TN-02_AdvancedQuantificationUncertaintiesInFusionModellingAtExascaleModelOrderReductio ====================================================================================== .. meta:: :description: technical note :keywords: Advanced,Quantification,of,Uncertainties,In,Fusion,modelling,at,the,Exascale,with,model,order,Reduction,(AQUIFER),UKAEA,NEPTUNE,T/AW085/21,Annual,report,06/04/2022,-,05/04/2023,Serge,Guillas,University,College,London,29,March,2023,Many,activities,are,joint,with,the,EPSRC,SEAVEA,project,due,to,synergies,and,cost,efficiencies,(e.g.,PI,time,,events,,HPC,access,to,ARCHER2,,international,interactions,and,dissemination),as,mentioned,in,the,AQUIFER,project,description.,The,team,includes:,•,Prof,Serge,Guillas,,PI,•,Prof,Peter,Coveney,,coI,•,Dr.,Matthew,Graham,,Senior,Research,Data,Scientist,•,Dr.,Tuomas,Koskela,,Senior,Research,Software,Engineer,•,Yiming,Yang,,PhD,student,1,Events,and,reporting,Our,level,of,direct,interactions,is,high,,as,we,meet,and,report,•,fortnightly,at,NEPTUNE,Progress,Meetings,on,Thursdays,,•,fortnightly,in,AQUIFER,technical,meetings,on,Mondays:,Ed,Threlfall,,Ander,Gray,and,James,Buchanan,represent,UKAEA.,Our,events,have,been,joint,with,EPSRC,SEAVEA.,These,have,included:,•,Hackathons,23/06/2022,(linked,to,ICCS,2022),,8-9/12/2022,,with,another,one,planned,for,Spring,2023.,•,Hack,session,with,the,developers,on,2022-05-06,fully,capturing,the,new,work,in,SEAVEAtk,(FabNEPTUNE),•,UKAEA,workshop,,05-06/09/2022,(Abingdon),•,Applications,Meeting,,12/12/2022,,UCL,•,UCL-UKAEA,collaborative,workshop,,10/03/2023,,UCL,1,2,Functional,Emulation,for,temperature,profile:,Reduced,Order,Modelling,2.1,Study,Case:,An-isotropic,Heat,Transportation,The,model,for,time,evolution,of,the,temperature,field,T,is,thermal,diffusion,,which,in,a,plasma,after,Braginskii,parametrization,gives:,3,2,N,∂T,∂t,=,∇,·,(cid:16),(k∥b(b,∇,T,),+,k⊥(,∇,T,−,b[b,∇,(cid:17),T,]),where,b,indicates,the,magnetic,field,and,k∥,,k⊥,are,the,thermal,conductivities,with,respect,to,the,direction,parallel,or,perpendicular,along,the,b.,The,homogeneous,Dirichlet,boundary,conditions,are,set,on,the,left,,top,,and,right,boundaries,of,the,spatial,domain.,In,this,case,,we,are,interested,in,emulating,the,relationship,between,direction,θ,of,b,and,the,temper-,ature,profile,Tx,on,the,bottom,boundary,at,steady,state,by,emulator,such,that:,femulator,:,θ,Tx,,θ,[0,,∈,→,π,2,],,Tx,∈,C[0,,1],Figure,1:,(left),Temperature,transfer,with,incident,angle,θ,(right),Temperature,profile,on,bottom,boundaries,given,θ,2.2,Methods:,Outer,Product,Emulator,The,high-resolution,physical,simulation,generates,high-dimensional,data,over,discretized,spatial,do-,mains,,such,as,wave,heights,in,a,particular,region,of,the,ocean,or,temperature,fields,over,a,heating,system.,However,,the,high,dimensionality,of,the,data,poses,significant,challenges,when,building,sta-,tistical,emulators.,Traditional,emulators,often,struggle,with,scalability,or,accuracy.,To,balance,scalability,and,accuracy,,the,Outer,Product,Emulator,(OPE),has,been,introduced.,The,OPE,creates,a,single,emulator,for,all,simulation,outputs,over,the,entire,domain,and,simplifies,the,representation,of,fitted,functions,using,products,of,component,functions.,In,general,,the,OPE,takes,the,form:,f,(r,,s),=,v,(cid:88),j=1,βjgj(r,,s),+,ϵ(r,,s),Here,,f,(r,,s),is,the,simulator,output,with,input,r,at,output,location,s,,gj,are,the,regressor,functions,,βj,are,unknown,coefficients,,and,ϵ,is,the,residual,assumed,to,be,a,Gaussian,Process,(GP),such,that,2,ϵ,∼,GP,(0,,kλ(,,,,)).,·,The,OPE,has,two,main,characteristics,that,distinguish,it,from,conventional,multivariate,emula-,tors.,First,,the,covariance,function,of,the,residuals,is,separated,into,inputs,r,and,outputs,s,,that,λ(s,,s′).,Second,,the,regressor,functions,gj,are,given,by,products,is,,kλ(r,,s,,r′,,s),=,kr,ks,j,(r),(cid:78),gs,gj(r,,s),=,gr,In,this,case,,the,Legendre,Poly-,nomials,are,used,as,the,input,regressor,,with,gr,6.,However,,due,to,the,sharp,changes,in,the,temperature,profile,shown,in,Figure,1,,commonly,used,smooth,basis,functions,such,as,Legendre,polynomials,and,Fourier,basis,are,not,suitable.,Instead,,we,select,the,Haar,wavelets,as,the,basis,functions,for,our,output,regressors,,see,Figures,2a,and,2b.,λ(r,,r′),j,(s),where,(cid:78),is,the,outer,product,symbol.,j,(θ),=,1,,6θ,1,,6θ2,×,−,−,(a),Legendre,Polynomials,(b),Haar,Wavelet,Functions,Figure,2:,Choices,for,Regressor,Functions,2.3,Results,We,run,the,simulator,over,40,different,θs,which,are,evenly,chosen,to,cover,the,input,parameter,space.,For,each,run,,there,are,641,discretised,values,over,spatial,field.,We,implement,the,OPE,in,two,settings:,•,Emulation,for,Simulation:,In,this,case,,We,use,all,the,641,discretised,values,to,fit,the,OPE,for,emulating,the,computational,model.,•,Emulation,for,pseudo-experimental,“observation”:,We,uniformly,sampled,80,values,from,the,641,discretised,values,and,added,with,random,noise,for,fitting,a,profile,by,observed,experi-,mental,data.,The,results,demonstrate,the,benefits,and,robustness,(for,pseudo,observations),of,the,reduced,order,modelling,approach,using,functional,emulation,,see,Figure,3.,However,,with,more,input,parameters,,higher,dimensional,outputs,and,coupled,models,,and,for,sharper,input-output,functional,forms,(e.g.,lower,angles),more,investigation,is,under,consideration:,possible,use,of,linked,emulations,(Ming,and,Guillas,2021),and,output,dimension,reduction,(Zhang,,Mak,,and,Dunson,2022),as,well,as,Deep,GPs,(Ming,,Williamson,,and,Guillas,2022).,3,Deep,GPs,and,physics-aware,emulation,3.1,Deep,Gaussian,Process,(DGP),A,Deep,Gaussian,Process,(DGP),is,a,probabilistic,model,that,builds,on,the,idea,of,a,Gaussian,process,(GP),by,extending,it,to,multiple,layers.,The,model,is,comprised,of,multiple,layers,of,GP,models,,where,each,layer,is,a,GP,that,takes,the,output,of,the,previous,layer,as,its,input,(see,Figure,4).,One,of,the,key,advantages,of,DGPs,over,traditional,GPs,is,their,ability,to,model,complex,,highly,non-,linear,functional,forms,more,effectively,,which,makes,them,well-suited,for,emulating,non-stationary,3,Figure,3:,Emulation,results,for,simulation,outputs,(first,row),and,pseudo,observations,with,two,different,θs.,The,red,curves,are,the,mean,emulation,result,,the,blue,dotted,red,curves,are,the,95%,Confidence,Interval,,the,blue,curves,are,the,true,simulation,result,,and,the,dotted,gray,curves,are,sampled,emulation,result.,X,X,.,.,.,X,(1),1,GP,(2),1,GP,.,.,.,(P1),1,GP,(1),2,GP,(2),2,GP,.,.,.,(P2),2,GP,.,.,.,.,.,.,.,.,.,.,.,.,(1),L,GP,(2),L,GP,.,.,.,Y(1),Y(2),.,.,.,(PL),L,GP,Y(PL),Figure,4:,The,generic,DGP,hierarchy,functions,,as,we,will,discuss,in,the,following,case,study.,Furthermore,,DGPs,provide,more,informative,uncertainty,estimation,in,predictions,(Ming,,Williamson,,and,Guillas,2022),