ,is,often,a,quantity,derived,from,the,expensive,micro,model,,for,which,we,wish,to,make,a,surrogate.,Furthermore,,et,𝑋,be,some,collection,of,parametric.,This,could,include,the,QoI,𝑄,,although,not,necessarily.,In,general,,our,surrogate,µ",takes,the,form,of,a,conditional,probability,density,function,,i.e.,𝜇"!"#,∼,𝜇!"#,|,𝑋’!,,𝑋’!$#,,𝑋’!$%,,…,,,𝜇"!,,𝜇"!$#,,𝜇"!$%,,…,(1),Here,,the,index,j,corresponds,to,a,given,time,𝑡!.,Thus,,in,addition,to,a,stochastic,nature,,we,also,have,the,option,of,embedding,memory,into,the,surrogate,by,conditioning,on,multiple,time,steps,into,the,past.,This,is,especially,relevant,when,there,is,no,clear,time,scale,separation,between,the,submodels.,In,essence,,by,conditioning,as,𝜇!"#,|,𝑋’!,,𝑋’!$#,,𝑋’!$%,,…,,,𝜇"!,,𝜇"!$#,,𝜇"!$%,,…,we,identify,a,subset,of,candidate,𝜇!"#,reference,samples,,from,which,we,randomly,sample,one,value,(i.e.,𝜇"!"#),to,be,used,as,the,prediction,for,the,next,time,step,𝑡!"#.,Eq.,(1),describes,a,class,of,different,models.,Within,VECMA,,we,have,implemented,a,model,based,on,the,so-called,“binning”,concept,from,[33];,see,[34].,Here,,the,space,of,conditioning,variables,is,discretized,into,a,set,of,non-overlapping,bins,,where,each,bin,contains,a,given,number,of,reference,samples,from,µ.,This,is,a,direct,way,to,identify,the,required,subset,of,reference,samples,,since,the,conditioning,variables,will,lie,inside,a,single,bin,at,every,time,step.,The,results,of,the,implementation,were,positive,[34].,Notwithstanding,this,,a,downside,of,the,approach,is,that,it,is,subject,to,the,curse,of,dimensionality,,since,the,number,of,bins,grows,exponentially,with,the,number,of,time-lagged,conditioning,variables.,To,circumvent,this,problem,,we,have,developed,a,conditional,resampling,model,based,on,probabilistic,classification,via,machine,learning,[35].,Now,,instead,of,binning,the,conditioning,variables,,the,output,(i.e.,the,reference,𝜇,samples),is,placed,into,𝐾,non-overlapping,bins.,The,advantage,is,that,this,avoids,the,curse,of,dimensionality,,since,we,do,not,include,any,memory,in,the,output,,i.e.,the,number,of,bins,remains,equal,to,𝐾.,A,neural,network,is,used,to,learn,a,discrete,probability,mass,function,(PMF),over,the,𝐾,output,bins,,conditional,on,the,time-lagged,macroscopic,input,features.,At,any,timestep,,they,can,sample,a,bin,index,from,this,PMF,,and,subsequently,resample,𝜇,reference,data,from,the,designated,bin,,see,Figure,3.,They,applied,these,stochastic,surrogates,to,problems,in,the,context,of,climate,modelling.,As,mentioned,earlier,,the,goal,here,is,to,obtain,a,surrogate,such,that,the,overall,,time-averaged,statistics,of,the,macroscopic,solver,are,accurately,captured.,The,results,obtained,to,date,are,positive,,when,applied,to,a,simplified,atmospheric,model,[35],and,to,a,more,complex,two-dimensional,ocean,circulation,model,[34].,Furthermore,,the,neural,network,approach,has,been,extended,to,include,a,kernel-mixture,network,[36],,enabling,construction,of,a,continuous,Probability,Density,Function,(PDF),instead,of,the,discrete,PMF,used,until,now.,Figure,3:,Schematic,representation,of,the,neural,network,used,for,resampling-based,stochastic,surrogate,modelling,,as,proposed,in,[35].,4.2,Data-driven,reduced,surrogates,Multiscale,models,often,have,a,high,dimensional,state,space.,As,a,consequence,,the,target,of,a,surrogate,model,,for,instance,a,subgrid-scale,term,in,a,turbulence,simulation,,also,has,a,high,number,of,degrees,of,freedom.,That,said,,despite,this,high,dimension,,the,QoI,could,just,be,a,function,that,takes,the,high,dimensional,code,output,,and,produces,a,single,scalar.,For,instance,,in,a,climate,context,,it,is,not,uncommon,that,the,QoIs,are,global,,spatially,integrated,,quantities.,Within,VECMA,,we,have,developed,so-called,reduced,surrogate,models,that,exploit,such,a,massive,difference,in,size,between,the,model,state,and,the,QoIs.,A,model,state,has,fixed,parametric,dimension.,Hence,,a,surrogate,model,must,have,the,same,dimension,as,the,original,model.,However,,the,unclosed,component,the,surrogate,models,can,be,controlled.,The,unclosed,component,is,the,only,part,which,must,be,learned,from,data,,as,the,closed,component,is,fully,determined,from,known,variables.,In,the,VECMA,project,,a,procedure,has,been,developed,where,the,unclosed,component,of,the,surrogate,model,is,of,the,same,size,as,a,set,of,a,priori,defined,integrated,QoIs.,This,can,be,viewed,as,a,pre-processing,procedure,which,generates,new,training,data,that,is,reduced,in,size,by,several,orders,of,magnitude,compared,to,the,original,surrogate,model,𝜇.,For,instance,,if,we,have,a,2D,model,with,64,points,in,each,spatial,direction,,and,our,QoIs,are,4,scalar,time,series,(computed,from,the,high-dimensional,model,state),,we,can,reduce,the,training,data,size,of,each,snap,shot,in,time,from,642,to,4,,without,any,significant,loss,of,accuracy,in,our,QoIs,during,the,training,phase.,Effectively,,instead,of,creating,a,surrogate,for,a,high-dimensional,dynamic,field,,we,only,need,to,create,a,surrogate,for,a,small,number,of,scalar,time,series,,as,far,as,accuracy,in,our,pre-defined,set,of,QoIs,is,concerned.,The,methodology,is,described,in,[37,38].,Briefly,,the,surrogate,model,is,given,by,the,following,expansion:,’,𝜇"(𝑥,,𝑦,,𝑡),=,2,τ&(𝑡)𝑃&(𝑥,,𝑦,,𝑡),&(#,Here,,τ&(𝑡),are,the,generated,new,training,data,for,which,a,surrogate,must,be,learned,,and,the,𝑃&(𝑥,,𝑦,,𝑡),are,dynamic,fields,which,are,completely,made,up,of,known,,(macroscopic),variables.,Hence,,the,𝑃&,do,not,need,to,be,learned,from,data,,and,can,be,computed,without,reference,to,the,expensive,micro,model.,In,principle,,any,type,of,surrogate,can,be,trained,on,the,generated,τ,time,series,data.,Thus,far,,we,have,only,tested,this,method,on,two-dimensional,problems.,The,reduction,in,training,data,size,for,three-dimensional,problems,will,even,be,greater,(e.g.,643,to,4,in,our,example).,However,,our,current,focus,lies,on,training,surrogates,on,the,generated,reduced,training,data,,and,solving,the,equations,with,a,trained,reduced,(microscopic),surrogate,in,place.,This,is,a,challenging,problem,,as,a,surrogate,(in,general),is,trained,offline,to,fit,the,training,data.,It,is,not,directly,trained,to,perform,well,in,an,online,coupled,modelling,environment,,in,which,there,is,a,two-way,interaction,between,the,surrogate,and,the,(macroscopic),governing,equations.,This,does,not,have,to,be,a,problem,(see,e.g.,[35]),,although,we,(and,others),have,also,observed,that,this,can,yield,incorrect,results.,To,circumvent,this,,we,are,currently,investigating,the,effectiveness,of,a,second,,online,training,phase,,see,the,work,of,[68],for,the,general,methodology.,5,Semi-intrusive,uncertainty,quantification,for,multi-model,applications,The,semi-intrusive,methods,for,multiscale,UQ,are,a,family,of,algorithms,which,employ,the,structure,of,the,multiscale,and,multi-physics,codes,in,order,to,perform,an,efficient,UQ,,that,is,,estimating,the,uncertainties,with,comparable,quality,as,the,black,box,MC,method,,but,with,a,substantially,reduced,execution,time.,According,to,the,Multiscale,Modelling,and,Simulation,Framework,[55],,instead,of,considering,the,whole,code,as,a,black-box,,the,code,can,be,seen,as,a,collection,of,coupled,single,scale,black-box,sub-models.,Thus,,the,semi-intrusiveness,of,the,methods,boils,down,to,a,limited,inspection,of,the,multi-model,code,,which,is,only,up,to,the,level,of,single,scale,components,and,their,coupling.,Below,the,main,ideas,behind,the,semi-intrusive,UQ,methods,is,described.,5.1,Semi-intrusive,Monte,Carlo,Figure,4:,Semi-intrusive,Monte,Carlo,method,applied,to,a,coupled-model,application,consisting,of,submodels,𝑀,and,𝜇.,A,smaller,number,of,samples,of,the,expensive,submodel,𝜇,are,simulated,using,advanced,sampling.,Semi-intrusive,Monte,Carlo,(SIMC),is,a,Monte,Carlo,method,with,a,reduced,number,of,samples,of,the,expensive,component,of,the,multiscale,model,,see,Figure,4.,The,remaining,samples,are,obtained,by,interpolation.,Usually,the,interpolation,method,produces,results,which,are,not,exact,to,the,micro,model,response.,Therefore,,a,statistical,cross-validation,is,applied,to,test,whether,the,interpolation,does,not,lead,to,a,large,error,in,the,estimates,of,uncertainty:,the,error,is,compared,to,the,confidence,interval,of,the,𝑁),MC,estimate,,and,then,,our,algorithm,accepts,the,SIMC,results,when,the,error,is,smaller,than,the,confidence,interval,and,the,MC,results.,All,details,can,be,found,in,[20].,5.2,Metamodeling,of,expensive,sub-model,Surrogate,modelling,is,a,common,approach,to,perform,an,efficient,UQ,for,computationally,intensive,systems,at,a,reduced,amount,of,time,[56,18].,The,idea,of,these,methods,is,to,substitute,the,original,system,by,its,surrogate,,much,like,the,ones,discussed,in,section,4,,which,produces,a,similar,output,,but,their,computational,time,is,lower.,In,the,semi-intrusive,multiscale,metamodeling,method,,these,techniques,are,applied,to,a,single,scale,component,,which,takes,the,largest,portion,of,the,computational,time,[22].,In,this,way,,the,error,introduced,by,the,approximation,is,expected,to,be,small,when,estimating,the,uncertainties,of,the,multiscale,model.,Figure,5,shows,an,example,where,the,micro,model,is,substituted,by,a,surrogate.,The,rest,of,the,multiscale,model,has,the,original,form.,However,,since,the,micro,model,produces,an,approximate,result,,the,output,of,the,macro,model,is,not,the,same,as,the,original,model.,In,this,method,,the,error,will,always,depend,on,the,details,of,the,model.,It,depends,on,the,properties,of,the,micro,model,,for,example,,smoothness,,which,determines,how,difficult,it,will,be,to,approximate,the,original,single,scale,model.,Additionally,,the,error,in,the,estimates,of,uncertainty,also,depends,on,how,sensitive,the,result,of,the,macro,model,is,to,the,output,of,the,micro,model,which,is,replaced,by,a,surrogate.,If,,for,instance,,this,sensitivity,is,low,,it,is,reasonable,to,expect,that,the,error,introduced,by,the,approximation,is,small.,Of,course,,the,error,also,depends,on,the,method,with,which,the,surrogate,is,build.,Figure,5:,Semi-intrusive,multiscale,metamodeling,uncertainty,quantification.,The,expensive,submodel,𝜇,is,replace,by,a,cheaper,surrogate,model,𝜇",when,computing,ensembles,of,simulation,of,the,complete,application,to,perform,UQ.,6,Uncertainty,quantification,toolkit,for,high-performance,computing,Recent,advances,in,the,scale,of,computational,resources,available,,and,the,algorithms,designed,to,exploit,them,,mean,that,it,is,increasingly,possible,to,conduct,the,additional,sampling,required,by,UQ,even,for,highly,complex,calculations,and,workflows.,EasyVVUQ,is,being,developed,as,part,of,the,VECMA,project.,The,aim,is,to,define,stable,interfaces,and,data,formats,that,facilitate,VVUQ,in,the,widest,range,of,applications.,This,would,then,provide,the,platform,to,support,complex,multi-solver,workflows.,Several,software,packages,or,libraries,are,already,available,for,performing,VVUQ,(as,shown,in,the,next,paragraph),,but,in,many,cases,these,rely,on,closed,source,components,and,none,of,them,provide,the,separation,of,concerns,needed,to,allow,the,analysis,of,both,small,local,computations,and,highly,compute,intensive,kernels,(potentially,using,many,thousands,of,cores,and,GPUs,on,HPC,or,cloud,resources).,Consequently,,the,design,of,EasyVVUQ,is,focused,on,making,a,wide,range,of,VVUQ,techniques,available,for,scientists,employing,unmodified,versions,of,existing,applications.,In,particular,,key,considerations,for,us,are,the,ability,to,support,HPC,codes,,large,job,counts,of,the,kind,necessary,for,ensembles,,as,well,as,the,robustness,and,restartability,of,workflows.,Several,other,toolkits,share,a,subset,of,the,added,values,that,VECMAtk,provides.,In,the,area,of,VVUQ,,a,for,Optimization,and,Terascale,Applications,(DAKOTA,,well-known,is,Design,Analysis,toolkit,https://dakota.sandia.gov),[40],,which,provides,a,suite,of,algorithms,for,optimization,,UQ,,parameter,studies,,and,model,calibration.,DAKOTA,is,a,powerful,tool,but,has,a,relatively,steep,learning,curve,due,to,the,large,number,of,tools,available,and,offers,no,way,to,coordinate,resources,across,concurrent,runs,[41].,Similarly,,there,are,other,toolkits,that,help,with,UQ,directly,,such,as,UQTK,[42],and,UQLab,(https://www.uqlab.com),[43].,In,the,area,of,VVUQ,using,HPC,,there,are,several,other,relevant,tools.,OpenTURNS,[44],focuses,on,probabilistic,modelling,and,uncertainty,management,,connects,to,HPC,facilities,,and,provides,calibration/Bayesian,methods,and,a,full,set,of,interfaces,to,optimization,solvers.,Uranie,leverages,the,ROOT,framework,(http://root.cern.ch),to,support,a,wide,range,of,UQ,and,sensitivity,analyses,(SA),activities,using,local,and,HPC,resources.,A,key,requirement,for,performing,many,types,of,UQ,and,SA,is,the,ability,to,effectively,run,large,ensembles,of,simulations,runs.,The,“pilot,job”,mechanism,allows,a,user,to,claim,a,large,portion,of,a,supercomputer,into,which,a,large,and,often,complex,set,of,individual,jobs,are,submitted,to,form,a,workflow.,In,addition,to,QCG-PJ,developed,as,part,of,the,VECMAtk,there,are,tools,such,as,RADICAL-Cybertools,[45],that,can,be,used,to,initiate,and,manage,large,simulation,ensembles,on,peta,and,emerging,exascale,supercomputers.,In,the,area,of,surrogate,modelling,,GPM/SA,[46],helps,to,create,surrogate,models,,calibrates,them,to,observations,of,the,system,,and,give,predictions,of,the,expected,system,response.,At,the,Turing,Institute,,a,Python,package,for,fitting,Gaussian,Process,Emulators,to,computer,simulation,results,call,MOGP,is,being,developed,(https://github.com/alan-turing-institute/mogp-emulator).,There,is,also,a,portfolio,of,available,solutions,for,rapidly,processing,user-defined,experiments,consisting,of,large,numbers,of,relatively,small,tasks.,The,examples,are,Swift/T,[47],and,Parsl,[48],,both,of,which,support,execution,of,data-driven,workflows.,Another,range,of,relevant,related,tools,include,more,statistically,oriented,approaches.,For,instance,,Uncertainpy,[49],is,a,UQ,and,SA,library,that,supports,qMC,and,polynomial,chaos,expansions,(PCE),methods.,PSUADE,[50],is,a,toolbox,for,UQ,,SA,and,model,calibration,in,non-,intrusive,ways,[51],,while,DUE,[52],assesses,uncertain,environmental,variables,,and,generates,realisations,of,uncertain,data,for,use,in,uncertainty,propagation,analyses.,PyMC3,[53],is,a,Python,package,for,Bayesian,statistical,modelling,and,probabilistic,machine,learning,which,focuses,on,Markov,Chain,MC,approaches,and,variational,fitting.,Similarly,,SimLab,(https://ec.europa.eu/jrc/en/samo/simlab),offers,global,UQ-SA,based,on,non-intrusive,MC,methods.,UQLab,and,SAFE,[54],are,MATLAB-based,tools,that,provide,support,for,UQ,(using,e.g.,PCE),and,SA,(using,e.g.,Sobol’s,method),respectively.,It,is,worth,mentioning,that,capabilities,of,Uncertainpy,have,been,integrated,in,EasyVVUQ.,Indeed,,it,is,possible,to,integrate,many,kinds,of,capabilities,within,EasyVVUQ,,as,it,is,designed,to,host,VVUQ,arbitrary,applications,that,may,be,of,interest,now,or,in,the,future.,This,should,be,particularly,convenient,if,currently,un-featured,UQ,techniques,are,to,be,considered,such,as,multilevel,MC,,or,the,mentioned,HDMR,techniques.,7,Review,of,UQ,attempts,on,plasma,fusion,codes,The,application,of,UQ,to,fusion,simulation,codes,has,been,described,in,several,papers,,including,"Validation,in,fusion,research:,Towards,guidelines,and,best,practices"[70],,"Verification,and,validation,for,magnetic,fusion",[3],and,"Validation,metrics,for,turbulent,plasma,transport",[4].,Although,the,UQ,field,has,undergone,rapid,development,over,the,past,few,years,,its,applications,to,plasma,physics,mainly,focus,on,the,two,limits,of,Vlasov,[71-73],and,MHD,[74,,75],with,standard,stochastic,settings.,Apart,from,the,work,in,fluid,dynamics,[76,,77],,to,the,best,of,the,authors',knowledge,,only,limited,work,has,been,conducted,on,the,propagation,of,uncertainty,in,multi-scale,plasma,physics.,Recently,,the,plasma,community,has,recognized,the,importance,of,UQ,in,the,validation,and,prediction,of,magnetically,confined,plasma,turbulence,[4].,Within,the,computational,power,afforded,by,current,supercomputers,at,the,time,,the,plasma,community,has,explored,the,inclusion,of,UQ,in,the,analysis,of,reduced,models,,such,as,trapped-gyro-Landau-fluid,(TGLF),equations,,while,UQ,analysis,in,compute-,intensive,nonlinear,simulations,,e.g.,,gyrokinetic,simulations,,remains,a,challenging,task.,There,is,some,previous,literature,concerning,the,inclusion,of,UQ,in,reduced,model,assessments,and,in,the,fitting,of,experimental,measurements,which,includes,but,is,not,limited,to,[78,,79].,In,more,recent,work,,Calleja,et,al.,[80],address,a,very,concrete,scenario:,the,analysis,of,first,wall,installations,on,the,DEMO,installation.,An,initial,Monte,Carlo,study,of,the,first,wall,is,performed,to,develop,understanding,of,the,complex,effects,of,tile,misalignment.,The,Matlab,toolkit,COSSAN,is,used,to,perform,the,SA,of,the,SMARRDA,plasma,modelling,and,simulation,code.,Another,concrete,application,of,UQ,to,DEMO,by,Lux,et,al,[81],uses,the,PROCESS,fusion,power,plant,systems,code.,A,multi-parameter,Monte-,Carlo,method,together,with,single,parameter,studies,are,performed,to,investigate,individual,impacts,of,performance,parameters,(net,electric,output,and,pulse,length),on,the,fusion,gain.,Lakhlili,et,al.,[82],performed,the,first,UQ,attempt,on,a,multi-model,(multiscale),fusion,workflow,,coupling,a,transport,model,of,plasma,profiles,,a,turbulence,model,of,fluxes,and,an,equilibrium,model,of,plasma,geometries.,The,UQ,was,performed,using,non-intrusive,the,polynomial,chaos,expansion.,Other,advanced,sampling,techniques,have,been,applied,directly,to,plasma,fusion,simulations.,Sensitivity-,driven,adaptive,sparse,stochastic,approximations,in,plasma,microinstability,analysis,was,performed,by,Farcas,et,al,[83].,They,leveraged,Sobol,decompositions,and,introduced,a,sensitivity,scoring,system,to,drive,the,adaptive,process.,Their,second,test,case,was,a,real-world,example,stemming,from,a,particular,validation,study,for,the,ASDEX,Upgrade,experiment.,They,carried,out,a,two-step,analysis,,initially,considering,three,uncertain,inputs,characterizing,the,ions,and,electrons,,and,then,12,stochastic,parameters,associated,with,the,particle,species,and,the,magnetic,geometry.,The,results,showed,that,the,proposed,approach,has,an,accuracy,comparable,to,the,standard,adaptive,approach,at,significantly,reduced,computational,cost;,for,example,,for,the,12D,scenario,,up,to,13.3,fewer,Gene,evaluations.,Xiao,et,al.,[84],introduced,a,stochastic,kinetic,scheme,for,multi-scale,plasma,transport,with,uncertainty,quantification.,They,focused,on,the,emergence,,propagation,and,evolution,of,randomness,from,gyrations,of,charged,particles,in,magnetohydrodynamic,simulations.,Solving,Maxwell's,equations,with,the,wave-,propagation,method,,the,evolutions,of,ions,,electrons,and,the,electromagnetic,field,are,coupled,throughout,the,simulation.,They,combined,the,advantages,of,SG,and,SC,methods,with,the,construction,principle,of,kinetic,schemes,,and,obtained,an,efficient,and,accurate,scheme,for,a,cross-scale,BGK-Maxwell,system,with,uncertainties.,Randomly,initial,inputs,of,both,flow,and,electromagnetic,fields,are,considered.,Finally,,point,collocation,methods,have,been,used,by,Vaezi,et,al.,[85],on,simulations,from,a,validation,study,of,drift-wave,turbulence,in,the,CSDX,linear,plasma,device,experiment,using,BOUT++,[86].,8,Conclusions,We,have,introduced,three