TN-01_ReviewMethodsToolkitsUncertaintyQuantificationSingleCoupledModelApplications ================================================================================== .. meta:: :description: technical note :keywords: Report,number:,2047352_1-TN-01,Title:,Review,of,methods,and,toolkits,for,uncertainty,quantification,of,single,and,coupled-,model,applications,Authors:,Maxime,Vassaux,,Wouter,Edeling,,Peter,V.,Coveney,University,College,London,Executive,summary:,The,present,report,draws,a,concise,review,of,uncertainty,quantification,methods,classified,according,to,their,intrusiveness.,Attentions,is,paid,to,non-intrusive,and,later,semi-intrusive,methods,which,enable,to,define,procedures,which,are,independent,of,the,models,equations,,thus,enabling,full,separation,of,concern.,The,report,also,presents,upto-date,toolkits,,libraries,and,pieces,of,software,that,enable,the,high-throughput,ensemble-based,computations,required,for,verification,,validation,and,uncertainty,quantification.,The,report,concludes,with,a,brief,review,of,direct,attempts,to,quantify,uncertainties,with,existing,plasma,fusion,codes.,1,Introduction,Uncertainty,quantification,,verification,and,validation,processes,are,crucial,in,order,to,demonstrate,the,robustness,of,all,forms,of,simulation.,Code,results,can,be,"validated",by,comparison,with,experiment,in,a,number,of,ways,,ranging,from,qualitative,(subjective),measures,to,quantitative,measures,which,apply,a,validation,metric.,Verification,(confirmation,that,the,mathematical,model,has,been,coded,correctly),and,validation,of,computer,simulations,have,been,discussed,at,length,for,fluid,dynamics,[1].,Applications,to,fusion,have,been,made,in,a,number,of,subsequent,papers,,including,"Validation,in,fusion,research:,Towards,guidelines,and,best,practices",[2],,"Verification,and,validation,for,magnetic,fusion",[3],and,"Validation,metrics,for,turbulent,plasma,transport",[4].,Computer,modelling,is,widely,used,in,science,and,engineering,to,study,systems,of,interest,and,to,predict,their,behaviour.,These,systems,are,usually,multi-scale,or,multi-physics,in,nature,,as,their,accuracy,and,reliability,depend,on,the,correct,representation,of,processes,taking,place,on,several,length,and,time,scales,involving,different,physics,[5–8].,The,resulting,code,often,simulates,a,collection,of,coupled,models.,Moreover,,these,systems,can,be,stochastic,,since,there,are,always,some,unresolved,scales,whose,effects,are,not,taken,into,account,due,to,lack,of,knowledge,or,limitations,of,computational,power,[6,9].,Additionally,,measurements,of,model,parameters,,model,validation,,and,initial,and,boundary,conditions,themselves,can,be,rarely,if,ever,achieved,with,perfect,accuracy,[10].,Therefore,,the,simulation,model,and,its,output,results,inevitably,contain,uncertainties,,and,one,needs,to,estimate,their,magnitudes,by,applying,a,forward,uncertainty,quantification,(UQ),method.,UQ,is,familiar,in,engineering,and,applied,mathematics,communities,but,quite,immature,at,lower,length,and,time,scales,relevant,of,physics,and,chemistry,,let,alone,in,combinations,which,arise,in,multiscale,applications.,Handling,a,large,multiscale/multiphysics,problem,is,arguably,among,the,most,complex,one,can,address.,Collectively,speaking,,verification,,validation,and,UQ,for,such,systems,is,an,active,research,topic,and,off-the-shelf,solutions,remain,absent.,It,is,standard,practice,in,UQ,to,distinguish,two,sources,of,uncertainty,–,“epistemic”,and,“aleatoric”.,The,former,addresses,systematic,errors,(caused,by,parameter,values,,etc.),,the,latter,random,ones,,which,are,linked,to,the,use,of,random,numbers,generators,and,random,seeds.,Importance,must,be,attached,to,intrinsic,stochasticity,coming,from,chaos.,Turbulence,is,the,primary,source,in,fusion,research,,but,it,is,also,present,in,many,particle-based,methods,(such,as,classical,molecular,dynamics).,Our,current,investigations,of,binding,affinity,calculations,using,molecular,dynamics,show,that,aleatoric,uncertainty,can,more,than,double,the,variability,of,predictions,compared,with,studies,performed,without,ensemble,averaging.,For,epistemic,UQ,,information,about,the,distribution,of,the,uncertainty,in,the,parameters,must,be,specified,,but,such,information,is,rather,rarely,known.,In,our,own,work,,we,have,often,had,to,assume,uniform,distributions,across,a,fixed,range,(say,up,to,20%,changes,in,the,parameter,of,interest).,The,purpose,of,the,present,report,is,to,provide,a,short,overview,of,approaches,to,uncertainty,quantification,including,recommendations,as,to,which,are,likely,to,be,of,most,relevance,to,the,Neptune,project.,This,report,draws,heavily,upon,the,experience,gathered,over,recent,years,including,the,past,three,years,running,the,VECMA,project,(www.vecma.eu).,The,goal,of,the,project,is,to,provide,an,open,source,toolkit,(VECMAtk,,www.vecma-toolkit.eu),containing,a,wide,range,of,tools,to,facilitate,the,use,of,VVUQ,techniques,in,multiscale,,multi-physics,applications,[39].,Approaches,are,classified,by,degree,of,intrusiveness,,and,we,focus,on,ones,suited,to,enable,separation,of,concerns,,that,is,avoiding,the,development,of,methods,on,a,per-application,basis.,The,report,then,provides,a,review,of,existing,toolkits,enabling,the,execution,of,UQ,workflows,on,high-performance,computing,infrastructures.,2,Classification,of,methods,by,intrusiveness,Usually,a,distinction,is,made,between,intrusive,UQ,methods,,where,one,substitutes,the,original,model,with,its,stochastic,representation,,and,non-intrusive,methods,,where,the,original,model,is,used,as,a,black-box,[11,12].,Intrusive,methods,are,efficient,and,relatively,easy,to,apply,to,linear,models,,e.g.,[13].,This,,however,,represents,only,a,relatively,small,class,of,models.,They,can,be,applied,to,non-linear,models,as,well,,but,the,solution,of,the,resulting,equations,may,become,very,demanding.,Non-intrusive,methods,can,be,applied,to,any,type,of,non-linear,model.,However,,if,a,single,model,run,requires,large,execution,times,,these,UQ,methods,may,be,ineffective,,or,even,computationally,intractable.,Non-intrusive,uncertainty,propagation,methods,consider,the,entire,system,as,one,black,box,,see,Figure,1.,The,main,advantage,is,that,the,(legacy),simulation,code,is,left,completely,untouched,,hence,the,name,‘non-intrusive’.,This,allows,users,to,quickly,add,a,UQ,component,to,their,existing,simulation,framework.,The,one,thing,any,application,user,must,do,is,write,an,encoder/decoder,to,allow,a,code,of,interest,to,connect,to,EasyVVUQ.,To,facilitate,this,,several,non-intrusive,methods,are,considered,in,the,VECMAtk,[14],and,more,specifically,in,EasyVVUQ,[15],(which,will,be,described,in,section,5):,quasi,Monte,Carlo,(qMC),,Polynomial,Chaos,(PC),and,the,stochastic,collocation,(SC),methods,[16].,All,these,methods,follow,a,similar,pattern,,namely:,1.,Specify,the,input,distributions,and,draw,samples,(create,a,so-called,“design-of-experiment”).,2.,Run,the,ensemble.,3.,Perform,post-processing,analysis.,Figure,1:,Schematic,of,non-intrusive,uncertainty,propagation,through,a,multiscale,system,of,coupled,single-scale,solvers,,mapping,input,distributions,to,a,distribution,of,any,output,Quantity,of,Interest,(QoI).,The,propagation,technique,is,agnostic,with,respect,to,the,structure,of,the,multiscale,system,and,treats,it,as,a,black,box.,The,stochastic,Galerkin,method,[17,,18],is,often,labelled,as,intrusive,,due,to,the,fact,that,dedicated,solvers,have,to,be,developed,in,order,to,tackle,the,stochastic,problem,at,hand.,The,equations,of,the,problem,are,rewritten,directly,with,stochastic,variables.,The,additional,programming,effort,is,usually,regarded,as,a,major,disadvantage,,especially,in,the,case,of,complex,computational,models,whose,software,and,underlying,solvers,are,difficult,to,be,accessed,,modified,or,otherwise,manipulated.,Therefore,,and,despite,the,fact,that,stochastic,Galerkin,methods,have,appealing,properties,for,error,analysis,and,estimation,,collocation,methods,are,generally,preferred,,as,they,allow,for,non-intrusive,,black-box,use,of,the,original,computational,models.,It,must,be,noted,that,the,separation,into,intrusive,and,non-intrusive,methods,is,an,ongoing,topic,of,discussion,,see,e.g.,[19].,An,intermediate,class,of,methods,exist,for,codes,which,couple,multiple,models.,Such,methods,are,called,semi-intrusive,UQ,algorithms,[20].,These,algorithms,are,intrusive,only,on,the,level,of,the,multiscale,model,,that,is,,in,the,way,the,single,scale,components,are,coupled,together.,The,single,scale,components,themselves,are,,however,,treated,as,black-boxes,,see,Figure,2.,Semi-intrusive,algorithms,will,be,discussed,in,more,detail,in,section,6.,None,Figure,2:,Intrusiveness,of,UQ,methods.,The,different,levels,of,intrusiveness,are,associated,with,the,components,of,an,application,which,need,to,be,modified,to,quantify,uncertainty.,3,Enhanced,sampling,methods,Most,commonly,,UQ,studies,rely,on,sampling,methods.,Monte,Carlo,(MC),sampling,converges,irrespective,of,the,number,of,random,variables,(RVs),or,the,regularity,of,the,given,problem,,albeit,with,a,slow,convergence,rate,in,the,mean-square-error,sense.,Improved,cost-error,ratios,can,be,achieved,with,multilevel,MC,methods,[21].,Spectral,UQ,approaches,converge,much,faster,,exponentially,in,the,most,favourable,cases,,for,a,small,to,moderate,number,of,random,inputs,and,smooth,input-to-output,map,[22].,Typical,methods,of,this,type,are,stochastic,collocation,[16,23,24],or,point,collocation,[25,26],methods.,Comparisons,between,stochastic,and,point,collocation,methods,,see,e.g.,[27],,indicate,that,the,former,tends,to,provide,superior,accuracies,and,convergence,rates,for,smooth,quantities,of,interest,(QoI).,However,,since,these,approaches,differ,significantly,,a,fair,comparison,between,the,two,is,still,an,open,research,topic,,as,also,indicated,in,[26].,A,common,bottleneck,of,all,aforementioned,methods,is,the,so-called,“curse,of,dimensionality”,[28],,i.e.,convergence,rates,deteriorate,,and,computational,costs,increase,with,the,number,of,considered,input,parameters,,by,definition,,exponentially.,As,a,possible,remedy,,state-of-the-art,methods,employ,sparse,,adaptively,constructed,polynomial,approximations,,see,e.g.,[29,30],for,adaptive,stochastic,collocation,methods,and,[25],for,adaptive,point,collocation,methods.,While,generally,not,free,of,the,curse,of,dimensionality,,adaptive,methods,exploit,possible,anisotropies,among,the,input,parameters,regarding,their,impact,upon,the,QoI.,Assuming,that,such,anisotropies,exist,,adaptivity,may,enable,studies,with,a,comparably,large,number,of,input,parameters.,More,recently,,tensor,decompositions,(see,[31],and,the,references,therein),have,been,used,to,exploit,possible,low-rank,structures,of,parametric,problems,in,order,to,tackle,the,curse,of,dimensionality.,In,several,cases,,again,relying,on,high,regularity,,superior,asymptotic,convergence,rates,have,been,obtained,compared,to,sparse,grid,methods,[32].,However,,comparisons,between,these,methods,remain,an,active,field,of,research.,In,EasyVVUQ,only,adaptive,stochastic,collocation,methods,were,considered,and,applied,to,the,large-scale,UQ,of,the,CovidSim,code,[69].,In,the,search,for,an,acceptable,compromise,between,computational,work,and,approximation,accuracy,,such,approaches,are,receiving,increasing,attention,in,uncertainty,quantification.,Dimension-adaptive,methods,are,based,on,nested,univariate,collocation,points,,e.g.,Clenshaw-Curtis,and,Genz-Keister,nodes,are,typical,choices,for,uniform,and,normal,input,distributions,,respectively.,The,aforementioned,adaptive,algorithms,don’t,break,the,curse,of,dimensionality,,they,postpone,it.,Although,the,sampling,plan,is,iteratively,refined,in,directions,that,are,found,to,be,more,important,than,others,,they,ultimately,still,create,a,sampling,plan,in,a,high,dimensional,space.,A,class,of,methods,that,attempts,to,circumvent,this,are,the,so-called,High-Dimensional,Model,Representation,(HMDR),models,[59].,Without,going,into,detail,,the,basic,idea,is,to,write,the,model,response,as,an,expansion,of,component,functions,of,increasing,dimension,(akin,to,the,ANOVA,expansion).,The,assumption,is,then,made,that,in,most,physical,models,,(very),high-order,interaction,effects,between,parameters,are,not,important.,This,is,not,proven,,but,often,observed,in,practice.,One,can,then,truncate,the,expansion,at,for,instance,second-,order,interactions.,Each,remaining,component,function,must,now,be,approximated,by,,for,instance,,QMC,or,stochastic,collocation,,which,can,be,readily,performed,since,each,function,is,at,most,two-dimensional.,Thus,,instead,of,trying,to,sample,a,single,high-dimensional,space,as,efficiently,as,possible,,the,problem,is,broken,up,into,a,series,of,low-dimensional,subproblems.,This,could,potentially,be,implemented,in,EasyVVUQ,,since,the,machinery,to,approximate,each,component,function,is,already,in,place.,Note,that,instead,of,manually,choosing,the,order,at,which,to,truncate,the,expansion,,the,order,can,also,be,found,adaptively,[60].,Although,the,number,of,component,functions,can,be,large,,this,algorithm,does,have,a,high,degree,of,parallelism,,as,all,component,functions,of,a,given,order,can,be,approximated,in,parallel.,Thus,far,we,have,discussed,adaptivity,in,the,stochastic,dimensions.,Another,type,of,adaptivity,relates,to,locally,refining,the,stochastic,space,(of,a,given,dimension),,in,the,case,when,the,response,in,this,space,is,not,entirely,regular.,The,stochastic,collocation,and,polynomial,chaos,methods,write,the,code,output,as,an,expansion,over,global,polynomials.,However,,if,say,a,discontinuity,exists,in,the,stochastic,domain,,an,expansion,over,global,polynomials,can,lead,to,the,well-known,Runge,phenomenon.,Various,methods,exist,that,instead,use,a,(polynomial),basis,with,local,support,,e.g.,,Adaptive,Sparse,Grid,methods