,making,them,valuable,in,applications,where,accurate,risk,assessment,is,critical.,3.2,Study,Case:,Simplified,Lorenz,Model,The,Lorenz,Model,is,derived,from,a,2D,model,of,Rayleigh-Benard,convection:,˙x,=,σ(y,˙y,=,x(ρ,x),z),−,−,y,−,˙z,=,xy,βz,−,where,ρ,,σ,,β,are,respectively,the,Rayleigh,Number,(Ra),,the,Prandtl,Number,(P,r),,and,the,coupling,strength.,The,Nusselt,number,(N,u),for,this,model,,representing,the,heat,flux,out,is,N,u,=,1+,2z,ρ,.,The,4,(Ra,,P,r),N,u,surface,of,the,Lorenz,model,is,non-stationary,and,exists,many,sub-regimes,behaving,differently,which,are,shown,in,Figure,5.,In,the,study,,we,fixed,the,coupling,strength,to,1.,The,domain,for,Rayleigh,number,and,Prandtl,number,is,[0,,100].,−,Figure,5:,The,(Ra,,P,r),extreme,non-stationarity.,(left),2D,contour,plot,(right),3D,plot.,−,N,u,surface,of,Lorenz,Model.,There,are,many,level,sets,which,show,an,3.3,DGP,Results,−,In,this,section,,we,demonstrate,the,powerful,ability,of,Deep,GP,to,emulate,non-stationary,function:,the,(Ra,,P,r),N,u,surface,of,the,Lorenz,model.,We,compare,Deep,GP,with,the,original,GP,,and,Treed,GP,which,combine,the,flexibility,of,decision,trees,with,the,smoothness,of,Gaussian,processes,to,emulate,functions,with,complex,structures.,The,sampling,scheme,is,the,Latin,hypercube,sampling,[0.1,,100.1]2,,which,is,implemented,by,the,MOGP,package,1.,The,settings,for,each,with,domain,x,model,are,outlined,below:,∈,√,5|x−x′|,γ,+,5(x−x′)2,3γ2,K(x,,x′),=,(1,+,•,Gaussian,Process:,The,GP,model,with,mean,function,m(x),=,0,and,Mat´ern-2.5,Kernel,5|x−x′|,γ,•,Deep,Gaussian,Process,The,DGP,model,consists,of,2,GPs,model,above,,with,length,param-,eters,γ1,=,1.0,,γ2,=,0.5,for,stabilizing,the,numerical,computation.,The,2,GPs,are,connected,in,serial:,We,use,the,dgpsi2,package,for,implementing,the,DGP,,which,are,available,in,both,python,and,R.,),with,length,parameter,γ,=,0.5.,),exp,(,−,√,•,Treed,Gaussian,Process,The,treed,GP,method,employs,a,decision,tree,algorithm,to,divide,1,,...,,R,denote,the,R,non-overlapping,a,domain,into,multiple,non-overlapping,subsets.,Let,r,regions,partitioned,by,the,tree,drawn,from,the,tree,prior.,In,each,region,,a,GP,regression,is,carried,out,using,a,default,GP,prior,,as,set,in,the,tgp3,package.,The,kernel,used,is,also,Mat´ern-2.5,with,length,parameter,γ,=,0.5,,which,is,the,same,as,the,other,models,compared,to,ensure,fairness.,The,tree,structure,and,each,component,GP,are,jointly,optimized,by,maximizing,the,likelihood.,∈,T,The,qualitative,results,are,presented,in,Figure,6.,As,shown,in,the,figure,,both,GP,and,DGP,start,to,capture,the,discontinuities,with,only,30,samples,,whereas,Tree,GP,requires,100,samples.,This,could,be,due,to,the,requirement,that,splits,of,Tree,GP,must,be,parallel,to,the,axis,,making,it,less,flexible,with,fewer,samples.,With,100,fitting,samples,,we,observe,that,DGP,outperforms,the,other,In,Figure,7,,we,compute,the,Root,models,and,shows,the,discontinuous,boundaries,more,clearly.,Mean,Square,Error,(RMSE),to,measure,the,performance,improvements,with,an,increasing,number,of,1https://github.com/alan-turing-institute/mogp-emulator,2https://github.com/mingdeyu/DGP,3https://cran.r-project.org/web/packages/tgp/index.html,5,Figure,6:,The,mean,of,emulation,result:,GP,,DGP,Tree,GP,and,True,surface,(left,to,right),with,5,,30,,100,,200,samples,(top,to,bottom),training,samples.,Each,model,is,fitted,with,n,=,5,,10,,15,,30,,50,,100,,200,samples,and,evaluated,over,[0.1,,100.1].,Overall,,DGP,has,the,lowest,2500,test,points,evenly,spaced,over,the,domain,[0.1,,100.1],RMSE,for,all,numbers,of,fitting,samples.,However,,RMSE,averages,the,results,over,the,entire,domain,,which,may,obscure,the,emulation,performance,of,our,specific,region,of,interest,-,the,discontinuities.,In,the,future,,a,more,comprehensive,metric,should,be,developed,to,evaluate,emulation,results,for,non-stationary,functions.,×,In,some,downstream,tasks,,such,as,uncertainty,quantification,and,parameter,calibration,,multiple,runs,of,the,emulator,may,be,required,over,the,same,evaluated,point.,Therefore,,it’s,important,to,consider,the,running,time,of,the,emulator.,We,measured,the,predicting,time,over,2500,test,points,and,demonstrated,the,fitting,and,predicting,time,of,each,model,in,Figure,8.,We,observed,that,the,fitting,and,predicting,time,of,GP,and,Treed,GP,remained,constant,with,the,increase,of,the,number,of,fitting,samples.,On,the,other,hand,,the,fitting,time,of,DGP,increased,linearly,with,the,increase,of,the,number,of,fitting,samples,,whereas,the,predicting,time,increased,exponentially.,This,is,a,crucial,limitation,(mk(n3,+,n)),,in,large-scale,and,high-resolution,emulation.,For,DGP,,the,prediction,complexity,is,where,m,is,the,number,of,prediction,samples,,k,is,the,number,of,GP,components,in,DGP,structure,,and,n,is,the,number,of,fitting,samples.,In,summary,,DGP,outperforms,standard,GP,and,Treed,GP,in,emulating,non-stationary,functions,in,terms,of,accuracy,and,boundary,detection.,However,,the,heavy,computational,burden,may,hinder,its,applications,in,large-scale,and,high-resolution,emulations.,O,6,Figure,7:,The,Root,Mean,Square,Error,(RMSE),of,emulation,means,with,respect,to,the,number,of,fitting,samples.,Figure,8:,Comparison,of,Fitting,(left),and,Prediction,(right),Time,with,respect,to,the,number,of,fitting,samples,over,2500,test,samples.,3.4,Physics,Aware,Emulation,In,this,section,,we,integrate,established,principles,of,physics,into,our,sampling,methodologies,to,assess,their,potential,for,emulating,non-stationary,functions.,In,the,Lorenz,model’s,(Ra,,P,r),N,u,surface,,there,are,known,asymptotes,that,dictate,the,stability,of,the,fixed,points,in,Lorenz,dynamics.,These,asymptotes,are,represented,by,the,discontinuous,boundaries,shown,in,Figure,5,,and,are,characterized,2(b,+,2),and,P,rl,=,b,+,1.,by,upper,and,lower,limits,P,ru(Ra),and,P,rl(Ra),(see,Figure,9),,P,ru,=,Ra,−,−,We,created,a,physics-aware,sampling,region,that,covers,both,asymptotes,,with,a,margin,of,15,units,(as,shown,in,Figure,9).,To,cover,the,non-cube,region,,we,utilized,two,Latin,Hypercube,designs,(as,depicted,in,Figure,10).,In,the,following,investigation,,we,compared,the,physics-aware,sampling,approach,with,the,Latin,Hypercube,sampling,method,over,the,entire,domain.,In,particular,,we,employed,an,initial,sampling,of,one-third,of,the,total,number,of,samples,over,the,entire,domain,for,the,physics-aware,approach,,followed,by,the,remainder,of,the,samples,being,taken,from,the,physics-aware,region.,3.5,Physics-aware,Emulation,Result,The,results,presented,in,Figure,11,demonstrate,the,effectiveness,of,physics-aware,sampling,in,identi-,fying,boundary,contours.,The,figure,illustrates,that,GP,with,physics-aware,sampling,requires,fewer,samples,as,compared,to,GP,without,the,sampling,scheme.,However,,DGP,requires,more,samples,to,detect,the,boundary,contours,than,both,GP,with,and,without,physics-aware,sampling,but,DGP,outperform,others,in,terms,of,accuracy,with,enough,samples.,Furthermore,,Figure,12,shows,that,both,GP,and,DGP,with,the,physics-aware,sampling,have,lower,RMSE,values,compared,to,the,GP,without,the,sampling,scheme.,This,indicates,that,the,physics-aware,sampling,scheme,significantly,enhances,the,emulation,of,non-stationarity,,especially,with,a,limited,number,of,samples,(see,RMSE,7,Figure,9:,Left:,The,upper,and,lower,asymptotes,P,ru(Ra),and,P,rl(Ra).,Right:,Physics-aware,sam-,pling,region.,Figure,10:,(left),Physics-aware,Sampling,Scheme,(right),An,example,for,the,sampling,scheme,of,30,samples,in,Figure,12).,Moreover,,the,RMSEs,are,also,smaller,for,larger,number,of,samples,compared,to,conventional,space-filling,schemes.,Although,our,setup,has,some,evident,flaws,,such,as,an,overlapping,sampling,region,by,two,Latin,Hy-,percube,designs,and,a,small,uncovered,area,at,the,left-bottom,corner,(see,Figure,10,(left)),,the,results,show,that,the,sampling,scheme,improves,accuracy,and,sample,efficiency.,These,findings,confirm,the,effectiveness,of,incorporating,prior,knowledge,of,physics,into,the,emulation,approaches.,Although,this,prior,knowledge,is,very,strong,and,can,not,be,available,for,every,problem,,we,can,use,such,applications,under,a,careful,design.,In,conclusion,,the,results,of,this,study,demonstrate,the,potential,benefits,of,combining,machine,learning,with,physical,priors.,Moving,forward,,further,research,in,this,area,will,be,critical,for,advancing,our,understanding,in,complex,systems,and,developing,more,effective,tools,for,solving,real-world,problems.,4,Treed-GPs,with,using,non-axis,aligned,splits,We,have,done,some,initial,exploration,of,extending,the,Treed,Gaussian,(TGP),approach,above,to,using,non-axis,aligned,splits,,in,anticipation,of,this,being,able,to,better,reflect,the,sort,of,input-,output,relationships,we,expect,for,the,phase-diagrams,of,both,the,toy,Lorenz,1963,+,diffusion,model,,and,the,Nektar++,natural,vertical,convection,model.,As,a,simpler,starting,case,we,look,a,model,8,Figure,11:,Contour,level,plots,of,the,predicted,means,(red,curves),and,true,discontinuous,boundaries,(black,curves).,Columns,represent,methods,used,,namely,GP,,GP,with,physics-aware,sampling,,and,DGP,with,physics-aware,sampling,(left,to,right).,Rows,correspond,to,the,number,of,fitting,samples,used,,with,30,,60,,120,,and,150,samples,(top,to,bottom).,Figure,12:,The,RMSE,for,GP,,GP,with,physics-aware,sampling,,and,DGP,with,physics-aware,sampling,Figure,13:,Proof-of-concept,(no,fit),splitting,examples,using,TGP,with,non-axis,aligned,splits,x,+,b,>,0,for,parameters,a,and,b,and,input,x),to,do,the,splits,at,which,uses,linear,inequalities,(a,each,level,of,the,tree,and,uses,a,fixed-degree,polynomial,in,the,input,as,the,prediction,models,at,each,tree,leaf,(with,the,polynomial,coefficients,parameters,to,be,fitted);,it,should,be,tractable,to,extend,this,to,instead,use,Gaussian,process,predictors,at,the,leaf,nodes,,as,in,the,original,Bayesian,treed,GP,×,9,model.,For,example,for,a,2D,input,space,generating,random,parameters,for,a,tree,of,fixed,depth,of,4,produces,outputs,surface,like,Figure,13,for,this,simplified,model.,This,can,then,be,combined,with,a,simple,independent,Gaussian,observation,noise,model,to,give,a,parametric,model,which,can,be,fitted,to,simulations,using,Markov,chain,Monte,Carlo,(MCMC).,For,a,fixed,tree,topology,the,parameters,of,the,model,–,the,coefficients,for,the,split,linear,equal-,ities,,plus,polynomial,coefficients,of,the,outputs,predictors,–,are,of,fixed,dimension,and,we,can,apply,standard,MCMC,methods,to,update,them.,As,the,forward,model,is,implemented,in,JAX,(https://jax.readthedocs.io/),we,can,use,automatic,differentiation,to,compute,the,gradient,of,the,pos-,terior,density,with,respect,to,these,parameters,to,use,gradient,based,MCMC,methods,such,as,the,Metropolis-adjusted,Langevin,algorithm,and,Hamiltonian,Monte,Carlo.,The,posterior,density,is,non-smooth,with,respect,to,the,split,parameters,so,it,is,unclear,how,effective,gradient,based,methods,will,be,at,updating,these,parameters,,but,we,can,alternate,updates,to,the,predictor,parameters,with,the,split,parameters,fixed,(with,the,posterior,density,then,a,smooth,function,of,the,predictor,parameters),with,updates,to,the,split,parameters,using,non-gradient,based,proposals.,The,split,tree,topology,can,also,be,updated,using,a,reversible,jump,MCMC,type,approach,as,in,the,original,Bayesian,treed,GP,paper.,5,Polynomial,Chaos,Expansion,(PCE),and,Stochastic,Collocation,(SC),surrogate,models:,novel,Simplex,Stochastic,Collocation,(SSC),Figure,14:,Discontinuous,test,function,and,standard,SC,surrogate.,As,stated,in,the,proposal,,in,D2.1,(Surrogate,models,,Model,Order,Reduction,and,verification),we,have,extended,EasyVVUQ,with,capability,to,handle,QoIs,which,display,discontinuities,or,high,gradient,in,the,stochastic,input,space.,This,is,important,since,surrogate,models,based,on,global,polynomials,(PCE/SC),will,display,nonphysical,oscillations,,see,Figure,14.,In,particular,we,implemented,the,Simplex,Stochastic,Collocation,(SSC),method,(Edeling,,Dwight,,and,Cinnella,2016),,which,(unlike,SC),employs,the,Delaunay,triangulation,to,discretize,the,probability,space,into,simplex,elements.,Using,such,a,multi-element,technique,has,the,advantage,that,local,mesh,adaptation,can,be,performed,,such,that,only,regions,of,interest,are,adaptively,refined.,The,SSC,method,is,‘physics-aware’,(related,to,D2.6),in,the,sense,that,it,can,automatically,detect,regions,in,the,input,space,where,the,function,is,irregular.,It,achieves,this,by,enforcing,the,so-called,Local,Extremum,Conserving,(LEC),limiter,in,all,simplex,elements.,Skipping,details,for,brevity,,this,limiter,flags,elements,through,which,a,discontinuity,runs,,increasing,the,probability,that,the,code,is,evaluated,within,that,element,at,the,next,iteration.,Simultaneously,,the,local,polynomial,order,of,the,interpolation,point,stencil,of,that,element,is,reduced,,which,avoids,nonphysical,oscillations,as,in,Figure,14,b.,The,SSC,sampling,plan,and,surrogate,are,shown,in,Figure,15,,which,can,be,replicated,by,running,the,Jupyter,notebook,tutorial,in,the,EasyVVUQ,‘tutorials’,folder,4.,Next,steps,involving,4https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tutorials/simplex,stochastic,collocation,tutorial.ipynb,10,Figure,15:,Local,mesh,and,resulting,SSC,surrogate,for,the,test,function,in,14,a.,applying,the,SSC,method,to,a,Nektar++,case.,6,Calibration,and,data,assimilation,in,ANAET,model,6.1,Introduction,In,this,section,we,consider,the,problem,of,inferring,the,state,trajectories,,and,potentially,parameters,,of,models,of,dynamical,systems,in,which,the,evolution,of,the,state,over,time,is,governed,by