,types,of,UQ,approaches,according,to,their,intrusiveness,with,respect,to,the,simulated,application.,At,the,single-model,level,,we,discussed,non-intrusive,and,intrusive,methods.,When,considering,applications,coupling,multiple,models,,we,presented,semi-intrusive,methods,which,enable,to,save,significant,computational,timing,while,avoiding,interfering,with,the,models,equations.,Non-intrusive,and,semi-intrusive,methods,appear,to,be,interesting,candidate,keeping,in,mind,that,the,Neptune,projects,seeks,to,promote,the,separation,of,concerns.,While,intrusive,methods,could,circumvent,the,so-called,curse,of,dimensionality,,they,would,entail,to,implement,UQ,on,a,per-application,basis.,We,have,focused,on,two,specific,types,of,non-intrusive,UQ,methods:,enhanced,sampling,and,surrogate,modelling.,Both,techniques,are,already,available,from,Neptune,partners,,that,is,UCL,and,the,Turing,Institute,with,tools,such,as,EasyVVUQ,,EasySurrogate,and,MOGP,Emulator.,We,introduced,these,tools,as,part,of,a,larger,review,of,(VV)UQ,toolkits,available,which,implement,such,methods,and,render,these,available,for,widespread,use,on,high-performance,computing,infrastructures.,This,report,lays,the,foundations,of,methods,that,will,be,further,investigated,and,tested,during,the,duration,of,this,6-month,project.,Following,the,first,meetings,on,the,theme,of,UQ,which,were,held,mid-January,(workshop,and,hackathon),,enhanced,sampling,techniques,as,well,as,actionability,of,EasyVVUQ,workflows,has,been,tested,by,a,subset,of,Neptune,application,partners.,On,the,basis,of,their,experience,as,well,as,expectations,from,the,whole,project’s,community,,we,will,attempt,to,conclude,on,a,precise,list,of,methods,and,toolkits,to,integrate,UQ,at,the,heart,of,the,future,Neptune,code.,9,References,[1],Oberkampf,,William,L.,,and,Timothy,G.,Trucano.,"Verification,and,validation,in,computational,fluid,dynamics.",Progress,in,Aerospace,Sciences,38.3,(2002):,209-272.,doi:10.1016/S0376-0421(02)00005-2,[2],Terry,,P.,W.,,et,al.,"Task,group,on,verification,and,validation,,US,burning,plasma,organization,,and,US,transport,task,force.",Phys.,Plasmas,15,(2008):,062503.,[3],Greenwald,,Martin.,"Verification,and,validation,for,magnetic,fusion.",Physics,of,Plasmas,17.5,(2010):,058101.,doi:10.1063/1.3298884,[4],Holland,,C.,"Validation,metrics,for,turbulent,plasma,transport.",Physics,of,Plasmas,23.6,(2016):,060901.,doi:10.1063/1.4954151,[5],A.G.,Hoekstra,,B.,Chopard,,D.,Coster,,S.,Portegies,Zwart,,P.,V.,Coveney,,Multiscale,computing,for,science,and,engineering,in,the,era,of,exascale,performance,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,377,(2019),20180144.,doi:10.1098/rsta.2018.0144.,[6],S.,Alowayyed,,D.,Groen,,P.,V.,Coveney,,A.G.,Hoekstra,,Multiscale,Computing,in,the,Exascale,Era,,J.,Comput.,Sci.,22,(2017),15–25.,doi:10.1016/j.jocs.2017.07.004.,[7],A.G.,Hoekstra,,B.,Chopard,,P.,V.,Coveney,,Multiscale,modelling,and,simulation:,a,position,paper,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,372,(2014),20130377.,doi:10.1098/rsta.2013.0377.,[8],P.M.A.,Sloot,,A.G.,Hoekstra,,Multi-scale,modelling,in,computational,biomedicine,,Br.,Bioinform.,11,(2010),142–152.,doi:10.1093/bib/bbp038.,[9],S.,Karabasov,,D.,Nerukh,,A.G.,Hoekstra,,B.,Chopard,,P.,V.,Coveney,,Multiscale,modelling:,approaches,and,challenges,,Philos.,Trans.,R.,Soc.,A.,372,(2014),20130390.,doi:10.1098/rsta.2013.0390.,[10],R.H.,Johnstone,,E.T.Y.,Chang,,R.,Bardenet,,T.P.,de,Boer,,D.J.,Gavaghan,,P.,Pathmanathan,,et,al.,,Uncertainty,and,variability,in,models,of,the,cardiac,action,potential:,Can,we,build,trustworthy,models?,,J.,Mol.,Cell.,Cardiol.,96,(2016),49–62.,doi:10.1016/J.YJMCC.2015.11.018.,[11],R.C.,Smith,,Uncertainty,quantification:,theory,,implementation,,and,applications,,SIAM,,2013.,[12],O.P.,Le,Maître,,O.M.,Knio,,Spectral,Methods,for,Uncertainty,Quantification,,Springer,Netherlands,,Dordrecht,,2010.,doi:10.1007/978-90-481-3520-2.,[13],X.,Wan,,G.E.,Karniadakis,,An,adaptive,multi-element,generalized,polynomial,chaos,method,for,stochastic,differential,equations,,J.,Comput.,Phys.,209,(2005),617–642.,doi:10.1016/J.JCP.2005.03.023.,[14],Groen,,D.,,et,al.,"VECMAtk:,A,Scalable,Verification,,Validation,and,Uncertainty,Quantification,toolkit,for,Scientific,Simulations.",arXiv,preprint,arXiv:2010.03923,(2020).,[15],Richardson,,R.,A.,,Coveney,,P.V.,,et,al.,"EasyVVUQ:,A,Library,for,Verification,,Validation,and,Uncertainty,Quantification,in,High,Performance,Computing.",Journal,of,Open,Research,Software,8.1,(2020).,doi:10.5334/JORS.303,[16],R.C.,Smith,,Uncertainty,quantification:,theory,,implementation,,and,applications,,SIAM,,2013.,[17],Babuska,,Ivo,,Raúl,Tempone,,and,Georgios,E.,Zouraris.,"Galerkin,finite,element,approximations,of,stochastic,elliptic,partial,differential,equations.",SIAM,Journal,on,Numerical,Analysis,42.2,(2004):,800-,825.,doi:10.1137/S0036142902418680,[18],Ghanem,,Roger,G.,,and,Pol,D.,Spanos.,Stochastic,finite,elements:,a,spectral,approach.,Courier,Corporation,,2003.,[19],Giraldi,,Loïc,,et,al.,"To,be,or,not,to,be,intrusive?,The,solution,of,parametric,and,stochastic,equations---the,“plain,vanilla”,Galerkin,case.",SIAM,Journal,on,Scientific,Computing,36.6,(2014):,A2720-,A2744.,doi:10.1137/130942802,[20],Nikishova,,Anna,,and,Alfons,G.,Hoekstra.,"Semi-intrusive,uncertainty,propagation,for,multiscale,models.",Journal,of,Computational,Science,35,(2019):,80-90.,doi:10.1016/j.jocs.2019.06.007,[21],Giles,,Michael,B.,"Multilevel,monte,carlo,path,simulation.",Operations,research,56.3,(2008):,607-,617.,doi:10.1287/opre.1070.0496,[22],Jantsch,,Peter,,Clayton,G.,Webster,,and,Guannan,Zhang.,"On,the,Lebesgue,constant,of,weighted,Leja,points,for,Lagrange,interpolation,on,unbounded,domains.",IMA,Journal,of,Numerical,Analysis,39.2,(2019):,1039-1057.,doi:10.1093/imanum/dry002,[23],Babuška,,Ivo,,Fabio,Nobile,,and,Raúl,Tempone.,"A,stochastic,collocation,method,for,elliptic,partial,differential,equations,with,random,input,data.",SIAM,Journal,on,Numerical,Analysis,45.3,(2007):,1005-,1034.,doi:,10.1137/050645142,[24],Barthelmann,,Volker,,Erich,Novak,,and,Klaus,Ritter.,"High,dimensional,polynomial,interpolation,on,sparse,grids.",Advances,in,Computational,Mathematics,12.4,(2000):,273-288.,doi:10.1023/A:1018977404843,[25],Blatman,,Géraud,,and,Bruno,Sudret.,"Adaptive,sparse,polynomial,chaos,expansion,based,on,least,angle,regression.",Journal,of,computational,Physics,230.6,(2011):,2345-2367.,doi:10.1016/j.jcp.2010.12.021,[26],Migliorati,,Giovanni,,et,al.,"Approximation,of,quantities,of,interest,in,stochastic,PDEs,by,the,random,discrete,L2,projection,on,polynomial,spaces.",SIAM,Journal,on,Scientific,Computing,35.3,(2013):,A1440-,A1460.,[27],Eldred,,Michael,,and,John,Burkardt.,"Comparison,of,non-intrusive,polynomial,chaos,and,stochastic,collocation,methods,for,uncertainty,quantification.",47th,AIAA,aerospace,sciences,meeting,including,the,new,horizons,forum,and,aerospace,exposition.,2009.,doi:10.2514/6.2009-976,[28],Bellman,,R.,"Dynamic,Programming”.,Princeton,University,Press,,Princeton,,New,Jersey,(1957).,[29],Chkifa,,Abdellah,,Albert,Cohen,,and,Christoph,Schwab.,"High-dimensional,adaptive,sparse,polynomial,interpolation,and,applications,to,parametric,PDEs.",Foundations,of,Computational,Mathematics,14.4,(2014):,601-633.,doi:10.1007/s10208-013-9154-z,[30],Narayan,,Akil,,and,John,D.,Jakeman.,"Adaptive,Leja,sparse,grid,constructions,for,stochastic,collocation,and,high-dimensional,approximation.",SIAM,Journal,on,Scientific,Computing,36.6,(2014):,A2952-A2983.,doi:10.1137/140966368,[31],Hackbusch,,Wolfgang.,"Numerical,tensor,calculus.",Acta,Numer.,23,(2014):,651-742.,[32],Uschmajew,,André.,"Zur,Theorie,der,Niedrigrangapproximation,in,Tensorprodukten,von,Hilberträumen.",(2013).,[33],N.,Verheul,,D.,Crommelin,,Data-driven,stochastic,representations,of,unresolved,features,in,multiscale,models,,Communications,in,Mathematical,Sciences,,Vol.,14,(2016),,pp,1213,–,1236.,doi:10.4310/CMS.2016.v14.n5.a2,[34],W.,Edeling,,D.,Crommelin,,Towards,data-driven,dynamics,surrogate,models,for,ocean,flow.,In:,Proceedings,of,the,Platform,for,Advanced,Scientific,Computing,Conference,2019,(PASC,’19),,Zurich,,Switzerland.,ACM,,New,York,,NY,,USA.,doi:10.1145/3324989.3325713,[35],D.,Crommelin,,W.,Edeling,,Resampling,with,neural,networks,for,stochastic,parameterization,in,multiscale,systems,,2020.,arXiv,preprint,arXiv:2004.01457,[36],Ambrogioni,,L.,,Güçlü,,U.,,van,Gerven,,M.,A.,,&,Maris,,E.,The,kernel,mixture,network:,A,nonparametric,method,for,conditional,density,estimation,of,continuous,random,variables,,2017.,arXiv,preprint,arXiv:1705.07111.,[37],W.,Edeling,,D.,Crommelin,,Reduced,model-error,source,terms,for,fluid,flow,,Proceedings,of,UNCECOMP,2019,conference.,doi:10.13140/RG.2.2.36773.35048,[38],W.,Edeling,,D.,Crommelin,,Reducing,data-driven,dynamical,subgrid,scale,models,by,physical,constraints,,Computers,and,Fluids,,2020.,doi:10.1016/j.compfluid.2020.104470,[39],Groen,,Derek,,et,al.,"Introducing,VECMAtk-verification,,validation,and,uncertainty,quantification,for,multiscale,and,HPC,simulations.",International,Conference,on,Computational,Science.,Springer,,Cham,,2019.,doi:10.1007/978-3-030-22747-0_36,[40],Adams,,Brian,M.,,et,al.,"DAKOTA,,a,multilevel,parallel,object-oriented,framework,for,design,optimization,,parameter,estimation,,uncertainty,quantification,,and,sensitivity,analysis:,version,5.0,user's,manual.",Sandia,National,Laboratories,,Tech.,Rep.,SAND2010-2183,(2009).,doi:10.2172/991841,[41],Foley,,Samantha,S.,,et,al.,"Many-task,applications,in,the,Integrated,Plasma,Simulator.",2010,3rd,Workshop,on,Many-Task,Computing,on,Grids,and,Supercomputers.,IEEE,,2010.,doi:10.1109/MTAGS.2010.5699425,[42],Debusschere,,Bert,,et,al.,UQTk:,A,Flexible,Python/C++,Toolkit,for,Uncertainty,Quantification.,No.,SAND2018-4226C.,Sandia,National,Lab.