,[61],or,the,Simplex,Stochastic,Collocation,method,[62].,Adaptivity,in,this,case,means,placing,more,samples,in,regions,of,the,stochastic,space,where,the,solution,is,not,regular.,It,is,also,possible,to,combine,dimension,adaptivity,with,local,adaptivity,,see,e.g.,[63].,Active,subspace,methods,[64],are,a,more,recent,class,of,UQ,methods,that,deal,with,high,dimensional,input,spaces.,These,are,not,adaptive,in,nature,,but,instead,use,gradient,information,to,find,a,matrix,that,projects,the,high-dimensional,input,vector,to,a,low-dimensional,`active,subspace’,,in,which,most,of,the,variation,takes,place.,Although,certainly,promising,,the,classical,active,subspace,method,requires,the,gradient,of,the,output,with,respect,to,the,inputs,to,be,available,,which,will,not,always,be,the,case.,At,the,Turing,Institute,,work,has,been,performed,which,combines,active,subspace,ideas,with,Gaussian,Processes,,without,the,need,for,computing,the,gradients,[65].,Finally,,machine-learning,methods,for,finding,active,subspaces,have,recently,also,been,developed,,for,instance,the,“Deep,active,subspaces”,[66],or,“Deep,UQ”,frameworks,[67].,These,also,work,without,the,need,for,gradients.,An,early,implementation,is,in,development,within,the,EasySurrogate,module,within,the,VECMA,Toolkit.,4,Surrogate,modelling,methods,The,construction,and,use,of,surrogate,models,(also,referred,to,as,metamodels,or,emulators),is,a,central,computational,strategy,in,UQ,[11].,A,surrogate,model,is,trained,or,fitted,to,the,output,of,a,limited,number,of,evaluations,of,an,expensive,computational,model.,Once,trained,,the,surrogate,can,replace,the,expensive,model,and,thereby,enable,tasks,that,require,many,model,evaluations,,e.g.,detailed,assessment,of,forward,uncertainty,propagation,,or,Bayesian,model,calibration.,Techniques,to,construct,surrogates,that,are,well-established,in,the,UQ,domain,include,Non-Intrusive,Spectral,Projection,(based,on,Polynomial,Chaos,Expansion),,interpolating,polynomials,resulting,from,stochastic,collocation,,and,Gaussian,Process,regression,(also,known,as,“kriging”).,They,are,not,specifically,aimed,at,the,multi-model,setting,,however.,A,step,forward,was,the,semi-intrusive,approach,(detailed,in,section,6),where,it,was,shown,that,these,existing,techniques,can,be,successfully,used,as,elements,in,a,multi-model,UQ,framework.,Below,we,give,an,overview,of,newly,developed,,advanced,techniques,to,obtain,a,surrogate,model,𝜇",from,an,original,model,𝜇.,Specifically,,we,discuss:,1.,Stochastic,surrogates,2.,Reduced,surrogates,4.1,Data,driven,stochastic,surrogates,When,given,parametric,states,can,correspond,to,multiple,𝜇,model,states,methods,,stochastic,surrogate,modelling,(or,stochastic,parameterization),of,the,model,are,necessary,to,account,for,the,uncertainty,in,the,𝜇,state.,In,the,VECMA,project,,methods,have,been,developed,that,resample,𝜇,data,coming,from,a,reference,simulation,,conditioned,on,given,parametric,states.,In,our,case,of,multi,scale,modelling,,µ,is,often,a,quantity,derived,from,the,expensive,micro,model,,for,which,we,wish,to,make,a,surrogate.,Furthermore,,et,𝑋,be,some,collection,of,parametric.,This,could,include,the,QoI,𝑄,,although,not,necessarily.,In,general,,our,surrogate,µ",takes,the,form,of,a,conditional,probability,density,function,,i.e.,𝜇"!"#,∼,𝜇!"#,|,𝑋’!,,𝑋’!$#,,𝑋’!$%,,…,,,𝜇"!,,𝜇"!$#,,𝜇"!$%,,…,(1),Here,,the,index,j,corresponds,to,a,given,time,𝑡!.,Thus,,in,addition,to,a,stochastic,nature,,we,also,have,the,option,of,embedding,memory,into,the,surrogate,by,conditioning,on,multiple,time,steps,into,the,past.,This,is,especially,relevant,when,there,is,no,clear,time,scale,separation,between,the,submodels.,In,essence,,by,conditioning,as,𝜇!"#,|,𝑋’!,,𝑋’!$#,,𝑋’!$%,,…,,,𝜇"!,,𝜇"!$#,,𝜇"!$%,,…,we,identify,a,subset,of,candidate,𝜇!"#,reference,samples,,from,which,we,randomly,sample,one,value,(i.e.,𝜇"!"#),to,be,used,as,the,prediction,for,the,next,time,step,𝑡!"#.,Eq.,(1),describes,a,class,of,different,models.,Within,VECMA,,we,have,implemented,a,model,based,on,the,so-called,“binning”,concept,from,[33];,see,[34].,Here,,the,space,of,conditioning,variables,is,discretized,into,a,set,of,non-overlapping,bins,,where,each,bin,contains,a,given,number,of,reference,samples,from,µ.,This,is,a,direct,way,to,identify,the,required,subset,of,reference,samples,,since,the,conditioning,variables,will,lie,inside,a,single,bin,at,every,time,step.,The,results,of,the,implementation,were,positive,[34].,Notwithstanding,this,,a,downside,of,the,approach,is,that,it,is,subject,to,the,curse,of,dimensionality,,since,the,number,of,bins,grows,exponentially,with,the,number,of,time-lagged,conditioning,variables.,To,circumvent,this,problem,,we,have,developed,a,conditional,resampling,model,based,on,probabilistic,classification,via,machine,learning,[35].,Now,,instead,of,binning,the,conditioning,variables,,the,output,(i.e.,the,reference,𝜇,samples),is,placed,into,𝐾,non-overlapping,bins.,The,advantage,is,that,this,avoids,the,curse,of,dimensionality,,since,we,do,not,include,any,memory,in,the,output,,i.e.,the,number,of,bins,remains,equal,to,𝐾.,A,neural,network,is,used,to,learn,a,discrete,probability,mass,function,(PMF),over,the,𝐾,output,bins,,conditional,on,the,time-lagged,macroscopic,input,features.,At,any,timestep,,they,can,sample,a,bin,index,from,this,PMF,,and,subsequently,resample,𝜇,reference,data,from,the,designated,bin,,see,Figure,3.,They,applied,these,stochastic,surrogates,to,problems,in,the,context,of,climate,modelling.,As,mentioned,earlier,,the,goal,here,is,to,obtain,a,surrogate,such,that,the,overall,,time-averaged,statistics,of,the,macroscopic,solver,are,accurately,captured.,The,results,obtained,to,date,are,positive,,when,applied,to,a,simplified,atmospheric,model,[35],and,to,a,more,complex,two-dimensional,ocean,circulation,model,[34].,Furthermore,,the,neural,network,approach,has,been,extended,to,include,a,kernel-mixture,network,[36],,enabling,construction,of,a,continuous,Probability,Density,Function,(PDF),instead,of,the,discrete,PMF,used,until,now.,Figure,3:,Schematic,representation,of,the,neural,network,used,for,resampling-based,stochastic,surrogate,modelling,,as,proposed,in,[35].,4.2,Data-driven,reduced,surrogates,Multiscale,models,often,have,a,high,dimensional,state,space.,As,a,consequence,,the,target,of,a,surrogate,model,,for,instance,a,subgrid-scale,term,in,a,turbulence,simulation,,also,has,a,high,number,of,degrees,of,freedom.,That,said,,despite,this,high,dimension,,the,QoI,could,just,be,a,function,that,takes,the,high,dimensional,code,output,,and,produces,a,single,scalar.,For,instance,,in,a,climate,context,,it,is,not,uncommon,that,the,QoIs,are,global,,spatially,integrated,,quantities.,Within,VECMA,,we,have,developed,so-called,reduced,surrogate,models,that,exploit,such,a,massive,difference,in,size,between,the,model,state,and,the,QoIs.,A,model,state,has,fixed,parametric,dimension.,Hence,,a,surrogate,model,must,have,the