,a,set,of,differential,equations.,We,consider,both,cases,in,which,the,state,evolution,is,deterministic,and,described,by,a,system,of,ordinary,differential,equations,(ODEs),,and,where,the,dynamics,are,driven,by,random,noise,processes,,described,by,a,system,of,stochastic,differential,equations,(SDEs).,We,describe,two,computational,approaches,for,estimating,the,posterior,distribution,on,the,model,param-,eters,and/or,state,trajectories,given,(noisy),observations,of,the,state,over,time,—,a,gradient-based,Markov,chain,Monte,Carlo,method,and,particle,filtering,—,and,illustrate,these,approaches,on,a,test,model,of,magnetohydrodynamic,instability.,We,identify,some,of,the,challenges,inherent,to,performing,inference,and,filtering,in,such,models,and,discuss,some,alternative,computational,methods,which,may,be,relevant,to,deal,with,these,issues.,6.2,Notation,|,y,∼,Bold,symbols,,for,example,x,indicate,vector,quantities.,The,set,of,consecutive,integers,from,a,to,b,inclusive,is,denoted,a:b,and,when,used,to,subscript,a,symbol,this,indicates,an,indexed,collection,,n=1.,The,set,of,real,numbers,is,denoted,R,,and,non-negative,reals,R≥0.,A,for,example,x1:N,=,(xn)N,P,;,similarly,random,variable,x,being,distributed,to,or,sampled,from,a,distribution,P,is,denoted,x,P,(y),indicates,the,conditional,distribution,of,x,given,y,is,P,(y).,We,will,use,probability,x,distribution,to,refer,to,probability,measures,,that,is,[0,,1],valued,functions,on,sets,of,outcomes,(events),in,the,sample,space,,which,we,distinguish,from,a,density,function,for,the,distribution,with,respect,to,an,appropriate,reference,measure,,that,is,a,R≥0,valued,function,on,the,sample,space.,In,all,cases,here,we,will,consider,distributions,on,real,values,or,real,vector,spaces,and,will,define,densities,with,respect,to,the,Lebesgue,measure,,so,that,for,a,distribution,P,with,density,function,p,we,have,P,(A),=,(cid:82),A,p(x),dx,for,all,events,A.,A,Dirac,measure,(point,mass),at,x,is,denoted,δx,,a,normal,distribution,with,mean,m,and,variance,v,is,Normal(m,,v),,a,multivariate,normal,distribution,with,mean,vector,m,and,covariance,matrix,C,is,Normal(m,,C),and,a,half-normal,distribution,with,scale,parameter,s,(that,is,a,normal,distribution,Normal(0,,s2),truncated,below,at,zero),is,HalfNormal(s).,∼,11,6.3,Deterministic,evolution,models,A,wide,class,of,dynamical,systems,can,be,modelled,by,an,explicit,system,of,autonomous,first,order,ODEs,dx(t),dt,=,f,(x(t),,θ),,where,x,:,R≥0,a,set,of,parameters,of,the,model,and,f,:,RX,dynamics,of,the,system.,→,RX,is,the,trajectory,of,the,X-dimensional,state,of,the,system,over,time,,θ,Θ,is,RX,is,a,vector-valued,function,describing,the,∈,Θ,×,→,Given,an,initial,state,x(0),=,x0,for,the,system,we,can,(numerically),solve,the,initial,value,problem,(IVP),to,compute,the,value,of,state,x(t),at,times,t,>,0,for,fixed,values,of,the,parameters,θ.,A,numerical,solver,for,the,IVP,implicitly,defines,a,family,of,maps,Ft,:,RX,RX,such,that,Θ,×,→,6.4,Stochastic,evolution,models,x(t),=,Ft(x0,,θ).,For,systems,where,the,dynamics,are,intrinsically,noisy,or,for,which,we,have,only,a,partial,description,of,the,dynamics,,an,alternative,class,of,models,is,those,described,by,a,system,of,autonomous,SDEs,dx(t),=,a(x(t),,θ)dt,+,B(x(t),,θ)dw(t),→,where,x,:,R≥0,Θ,is,a,set,of,(unknown),parameters,of,the,model,,a,:,RX,time,,θ,the,(deterministic),drift,term,in,the,dynamics,,w,:,R≥0,Wiener,processes,and,B,:,RX,enters,the,dynamics.,RX,is,a,vector-valued,stochastic,process,describing,the,state,of,the,system,over,RX,is,a,function,describing,RW,is,a,W,-dimensional,vector,of,standard,RX×W,is,a,diffusion,coefficient,defining,how,the,Wiener,noise,→,→,→,×,Θ,×,Θ,∈,Numerical,integrators,for,SDEs,can,be,used,to,(approximately),simulate,realisations,of,the,process.,RX,such,that,for,a,small,time,step,h,Specifically,most,numerical,schemes,can,be,formulated,as,a,family,of,forward,operators,Fh,:,RX,×,RV,0,and,a,V,-dimensional,vector,of,standard,normal,variates,→,Normal(0,,I),,then,Fh(x(t),,θ,,v),is,an,approximate,sample,from,the,conditional,distribution,on,v,x(t,+,h),given,the,current,state,x(t),at,time,t,and,parameters,θ.,The,simplest,and,most,commonly,used,example,of,such,a,numerical,integrator,is,the,Euler-Maruyama,scheme,for,which,×,∼,Θ,≥,Fh(x,,θ,,v),:=,x,+,ha(x,,θ),+,√hB(x,,θ)v,and,the,vector,of,normal,variates,v,has,dimension,V,=,W,.,When,W,=,X,and,B(x(t),,θ)B(x(t),,θ)T,is,strictly,positive,definite,,then,the,Euler-Maruyama,scheme,gives,an,approximation,of,the,conditional,distribution,on,x(t,+,h),given,x(t),and,θ,for,small,h,>,0,as,x(t,+,h),|,(x(t),,θ),∼,Normal(cid:0)x(t),+,ha(x(t),,θ),,hB(x(t),,θ)B(x(t),,θ)T(cid:1).,An,alternative,approach,to,approximating,the,solutions,to,the,SDEs,is,to,decompose,the,system,into,an,ODE,system,and,zero-drift,SDE,system,dx(t),dt,=,a(x(t),,θ),dx(t),=,B(x(t),,θ)dw(t),(i);,(ii);,and,use,a,Strang-splitting,like,approach,which,alternates,steps,numerical,solving,(i),and,(ii).,If,we,define,Ah(x,,θ),as,a,(numerical),solution,x(h),to,the,IVP,for,the,ODE,system,(i),with,initial,state,x(0),=,x,then,assuming,a,simple,Euler-Maruyama,scheme,to,solve,(ii),,we,have,that,a,Gaussian,approximation,to,the,conditional,(transition),distribution,is,x(t,+,h),|,(x(t),,θ),∼,Normal(cid:0)Ah(x(t),,θ),,hB(x(t),,θ)B(x(t),,θ)T(cid:1).,This,allows,for,example,using,an,ODE,solver,with,adaptive,time-stepping,and/or,implicit,steps,suitable,for,stiff,systems,for,implementing,Ah,to,maintain,numerical,stability,for,larger,h.,12,6.5,Observation,model,We,assume,we,noisily,observe,the,system,state,at,N,times,0,we,will,assume,the,observations,are,subject,to,additive,Gaussian,noise,with,≤,t1,<,t2,.,.,.,tN,−1,<,tN,.,For,simplicity,yn,∼,Normal,(H(x(tn),,θ),,R(θ)),,,n,1:N,,∈,where,H,:,RX,positive-definite,valued,function,defining,the,observation,noise,covariance.,RY,is,the,(possibly,non-linear),observation,operator,and,R,:,Θ,→,×,Θ,RY,×Y,is,a,→,6.6,Inference,in,deterministic,evolution,models,For,deterministic,evolution,models,,the,full,state,trajectories,are,entirely,determined,by,the,initial,state,of,the,system,x0,and,parameters,θ.,Given,a,joint,prior,distribution,π0,on,the,initial,state,x0,and,parameters,θ,then,our,overall,generative,model,for,the,observations,y1:N,is,(x0,,θ),π0;,Normal(H(Ftn(x0,,θ),,θ),,R(θ)),n,1:N,,∈,and,the,posterior,distribution,π,on,the,initial,state,x0,and,parameters,θ,is,∼,yn,∼,π(dx0,,dθ,y1:N,),|,−,N,|,R(θ),|,2,exp,(cid:16),∝,−,1,2,N,(cid:88),n=1,(cid:0)yn,−,H(Ftn(x0,,θ),,θ)(cid:1)T,R(θ)−1(cid:0)yn,−,H(Ftn(x0,,θ),,θ)(cid:1)(cid:17),π0(dx0,,dθ).,The,posterior,is,specified,up,to,an,unknown,normalizing,term,(the,model,evidence),depending,only,on,the,observations,y1:N,.,Assuming,π0,has,a,tractable,density,function,,then,we,can,evaluate,an,(unnormalized),density,function,for,the,posterior.,This,density,