(SNL-NM),,Albuquerque,,NM,(United,States),,2018.,[43],Marelli,,Stefano,,and,Bruno,Sudret.,"UQLab:,A,framework,for,uncertainty,quantification,in,Matlab.",Vulnerability,,uncertainty,,and,risk:,quantification,,mitigation,,and,management.,2014.,2554-2563.,doi:10.1061/9780784413609.257,[44],Baudin,,Michaël,,et,al.,"Open,TURNS:,An,industrial,software,for,uncertainty,quantification,in,simulation.",arXiv,preprint,arXiv:1501.05242,(2015).,[45],Balasubramanian,,Vivek,,et,al.,"Radical-cybertools:,Middleware,building,blocks,for,scalable,science.",arXiv,preprint,arXiv:1904.03085,(2019).,[46],Gattiker,,J.,,et,al.,"Gaussian,process-based,sensitivity,analysis,and,Bayesian,model,calibration,with,GPMSA.",Handbook,of,uncertainty,quantification,(2017):,1-41.,doi:10.1007/978-3-319-11259-6_58-1,[47],Wozniak,,Justin,M.,,et,al.,"Swift/t:,Large-scale,application,composition,via,distributed-memory,dataflow,processing.",2013,13th,IEEE/ACM,International,Symposium,on,Cluster,,Cloud,,and,Grid,Computing.,IEEE,,2013.,doi:10.1109/CCGrid.2013.99,[48],Babuji,,Yadu,,et,al.,"Parsl:,Pervasive,parallel,programming,in,python.",Proceedings,of,the,28th,International,Symposium,on,High-Performance,Parallel,and,Distributed,Computing.,2019.,doi:10.1145/3307681.3325400,[49],Tennøe,,Simen,,Geir,Halnes,,and,Gaute,T.,Einevoll.,"Uncertainpy:,a,python,toolbox,for,uncertainty,quantification,and,sensitivity,analysis,in,computational,neuroscience.",Frontiers,in,neuroinformatics,12,(2018):,49.,doi:,10.3389/fninf.2018.00049,[50],Lawrence,Livermore,National,Laboratory.,2016.,Non-Intrusive,Uncertainty,Quantification:,PSUADE.,https://computing.llnl.gov/projects/psuade-uncertainty-quantification,[51],Hittinger,,J.,A.,,B.,I.,Cohen,,and,R.,I.,Klein.,Uncertainty,Quantification,in,the,Fusion,Simulation,Project,Verification,and,Validation,Activity.,No.,LLNL-TR-458089.,Lawrence,Livermore,National,Lab.,(LLNL),,Livermore,,CA,(United,States),,2010.,doi:10.2172/1119966,[52],Brown,,James,D.,,and,Gerard,BM,Heuvelink.,"The,Data,Uncertainty,Engine,(DUE):,A,software,tool,for,assessing,and,simulating,uncertain,environmental,variables.",Computers,&,Geosciences,33.2,(2007):,172-190.,doi:10.1016/j.cageo.2006.06.015,[53],Salvatier,,John,,Thomas,V.,Wiecki,,and,Christopher,Fonnesbeck.,"Probabilistic,programming,in,Python,using,PyMC3.",PeerJ,Computer,Science,2,(2016):,e55.,doi:10.7717/peerj-cs.55,[54],Pianosi,,Francesca,,Fanny,Sarrazin,,and,Thorsten,Wagener.,"A,Matlab,toolbox,for,global,sensitivity,analysis.",Environmental,Modelling,&,Software,70,(2015):,80-85.,doi:10.1016/j.envsoft.2015.04.009,[55],B.,Chopard,,J.,Borgdorff,,A.G.,Hoekstra,,A,framework,for,multi-scale,modelling,,Philos.,Trans.,R.,Soc.,A.,372,(2014),20130378.,doi:10.1098/rsta.2013.0378.,[56],R.,Archibald,,M.,Chakoumakos,,T.,Zhuang,,Characterizing,the,elements,of,Earth’s,radiative,budget:,Applying,uncertainty,quantification,to,the,CESM,,Procedia,Comput.,Sci.,9,(2012),1014–1020.,doi:10.1016/J.PROCS.2012.04.109.,[57],N.E.,Owen,,P.,Challenor,,P.P.,Menon,,S.,Bennani,,Comparison,of,Surrogate-Based,Uncertainty,Quantification,Methods,for,Computationally,Expensive,Simulators,,SIAM/ASA,J.,Uncertain.,Quantif.,5,(2017),403–435.,doi:10.1137/15M1046812.,[58],A.,Nikishova,,L.,Veen,,P.,Zun,,A.G.,Hoekstra,,Semi-intrusive,multiscale,metamodelling,uncertainty,quantification,with,application,to,a,model,of,in-stent,restenosis,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,377,(2019),20180154.,doi:10.1098/rsta.2018.0154.,[59],Rabitz,,Herschel,,and,Ömer,F.,Aliş.,"General,foundations,of,high-dimensional,model,representations.",Journal,of,Mathematical,Chemistry,25.2,(1999):,197-233.,[60],Ma,,Xiang,,and,Nicholas,Zabaras.,"An,adaptive,high-dimensional,stochastic,model,representation,technique,for,the,solution,of,stochastic,partial,differential,equations.",Journal,of,Computational,Physics,229.10,(2010):,3884-3915.,[61],Ma,,Xiang,,and,Nicholas,Zabaras.,"An,adaptive,hierarchical,sparse,grid,collocation,algorithm,for,the,solution,of,stochastic,differential,equations.",Journal,of,Computational,Physics,228.8,(2009):,3084-3113.,[62],Witteveen,,Jeroen,AS,,and,Gianluca,Iaccarino.,"Simplex,stochastic,collocation,with,ENO-type,stencil,selection,for,robust,uncertainty,quantification.",Journal,of,Computational,Physics,239,(2013):,1-,21.,[63],Edeling,,Wouter,Nico,,Richard,P.,Dwight,,and,Paola,Cinnella.,"Simplex-stochastic,collocation,method,with,improved,scalability.",Journal,of,Computational,Physics,310,(2016):,301-328.,[64],Constantine,,Paul,G.,,Eric,Dow,,and,Qiqi,Wang.,"Active,subspace,methods,in,theory,and,practice:,applications,to,kriging,surfaces.",SIAM,Journal,on,Scientific,Computing,36.4,(2014):,A1500-A1524.,[65],Liu,,Xiaoyu,,and,Serge,Guillas.,"Dimension,reduction,for,Gaussian,process,emulation:,An,application,to,the,influence,of,bathymetry,on,tsunami,heights.",SIAM/ASA,Journal,on,Uncertainty,Quantification,5.1,(2017):,787-812.,[66],Tripathy,,Rohit,,and,Ilias,Bilionis.,"Deep,active,subspaces:,A,scalable,method,for,high-dimensional,uncertainty,propagation.",ASME,2019,International,Design,Engineering,Technical,Conferences,and,Computers,and,Information,in,Engineering,Conference.,American,Society,of,Mechanical,Engineers,Digital,Collection,,2019.,[67],Tripathy,,Rohit,K.,,and,Ilias,Bilionis.,"Deep,UQ:,Learning,deep,neural,network,surrogate,models,for,high,dimensional,uncertainty,quantification.",Journal,of,computational,physics,375,(2018):,565-588.,[68],Rasp,,Stephan.,"Coupled,online,learning,as,a,way,to,tackle,instabilities,and,biases,in,neural,network,parameterizations:,general,algorithms,and,Lorenz,96,case,study,(v1.,0).",Geoscientific,Model,Development,13.5,(2020):,2185-2196.,[69],Edeling,,Wouter,,et,al.,"Model,uncertainty,and,decision,making:,Predicting,the,Impact,of,COVID-19,Using,the,CovidSim,Epidemiological,Code.",(2020).,[70],Greenwald,,Martin.,"Beyond,benchmarking—how,experiments,and,simulations,can,work,together,in,plasma,physics.",Computer,physics,communications,164.1-3,(2004):,1-8.,[71],Hu,,Jingwei,,Shi,Jin,,and,Ruiwen,Shu.,"A,Stochastic,Galerkin,Method,for,the,Fokker–Planck–,Landau,Equation,with,Random,Uncertainties.",XVI,International,Conference,on,Hyperbolic,Problems:,Theory,,Numerics,,Applications.,Springer,,Cham,,2016.,[72],Jin,,Shi,,and,Yuhua,Zhu.,"Hypocoercivity,and,Uniform,Regularity,for,the,Vlasov--Poisson--Fokker--,Planck,System,with,Uncertainty,and,Multiple,Scales.",SIAM,Journal,on,Mathematical,Analysis,50.2,(2018):,1790-1816.,[73],Ding,,Zhiyan,,and,Shi,Jin.,"Random,regularity,of,a,nonlinear,Landau,Damping,solution,for,the,Vlasov-Poisson,equations,with,random,inputs.",International,Journal,for,Uncertainty,Quantification,9.2,(2019).,[74],Phillips,,Edward,G.,,and,Howard,C.,Elman.,"A,stochastic,approach,to,uncertainty,in,the,equations,of,MHD,kinematics.",Journal,of,Computational,Physics,284,(2015):,334-350.,[75],Yamazaki,,Kazuo.,"Stochastic,Hall-magneto-hydrodynamics,system,in,three,and,two,and,a,half,dimensions.",Journal,of,Statistical,Physics,166.2,(2017):,368-397.,[76],Hu,,Jingwei,,and,Shi,Jin.,"Uncertainty,quantification,for,kinetic,equations.",Uncertainty,quantification,for,hyperbolic,and,kinetic,equations.,Springer,,Cham,,2017.,193-229.,[77],Liu,,Liu,,and,Shi,Jin.,"Hypocoercivity,based,sensitivity,analysis,and,spectral,convergence,of,the,stochastic,Galerkin,approximation,to,collisional,kinetic,equations,with,multiple,scales,and,random,inputs.",Multiscale,Modeling,&,Simulation,16.3,(2018):,1085-1114.,[78],White,,A.,E.,,et,al.,"Measurements,of,the,cross-phase,angle,between,density,and,electron,temperature,fluctuations,and,comparison,with,gyrokinetic,simulations.",Physics,of,Plasmas,17.5,(2010):,056103.,[79],Chilenski,,M.,A.,,et,al.,"Improved,profile,fitting,and,quantification,of,uncertainty,in,experimental,measurements,of,impurity,transport,coefficients,using,Gaussian,process,regression.",Nuclear,Fusion,55.2,(2015):,023012.,[80],Calleja,,D.,C.,,et,al.,"Strategy,for,Sensitivity,Analysis,of,DEMO,first,wall.",Proceedings,of,the,joint,ICVRAM,ISUMA,UNCERTAINTIES,conference,,Florianopolis,,SC,,Brazil.,2018.,[81],Lux,,H.,,et,al.,"Implications,of,uncertainties,on,European,DEMO,design.",Nuclear,Fusion,59.6,(2019):,066012.,[82],Lakhlili,,J.,,et,al.,"Uncertainty,Quantification,for,Multiscale,Fusion,Plasma,Simulations,with,VECMA,Toolkit.",International,Conference,on,Computational,Science.,Springer,,Cham,,2020.,[83],Farcaş,,I.,,et,al.,"Sensitivity-driven,adaptive,sparse,stochastic,approximations,in,plasma,microinstability,analysis.",Journal,of,Computational,Physics,410,(2020):,109394.,[84],Xiao,,T.,,and,Frank,,M.,"A,stochastic,kinetic,scheme,for,multi-scale,plasma,transport,with,uncertainty,quantification.",Journal,of,Computational,Physics,(2021):,110139.,[85],Vaezi,,P.,,and,Christopher,Holland.,"An,improved,approach,to,uncertainty,quantification,for,plasma,turbulence,validation,studies.",Fusion,Science,and,Technology,74.1-2,(2018):,77-88.,[86],Vaezi,,P.,,et,al.,"Validation,study,of,a,drift-wave,turbulence,model,for,CSDX,linear,plasma,device.",Physics,of,Plasmas,24.9,(2017):,092310.,Report,number:,2047352_1-TN-02,Title:,Recommendations,for,enabling,the,uncertainty,quantification,of,future,multiscale,fusion,modelling,code,Authors:,Maxime,Vassaux,,Wouter,Edeling,,Peter,V.,Coveney,Executive,summary:,Following,our,initial,report,on,existing,uncertainty,quantification,methods,suited,for,single-scale,fusion,models,and,generic,multiscale,workflows,,the,present,document,reports,on,the,process,of,their,implementation,and,application,to,the,building,blocks,of,the,future,NEPTUNE,fusion,multiscale,model.,The,extensive,collaboration,with,the,EU-,funded,VECMA,project,enabled,rapid,prototyping,of,non-intrusive,uncertainty,quantification,all,individual,single-scale,model,applications,involved,in,the,NEPTUNE,project,(BOUT++,,Nektar++,,Particle-in-Cell,method).,The,report,details,the,collaboration,process,via,multiple,hackathons,and,the,benefits,drawn,from,the,mutual,feedback,between,VECMA,and,NEPTUNE,developers.,Drawing,from,collaboration,with,model-order,further,recommendations,and,associated,prospective,developments,toward,accelerated,uncertainty,quantification,based,on,surrogate,models,are,finally,provided.,These,advanced,methods,will,be,key,to,quantifying,uncertainties,in,the,final,multiscale,coupled-,codes,model.,reduction,experts,the,NEPTUNE,consortium,,from,Table,of,contents,1,2,3,Introduction,............................................................................................................................................................,3,Interacting,with,VECMA:,hackathons,and,initial,UQ,attempts,of,applications,use,cases,..............,4,Feedback,from,applications,users,UQ,implementations,..........................................................................,7,4,Methodological,recommendations,...............................................................................................................,12,5,Conclusions,..........................................................................................................................................................,14,6,References,............................................................................................................................................................,15,1,Introduction,It,is,widely,recognised,that,uncertainty,quantification,(UQ),is,essential,for,any,model,simulation,to,be,actionable,,i.e.,,to,have,genuine,predictive,value,for,decision-making,purposes.,Ensemble-based,methods,lie,at,the,heart,of,techniques,enabling,the,evaluation,of,the,uncertainty,associated,with,imperfectly,known,model,parameters.,For,low,dimensional,toy,models,,many,of,these,methods,work,very,well,,but,when,it,comes,to,realistic,,larger-scale,problems,,they,are,subject,to,the,curse,of,dimensionality,,which,implies,that,the,required,number,of,model,evaluations,scale,exponentially,with,the,number,of,uncertain,parameters.,As,a,result,,UQ,can,be,intrinsically,computationally,very,expensive,in,the,case,of,high-dimensional,input,spaces.,Nevertheless,,it,is,often,possible,to,accelerate,UQ,and,reduce,the,computational,cost,in,comparison,to,brute,force,(Quasi),Monte,Carlo,methods,which,exhibit,slow,convergence.,Their,efficiency,depends,on,the,model,equations,,the,simulation,workflow,,and,the,number,of,parameters,in,play.,We,investigate,the,structure,of,the,several,single-scale,codes,which,will,constitute,the,future,NEPTUNE,multiscale,code,and,provide,recommendations,for,integrating,VVUQ.,In,the,NEPTUNE,project,,the,models,and,equations,are,already,specified.,We,perform,a,shortlisting,of,suitable,UQ,methods,for,the,NEPTUNE,code,in,the,present,project.,We,are,familiar,with,such,codes,both,from,personal,experience,with,chaotic,systems,[1],and,our,longstanding,collaboration,with,MPG-IPP.,During,the,first,attempt,to,perform,UQ,on,NEPTUNE,single-scale,models,(BOUT++,,Nektar++,and,EPOCH),,we,gained,further,expertise,with,these,models.,The,major,development,needed,was,to,produce,efficient,surrogate,modelling,methods.,In,particular,,the,BOUT++,application,team,faced,limitations,due,to,sampling,point,selection,with,already,available,stochastic,collocation,and,polynomial,chaos,expansion,surrogate,models.,Similar,limitations,were,faced,by,the,Nektar++,application,team,,in,the,case,of,chaotic,time,series,surrogate,modelling.,The,project,drew,substantially,on,the,VECMA,project,,led,by,the,PI,(PVC),,which,has,been,developing,tools,for,the,VECMA,toolkit,and,provides,training,to,enable,new,users,to,perform,the,rapid,implementation,of,VVUQ,prototypes,as,well,as,robust,solutions.,Details,about,resources,offered,by,and,interactions,with,the,VECMA,project,are,introduced,in,the,second,section.,Expertise,,software,and,support,from,VECMA,have,been,key,for,testing,and,implementation,of,UQ,throughout,the,course,of,this,seven-month,project.,With,such,time,constraints,,we,have,chosen,to,train,NEPTUNE,application,teams,to,implement,and,prototype,their,own,code,UQ.,We,summarise,findings,from,the,NEPTUNE,application,teams,(BOUT++,,Nektar++,and,EPOCH),in,the,third,section.,The,teams,constitute,a,testing,panel,of,the,methods,available,in,the,VECMA,toolkit.,Based,on,their,feedback,from,applying,the,VECMA,toolkit,to,their,single-scale,codes,,we,provide,final,recommendations,for,pursuing,the,development,of,UQ,software,for,the,future,multiscale,fusion,code.,Meanwhile,,in,conjunction,with,the,model-order,reduction,(MOR),team,,prospective,theory,and,algorithms,from,parametric,UQ,and,surrogate,modelling,are,investigated,,among,which,are,active,subspaces,and,advanced,Gaussian,process,(GP),methods.,We,also,discuss,prospective,methods,to,enhance,coupling,between,single-scale,models.,These,methods,are,introduced,in,the,fourth,and,last,section,of,this,report.,2,Interacting,with,VECMA:,hackathons,and,initial,UQ,use,case,applications,2.1,The,project,and,the,toolkit,The,primary,aim,of,the,VECMA,project,is,to,enable,a,diverse,set,of,multiscale,,multiphysics,applications,to,run,on,current,multi-petascale,computers,and,emerging,exascale,environments,with,high,fidelity,such,that,their,output,is,actionable.,The,central,deliverable,is,an,open-source,toolkit,for,multiscale,VVUQ,based,on,generic,multiscale,VV,and,UQ,primitives,,fully,tested,and,evaluated,in,emerging,exascale,environments,,actively,promoted,over,the,lifetime,of,this,project,,and,made,available,in,European,HPC,centres.,The,full,VECMA,toolkit,(VECMAtk),therefore,establishes,a,platform,for,VVUQ,featuring,various,in-built,interfaces,with,HPC,machines.,One,already,available,tool,for,forward,uncertainty,propagation,is,EasyVVUQ,,which,currently,contains,the,following,sampling,methods:,(Quasi),Monte-Carlo,(QMC),methods,,-,-,Polynomial,Chaos,Expansion,(PCE),and,Stochastic,Collocation,(SC),methods,,both,with,full-tensor,grid,and,isotropic,sparse,grid,constructions,,-,Dimension-adaptive,Stochastic,Collocation,,-,GP,surrogates.,QMC,methods,do,not,suffer,from,the,curse,of,dimensionality,but,have,a,slow,(at,most,linear),convergence,rate.,On,the,other,hand,,PC,and,SC,exhibit,exponential,convergence,,but,only,for,a,small,number,of,with,N,being,the,number,of,code,inputs,and,smooth,functions.,Their,cost,typically,scales,as,evaluations,per,input,parameter,,and,d,the,number,of,parameters.,In,the,case,of,isotropic,sparse,grids,,the,exponent,d,is,applied,to,[2],(in,the,error,estimate),,thereby,postponing,,yet,not,eliminating,,the,curse,of,dimensionality.,Via,dimension-adaptive,SC,,the,cost,can,be,reduced,further,by,finding,the,`effective,dimension’,in,an,iterative,fashion.,This,is,the,subset,of,the,stochastic,input,space,responsible,for,most,of,the,output,variance.,We,have,applied,this,to,a,well-known,epidemiological,model,featuring,more,than,900,parameters,[3].,By,means,of,sensitivity,analysis,(SA),and,adaptive,sampling,we,have,been,able,to,find,the,parameters,which,dominate,the,variance,in,the,code’s,output,data;,in,fact,,over,60%,of,the,variance,in,the,model’s,behaviour,is,attributable,to,a,mere,three,parameters.,A,similar,,but,much,more,computationally,demanding,study,on,the,impact,of,random,number,generators,in,molecular-,dynamics,simulations,was,also,recently,reported,by,us,[4].,All,methods,can,estimate,the,output,uncertainty,,as,well,as,provide,(global),sensitivity,estimates,on,the,input,parameters.,These,methods,were,made,fully,available,alongside,training,support,to,all,NEPTUNE,application,teams.,In,turn,,the,toolkit,has,also,been,applied,to,simulations,of,BOUT++,,Nektar++,and,EPOCH,during,hackathons,as,we,discuss,in,the,next,section.,2.2,Expertise,in,fusion,modelling,Our,expertise,in,generic,UQ,methods,and,software,was,supported,by,the,expertise,in,plasma,fusion,modelling,from,colleagues,at,the,Max,Planck,Institute,for,Plasma,Physics,(IPP),who,have,been,working,with,us,during,the,VECMA,project.,IPP,is,one,of,the,largest,fusion,research,centres,in,Europe,,where,the,main,goal,is,to,investigate,the,physical,basis,of,fusion,reactions,used,as,a,new,energy,production,source.,The,Institute,coordinates,leading,expertise,on,both,experimental,and,theoretical,plasma,physics,and,drives,the,development,of,some,of,the,most,advanced,simulation,codes,in,this,field.,IPP,is,also,involved,in,the,Integrated,Modelling,activities,of,EUROfusion,,which,develops,a,simulation,platform,composed,of,a,generic,set,of,tools,for,modelling,an,entire,tokamak,experiment.,IPP,has,implemented,a,multiscale,fusion,model,of,interest,to,the,current,goals,of,NEPTUNE.,In,order,to,bridge,the,space,and,time,scales,,multi-scale,simulations,have,been,performed,coupling,a,gyrofluid,turbulence,code,,GEM,[5],,to,a,transport,code,that,describes,the,evolution,of,the,profiles,[6],,using,the,MUSCLE2,toolkit,(see,figure,1).,In,the,ComPat,project,(preceding,VECMA),,the,gyrofluid,description,of,the,turbulence,was,replaced,with,a,gyrokinetic,description,(5D,,3,of,physical,space,and,2,of,velocity,space).,Two,different,gyrokinetic,codes,are,currently,used:,NEMORB,and,delta-FEFI.,The,particle-in-cell,code,ORB5,[7],is,a,global,code,for,tokamak,turbulence,and,is,able,to,provide,fully,resolved,electrostatic,ITER,simulations,on,present-,day,supercomputers,,using,8k,cores,at,near-optimal,efficiency.,ORB5,has,recently,been,upgraded,to,include