,same,dimension,as,the,original,model.,However,,the,unclosed,component,the,surrogate,models,can,be,controlled.,The,unclosed,component,is,the,only,part,which,must,be,learned,from,data,,as,the,closed,component,is,fully,determined,from,known,variables.,In,the,VECMA,project,,a,procedure,has,been,developed,where,the,unclosed,component,of,the,surrogate,model,is,of,the,same,size,as,a,set,of,a,priori,defined,integrated,QoIs.,This,can,be,viewed,as,a,pre-processing,procedure,which,generates,new,training,data,that,is,reduced,in,size,by,several,orders,of,magnitude,compared,to,the,original,surrogate,model,𝜇.,For,instance,,if,we,have,a,2D,model,with,64,points,in,each,spatial,direction,,and,our,QoIs,are,4,scalar,time,series,(computed,from,the,high-dimensional,model,state),,we,can,reduce,the,training,data,size,of,each,snap,shot,in,time,from,642,to,4,,without,any,significant,loss,of,accuracy,in,our,QoIs,during,the,training,phase.,Effectively,,instead,of,creating,a,surrogate,for,a,high-dimensional,dynamic,field,,we,only,need,to,create,a,surrogate,for,a,small,number,of,scalar,time,series,,as,far,as,accuracy,in,our,pre-defined,set,of,QoIs,is,concerned.,The,methodology,is,described,in,[37,38].,Briefly,,the,surrogate,model,is,given,by,the,following,expansion:,’,𝜇"(𝑥,,𝑦,,𝑡),=,2,τ&(𝑡)𝑃&(𝑥,,𝑦,,𝑡),&(#,Here,,τ&(𝑡),are,the,generated,new,training,data,for,which,a,surrogate,must,be,learned,,and,the,𝑃&(𝑥,,𝑦,,𝑡),are,dynamic,fields,which,are,completely,made,up,of,known,,(macroscopic),variables.,Hence,,the,𝑃&,do,not,need,to,be,learned,from,data,,and,can,be,computed,without,reference,to,the,expensive,micro,model.,In,principle,,any,type,of,surrogate,can,be,trained,on,the,generated,τ,time,series,data.,Thus,far,,we,have,only,tested,this,method,on,two-dimensional,problems.,The,reduction,in,training,data,size,for,three-dimensional,problems,will,even,be,greater,(e.g.,643,to,4,in,our,example).,However,,our,current,focus,lies,on,training,surrogates,on,the,generated,reduced,training,data,,and,solving,the,equations,with,a,trained,reduced,(microscopic),surrogate,in,place.,This,is,a,challenging,problem,,as,a,surrogate,(in,general),is,trained,offline,to,fit,the,training,data.,It,is,not,directly,trained,to,perform,well,in,an,online,coupled,modelling,environment,,in,which,there,is,a,two-way,interaction,between,the,surrogate,and,the,(macroscopic),governing,equations.,This,does,not,have,to,be,a,problem,(see,e.g.,[35]),,although,we,(and,others),have,also,observed,that,this,can,yield,incorrect,results.,To,circumvent,this,,we,are,currently,investigating,the,effectiveness,of,a,second,,online,training,phase,,see,the,work,of,[68],for,the,general,methodology.,5,Semi-intrusive,uncertainty,quantification,for,multi-model,applications,The,semi-intrusive,methods,for,multiscale,UQ,are,a,family,of,algorithms,which,employ,the,structure,of,the,multiscale,and,multi-physics,codes,in,order,to,perform,an,efficient,UQ,,that,is,,estimating,the,uncertainties,with,comparable,quality,as,the,black,box,MC,method,,but,with,a,substantially,reduced,execution,time.,According,to,the,Multiscale,Modelling,and,Simulation,Framework,[55],,instead,of,considering,the,whole,code,as,a,black-box,,the,code,can,be,seen,as,a,collection,of,coupled,single,scale,black-box,sub-models.,Thus,,the,semi-intrusiveness,of,the,methods,boils,down,to,a,limited,inspection,of,the,multi-model,code,,which,is,only,up,to,the,level,of,single,scale,components,and,their,coupling.,Below,the,main,ideas,behind,the,semi-intrusive,UQ,methods,is,described.,5.1,Semi-intrusive,Monte,Carlo,Figure,4:,Semi-intrusive,Monte,Carlo,method,applied,to,a,coupled-model,application,consisting,of,submodels,𝑀,and,𝜇.,A,smaller,number,of,samples,of,the,expensive,submodel,𝜇,are,simulated,using,advanced,sampling.,Semi-intrusive,Monte,Carlo,(SIMC),is,a,Monte,Carlo,method,with,a,reduced,number,of,samples,of,the,expensive,component,of,the,multiscale,model,,see,Figure,4.,The,remaining,samples,are,obtained,by,interpolation.,Usually,the,interpolation,method,produces,results,which,are,not,exact,to,the,micro,model,response.,Therefore,,a,statistical,cross-validation,is,applied,to,test,whether,the,interpolation,does,not,lead,to,a,large,error,in,the,estimates,of,uncertainty:,the,error,is,compared,to,the,confidence,interval,of,the,𝑁),MC,estimate,,and,then,,our,algorithm,accepts,the,SIMC,results,when,the,error,is,smaller,than,the,confidence,interval,and,the,MC,results.,All,details,can,be,found,in,[20].,5.2,Metamodeling,of,expensive,sub-model,Surrogate,modelling,is,a,common,approach,to,perform,an,efficient,UQ,for,computationally,intensive,systems,at,a,reduced,amount,of,time,[56,18].,The,idea,of,these,methods,is,to,substitute,the,original,system,by,its,surrogate,,much,like,the,ones,discussed,in,section,4,,which,produces,a,similar,output,,but,their,computational,time,is,lower.,In,the,semi-intrusive,multiscale,metamodeling,method,,these,techniques,are,applied,to,a,single,scale,component,,which,takes,the,largest,portion,of,the,computational,time,[22].,In,this,way,,the,error,introduced,by,the,approximation,is,expected,to,be,small,when,estimating,the,uncertainties,of,the,multiscale,model.,Figure,5,shows,an,example,where,the,micro,model,is,substituted,by,a,surrogate.,The,rest,of,the,multiscale,model,has,the,original,form.,However,,since,the,micro,model,produces,an,approximate,result,,the,output,of,the,macro,model,is,not,the,same,as,the,original,model.,In,this,method,,the,error,will,always,depend,on,the,details,of,the,model.,It,depends,on,the,properties,of,the,micro,model,,for,example,,smoothness,,which,determines,how,difficult,it,will,be,to,approximate,the,original,single,scale,model.,Additionally,,the,error,in,the,estimates,of,uncertainty,also,depends,on,how,sensitive,the,result,of,the,macro,model,is,to,the,output,of,the,micro,model,which,is,replaced,by,a,surrogate.,If,,for,instance,,this,sensitivity,is,low,,it,is,reasonable,to,expect,that,the,error,introduced,by,the,approximation,is,small.,Of,course,,the,error,also,depends,on,the,method,with,which,the,surrogate,is,build.,Figure,5:,Semi-intrusive,multiscale,metamodeling,uncertainty,quantification.,The,expensive,submodel,𝜇,is,replace,by,a,cheaper,surrogate,model,𝜇",when,computing,ensembles,of,simulation,of,the,complete,application,to,perform,UQ.,6,Uncertainty,quantification,toolkit,for,high-performance,computing,Recent,advances,in,the,scale,of,computational,resources,available,,and,the,algorithms,designed,to,exploit,them,,mean,that,it,is,increasingly,possible,to,conduct,the,additional,sampling,required,by,UQ,even,for,highly,complex,calculations,and,workflows.,EasyVVUQ,is,being,developed,as,part,of,the,VECMA,project.,The,aim,is,to,define,stable,interfaces,and,data,formats,that,facilitate,VVUQ,in,the,widest,range,of,applications.,This,would,then,provide,the,platform,to,support,complex,multi-solver,workflows.,Several,software,packages,or,libraries