function,can,be,used,within,for,example,a,Markov,chain,Monte,Carlo,(MCMC),method,to,compute,a,sequence,of,(x0,,θ),samples,which,are,approximately,distributed,according,to,the,posterior,distribution.,The,posterior,(predictive),distribution,on,all,states,x(t),for,t,>,0,is,the,pushforward,of,the,posterior,distribution,on,(x0,,θ),under,Ft.,If,we,have,samples,from,the,posterior,distribution,on,(x0,,θ),given,y1:N,we,can,therefore,just,map,these,through,Ft,to,get,posterior,samples,of,x(t),for,any,t,,both,when,interpolating,between,and,extrapolating,outside,the,observation,times.,While,having,the,full,state,trajectories,determined,just,by,the,initial,state,and,parameters,both,results,in,a,relatively,low,(X,+,dim(Θ)),dimensional,inference,problem,and,simplifies,making,predic-,tions,,the,rigidity,of,having,the,state,evolution,fully,determined,by,a,low-dimensional,state,can,also,be,problematic,in,the,case,of,model,mismatch,-,that,is,a,discrepancy,between,the,generative,process,which,gave,rise,to,the,observed,data,and,the,model,being,fit,to,the,data.,When,there,is,model,mis-,match,there,may,be,no,configurations,of,(x0,,θ),which,lead,to,states,at,the,observed,times,(x(tn))N,n=1,which,are,simultaneously,consistent,with,all,of,the,observations,y1:N,.,This,can,potentially,lead,to,a,posterior,with,multiple,spurious,modes,corresponding,to,configurations,consistent,with,different,partial,subsets,of,the,observations.,6.7,Filtering,in,stochastic,evolution,models,For,stochastic,evolution,models,,for,now,assuming,fixed,parameters,θ,,the,state,trajectories,x(t),are,no,longer,deterministic,given,the,initial,state,x0,of,the,system.,This,means,we,need,to,infer,a,posterior,distribution,on,a,state,trajectory,rather,than,an,individual,state,,resulting,in,a,much,higher-dimensional,latent,space,and,more,challenging,inference,problem.,Conversely,,the,additional,flexibility,in,the,probabilistic,description,of,the,dynamics,can,mean,that,such,models,are,more,robust,to,mismatch,with,the,underlying,generative,process,that,gave,rise,to,the,observed,data,,with,the,Wiener,noise,processes,able,to,account,for,non-modelled,aspects,in,the,dynamics.,The,transition,kernel,associated,with,the,exact,solution,of,the,SDE,defines,a,conditional,distribu-,tion,on,x(t′),given,x(t),for,any,t′,t.,In,general,we,cannot,sample,from,nor,evaluate,a,density,for,the,conditional,distribution,,but,we,can,use,numerical,schemes,to,approximate,it,as,described,previously.,≥,13,If,we,define,xn,=,x(tn),for,n,1:N,the,overall,generative,model,for,a,stochastic,evolution,described,a,system,of,SDEs,with,fixed,parameters,θ,can,be,formulated,as,a,state,space,model,(SSM),defined,by,∈,x0,∼,π0;,xn,∼,Mn(,xn−1),,n,·|,1:N,;,∈,yn,∼,Gn(,·,|,xn),,n,1:N,;,∈,for,suitable,Markov,transition,kernels,M1:N,,,observation,distributions,G1:N,and,initial,state,(prior),distribution,π0.,Filtering,in,SSMs,is,a,process,of,recursively,computing,the,posterior,distribution,on,a,state,xn,at,time,step,n,given,the,observations,at,all,time,steps,up,to,and,including,n,that,is,y1:n.,We,define,two,sequences,of,distributions:,the,filtering,distributions,πn,for,n,1:N,are,the,posterior,distributions,on,xn,given,y1:n,while,the,predictive,distributions,⃗πn,for,n,1:N,are,the,posterior,distributions,on,xn,given,y1:n−1.,We,then,have,that,two,sequences,of,distributions,can,be,recursively,defined,by,∈,∈,⃗πn(dxn,|,y1:n−1),=,(cid:90),RX,Mn(dxn,|,xn−1)πn−1(dxn−1,|,y1:n−1),,n,1:N,;,with,the,notational,convention,that,⃗π1(dx1,y1:0),:=,⃗π1(dx1),and,π0(dx0,πn(dxn,y1:n),=,|,|,xn)⃗πn(dxn,|,x)⃗πn(dx,gn(yn,|,(cid:82),RX,gn(yn,|,y1:n−1),y1:n−1),|,,,n,1:N,;,∈,∈,y1:0),:=,π0(dx0),,and,|,where,gn,is,a,density,function,for,the,observation,distribution,Gn.,In,general,the,integrals,in,these,two,recursions,will,not,have,analytic,solutions,and,we,will,need,to,use,methods,which,approximate,them.,One,such,class,of,algorithms,is,particle,filtering,(Gordon,,Salmond,,and,Smith,1993),which,uses,Monte,Carlo,approximations,to,the,two,recursive,update,steps,,and,give,asymptotically,(in,the,limit,of,the,number,of,Monte,Carlo,samples,going,to,infinity),exact,estimates,of,expectations,with,respect,to,the,filtering,distributions.,A,particle,filter,constructs,a,sequence,of,ensembles,of,particles,,x(1:P,),p=1,for,time,indices,0:N,(where,P,is,the,ensemble,size,,an,integer,greater,than,zero),,corresponding,to,empirical,:=,(x(p),n,)P,n,n,approximations,of,the,filtering,distributions,,∈,πn(dxn,y1:n),|,≈,1,P,(cid:88),p=1,δx(p),n,(dxn),,n,0:N.,∈,This,sequence,of,filtering,ensembles,is,initialised,by,sampling,the,particles,independently,from,the,initial,state,distribution,π0,,that,is,0,∼,1,,an,ensemble,of,particle,proposals,˜x(1:P,),∈,n,π0,,p,1:P.,x(p),are,computed,from,the,previous,For,time,indices,n,filtering,ensemble,x(1:P,),≥,n−1,,,as,˜x(p),n,∼,Qn(,·,|,x(p),n−1,,yn),,1:P,p,∈,where,Qn,is,the,proposal,distribution,for,time,index,n,,for,which,various,choices,are,discussed,below.,These,particle,proposals,can,be,considered,as,an,importance,weighted,empirical,approximation,to,the,filtering,distribution,πn,πn(dxn,y1:n),|,≈,with,importance,weighting,function,(cid:80)P,r=1,wn(⃗x(r),(cid:80)P,n,,,x(r),s=1,wn(⃗x(s),n−1,,yn),δ⃗x(r),n,,,x(s),n−1,,yn),n,(dxn),,,wn(xn,,xn−1,,yn),=,mn(xn,xn−1),gn(yn,|,xn−1,,yn),|,qn(xn,|,xn),,,where,mn,is,a,density,function,for,the,Markov,transition,kernel,Mn,and,qn,is,a,density,function,for,the,proposal,distribution,Qn.,A,new,filtering,ensemble,x(1:P,),is,computed,from,the,weighted,n−1,14,particle,proposal,ensemble,by,resampling,,that,is,independently,sampling,from,the,weighted,empirical,approximation,to,the,filtering,distribution,πn,,x(p),n,∼,(cid:80)P,r=1,wn(⃗x(r),(cid:80)P,n,,,x(r),s=1,wn(⃗x(s),n−1,,yn),δ⃗x(r),n,,,x(s),n−1,,yn),n,(,),·,,,1:P.,p,∈,These,proposal,and,resampling,steps,can,then,be,iteratively,applied,for,each,n,full,sequence,of,filtering,ensembles.,∈,1:N,to,compute,the,The,choice,of,proposal,distributions,Q1:N,are,a,key,factor,in,determining,the,statistical,efficiency,of,a,particle,filter.,A,common,choice,is,the,bootstrap,proposal,Qn(dxn,|,xn−1,,yn),=,Mn(dxn,xn−1),,|,that,is,,sampling,the,proposals,directly,from,the,Markov,transition,kernels,of,the,SSM.,This,choice,of,proposal,distributions,leads,to,a,particularly,simple,weighting,function,wn(xn,,xn−1,,yn),=,gn(yn,|,xn),,which,depends,only,on,the,proposed,particle,and,observation,values,,and,does,not,require,access,to,an,explicit,density,function,mn,for,the,Markov,transition,kernel,Mn.,However,,by,ignoring,the,observations,when,proposing,new,values,for,the,particles,and,simply,sampling,from,the,prior,SSM,,the,proposals,may,end,up,in,regions,of,the,state,space,where,gn(yn,|,xn),is,small,(that,is,the,proposal,are,inconsistent,with,the,observed,data,yn),,corresponding,to,being,in,the,tails