,self-consistent,perpendicular,magnetic,field,perturbations.,This,code,,named,NEMORB,[8],,supports,multiple,ion,species,and,electromagnetic,turbulence,studies.,When,using,kinetic,electrons,for,electromagnetic,effects,,the,simulations,become,much,more,challenging,,as,the,particle,count,is,a,factor,50,larger,(400k,cores,,~8TB),,the,time,step,size,at,least,a,factor,20,smaller,,and,the,solver,more,expensive,(two,matrices,to,solve).,The,delta-FEFI,code,[9],is,a,turbulence,simulation,code,solving,the,gyrokinetic,equations,on,a,grid,of,phase,space.,It,is,based,on,a,fluxtube,model,that,treats,the,intrinsic,turbulence,at,one,point,on,a,larger,profile.,Obtaining,the,turbulence,saturation,in,statistical,saturation,with,delta-FEFI,requires,a,100-hour,run,,simulating,1,million,steps,on,10k,cores,,for,one,fluxtube,instance.,Figure,1:,IPP,multiscale,fusion,model.,Schematic,of,the,coupled,models,within,the,plasma,fusion,simulation,workflow.,In,the,VECMA,project,,the,propagation,of,uncertainties,has,been,included,in,this,fusion,simulation,workflow,(see,figure,2),[10].,EasyVVUQ,,QCG-PJ,,and,MUSCLE3,were,used,in,conjunction,to,perform,this,task.,The,turbulence,code,was,used,to,provide,the,transport,coefficients,,but,the,output,from,the,turbulence,code,was,inherently,“noisy”,and,more,effort,is,required,to,extract,as,much,information,as,possible,from,this,noisy,signal,,going,beyond,averaging,to,try,to,quantify,the,uncertainty,interval.,These,uncertainty,intervals,in,the,transport,coefficients,were,then,propagated,through,the,transport,code,to,produce,an,uncertainty,interval,in,the,calculated,profiles,,which,would,then,be,used,in,the,turbulence,code,to,calculate,new,uncertainty,intervals.,We,performed,these,calculations,non-intrusively,using,the,gyro-fluid,code,,but,we,also,sought,more,intelligent,approaches,than,launching,thousands,of,gyrokinetic,simulations.,Other,sources,of,uncertainties,were,also,quantified,and,propagated:,the,transport,code,uses,externally,provided,sources,whose,uncertainties,also,needed,to,be,estimated,and,their,effect,taken,into,account.,Figure,2:,Electron,Te,(a),and,ion,Ti,(b),temperature,profiles,measured,from,two,production,simulations,(with,different,adaptive,time,step,parameters:,in,thick,yellow,lines,with,filled-square,markers,and,in,thick,blue,lines,with,filled-circle,markers),,2,UQ,simulations,(one,with,uncertainties,coming,from,the,electron,heat,source,and,Te,boundary,condition,plotted,in,blue,with,asterisk,markers;,and,the,other,with,uncertainties,coming,from,the,ion,heat,source,and,Ti,boundary,condition,plotted,in,gold,with,outlined-,square,markers),,and,experiments,(shot,no.,36266,in,purple,lines,with,plus,markers,and,no.,36297,in,green,lines,with,×,markers).,The,temperatures,are,plotted,against,normalized,toroidal,flux,coordinate,‘rho_tor_norm’,(figure,retrieved,from,[10]).,2.3,Hackathons,Hackathons,constitute,one,of,the,ways,of,disseminating,knowledge,about,methods,and,technology,developed,within,the,VECMA,project.,Here,,hackathons,were,set,up,to,enable,prototyping,of,UQ,for,NEPTUNE,applications,,by,application,teams,directly,,with,support,from,the,toolkit,developers.,Hackathons,enabled,hands-on,use,of,the,existing,toolkit,but,also,consideration,of,the,actual,design,of,UQ,campaigns,and,therefore,discovery,of,the,limitations,of,existing,methods,for,specific,applications.,The,presence,of,the,developers,also,enabled,live,implementation,of,novel,functionalities,in,the,toolkit,to,support,application,teams’,requests.,During,the,course,of,the,hackathons,,one,request,made,by,the,Exeter,team,led,to,the,addition,of,an,R,language,API,enabling,DataFrame,importation.,We,organised,a,series,of,three,hackathons,in,the,presence,of,VECMAtk,developers,,each,lasting,2,to,3,days.,The,NEPTUNE,community,represented,an,important,part,of,the,participants,in,the,three,hackathons.,We,saw,5,to,10,participants,from,the,NEPTUNE,project,join,the,online,hackathon,meetings,out,of,the,25,to,30,participants.,We,report,the,contributions,of,each,application,team,(BOUT++,,Nektar++,,EPOCH),during,the,hackathons,in,the,following,section.,3,Feedback,from,applications,users,UQ,implementations,Three,application,teams,were,able,to,perform,non-intrusive,UQ,of,their,single-scale,model,simulations.,All,teams,were,able,to,apply,SC,and,PCE,to,compute,sensitivity,and,uncertainty,associated,with,up,to,four,parameters.,There,is,a,consensus,on,using,non-intrusive,surrogates,in,the,long,term,which,will,need,to,be,refined,and,improved,to,handle,a,larger,number,of,input,parameters.,Below,are,reported,the,UQ,attempts,entirely,and,directly,performed,by,the,three,applications,teams.,3.1,Nektar++,Investigations,of,Nektar++,consisted,in,implementing,UQ,of,single-scale,simulations,of,a,heat,transport,model,providing,a,relationship,between,the,quantity,of,interest,(QoI),and,two,dimensionless,numbers.,In,this,preliminary,work,PCE,,SC,,and,GP,were,used,to,fit,various,QoIs,using,EasyVVUQ,only,(not,EasySurrogate).,The,two,input,parameters,,𝑃𝑟,and,𝑅𝑎,,were,respectively,the,Prandtl,number,that,is,the,ratio,of,kinematic,viscosity,to,thermal,diffusivity,(fluid,properties),and,the,Rayleigh,number,,that,is,the,dimensionless,temperature,difference.,𝑅𝑎,was,varied,in,the,range,[1.0x104,,3.2x104],with,log-uniform,distribution;,𝑃𝑟,varied,in,the,range,[1,10],(typical,values,for,experiments,with,air,and,water),with,uniform,distribution.,For,the,steady-state,problem,,the,Nektar++,team,led,by,Ed,Threlfall,was,able,to,perform,SA,and,constructed,PCE,and,SC,surrogates,,both,using,fifth-order,polynomials,during,the,hackathons,(see,figure,3).,Figure,3:,UQ,of,the,horizontal,temperature,profile,halfway,up,the,cavity,(left),,SA,(first-order,Sobol,indices),of,the,two,parameters,(centre),,PCE,and,SC,surrogate,models,of,the,Nusselt,number,(right).,Time-dependent,simulations,were,also,investigated,using,larger,values,of,𝑅𝑎.,A,GP,surrogate,model,for,time,series,was,constructed,using,EasyVVUQ,based,on,12,samples,varying,only,the,parameter,𝑅𝑎.,The,surrogate,model,was,in,excellent,agreement,for,quiescent,cases,(solution,smooth),but,issues,were,revealed,in,the,case,of,higher,Rayleigh,numbers,such,as,a,persistent,offset,(see,figure,4).,More,work,is,needed,to,design,optimal,surrogates,for,chaotic,time,series,,in,particular,surrogates,that,predict,the,correct,phase,diagram,of,the,many,scaling,regimes,in,convective,turbulence.,This,may,require,better,tuning,of,kernel,parameters,for,the,GP,surrogate;,such,methods,will,be,discussed,in,the,next,section.,Figure,4:,Fitting,of,the,maximum,wall,temperature,evolution,for,different,regimes,using,a,GP,surrogate,(Matérn,ν=1.5,in,kernel,,and,𝑅𝑎=105,or,𝑅𝑎=106.5).,3.2,BOUT++,Investigations,of,BOUT++,consisted,in,implementing,UQ,of,single-scale,simulations,of,a,heat,conduction,1D,model,and,a,plasma,physics,2D,model.,In,this,preliminary,work,PCE,,SC,,and,G,were,used,to,fit,various,QoIs,using,EasyVVUQ,but,also,EasySurrogate,in,this,case.,The,work,was,carried,by,a,team,constituted,of,Joseph,Parker,,Peter,Hill,,Ben,Dudson,and,collaborators.,The,1D,model,focuses,on,the,evolution,of,the,temperature,field,expressed,as,different,QoIs:,T(x,,tend),,T(x0,,t),,,log[T(x,,tend)],,varying,the,initial,temperature,and,a,single,diffusivity,parameter,𝝌,(see,figure,3):,Issues,of,negative,values,were,reported,but,later,were,found,to,be,an,artefact,of,polynomial,fitting,to,steep,temperature,gradients,with,respect,to,parameter,variations,near,zero.,The,issue,was,fixed,by,using,higher-order,polynomial,fitting,in,PCE,and,SC.,Adaptive,SC,was,also,used,to,circumvent,the,curse,of,dimensionality,anticipating,performing,UQ,in,high-dimension,parametric,spaces.,Figure,5:,UQ,(top),and,SA,(bottom),of,the,temperature,profile,expressed,either,as,T,(left),or,log(T),(right).,A,second,campaign,was,then,implemented,to,quantify,uncertainty,in,the,evolution,of,density,perturbations,in,2D,plasma,,varying,four,parameters:,background,density,,temperature,,and,2,dissipation,parameters.,Third-order,PCE,would,have,required,1296,cases,,while,SC,only,256,,the,latter,option,was,therefore,retained.,In,later,hackathons,,a,surrogate,model,was,used,to,determine,numerical,parameters,,and,in,particular,numerical,(non-physical),parameters,for,the,design,of,optimal,simulations.,The,simulated,model,consisted,of,the,time,advance,of,hyperbolic,PDE,with,elliptic,PDE,solved,every,time,step:,These,equations,were,solved,using,nested,solvers,,namely,using,CVODE,for,time,and,multigrid,for,spatial,integrations,[11].,The,surrogate,model,was,built,and,trained,for,the,aforementioned,model,which,featured,a,7-dimensional,parameter,space,and,a,non-smooth,dependence,of,behaviour,on,parameters.,The,QoI,in,the,surrogate,model,is,the,error,at,a,given,timestep,,that,is,max(Ea,,,ɑEr),based,on,the,absolute,Ea,,the,relative,Er,error,tolerances,(Ea,,Er,∈,[10−15,1]),and,ɑ,a,representative,value,of,||x||.,The,first,step,consisted,of,using,PCE,and,adaptive,SC,to,generate,the,surrogate,models.,Both,methods,achieved,qualitatively,similar,results,,but,adaptive,SC,required,many,fewer,code,evaluations,(130,vs,441).,Both,types,of,surrogates,provided,a,qualitatively,good,model,of,errors,at,moderate,order,but,over-fitted,the,noisier,data,at,high,order.,One,main,issue,was,that,the,accuracy,of,the,surrogate,models,stopped,increasing,even,though,more,data,was,provided.,Figure,6:,CVODE,-,2D,scan,with,adaptive,SC.,Training,data,obtained,using,a,2D,manual,parameter,sweep,(left),,error,model,prediction,at,partial,convergence,(middle),,at,full,convergence,(right),of,adaptive,SC,algorithm.,Two,more,advanced,surrogate,modelling,methods,were,subsequently,considered:,Artificial,Neural,Network,(ANN),with,EasySurrogate,,and,GPs,with,the,SKLearn,library,in,EasyVVUQ;,both,capabilities,were,added,to,the,VECMA,Toolkit,during,the,period,of,this,project.,ANNs,were,able,to,emulate,the,data,correctly,,at,the,cost,of,training,on,approximately,50%,of,the,dataset.,By,contrast,,GPs,were,able,to,emulate,data,using,only,5%,of,the,dataset,,albeit,the,results,were,highly,sensitive,to,the,sampling,points.,Adaptive,sampling,of,training,data,for,GP,surrogate,models,might,reduce,such,sensitivity,while,preserving,the,need,for,the,smaller,parts,of,the,dataset.,This,is,an,open,question,requiring,further,investigation.,3.3,EPOCH,Investigations,led,by,Tom,Goffrey,and,collaborators,consisted,in,implementing,a,surrogate,model,for,stimulated,Raman,scattering,(SRS),in,laser-plasma,interactions.,The,surrogate,was,trained,using,data,produced,by,the,EPOCH,code,,a,mini-app,version,of,which,is,currently,being,used,in,the,NEPTUNE,project.,The,EPOCH,model,simulations,are,typical,of,particle-based,simulations,yielding,chaotic,systems.,Simulations,featured,5,to,10,parameters,and,PCE,via,EasyVVUQ,was,applied,to,build,the,surrogate,models.,Custom,encoders,and,decoders,were,developed,for,the,campaign,and,execution,featuring,the,QCG-PJ,was,implemented.,A,proof,of,concept,sensitivity,analysis,on,the,performance,of,simulated,laser-,driven,implosions,was,completed.,Further,conclusions,regarding,UQ,of,particle-based,methods,using,EPOCH,were,not,obtained,due,to,time,constraints,during,the,course,of,the,hackathons,and,the,project.,Nonetheless,,in,the,meantime,,we,completed,our,investigations,of,standard,classical,molecular,dynamics,simulations,,another,exemplar,particle-based,simulation,method,[12].,Our,work,is,the,first,and,only,fully,detailed,and,thorough,analysis,of,a,particle-based,code,using,modern,UQ,methods.,Many-body,particle-,based,simulations,are,chaotic,systems.,We,showed,that,the,uncertainty,arises,from,a,combination,of,(i),the,input,parameters,and,(ii),the,intrinsic,stochasticity,of,the,method,controlled,by,the,random,seeds.,We,performed,a,sensitivity,analysis,,which,revealed,that,,out,of,a,total,of,175,parameters,,just,six,dominate,the,variance,in,the,code,output.,The,sensitivity,analysis,computed,first,and,higher-order,Sobol,indices,,which,respectively,highlight,the,individual,and,combined,influence,of,the,parameters.,We,showed,that,simulations,of,free,energies,dampen,the,input,uncertainty,,in,the,sense,that,the,variation,around,the,mean,output,free,energy,is,less,than,the,variation,around,the,mean,of,the,assumed,input,distributions,if,the,output,is,ensemble-averaged,over,the,random,seeds.,Without,such,ensemble,averaging,,the,predicted,free,energy,is,five,times,more,uncertain.,The,distribution,of,the,predicted,properties,is,thus,strongly,dependent,upon,the,random,seed.,Owing,to,this,substantial,uncertainty,,robust,statistical,measures,of,uncertainty,in,molecular,dynamics,simulation,,and,more,widely,we,anticipate,particle-based,simulation,methods,,require,the,use,of,ensembles,in,all,contexts.,3.4,Limitations,of,parametric,UQ,The,aforementioned,variants,of,the,SC/PCE,methods,all,have,underlying,regularity,assumptions,and,might,not,work,well,in,cases,of,discontinuities,or,high,gradients.,The,root,cause,of,this,is,their,use,of,global,interpolation,polynomials.,Future,work,could,focus,on,extending,EasyVVUQ’s,capabilities,by,implementing,a,state-of-the-art,method,with,polynomial,basis,functions,of,local,support,,capable,of,detecting,irregularities,and,local,refinement,[13],,extending,the,applicability,of,EasyVVUQ,to,handle,outputs,with,(local),discontinuities,or,sharp,gradients.,GPs,are,also,capable,of,handling,irregular,outputs,and,have,lower,sampling,costs,(typically,linear,in,the,number,of,parameters),but,the,cost,of,the,fitting,is,cubic,in,the,number,of,code,evaluations.,This,need,will,push,for,the,development,of,high-dimensional,surrogates,in,EasySurrogate,as,we,discuss,in,the,next,section,,to,facilitate,coupling,of,surrogates,(MUSCLE3),and,easy,execution,on,HPC,infrastructures,(QCG-PJ).,4,Methodological,recommendations,In,order,to,pursue,this,initial,UQ,effort,in,the,NEPTUNE,project,,key,challenges,remain,to,be,addressed:,-,Feedback,across,models,at,different,scales,,-,High-dimensional,parameter,spaces,,-,Possible,abrupt,changes,in,physical,regimes,leading,to,biased,training,or,even,unadapted,surrogate,model,methods,,-,Complexities,of,stochastic,outputs,in,particle-based,simulations,,-,Real-time,updating,of,the,parameterisations,when,observations,become,available,or,when,additional,training,is,required.,These,challenges,could,be,tackled,by,investigating,the,methods,described,below,during,the,subsequent,phases,of,the,NEPTUNE,project.,Non-intrusive,UQ,is,not,treated,in,this,section,as,it,has,already,been,largely,discussed,in,the,first,report,2047352,1-TN-01.,In,a,multiscale,model,,the,equations,describing,the,small,scales,tend,to,be,the,most,uncertain,and,represent,the,largest,drain,on,computational,resources.,The,large-scale,models,,on,the,other,hand,,are,often,better,known,and,are,comparatively,cheap.,In,this,context,,it,might,make,sense,to,keep,the,large-,scale,models,intact,,and,only,replace,the,models,that,represent,the,small,scales,with,cheap,approximations.,Gaussian,processes,and,neural,networks,are,key,tools,to,build,such,models.,In,turn,,such,coupled,physical–surrogate,model,systems,can,be,simulated,many,times,at,far,lower,computational,costs,,making,them,suited,for,UQ.,That,said,,depending,on,the,structure,of,the,multiscale,model,,such,a,semi-intrusive,system,can,contain,feedback,between,the,surrogate,and,the,(large-scale),physical,model,,which,might,push,the,surrogate,away,from,the,regime,on,which,it,was,trained.,Dealing,with,such,kinds,of,feedback,should,be,the,target,of,future,work.,One,option,would,be,to,train,the,surrogate,to,output,physics,consistent,with,the,coupled,environment,,rather,than,training,it,`offline’,to,only,represent,(small-,scale),data.,Active,subspace,methods,attempt,to,circumvent,the,curse,of,dimensionality,by,dimension,reduction,of,the,input,space.,Specifically,,the,input,vector,𝑥,∈,ℝ𝐷,is,projected,to,a,lower-dimensional,“active”,subspace,𝑦,∈,ℝ𝑑,,,via,a,tall-and-skinny,matrix,W1,∈,ℝD×d,of,orthogonal,basis,vectors.,The,active,𝑇𝑥,∈,ℝ𝑑,,and,the,idea,is,to,create,a,surrogate,model,in,the,lower-,subspace,is,thus,given,by,𝑦,=,𝑊1,dimensional,space,,rather,than,in,the,original,(high-dimensional),input,space.,The,key,to,this,method,is,finding,the,matrix,W1,,which,identifies,the,directions,in,the,input,space,along,which,the,model,varies,the,most.,The,original,active-subspace,method,[14],builds,this,matrix,from,the,orthogonal,eigenvectors,of,the,symmetric,gradient,matrix.,This,requires,the,gradient,of,the,code,output,with,respect,to,the,inputs,to,be,available,,which,might,be,difficult,in,practice.,For,this,reason,,a,very,promising,alternative,is,the,use,of,active-subspace,variants,which,do,not,require,gradient,information,,in,particular,those,based,on,GPs,[15],and,neural,networks,[16].,One,key,ingredient,is,to,use,Gaussian,Processes,(GPs),as,surrogates,for,(alternatively,“emulators”),of,the,computer,models.,These,are,comparable,to,Polynomial,Chaos,(PC),approaches,in,terms,of,accuracy,[4].,GPs,can,be,readily,parallelised,for,large,input/output,spaces,,as,we,are,doing,in,the,recently,released,Alan,Turing,Institute,Package,for,fitting,Gaussian,Process,Emulators,to,multiple,output,computer,simulation,results.,It,is,named,the,Multi-Output,Gaussian,Process,Emulator,(MOGP),and,relies,on,Research,Software,Engineering,to,manage,,organise,,and,accelerate/parallelise,some,computations.,The,Turing,platform,MOGP,and,its,(relatively),few,existing,tools,for,ROM,can,interoperate,with,other,UQ,platforms,such,as,the,now,mainstream,EasyVVUQ:,both,are,Python,libraries,with,similar,philosophy,but,complement,each,other,in,terms,of,workflows,(which,are,actually,much,more,elaborate,in,EasyVVUQ),,sampling,(more,elaborate,in,MOGP),,surrogates,(PC,and,GP,for,EasyVVUQ,,advanced,GP,for,MOGP),which,are,now,well,understood,and,interchangeable,in,workflows.,In,parameter,estimation,problems,for,chaotic,dynamical,systems,,data,may,only,be,available,in,time-,averaged,form;,or,it,may,be,desirable,to,study,time-averaged,quantities,to,reduce,difficulties,arising,from,the,complex,objective,functions,,with,multiple,local,minima,,which,arise,from,trying,to,match,trajectories.,Indeed,,the,idea,fits,the,more,general,framework,of,“feature-based,data,assimilation”,which,,in,turn,,is,closely,related,to,the,idea,of,extracting,sufficient,statistics,from,the,raw,data.,Many,parameter,estimation,problems,arising,in,applications,can,be,cast,in,the,framework,of,Bayesian,inversion.,This,allows,not,only,for,an,estimate,of,the,parameters,,but,also,for,the,quantification,of,uncertainties,in,the,estimates.,Data,Assimilation,(DA),approaches,have,the,potential,to,greatly,enhance,UQ,methods,and,algorithms,when,data,will,feed,the,models,in,real-time,,as,done,in,so-called,digital,twins’,technology.,This,should,help,in,the,context,of,active,or,online,training,of,surrogates,,incorporating,data,when,necessary.,When,observations,or,additional,data,become,available,,the,UQ,approach,of,Bayesian,calibration,against,observations,can,be,employed.,This,approach,needs,work,in,the,context,of,nuclear,fusion,due,to,both,the,high,dimensionality,of,the,problem,and,the,requirement,for,speed.,When,observations,become,available,for,updates,in,real-time,(even,with,proxies,for,simple,experiments),it,may,be,possible,to,carry,out,DA.,Real-time,requires,extremely,highly,optimised,and,robust,techniques,and,software,,which,will,be,a,serious,undertaking,within,future,activities,in,the,NEPTUNE,project.,Particle,filters,(PFs),[17,18],offer,an,ensemble-based,approach,to,sequential,state,inference,that,provides,consistent,estimates,for,non-,Gaussian,distributions.,The,simplest,variant,,the,bootstrap,PF,,alternates,propagating,the,ensemble,members,forward,in,time,under,the,model,dynamics,with,resampling,according,to,weights,calculated,from,the,likelihood,of,the,particles,given,the,observed,data.,While,PFs,offer,asymptotically,consistent,inference,for,general,state,space,models,,in,practice,they,typically,suffer,from,weight-degeneracy,in,high-,dimensional,systems:,after,propagation,only,a,single,particle,has,non-negligible,weight.,For,even,simple,linear-Gaussian,models,,PFs,have,been,shown,to,require,an,ensemble,size,which,scales,exponentially,with,the,number,of,observations,to,avoid,degeneracy,[19,20,21].,For,large,state,dimensions,,even,inference,in,linear-Gaussian,models,using,the,Kalman,filter,(KF),is,computationally,infeasible,due,to,the,high,processing,and,memory,costs,of,operations,involving,the,full,covariance,matrix,of,the,state,distribution.,This,motivated,the,development,of,ensemble,Kalman,filter,(EnKF),methods,[22],which,use,an,ensemble,of,particles,to,represent,the,state,distribution,rather,than,the,full,mean,and,covariance,statistics.,As,the,ensemble,sizes,used,are,typically,much,smaller,than,the,state,dimension,the,computational,savings,can,be,considerable.,Although,EnKF,methods,are,only,rigorously,valid,in,an,infinite,ensemble,limit,for,linear-Gaussian,models,[23],,they,have,been,empirically,found,to,perform,well,in,models,with,weakly,non-linear,state,update,and,observation,operators,,even,when,using,relatively,small,ensembles,of,size,much,less,than,the,state,dimension,[24];,the,performance,of,the,EnKF,in,non-,asymptotic,regimes,has,been,theoretically,investigated,in,several,recent,works,[25,26].,The,RADDISH,project,(Real-time,Advanced,Data,Assimilation,for,Digital,Simulation,of,Numerical,Twins,on,HPC),led,by,Serge,Guillas,offers,new,techniques,and,tools,(https://github.com/Team-RADDISH),to,overcome,the,serious,issues,which,will,arise,,confronting,EnKF,due,to,nonlinearities,and,non-normal,statistics,through:,-,a,particle,filter,method,,powerful,yet,general;,-,a,geometrically-driven,and,enhanced,EnKF,when,parameters,need,to,be,estimated,as,well,as,state,space,updated.,5,Conclusions,Our,original,shortlist,of,suitable,UQ,methods,has,now,been,made,available,within,the,VECMA,toolkit,for,implementation,and,testing,by,the,NEPTUNE,application,teams.,Prototype,UQ,campaigns,on,NEPTUNE,single-scale,models,(BOUT++,,Nektar++,and,EPOCH),were,performed,during,three,hackathons,which,we,organised,during,the,course,of,the,project.,Such,extensive,testing,helped,to,generate,specific,knowledge,on,the,single-scale,models,as,well,as,the,efficiency,of,the,UQ,methods.,We,noted,the,limitations,of,current,non-intrusive,methods,(PCE,,SC),to,handle,high-dimension,parametric,spaces.,We,also,reached,the,limits,of,PCE,and,SC,to,build,surrogate,models,,in,terms,of,accuracy,and,training,data,required.,Recommendations,for,major,developments,needed,in,the,future,include:,-,dimension,reduction,methods,based,on,active,subspaces,,-,production,of,efficient,surrogate,modelling,methods,-,online,learning,methodology,such,as,DA.,Indeed,,the,BOUT++,application,team,faced,limitations,due,to,sampling,point,selection,within,the,stochastic,collocation,and,polynomial,chaos,expansion,surrogate,models,that,were,available.,Similar,limitations,were,faced,by,the,Nektar++,application,team,in,the,case,of,chaotic,time,series,surrogate,modelling.,Advanced,surrogate,modelling,techniques,will,be,key,as,they,lessen,the,computational,and,mathematical,complexity,of,challenging,codes,and,their,UQ.,For,instance,,inputs,can,be,reduced,to,a,smaller,set,,either,by,ruling,out,parameters,or,in,terms,of,dimensionality,[27,28].,Similarly,,outputs,can,be,shrunk,to,a,more,manageable,representation,in,terms,of,basis,expansions,of,either,time,series,of,outputs,or,spatial,representations.,6,References,1.2,Phys,(2021):,Science,Plasmas,Available,2005;12(10):1–18.,code",,Nature,Computational,[1],Boghosian,,B.,M.,,Coveney,,P.,V.,,&,Wang,,H.,(2019).,A,new,pathology,in,the,simulation,of,chaotic,dynamical,systems,on,digital,computers.,Advanced,Theory,and,Simulations,,2(12),,1900125.,[2],Smolyak,,S.,,Quadrature,and,Interpolation,Formulas,for,Tensor,Products,of,Certain,Classes,of,Functions,,Doklady,Akademii,Nauk,SSSR,,Volume,4,,1963,,pp.,240-243.,[3],Edeling,,W.,,Coveney,,P.V.,,et,al.,"The,impact,of,uncertainty,on,predictions,of,the,CovidSim,epidemiological,128-135.,Doi:,https://doi.org/10.1038/s43588-021-00028-9,[4],Vassaux,,M.,,Edeling,,W.,,Coveney,,P.V.,,et,al.,"On,the,need,for,ensembles,to,handle,aleatoric,and,parametric,uncertainty,in,molecular,dynamics,simulation.",(2021),,Journal,of,Chemical,Theory,and,Computation.,Doi:,https://doi.org/10.1021/acs.jctc.1c00526,[5],Scott,BD.,Free-energy,conservation,in,local,gyrofluid,from:,[Internet].,models.,http://dx.doi.org/10.1063/1.2064968,[6],Coster,DP,,Basiuk,V,,Pereverzev,G,,Kalupin,D,,Zagórksi,R,,Stankiewicz,R,,et,al.,The,European,Transport,Solver.,IEEE,Trans,Plasma,Sci.,2010;38(9,PART,1):2085–92.,[7],Jolliet,S,,Bottino,A,,Angelino,P,,Hatzky,R,,Tran,TM,,Mcmillan,BF,,et,al.,A,global,collisionless,PIC,code,in,magnetic,coordinates.,Comput,Phys,Commun.,2007;177(5):409–25.,[8],Bottino,a,,Vernay,T,,Scott,B,,Brunner,S,,Hatzky,R,,Jolliet,S,,et,al.,Global,simulations,of,tokamak,microturbulence:,finite-β,effects,and,collisions.,Plasma,Phys,Control,Fusion.,2011,Dec;53(12):124027.,[9],Scott,B.,Gyrokinetic,Edge,Turbulence,and,the,Edge,/,Core,Transition.,In:,Second,IAEA,Technical,Meeting,on,the,Theory,of,Plasma,Instabilities:,Transport,,Stability,and,their,Interaction.,2005,[10],Luk,,O.,O.,,Lakhlili,,J.,,Hoenen,,O.,,von,Toussaint,,U.,,Scott,,B.,D.,,&,Coster,,D.,P.,(2021).,Towards,validated,multiscale,simulations,for,fusion.,Philosophical,Transactions,of,the,Royal,Society,A,,379(2197),,20200074.,[11],Hindmarsh,,A.,C.,,Brown,,P.,N.,,Grant,,K.,E.,,Lee,,S.,L.,,Serban,,R.,,Shumaker,,D.,E.,,and,Woodward,,C.,S.,(2005).,SUNDIALS:,Suite,of,nonlinear,and,differential/algebraic,equation,solvers.,ACM,Transactions,on,Mathematical,Software,,31,,363–396.,[12],Vassaux,,M.,,Wan,,S.,,Edeling,,W.,N.,,&,Coveney,,P.,V.,(2021).,Ensembles,Are,Required,to,Handle,Aleatoric,and,Parametric,Uncertainty,in,Molecular,Dynamics,Simulation.,Journal,of,Chemistry,Theory,and,Computation,,in,press,,doi:,10.1021/acs.jctc.1c00526,[13],Edeling,,W.,N.,,Dwight,,R.,P.,,&,Cinnella,,P.,(2016).,Simplex-stochastic,collocation,method,with,improved,scalability.,Journal,of,Computational,Physics,,310,,301-328.,[14],Constantine,,P.,G.,,Dow,,E.,,&,Wang,,Q.,(2014).,Active,subspace,methods,in,theory,and,practice:,applications,to,kriging,surfaces.,SIAM,Journal,on,Scientific,Computing,,36(4),,A1500-A1524.,[15],Liu,,X.,,&,Guillas,,S.,(2017).,Dimension,reduction,for,Gaussian,process,emulation:,An,application,to,the,influence,of,bathymetry,on,tsunami,heights.,SIAM/ASA,Journal,on,Uncertainty,Quantification,,5(1),,787-812.,[16],Tripathy,,R.,,&,Bilionis,,I.,(2019,,August).,Deep,active,subspaces:,A,scalable,method,for,high-,dimensional,uncertainty,propagation.,In,International,Design,Engineering,Technical,Conferences,and,Computers,and,Information,in,Engineering,Conference,(Vol.,59179,,p.,V001T02A074).,American,Society,of,Mechanical,Engineers,[17],Gordon,,N.,J.,,David,,J.,S.,,and,Smith,,A.,"Novel,approach,to,nonlinear/non-Gaussian,Bayesian,state,estimation.",IEE,Proceedings,F-radar,and,signal,processing.,Vol.,140.,No.,2.,IET,,1993.,[18],Del,Moral,,P.,"Nonlinear,filtering:,Interacting,particle,resolution.",Comptes,Rendus,de,l'Académie,des,Sciences-Series,I-Mathematics,325.6,(1997):,653-658.,[19],Snyder,,C.,,Bengtsson,,T.,,Bickel,,P.,,and,Anderson,,J.,"Obstacles,to,high-dimensional,particle,filtering.",Monthly,Weather,Review,136.12,(2008):,4629-4640.,[20],Bengtsson,,T.,,Bickel,,P.,,and,Li,,B.,"Curse-of-dimensionality,revisited:,Collapse,of,the,particle,filter,in,very,large,scale,systems.",Probability,and,statistics:,Essays,in,honor,of,David,A.,Freedman.,Institute,of,Mathematical,Statistics,,2008.,316-334.,[21],Snyder,,C.,"Particle,filters,,the,“optimal”,proposal,and,high-dimensional,systems.",Proceedings,of,the,ECMWF,Seminar,on,Data,Assimilation,for,atmosphere,and,ocean.,2011.,[22],Burgers,,G.,,van,Leeuwen,,P.,J.,,and,Evensen,,G.,"Analysis,scheme,in,the,ensemble,Kalman,filter.",Monthly,weather,review,126.6,(1998):,1719-1724.,[23],Le,Gland,,F.,,Monbet,,V.,and,Tran,,V.-D.,“Large,sample,asymptotics,for,the,ensemble,Kalman,filter”.,In,The,Oxford,Handbook,of,Nonlinear,Filtering,(D.,Crisan,and,B.,Rozovskii,,eds.),598–631,(2011).,Oxford,University,Press.,[24],Evensen,,G.,Data,Assimilation:,The,Ensemble,Kalman,Filter,,2nd,ed,(2009).,Springer.,[25],Del,Moral,,P.,,and,Tugaut,,J..,"On,the,stability,and,the,uniform,propagation,of,chaos,properties,of,ensemble,Kalman–Bucy,filters.",The,Annals,of,Applied,Probability,28.2,(2018):,790-850.,[26],Bishop,,A.,N.,,and,Del,Moral,,P.,"On,the,Stability,of,Matrix-Valued,Riccati,Diffusions”.,arXiv,preprint,arXiv:1808.00235,(2018).,[27],Liu,,X.,,&,Guillas,,S.,(2017).,Dimension,reduction,for,Gaussian,process,emulation:,An,application,to,the,influence,of,bathymetry,on,tsunami,heights.,SIAM/ASA,Journal,on,Uncertainty,Quantification,,5(1),,787-812.,[28],Morris,,M.,D.,(1991).,Factorial,sampling,plans,for,preliminary,computational,experiments.,Technometrics,,33(2),,161-174. :pdfembed:`src:_static/CD-EXCALIBUR-FMS0043-M2.4.2_SelectionUncertaintyQuantification.pdf, height:1600, width:1100, align:middle`