,are,already,available,for,performing,VVUQ,(as,shown,in,the,next,paragraph),,but,in,many,cases,these,rely,on,closed,source,components,and,none,of,them,provide,the,separation,of,concerns,needed,to,allow,the,analysis,of,both,small,local,computations,and,highly,compute,intensive,kernels,(potentially,using,many,thousands,of,cores,and,GPUs,on,HPC,or,cloud,resources).,Consequently,,the,design,of,EasyVVUQ,is,focused,on,making,a,wide,range,of,VVUQ,techniques,available,for,scientists,employing,unmodified,versions,of,existing,applications.,In,particular,,key,considerations,for,us,are,the,ability,to,support,HPC,codes,,large,job,counts,of,the,kind,necessary,for,ensembles,,as,well,as,the,robustness,and,restartability,of,workflows.,Several,other,toolkits,share,a,subset,of,the,added,values,that,VECMAtk,provides.,In,the,area,of,VVUQ,,a,for,Optimization,and,Terascale,Applications,(DAKOTA,,well-known,is,Design,Analysis,toolkit,https://dakota.sandia.gov),[40],,which,provides,a,suite,of,algorithms,for,optimization,,UQ,,parameter,studies,,and,model,calibration.,DAKOTA,is,a,powerful,tool,but,has,a,relatively,steep,learning,curve,due,to,the,large,number,of,tools,available,and,offers,no,way,to,coordinate,resources,across,concurrent,runs,[41].,Similarly,,there,are,other,toolkits,that,help,with,UQ,directly,,such,as,UQTK,[42],and,UQLab,(https://www.uqlab.com),[43].,In,the,area,of,VVUQ,using,HPC,,there,are,several,other,relevant,tools.,OpenTURNS,[44],focuses,on,probabilistic,modelling,and,uncertainty,management,,connects,to,HPC,facilities,,and,provides,calibration/Bayesian,methods,and,a,full,set,of,interfaces,to,optimization,solvers.,Uranie,leverages,the,ROOT,framework,(http://root.cern.ch),to,support,a,wide,range,of,UQ,and,sensitivity,analyses,(SA),activities,using,local,and,HPC,resources.,A,key,requirement,for,performing,many,types,of,UQ,and,SA,is,the,ability,to,effectively,run,large,ensembles,of,simulations,runs.,The,“pilot,job”,mechanism,allows,a,user,to,claim,a,large,portion,of,a,supercomputer,into,which,a,large,and,often,complex,set,of,individual,jobs,are,submitted,to,form,a,workflow.,In,addition,to,QCG-PJ,developed,as,part,of,the,VECMAtk,there,are,tools,such,as,RADICAL-Cybertools,[45],that,can,be,used,to,initiate,and,manage,large,simulation,ensembles,on,peta,and,emerging,exascale,supercomputers.,In,the,area,of,surrogate,modelling,,GPM/SA,[46],helps,to,create,surrogate,models,,calibrates,them,to,observations,of,the,system,,and,give,predictions,of,the,expected,system,response.,At,the,Turing,Institute,,a,Python,package,for,fitting,Gaussian,Process,Emulators,to,computer,simulation,results,call,MOGP,is,being,developed,(https://github.com/alan-turing-institute/mogp-emulator).,There,is,also,a,portfolio,of,available,solutions,for,rapidly,processing,user-defined,experiments,consisting,of,large,numbers,of,relatively,small,tasks.,The,examples,are,Swift/T,[47],and,Parsl,[48],,both,of,which,support,execution,of,data-driven,workflows.,Another,range,of,relevant,related,tools,include,more,statistically,oriented,approaches.,For,instance,,Uncertainpy,[49],is,a,UQ,and,SA,library,that,supports,qMC,and,polynomial,chaos,expansions,(PCE),methods.,PSUADE,[50],is,a,toolbox,for,UQ,,SA,and,model,calibration,in,non-,intrusive,ways,[51],,while,DUE,[52],assesses,uncertain,environmental,variables,,and,generates,realisations,of,uncertain,data,for,use,in,uncertainty,propagation,analyses.,PyMC3,[53],is,a,Python,package,for,Bayesian,statistical,modelling,and,probabilistic,machine,learning,which,focuses,on,Markov,Chain,MC,approaches,and,variational,fitting.,Similarly,,SimLab,(https://ec.europa.eu/jrc/en/samo/simlab),offers,global,UQ-SA,based,on,non-intrusive,MC,methods.,UQLab,and,SAFE,[54],are,MATLAB-based,tools,that,provide,support,for,UQ,(using,e.g.,PCE),and,SA,(using,e.g.,Sobol’s,method),respectively.,It,is,worth,mentioning,that,capabilities,of,Uncertainpy,have,been,integrated,in,EasyVVUQ.,Indeed,,it,is,possible,to,integrate,many,kinds,of,capabilities,within,EasyVVUQ,,as,it,is,designed,to,host,VVUQ,arbitrary,applications,that,may,be,of,interest,now,or,in,the,future.,This,should,be,particularly,convenient,if,currently,un-featured,UQ,techniques,are,to,be,considered,such,as,multilevel,MC,,or,the,mentioned,HDMR,techniques.,7,Review,of,UQ,attempts,on,plasma,fusion,codes,The,application,of,UQ,to,fusion,simulation,codes,has,been,described,in,several,papers,,including,"Validation,in,fusion,research:,Towards,guidelines,and,best,practices"[70],,"Verification,and,validation,for,magnetic,fusion",[3],and,"Validation,metrics,for,turbulent,plasma,transport",[4].,Although,the,UQ,field,has,undergone,rapid,development,over,the,past,few,years,,its,applications,to,plasma,physics,mainly,focus,on,the,two,limits,of,Vlasov,[71-73],and,MHD,[74,,75],with,standard,stochastic,settings.,Apart,from,the,work,in,fluid,dynamics,[76,,77],,to,the,best,of,the,authors',knowledge,,only,limited,work,has,been,conducted,on,the,propagation,of,uncertainty,in,multi-scale,plasma,physics.,Recently,,the,plasma,community,has,recognized,the,importance,of,UQ,in,the,validation,and,prediction,of,magnetically,confined,plasma,turbulence,[4].,Within,the,computational,power,afforded,by,current,supercomputers,at,the,time,,the,plasma,community,has,explored,the,inclusion,of,UQ,in,the,analysis,of,reduced,models,,such,as,trapped-gyro-Landau-fluid,(TGLF),equations,,while,UQ,analysis,in,compute-,intensive,nonlinear,simulations,,e.g.,,gyrokinetic,simulations,,remains,a,challenging,task.,There,is,some,previous,literature,concerning,the,inclusion,of,UQ,in,reduced,model,assessments,and,in,the,fitting,of,experimental,measurements,which,includes,but,is,not,limited,to,[78,,79].,In,more,recent,work,,Calleja,et,al.,[80],address,a,very,concrete,scenario:,the,analysis,of,first,wall,installations,on,the,DEMO,installation.,An,initial,Monte,Carlo,study,of,the,first,wall,is,performed,to,develop,understanding,of,the,complex,effects,of,tile,misalignment.,The,Matlab,toolkit,COSSAN,is,used,to,perform,the,SA,of,the,SMARRDA,plasma,modelling,and,simulation,code.,Another,concrete,application,of,UQ,to,DEMO,by,Lux,et,al,[81],uses,the,PROCESS,fusion,power,plant,systems,code.,A,multi-parameter,Monte-,Carlo,method,together,with,single,parameter,studies,are,performed,to,investigate,individual,impacts,of,performance,parameters,(net,electric,output,and,pulse,length),on,the,fusion,gain.,Lakhlili,et,al.,[82],performed,the,first,UQ,attempt,on,a,multi-model,(multiscale),fusion,workflow,,coupling,a,transport,model,of,plasma,profiles,,a,turbulence,model,of,fluxes,and,an,equilibrium,model,of,plasma,geometries.,The,UQ,was,performed,using,non-intrusive,the,polynomial,chaos,expansion.,Other,advanced,sampling,techniques,have,been,applied,directly,to,plasma,fusion,simulations.,Sensitivity-,driven,adaptive,sparse,stochastic,approximations,in,plasma,microinstability,analysis,was,performed,by,Farcas,et,al,[83].,They,leveraged,Sobol,decompositions,and,introduced,a,sensitivity,scoring,system,to,drive,the,adaptive,process.,Their,second,test,case,was,a,real-world,example,stemming,from,a,particular,validation,study,for,the,ASDEX,Upgrade,experiment.,They,carried,out,a,two-step,analysis,,initially,considering,three,uncertain,inputs,characterizing,the,ions,and,electrons,,and,then,12,stochastic,parameters,associated,with,the,particle,species,and,the,magnetic,geometry.,The,results,showed,that,the,proposed,approach,has,an,accuracy,comparable,to,the,standard,adaptive,approach,at,significantly,reduced,computational,cost;,for,example,,for,the,12D,scenario,,up,to,13.3,fewer,Gene,evaluations.,Xiao,et,al.,[84],introduced,a,stochastic,kinetic,scheme,for,multi-scale,plasma,transport,with,uncertainty,quantification.,They,focused,on,the,emergence,,propagation,and,evolution,of,randomness,from,gyrations,of,charged,particles,in,magnetohydrodynamic,simulations.,Solving,Maxwell's,equations,with,the,wave-,propagation,method,,the,evolutions,of,ions,,electrons,and,the,electromagnetic,field,are,coupled,throughout,the,simulation.,They,combined,the,advantages,of,SG,and,SC,methods,with,the,construction,principle,of,kinetic,schemes,,and,obtained,an,efficient,and,accurate,scheme,for,a,cross-scale,BGK-Maxwell,system,with,uncertainties.,Randomly,initial,inputs,of,both,flow,and,electromagnetic,fields,are,considered.,Finally,,point,collocation,methods,have,been,used,by,Vaezi,et,al.,[85],on,simulations,from,a,validation,study,of,drift-wave,turbulence,in,the,CSDX,linear,plasma,device,experiment,using,BOUT++,[86].,8,Conclusions,We,have,introduced,three,types,of,UQ,approaches,according,to,their,intrusiveness,with,respect,to,the,simulated,application.,At,the,single-model,level,,we,discussed,non-intrusive,and,intrusive,methods.,When,considering,applications,coupling,multiple,models,,we,presented,semi-intrusive,methods,which,enable,to,save,significant,computational,timing,while,avoiding,interfering,with,the,models,equations.,Non-intrusive,and,semi-intrusive,methods,appear,to,be,interesting,candidate,keeping,in,mind,that,the,Neptune,projects,seeks,to,promote,the,separation,of,concerns.,While,intrusive,methods,could,circumvent,the,so-called,curse,of,dimensionality,,they,would,entail,to,implement,UQ,on,a,per-application,basis.,We,have,focused,on,two,specific,types,of,non-intrusive,UQ,methods:,enhanced,sampling,and,surrogate,modelling.,Both,techniques,are,already,available,from,Neptune,partners,,that,is,UCL,and,the,Turing,Institute,with,tools,such,as,EasyVVUQ,,EasySurrogate,and,MOGP,Emulator.,We,introduced,these,tools,as,part,of,a,larger,review,of,(VV)UQ,toolkits,available,which,implement,such,methods,and,render,these,available,for,widespread,use,on,high-performance,computing,infrastructures.,This,report,lays,the,foundations,of,methods,that,will,be,further,investigated,and,tested,during,the,duration,of,this,6-month,project.,Following,the,first,meetings,on,the,theme,of,UQ,which,were,held,mid-January,(workshop,and,hackathon),,enhanced,sampling,techniques,as,well,as,actionability,of,EasyVVUQ,workflows,has,been,tested,by,a,subset,of,Neptune,application,partners.,On,the,basis,of,their,experience,as,well,as,expectations,from,the,whole,project’s,community,,we,will,attempt,to,conclude,on,a,precise,list,of,methods,and,toolkits,to,integrate,UQ,at,the,heart,of,the,future,Neptune,code.,9,References,[1],Oberkampf,,William,L.,,and,Timothy,G.,Trucano.,"Verification,and,validation,in,computational,fluid,dynamics.",Progress,in,Aerospace,Sciences,38.3,(2002):,209-272.,doi:10.1016/S0376-0421(02)00005-2,[2],Terry,,P.,W.,,et,al.,"Task,group,on,verification,and,validation,,US,burning,plasma,organization,,and,US,transport,task,force.",Phys.,Plasmas,15,(2008):,062503.,[3],Greenwald,,Martin.,"Verification,and,validation,for,magnetic,fusion.",Physics,of,Plasmas,17.5,(2010):,058101.,doi:10.1063/1.3298884,[4],Holland,,C.,"Validation,metrics,for,turbulent,plasma,transport.",Physics,of,Plasmas,23.6,(2016):,060901.,doi:10.1063/1.4954151,[5],A.G.,Hoekstra,,B.,Chopard,,D.,Coster,,S.,Portegies,Zwart,,P.,V.,Coveney,,Multiscale,computing,for,science,and,engineering,in,the,era,of,exascale,performance,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,377,(2019),20180144.,doi:10.1098/rsta.2018.0144.,[6],S.,Alowayyed,,D.,Groen,,P.,V.,Coveney,,A.G.,Hoekstra,,Multiscale,Computing,in,the,Exascale,Era,,J.,Comput.,Sci.,22,(2017),15–25.,doi:10.1016/j.jocs.2017.07.004.,[7],A.G.,Hoekstra,,B.,Chopard,,P.,V.,Coveney,,Multiscale,modelling,and,simulation:,a,position,paper,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,372,(2014),20130377.,doi:10.1098/rsta.2013.0377.,[8],P.M.A.,Sloot,,A.G.,Hoekstra,,Multi-scale,modelling,in,computational,biomedicine,,Br.,Bioinform.,11,(2010),142–152.,doi:10.1093/bib/bbp038.,[9],S.,Karabasov,,D.,Nerukh,,A.G.,Hoekstra,,B.,Chopard,,P.,V.,Coveney,,Multiscale,modelling:,approaches,and,challenges,,Philos.,Trans.,R.,Soc.,A.,372,(2014),20130390.,doi:10.1098/rsta.2013.0390.,[10],R.H.,Johnstone,,E.T.Y.,Chang,,R.,Bardenet,,T.P.,de,Boer,,D.J.,Gavaghan,,P.,Pathmanathan,,et,al.,,Uncertainty,and,variability,in,models,of,the,cardiac,action,potential:,Can,we,build,trustworthy,models?,,J.,Mol.,Cell.,Cardiol.,96,(2016),49–62.,doi:10.1016/J.YJMCC.2015.11.018.,[11],R.C.,Smith,,Uncertainty,quantification:,theory,,implementation,,and,applications,,SIAM,,2013.,[12],O.P.,Le,Maître,,O.M.,Knio,,Spectral,Methods,for,Uncertainty,Quantification,,Springer,Netherlands,,Dordrecht,,2010.,doi:10.1007/978-90-481-3520-2.,[13],X.,Wan,,G.E.,Karniadakis,,An,adaptive,multi-element,generalized,polynomial,chaos,method,for,stochastic,differential,equations,,J.,Comput.,Phys.,209,(2005),617–642.,doi:10.1016/J.JCP.2005.03.023.,[14],Groen,,D.,,et,al.,"VECMAtk:,A,Scalable,Verification,,Validation,and,Uncertainty,Quantification,toolkit,for,Scientific,Simulations.",arXiv,preprint,arXiv:2010.03923,(2020).,[15],Richardson,,R.,A.,,Coveney,,P.V.,,et,al.,"EasyVVUQ:,A,Library,for,Verification,,Validation,and,Uncertainty,Quantification,in,High,Performance,Computing.",Journal,of,Open,Research,Software,8.1,(2020).,doi:10.5334/JORS.303,[16],R.C.,Smith,,Uncertainty,quantification:,theory,,implementation,,and,applications,,SIAM,,2013.,[17],Babuska,,Ivo,,Raúl,Tempone,,and,Georgios,E.,Zouraris.,"Galerkin,finite,element,approximations,of,stochastic,elliptic,partial,differential,equations.",SIAM,Journal,on,Numerical,Analysis,42.2,(2004):,800-,825.,doi:10.1137/S0036142902418680,[18],Ghanem,,Roger,G.,,and,Pol,D.,Spanos.,Stochastic,finite,elements:,a,spectral,approach.,Courier,Corporation,,2003.,[19],Giraldi,,Loïc,,et,al.,"To,be,or,not,to,be,intrusive?,The,solution,of,parametric,and,stochastic,equations---the,“plain,vanilla”,Galerkin,case.",SIAM,Journal,on,Scientific,Computing,36.6,(2014):,A2720-,A2744.,doi:10.1137/130942802,[20],Nikishova,,Anna,,and,Alfons,G.,Hoekstra.,"Semi-intrusive,uncertainty,propagation,for,multiscale,models.",Journal,of,Computational,Science,35,(2019):,80-90.,doi:10.1016/j.jocs.2019.06.007,[21],Giles,,Michael,B.,"Multilevel,monte,carlo,path,simulation.",Operations,research,56.3,(2008):,607-,617.,doi:10.1287/opre.1070.0496,[22],Jantsch,,Peter,,Clayton,G.,Webster,,and,Guannan,Zhang.,"On,the,Lebesgue,constant,of,weighted,Leja,points,for,Lagrange,interpolation,on,unbounded,domains.",IMA,Journal,of,Numerical,Analysis,39.2,(2019):,1039-1057.,doi:10.1093/imanum/dry002,[23],Babuška,,Ivo,,Fabio,Nobile,,and,Raúl,Tempone.,"A,stochastic,collocation,method,for,elliptic,partial,differential,equations,with,random,input,data.",SIAM,Journal,on,Numerical,Analysis,45.3,(2007):,1005-,1034.,doi:,10.1137/050645142,[24],Barthelmann,,Volker,,Erich,Novak,,and,Klaus,Ritter.,"High,dimensional,polynomial,interpolation,on,sparse,grids.",Advances,in,Computational,Mathematics,12.4,(2000):,273-288.,doi:10.1023/A:1018977404843,[25],Blatman,,Géraud,,and,Bruno,Sudret.,"Adaptive,sparse,polynomial,chaos,expansion,based,on,least,angle,regression.",Journal,of,computational,Physics,230.6,(2011):,2345-2367.,doi:10.1016/j.jcp.2010.12.021,[26],Migliorati,,Giovanni,,et,al.,"Approximation,of,quantities,of,interest,in,stochastic,PDEs,by,the,random,discrete,L2,projection,on,polynomial,spaces.",SIAM,Journal,on,Scientific,Computing,35.3,(2013):,A1440-,A1460.,[27],Eldred,,Michael,,and,John,Burkardt.,"Comparison,of,non-intrusive,polynomial,chaos,and,stochastic,collocation,methods,for,uncertainty,quantification.",47th,AIAA,aerospace,sciences,meeting,including,the,new,horizons,forum,and,aerospace,exposition.,2009.,doi:10.2514/6.2009-976,[28],Bellman,,R.,"Dynamic,Programming”.,Princeton,University,Press,,Princeton,,New,Jersey,(1957).,[29],Chkifa,,Abdellah,,Albert,Cohen,,and,Christoph,Schwab.,"High-dimensional,adaptive,sparse,polynomial,interpolation,and,applications,to,parametric,PDEs.",Foundations,of,Computational,Mathematics,14.4,(2014):,601-633.,doi:10.1007/s10208-013-9154-z,[30],Narayan,,Akil,,and,John,D.,Jakeman.,"Adaptive,Leja,sparse,grid,constructions,for,stochastic,collocation,and,high-dimensional,approximation.",SIAM,Journal,on,Scientific,Computing,36.6,(2014):,A2952-A2983.,doi:10.1137/140966368,[31],Hackbusch,,Wolfgang.,"Numerical,tensor,calculus.",Acta,Numer.,23,(2014):,651-742.,[32],Uschmajew,,André.,"Zur,Theorie,der,Niedrigrangapproximation,in,Tensorprodukten,von,Hilberträumen.",(2013).,[33],N.,Verheul,,D.,Crommelin,,Data-driven,stochastic,representations,of,unresolved,features,in,multiscale,models,,Communications,in,Mathematical,Sciences,,Vol.,14,(2016),,pp,1213,–,1236.,doi:10.4310/CMS.2016.v14.n5.a2,[34],W.,Edeling,,D.,Crommelin,,Towards,data-driven,dynamics,surrogate,models,for,ocean,flow.,In:,Proceedings,of,the,Platform,for,Advanced,Scientific,Computing,Conference,2019,(PASC,’19),,Zurich,,Switzerland.,ACM,,New,York,,NY,,USA.,doi:10.1145/3324989.3325713,[35],D.,Crommelin,,W.,Edeling,,Resampling,with,neural,networks,for,stochastic,parameterization,in,multiscale,systems,,2020.,arXiv,preprint,arXiv:2004.01457,[36],Ambrogioni,,L.,,Güçlü,,U.,,van,Gerven,,M.,A.,,&,Maris,,E.,The,kernel,mixture,network:,A,nonparametric,method,for,conditional,density,estimation,of,continuous,random,variables,,2017.,arXiv,preprint,arXiv:1705.07111.,[37],W.,Edeling,,D.,Crommelin,,Reduced,model-error,source,terms,for,fluid,flow,,Proceedings,of,UNCECOMP,2019,conference.,doi:10.13140/RG.2.2.36773.35048,[38],W.,Edeling,,D.,Crommelin,,Reducing,data-driven,dynamical,subgrid,scale,models,by,physical,constraints,,Computers,and,Fluids,,2020.,doi:10.1016/j.compfluid.2020.104470,[39],Groen,,Derek,,et,al.,"Introducing,VECMAtk-verification,,validation,and,uncertainty,quantification,for,multiscale,and,HPC,simulations.",International,Conference,on,Computational,Science.,Springer,,Cham,,2019.,doi:10.1007/978-3-030-22747-0_36,[40],Adams,,Brian,M.,,et,al.,"DAKOTA,,a,multilevel,parallel,object-oriented,framework,for,design,optimization,,parameter,estimation,,uncertainty,quantification,,and,sensitivity,analysis:,version,5.0,user's,manual.",Sandia,National,Laboratories,,Tech.,Rep.,SAND2010-2183,(2009).,doi:10.2172/991841,[41],Foley,,Samantha,S.,,et,al.,"Many-task,applications,in,the,Integrated,Plasma,Simulator.",2010,3rd,Workshop,on,Many-Task,Computing,on,Grids,and,Supercomputers.,IEEE,,2010.,doi:10.1109/MTAGS.2010.5699425,[42],Debusschere,,Bert,,et,al.,UQTk:,A,Flexible,Python/C++,Toolkit,for,Uncertainty,Quantification.,No.,SAND2018-4226C.,Sandia,National,Lab.(SNL-NM),,Albuquerque,,NM,(United,States),,2018.,[43],Marelli,,Stefano,,and,Bruno,Sudret.,"UQLab:,A,framework,for,uncertainty,quantification,in,Matlab.",Vulnerability,,uncertainty,,and,risk:,quantification,,mitigation,,and,management.,2014.,2554-2563.,doi:10.1061/9780784413609.257,[44],Baudin,,Michaël,,et,al.,"Open,TURNS:,An,industrial,software,for,uncertainty,quantification,in,simulation.",arXiv,preprint,arXiv:1501.05242,(2015).,[45],Balasubramanian,,Vivek,,et,al.,"Radical-cybertools:,Middleware,building,blocks,for,scalable,science.",arXiv,preprint,arXiv:1904.03085,(2019).,[46],Gattiker,,J.,,et,al.,"Gaussian,process-based,sensitivity,analysis,and,Bayesian,model,calibration,with,GPMSA.",Handbook,of,uncertainty,quantification,(2017):,1-41.,doi:10.1007/978-3-319-11259-6_58-1,[47],Wozniak,,Justin,M.,,et,al.,"Swift/t:,Large-scale,application,composition,via,distributed-memory,dataflow,processing.",2013,13th,IEEE/ACM,International,Symposium,on,Cluster,,Cloud,,and,Grid,Computing.,IEEE,,2013.,doi:10.1109/CCGrid.2013.99,[48],Babuji,,Yadu,,et,al.,"Parsl:,Pervasive,parallel,programming,in,python.",Proceedings,of,the,28th,International,Symposium,on,High-Performance,Parallel,and,Distributed,Computing.,2019.,doi:10.1145/3307681.3325400,[49],Tennøe,,Simen,,Geir,Halnes,,and,Gaute,T.,Einevoll.,"Uncertainpy:,a,python,toolbox,for,uncertainty,quantification,and,sensitivity,analysis,in,computational,neuroscience.",Frontiers,in,neuroinformatics,12,(2018):,49.,doi:,10.3389/fninf.2018.00049,[50],Lawrence,Livermore,National,Laboratory.,2016.,Non-Intrusive,Uncertainty,Quantification:,PSUADE.,https://computing.llnl.gov/projects/psuade-uncertainty-quantification,[51],Hittinger,,J.,A.,,B.,I.,Cohen,,and,R.,I.,Klein.,Uncertainty,Quantification,in,the,Fusion,Simulation,Project,Verification,and,Validation,Activity.,No.,LLNL-TR-458089.,Lawrence,Livermore,National,Lab.,(LLNL),,Livermore,,CA,(United,States),,2010.,doi:10.2172/1119966,[52],Brown,,James,D.,,and,Gerard,BM,Heuvelink.,"The,Data,Uncertainty,Engine,(DUE):,A,software,tool,for,assessing,and,simulating,uncertain,environmental,variables.",Computers,&,Geosciences,33.2,(2007):,172-190.,doi:10.1016/j.cageo.2006.06.015,[53],Salvatier,,John,,Thomas,V.,Wiecki,,and,Christopher,Fonnesbeck.,"Probabilistic,programming,in,Python,using,PyMC3.",PeerJ,Computer,Science,2,(2016):,e55.,doi:10.7717/peerj-cs.55,[54],Pianosi,,Francesca,,Fanny,Sarrazin,,and,Thorsten,Wagener.,"A,Matlab,toolbox,for,global,sensitivity,analysis.",Environmental,Modelling,&,Software,70,(2015):,80-85.,doi:10.1016/j.envsoft.2015.04.009,[55],B.,Chopard,,J.,Borgdorff,,A.G.,Hoekstra,,A,framework,for,multi-scale,modelling,,Philos.,Trans.,R.,Soc.,A.,372,(2014),20130378.,doi:10.1098/rsta.2013.0378.,[56],R.,Archibald,,M.,Chakoumakos,,T.,Zhuang,,Characterizing,the,elements,of,Earth’s,radiative,budget:,Applying,uncertainty,quantification,to,the,CESM,,Procedia,Comput.,Sci.,9,(2012),1014–1020.,doi:10.1016/J.PROCS.2012.04.109.,[57],N.E.,Owen,,P.,Challenor,,P.P.,Menon,,S.,Bennani,,Comparison,of,Surrogate-Based,Uncertainty,Quantification,Methods,for,Computationally,Expensive,Simulators,,SIAM/ASA,J.,Uncertain.,Quantif.,5,(2017),403–435.,doi:10.1137/15M1046812.,[58],A.,Nikishova,,L.,Veen,,P.,Zun,,A.G.,Hoekstra,,Semi-intrusive,multiscale,metamodelling,uncertainty,quantification,with,application,to,a,model,of,in-stent,restenosis,,Philos.,Trans.,R.,Soc.,A,Math.,Phys.,Eng.,Sci.,377,(2019),20180154.,doi:10.1098/rsta.2018.0154.,[59],Rabitz,,Herschel,,and,Ömer,F.,Aliş.,"General,foundations,of,high-dimensional,model,representations.",Journal,of,Mathematical,Chemistry,25.2,(1999):,197-233.,[60],Ma,,Xiang,,and,Nicholas,Zabaras.,"An,adaptive,high-dimensional,stochastic,model,representation,technique,for,the,solution,of,stochastic,partial,differential,equations.",Journal,of,Computational,Physics,229.10,(2010):,3884-3915.,[61],Ma,,Xiang,,and,Nicholas,Zabaras.,"An,adaptive,hierarchical,sparse,grid,collocation,algorithm,for,the,solution,of,stochastic,differential,equations.",Journal,of,Computational,Physics,228.8,(2009):,3084-3113.,[62],Witteveen,,Jeroen,AS,,and,Gianluca,Iaccarino.,"Simplex,stochastic,collocation,with,ENO-type,stencil,selection,for,robust,uncertainty,quantification.",Journal,of,Computational,Physics,239,(2013):,1-,21.,[63],Edeling,,Wouter,Nico,,Richard,P.,Dwight,,and,Paola,Cinnella.,"Simplex-stochastic,collocation,method,with,improved,scalability.",Journal,of,Computational,Physics,310,(2016):,301-328.,[64],Constantine,,Paul,G.,,Eric,Dow,,and,Qiqi,Wang.,"Active,subspace,methods,in,theory,and,practice:,applications,to,kriging,surfaces.",SIAM,Journal,on,Scientific,Computing,36.4,(2014):,A1500-A1524.,[65],Liu,,Xiaoyu,,and,Serge,Guillas.,"Dimension,reduction,for,Gaussian,process,emulation:,An,application,to,the,influence,of,bathymetry,on,tsunami,heights.",SIAM/ASA,Journal,on,Uncertainty,Quantification,5.1,(2017):,787-812.,[66],Tripathy,,Rohit,,and,Ilias,Bilionis.,"Deep,active,subspaces:,A,scalable,method,for,high-dimensional,uncertainty,propagation.",ASME,2019,International,Design,Engineering,Technical,Conferences,and,Computers,and,Information,in,Engineering,Conference.,American,Society,of,Mechanical,Engineers,Digital,Collection,,2019.,[67],Tripathy,,Rohit,K.,,and,Ilias,Bilionis.,"Deep,UQ:,Learning,deep,neural,network,surrogate,models,for,high,dimensional,uncertainty,quantification.",Journal,of,computational,physics,375,(2018):,565-588.,[68],Rasp,,Stephan.,"Coupled,online,learning,as,a,way,to,tackle,instabilities,and,biases,in,neural,network,parameterizations:,general,algorithms,and,Lorenz,96,case,study,(v1.,0).",Geoscientific,Model,Development,13.5,(2020):,2185-2196.,[69],Edeling,,Wouter,,et,al.,"Model,uncertainty,and,decision,making:,Predicting,the,Impact,of,COVID-19,Using,the,CovidSim,Epidemiological,Code.",(2020).,[70],Greenwald,,Martin.,"Beyond,benchmarking—how,experiments,and,simulations,can,work,together,in,plasma,physics.",Computer,physics,communications,164.1-3,(2004):,1-8.,[71],Hu,,Jingwei,,Shi,Jin,,and,Ruiwen,Shu.,"A,Stochastic,Galerkin,Method,for,the,Fokker–Planck–,Landau,Equation,with,Random,Uncertainties.",XVI,International,Conference,on,Hyperbolic,Problems:,Theory,,Numerics,,Applications.,Springer,,Cham,,2016.,[72],Jin,,Shi,,and,Yuhua,Zhu.,"Hypocoercivity,and,Uniform,Regularity,for,the,Vlasov--Poisson--Fokker--,Planck,System,with,Uncertainty,and,Multiple,Scales.",SIAM,Journal,on,Mathematical,Analysis,50.2,(2018):,1790-1816.,[73],Ding,,Zhiyan,,and,Shi,Jin.,"Random,regularity,of,a,nonlinear,Landau,Damping,solution,for,the,Vlasov-Poisson,equations,with,random,inputs.",International,Journal,for,Uncertainty,Quantification,9.2,(2019).,[74],Phillips,,Edward,G.,,and,Howard,C.,Elman.,"A,stochastic,approach,to,uncertainty,in,the,equations,of,MHD,kinematics.",Journal,of,Computational,Physics,284,(2015):,334-350.,[75],Yamazaki,,Kazuo.,"Stochastic,Hall-magneto-hydrodynamics,system,in,three,and,two,and,a,half,dimensions.",Journal,of,Statistical,Physics,166.2,(2017):,368-397.,[76],Hu,,Jingwei,,and,Shi,Jin.,"Uncertainty,quantification,for,kinetic,equations.",Uncertainty,quantification,for,hyperbolic,and,kinetic,equations.,Springer,,Cham,,2017.,193-229.,[77],Liu,,Liu,,and,Shi,Jin.,"Hypocoercivity,based,sensitivity,analysis,and,spectral,convergence,of,the,stochastic,Galerkin,approximation,to,collisional,kinetic,equations,with,multiple,scales,and,random,inputs.",Multiscale,Modeling,&,Simulation,16.3,(2018):,1085-1114.,[78],White,,A.,E.,,et,al.,"Measurements,of,the,cross-phase,angle,between,density,and,electron,temperature,fluctuations,and,comparison,with,gyrokinetic,simulations.",Physics,of,Plasmas,17.5,(2010):,056103.,[79],Chilenski,,M.,A.,,et,al.,"Improved,profile,fitting,and,quantification,of,uncertainty,in,experimental,measurements,of,impurity,transport,coefficients,using,Gaussian,process,regression.",Nuclear,Fusion,55.2,(2015):,023012.,[80],Calleja,,D.,C.,,et,al.,"Strategy,for,Sensitivity,Analysis,of,DEMO,first,wall.",Proceedings,of,the,joint,ICVRAM,ISUMA,UNCERTAINTIES,conference,,Florianopolis,,SC,,Brazil.,2018.,[81],Lux,,H.,,et,al.,"Implications,of,uncertainties,on,European,DEMO,design.",Nuclear,Fusion,59.6,(2019):,066012.,[82],Lakhlili,,J.,,et,al.,"Uncertainty,Quantification,for,Multiscale,Fusion,Plasma,Simulations,with,VECMA,Toolkit.",International,Conference,on,Computational,Science.,Springer,,Cham,,2020.,[83],Farcaş,,I.,,et,al.,"Sensitivity-driven,adaptive,sparse,stochastic,approximations,in,plasma,microinstability,analysis.",Journal,of,Computational,Physics,410,(2020):,109394.,[84],Xiao,,T.,,and,Frank,,M.,"A,stochastic,kinetic,scheme,for,multi-scale,plasma,transport,with,uncertainty,quantification.",Journal,of,Computational,Physics,(2021):,110139.,[85],Vaezi,,P.,,and,Christopher,Holland.,"An,improved,approach,to,uncertainty,quantification,for,plasma,turbulence,validation,studies.",Fusion,Science,and,Technology,74.1-2,(2018):,77-88.,[86],Vaezi,,P.,,et,al.,"Validation,study,of,a,drift-wave,turbulence,model,for,CSDX,linear,plasma,device.",Physics,of,Plasmas,24.9,(2017):,092310. :pdfembed:`src:_static/TN-01_ReviewMethodsToolkitsUncertaintyQuantificationSingleCoupledModelApplications.pdf, height:1600, width:1100, align:middle`