,of,the,filtering,distribution,πn.,In,such,cases,,the,particle,filter,will,typically,suffer,from,weight,degeneracy,whereby,due,to,the,high,variance,of,the,importance,weights,,once,normalized,most,particles,have,weights,very,close,to,zero,other,than,a,single,particle,with,weight,close,to,one,,resulting,in,an,ensemble,of,effectively,only,one,sample.,Particle,filters,suffering,from,weight,degeneracy,will,tend,to,give,poor,filtering,distribution,estimates.,To,minimize,the,tendency,towards,weight,degeneracy,,an,alternative,choice,of,proposal,distribution,is,to,use,the,conditional,distribution,on,the,state,at,the,next,time,index,given,both,the,previous,state,and,current,observations,,that,is,Qn(dxn,|,xn−1,,yn),=,Mn(dxn,|,(cid:82),RX,Mn(dx,xn−1),gn(yn,|,|,xn−1),gn(yn,|,xn),x),.,In,this,case,the,weighting,function,simplifies,to,wn(xn,,xn−1,,yn),=,(cid:90),RX,Mn(dx,xn−1),gn(yn,|,|,x),,which,does,not,depend,on,the,value,of,the,sampled,proposals.,By,eliminating,the,dependence,on,the,stochastically,sampled,proposals,,this,choice,of,proposal,minimises,the,variance,of,the,importance,weights,associated,with,the,proposed,particles,,and,is,therefore,sometimes,termed,the,locally,optimal,proposal,,in,terms,of,minimising,the,variance,of,the,importance,weights).,While,attractive,from,a,statistical,efficiency,standpoint,,the,locally,optimal,proposal,is,only,ap-,plicable,to,a,subset,of,models,for,which,the,proposal,distribution,and,weighting,function,have,closed,form,solutions.,One,class,of,SSMs,for,which,using,locally,optimal,proposal,is,tractable,are,those,with,Gaussian,Markov,transition,kernels,M1:N,and,observation,distributions,G1:N,where,additionally,the,mean,of,the,observation,distribution,is,a,linear,function,of,the,state,(Doucet,,Godsill,,and,Andrieu,2000).,Returning,to,the,specific,case,of,an,SDE,model,as,described,previously,,if,we,assume,the,inter-,1:N,are,sufficiently,small,,then,the,Markov,transition,kernels,for,observation,intervals,tn,the,state,updates,can,be,approximated,as,Gaussian,distributions,using,the,splitting,numerical,scheme,described,above,as,tn−1,,n,−,∈,Mn(,·,|,xn−1),=,Normal(Atn−tn−1(xn−1,,θ),,Cn(xn−1,,θ)),,n,1:N,,∈,15,where,Cn(xn−1,,θ),:=,(tn,tions,are,Gaussian,−,tn−1)B(xn−1,,θ)B(xn−1,,θ)T.,We,also,have,that,the,observation,distribu-,Gn(,·,|,xn),=,Normal(H(xn,,θ),,R(θ)),,n,1:N.,∈,For,linear-in-the-state,observation,operators,H(xn,,θ),=,H(θ)xn,,then,the,locally,optimal,proposal,for,this,SSM,is,tractable,,specifically,xn−1,,yn),=,Normal(cid:0),·,|,Atn−tn−1(xn−1),+,Cn(xn−1)H,T(HCn(xn−1)H,T,+,R)−1(yn,−,Cn(xn−1)H,T(HCn(xn−1)H,T,+,R)−1HCn(xn−1),Cn(xn−1),HAtn−tn−1(xn−1)),,Qn(,(cid:1),−,where,we,have,elided,the,dependence,of,terms,on,θ,for,compactness.,6.8,Test,model,As,a,test,case,we,consider,a,model,of,magnetohydrodynamic,instability,coupled,to,a,slow,dissipa-,tive,background,evolution,(Arter,2012).,The,resulting,axissymmetric,non-axissymmetric,extended,(ANAET),model,is,described,by,the,system,of,ODEs,¨a,=,γra,−,−,(µ1,+,µ2b)a3,µ6a6,˙a,,−,˙b,=,ν1,ν2b2,−,−,(δ0,+,δ1b)a2,,where,a,is,a,non-axissymmetric,ideal,mode,coupled,to,an,axissymmetric,mode,b,,and,(γr,,µ1,,µ2,,µ6,,ν1,,ν2,,δ0,,δ1),are,free,parameters.,Defining,x,=,(a,,˙a,,b),,these,equations,can,be,written,as,a,first,order,ODE,system,dx(t),dt,=,,,−,γrx1(t),(µ1,+,µ2x3(t))x1(t)3,µ6x1(t)6x2(t),,.,ν2x3(t)2,(δ0,+,δ1b)x1(t)2,−,−,ν1,−,x2(t),−,,We,also,consider,a,simple,stochastic,evolution,variant,of,this,model,defined,by,the,SDE,system,,,dx(t),=,−,γrx1(t),(µ1,+,µ2x3(t))x1(t)3,µ6x1(t)6x2(t),,dt,+,βdw(t),,x2(t),−,−,ν1,−,ν2x3(t)2,(δ0,+,δ1b)x1(t)2,−,,with,W,=,X,=,3,,with,Wiener,noise,of,magnitude,controlled,by,a,shared,scalar,parameter,β,>,0,introduced,in,to,each,of,the,three,state,components.,We,assume,only,observations,of,first,(a),state,component,and,independent,Gaussian,observation,noise,,that,is,an,observation,model,Normal(x1(tn),,σ2),,n,yn,∼,1:N.,∈,6.8.1,Inference,with,PyMC,As,a,first,example,we,consider,jointly,inferring,the,initial,state,x0,=,(a0,,˙a0,,b0),and,parameters,θ,=,(γr,,µ1,,µ2,,µ6,,ν1,,ν2,,δ0,,δ1,,σ),of,the,original,(deterministic),ANAET,test,model,,given,simulated,observed,data,generated,from,the,model.,We,generate,simulated,observed,data,y1:N,for,N,=,100,1:100,(see,Figure,16),using,the,parameter,and,initial,state,values,defined,in,Table,1.,times,tn,=,n,,n,∈,Table,1:,True,values,of,model,variables,used,to,generate,simulated,data,and,prior,distributions.,Variable,True,value,Prior,distribution,a0,˙a0,b0,γr,1,2.5,0.01,1,Normal(0,,1),Normal(0,,1),Normal(0,,1),Normal(0,,1),16,Variable,True,value,Prior,distribution,µ1,µ2,µ6,ν1,ν2,δ0,δ1,σ,0,-2,0.001,0.005,0.0001,0.0001,0,0.5,Normal(0,,1),Normal(0,,1),Normal(0,,1),Normal(0,,1),Normal(0,,1),Normal(0,,1),Normal(0,,1),HalfNormal(1),We,assign,independent,weakly,informative,standard,normal,priors,to,all,variables,other,than,than,the,observation,noise,scale,parameter,σ,to,which,we,give,a,half-normal,prior,to,reflect,the,constraint,that,the,parameter,is,non-negative.,We,use,a,gradient-based,Hamiltonian,Monte,Carlo,(HMC),(Duane,et,al.,1987;,Neal,et,al.,2011),MCMC,method,to,generate,approximate,samples,from,the,posterior,distribution,on,the,initial,state,and,parameters,(x0,,θ),given,the,simulated,observations,y1:N,.,Specifically,we,use,the,implementation,of,the,No-U-Turn-Sampler,(NUTS),(Hoffman,,Gelman,,et,al.,2014),in,PyMC,(Wiecki,et,al.,2023),,which,uses,dual-averaging,algorithm,to,adaptively,set,the,step,size,and,mass,matrix,during,a,warm-,up,sampling,phase,and,uses,a,heuristic,to,dynamically,set,the,number,of,steps,in,the,simulated,Hamiltonian,trajectories,in,each,proposed,move.,To,solve,the,ODE,system,we,use,a,backwards,differentiation,formula,(BDF),solver,with,adaptive,time,stepping,,and,propagate,derivatives,using,an,adjoint,sensitivity,analysis,approach.,Specifically,we,use,the,CVODES,solver,in,the,SUNDIALS,suite,(Hindmarsh,et,al.,2005;,Gardner,et,al.,2022),via,the,Python,package,sunode,(Seyboldt,et,al.,2022),which,provides,a,PyTensor,wrapper,of,the,CVODES,solver,which,is,compatible,with,PyMC.,Table,2:,Convergence,diagnostics,for,MCMC,output.,ESS(bulk),ESS(tail),17,13,9,5,19,6,12,6,7,7,10,8,112,40,19,31,28,52,59,37,15,35,29,75,ˆR,1.22,1.57,1.63,2.16,1.27,1.85,1.3,1.88,1.53,1.55,1.77,1.44,γr,µ1,µ2,µ6,ν1,ν2,δ0,δ1,rσ,a0,˙a0,b0,We,simulate,four,independent,Markov,chains,in,parallel,to,facilitate,cross-chain,convergence,diag-,nostics,,using,1000,adaptive,warm-up,iterations,per,chain,and,1000,iterations,in,the,main,sampling,phase.,Simulating,the,chains,took,approximately,12,hours,on,a,system,with,Intel,Core,i7-10610U,CPU.,Convergence,diagnostics,for,the,sampled,chains,are,summarized,in,Table,2,,specifically,effec-,tive,sample,size,(ESS),estimates,and,split-,ˆR,potential,scale,reduction,factor,convergence,diagnostics,computed,using,the,rank-normalization,based,approach,described,in,Vehtari,et,al.,(2021).,ˆR,values,greater,than,1.01,are,indicative,of,poorly,converged,Markov,chains,,which,we,can,see,is,the,case,for,all,parameters,here.,The,ESS,estimates,give,an,approximation,of,how,many,independent,samples,would,given,an,equivalent,variance,in,estimates,for,different,summary,statistics,using,the,dependent,Markov,chain,samples,(ESS(bulk),here,gives,an,indication,of,the,effective,sample,size,in,the,main,bulk,of,the,17,Figure,16:,Simulated,trajectories,(blue,lines),and,noisy,observations,(orange,markers),for,ANAET,model.,posterior,and,ESS(tail),in,the,tails).,As,here,the,number,of,samples,Markov,chain,samples,is,4000,and,so,we,would,expect,ESS,values,of,close,to,4000,if,the,chain,samples,were,close,to,independent,,we,can,see,the,low,ESS,estimates,here,indicate,chains,which,will,give,poor,posterior,estimates.,Figure,17,shows,the,estimates,univariate,and,pairwise,posterior,marginal,distributions,for,all,(pairs,of),variables,in,blue,with,the,prior,marginals,shown,in,blue,and,true,values,used,to,generated,the,data,shown,in,orange.,Given,the,convergence,issues,with,the,Markov,chains,the,posterior,estimates,here,are,likely,to,be,very,poor,and,so,should,be,treated,cautiously.,The,‘roughness’,of,the,kernel,density,estimates,of,the,posterior,are,likely,a,result,of,the,high,correlation,between,chain,samples,and,the,multimodality,observed,in,the,univariate,marginals,may,also,be,an,artefact,of,the,poor,chain,convergence,rather,than,being,reflective,of,the,true,posterior.,We,see,that,for,most,parameters,the,variable,values,used,to,generate,data,lie,within,bulk,of,the,corresponding,estimated,posterior,marginals,,as,would,be,expected,for,for,calibrated,inference,estimates,(Cockayne,et,al.,2022),,however,this,is,not,the,case,for,a,few,variables,,most,notably,the,observation,noise,scale,parameter,σ,,with,the,posterior,concentrating,around,a,much,higher,value,(,4.5),that,the,true,value,used,to,generate,the,data,of,0.5.,MCMC,methods,will,often,struggle,to,∼,sample,from,posteriors,where,observations,are,highly,informative,(Au,,Graham,,and,Thiery,2020),,with,a,common,failure,mode,in,this,case,being,that,the,sampler,gets,stuck,in,a,region,of,space,in,which,the,observation,noise,scale,parameter,is,large,and,the,signal,in,the,observed,data,is,attributed,to,noise.,The,signal-to-noise,ratio,in,the,simulated,observed,data,is,relatively,high,here,so,this,a,potentially,a,source,of,some,of,the,convergence,issues.,MCMC,methods,such,as,that,described,in,Au,,Graham,,and,Thiery,(2020),which,exploit,more,information,about,the,geometry,of,the,posterior,distribution,may,help,ameliorate,such,convergence,issues,,albeit,at,the,cost,of,requiring,additional,implementation,effort,to,compute,the,necessary,higher,order,derivatives,of,the,model,functions.,Another,issue,likely,contributing,to,the,poor,convergence,of,the,MCMC,chains,here,is,that,the,adaptive,ODE,solver,is,failing,to,converge,for,many,of,the,(x0,,θ),values,IVP,solves,are,run,for,while,simulating,the,Markov,chains.,This,is,likely,to,be,due,to,the,solver,being,numerically,unstable,in,some,regions,of,the,latent,space.,During,each,Markov,chain,transition,,the,HMC,based,method,being,used,here,evaluates,the,posterior,density,and,its,gradients,at,a,sequence,of,points,along,a,simulated,Hamiltonian,dynamics,trajectory,in,the,latent,space.,Evaluating,the,posterior,density,and,its,gradient,requires,solving,the,IVP,and,if,the,solver,fails,to,converge,at,any,point,in,the,trajectory,the,sampler,is,forced,to,fallback,to,a,‘rejection’,transition,whereby,it,remains,at,the,previous,point,in,the,latent,18,020406080100Timet−10−50a(t)020406080100Timet−0.050.000.05b(t)020406080100Timet−4−2024˙a(t),Figure,17:,Estimated,pairwise,and,univariate,posterior,marginals,using,MCMC,chain,samples,(blue),against,prior,distribution,(green),and,true,variable,values,used,to,generate,data,(orange).,space.,If,the,Markov,chain,ends,up,in,a,point,in,the,latent,space,where,moving,in,most,directions,in,the,latent,space,will,result,in,the,IVP,solver,failing,and,a,rejection,occurring,,the,Markov,chain,can,end,up,‘stuck’,for,many,chain,samples.,There,are,various,approaches,which,may,help,address,this,issue.,A,key,factor,likely,contributing,to,the,poor,performance,in,the,test,model,here,is,the,choice,of,prior,distributions,,with,weakly-,informative,distributions,placed,on,all,variables,,likely,leading,to,significant,prior,mass,being,put,on,regions,of,the,latent,space,which,lead,to,physically,implausible,dynamics.,Using,domain,expertise,to,set,more,informative,prior,distributions,that,avoid,putting,mass,on,regions,of,the,latent,space,which,are,likely,to,lead,to,IVP,solver,errors,is,likely,to,lead,to,improved,MCMC,performance.,Another,approach,would,be,to,use,alternative,ODE,solvers,more,tailored,to,the,properties,of,the,ODE,system,being,considered,here,or,adjust,the,control,parameters,of,the,CVODES,solver,being,cur-,rently,used.,Arter,(2012),noted,the,challenge,posed,in,accurately,numerically,simulating,the,ANAET,system,,and,little,attempt,has,been,made,here,to,identify,suitable,values,for,the,solver,control,pa-,rameters,such,as,tolerances,and,maximum,number,of,steps,,or,explore,alternative,numerical,solvers.,Timonen,et,al.,(2022),suggests,an,importance-sampling,based,approach,for,iteratively,adjusting,con-,trol,parameters,of,ODE,solvers,when,performing,Bayesian,inference,in,ODE,models,and,accounting,for,the,approximation,error,inherent,to,using,coarser,numerical,approximations.,The,authors,also,note,that,using,adaptive,ODE,solvers,within,a,MCMC,based,approximate,inference,method,can,be,problematic,due,to,aforementioned,convergence,issues,in,regions,of,the,latent,space,,and,suggest,a,more,robust,alternative,can,be,to,use,a,non-adaptive,ODE,solver,within,their,importance-sampling,based,framework,for,controlling,approximation,error.,19,4202414202242026420241202424202404202410.01.53.04.52024a04202a04202r42024b04202414202242026420241202424202404202410.01.53.04.52024a04202a042024b0,A,complementary,approach,to,addressing,these,numerical,issues,to,those,already,discussed,,would,be,to,exploit,the,sequential,nature,of,the,observations,here,by,using,a,sequential,Monte,Carlo,(SMC),sampling,method,(Del,Moral,,Doucet,,and,Jasra,2006).,The,sequence,of,observations,y1:N,defines,a,natural,path,of,partial,posteriors,(Dai,et,al.,2022),corresponding,to,the,posterior,distributions,on,the,latent,variables,(x0,,θ),given,observations,y1:n,for,n,0:N,.,These,N,+1,distributions,gradually,bridge,from,the,prior,distribution,for,n,=,0,to,the,full,posterior,for,n,=,N,.,SMC,methods,are,a,generalization,of,particle,filters,,and,similarly,involve,updating,an,ensemble,of,particles,,here,targetting,a,generic,sequence,of,distributions,rather,than,specifically,the,filtering,distributions,for,a,SSM.,The,Markov,kernels,used,to,update,each,of,the,particles,in,the,ensemble,for,a,particular,target,distribution,in,the,sequence,,can,be,constructed,by,using,a,single,transition,of,a,MCMC,method,(such,as,the,NUTS,method,used,in,the,experiments,here),which,leaves,the,target,distribution,invariant.,∈,Compared,to,directly,applying,a,MCMC,method,SMC,samplers,offer,a,number,of,advantages.,The,updates,to,each,particle,for,each,intermediate,distribution,can,be,performed,in,parallel,,making,them,ideal,for,deployment,on,multi-node,high,performance,computing,(HPC),systems,or,single,compute,nodes,with,multiple,processing,units.,For,a,path,of,partial,posteriors,,the,earlier,target,distributions,on,the,path,will,only,require,solving,the,IVP,for,a,subset,of,the,observation,times,,significantly,reducing,the,computational,cost,of,these,earlier,updates.,By,updating,multiple,particles,in,parallel,across,the,latent,space,,SMC,samplers,can,also,be,less,prone,to,the,sticking,issues,due,to,failure,of,numerical,solvers,in,some,regions,of,the,latent,space,,as,if,at,least,some,of,the,particles,end,up,in,regions,of,the,space,for,which,the,numerical,solver,is,stable,,the,updates,to,these,particles,will,succeed,and,particles,for,which,updates,are,rejected,due,to,solver,fails,are,likely,to,be,subsequently,replaced,by,these,successfully,updated,particles,in,the,resampling,steps,between,particle,updates.,Similarly,SMC,samplers,typically,exhibit,much,more,robust,performance,for,posterior,distributions,exhibiting,multimodality,(Dai,et,al.,2022).,An,alternative,approach,to,addressing,both,the,numerical,issues,involved,in,repeatedly,solving,IVPs,,and,high,computational,cost,inherent,to,this,,is,to,a,gradient,matching,based,inference,approach,which,fit,a,Gaussian,process,(GP),to,the,unobserved,state,trajectories,and,rather,than,solving,the,IVP,match,the,time,derivatives,of,the,GP,model,to,the,values,of,the,time,derivatives,arising,from,the,vector,field,function,f,defining,the,ODE,model,(Calderhead,,Girolami,,and,Lawrence,2008;,Dondelinger,et,al.,2013).,By,avoiding,the,necessity,of,solving,the,IVP,to,evaluate,the,posterior,density,used,in,these,approaches,,we,both,sidestep,the,numerical,issues,involved,with,ensuring,stability,of,the,solver,across,the,latent,space,,and,significantly,reduce,the,computational,cost,of,inference.,The,cost,is,however,that,we,no,longer,generate,samples,from,the,true,posterior,of,interest,but,instead,from,a,proxy,distribution,which,may,be,less,informative,about,some,latent,variables,in,some,cases,,and,which,the,faithfulness,of,which,to,the,true,posterior,will,depend,on,how,well,the,GPs,used,to,model,the,state,trajectories,reflect,the,true,trajectories,of,the,ODE,system.,Instead,of,using,GPs,as,proxies,for,the,unobserved,state,trajectories,,an,alternative,is,to,use,a,GP,as,an,emulator,for,the,log-likelihood.,Specifically,within,the,context,of,HMC,methods,,a,GP,emulator,for,the,log-likelihood,can,be,used,in,evaluating,the,(log),posterior,density,values,gradients,required,to,simulate,Hamiltonian,trajectories,in,the,latent,space,,to,propose,new,a,point,for,the,chain,to,move,to,(Paun,and,Husmeier,2022).,Using,a,GP,emulator,in,place,of,directly,evaluating,the,log,likelihood,avoids,both,the,cost,and,potential,for,convergence,issues,in,repeatedly,solving,IVPs,for,each,point,on,the,simulated,Hamiltonian,trajectory.,If,the,probability,of,accepting,a,proposal,continues,to,be,evaluated,using,the,true,posterior,density,however,,it,can,be,ensured,that,such,an,MCMC,method,still,asymptotically,converges,to,the,true,posterior.,Requiring,only,one,full,posterior,density,evaluation,per,Markov,chain,iteration,both,dramatically,reduces,the,computational,cost,of,inference,and,also,sidesteps,the,need,to,be,able,to,compute,the,derivatives,of,the,true,posterior,density,,often,a,significant,implementation,barrier,in,practice.,6.8.2,Filtering,with,ParticleDA.jl,As,a,second,example,we,consider,using,a,particle,filter,to,estimate,the,state,trajectories,x1:N,(with,xn,=,x(tn),,tn,=,n,and,N,=,100,as,previously),of,the,stochastic,variant,of,the,ANAET,model,,given,simulated,observed,data,y1:N,generated,from,the,model.,Here,we,fix,the,parameters,to,the,values,20,defined,in,Table,1,,with,additionally,the,diffusion,coefficient,parameter,controlling,the,scale,of,the,noise,introduced,into,the,dynamics,set,to,β,=,0.02.,We,generate,a,set,of,simulated,observed,data,from,the,SSM,using,a,fixed,initial,state,with,components,as,defined,in,Table,1,when,simulating,the,observations,,but,when,filtering,use,an,initial,state,distribution,with,a0,Normal(2,,1),and,b0,Normal(0,,1).,Our,SSM,formulation,uses,a,Gaussian,approximation,to,the,Markov,transition,kernels,based,on,a,splitting,numerical,scheme,which,uses,an,adaptive,ODE,solver,to,solve,for,the,deterministic,component,of,the,dynamics,and,Euler-Maruyama,discretisation,for,the,driving,Wiener,noise,processes.,Normal(0,,1),,˙a0,∼,∼,∼,Figure,18:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,125,and,locally,optimal,proposals.,Figure,19:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,125,and,bootstrap,proposals.,We,use,the,particle,filter,implementation,in,the,Julia,package,ParticleDA.jl,(Giles,et,al.,2023),to,compute,particle,approximations,to,the,filtering,distributions,π1:N,,,using,its,implementations,of,both,the,bootstrap,and,locally,optimal,proposals.,Figures,18,,20,and,22,show,results,for,the,locally,optimal,proposals,with,P,=,125,,P,=,250,and,P,=,500,particles,respectively,,and,Figures,19,,21,and,23,show,results,for,the,bootstrap,proposals,with,P,=,125,,P,=,250,and,P,=,500,particles,respectively.,In,all,cases,,for,the,filtering,estimates,,the,blue,line,shows,the,estimated,filtering,distribution,mean,21,Figure,20:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,250,and,locally,optimal,proposals.,Figure,21:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,250,and,bootstrap,proposals.,±,and,the,blue,filled,region,the,estimated,mean,three,estimated,standard,deviation,interval.,From,Figures,22,and,23,see,that,particle,filters,using,both,the,locally,optimal,and,bootstrap,proposals,appear,to,give,reasonable,estimates,of,the,filtering,distribution,with,P,=,500,particles,,with,the,true,state,trajectories,generally,within,the,intervals,estimated,to,contain,most,of,the,mass,of,the,filtering,distributions,as,expected.,For,the,smaller,ensembles,of,P,=,250,(Figures,20,and,21),and,P,=,125,(Figures,18,and,19),,we,see,that,the,estimates,of,filters,using,both,proposals,appear,to,degrade,at,some,points,(particularly,at,earlier,times,in,the,trajectories,where,the,is,greater,uncertainty,due,to,fewer,observations),,but,that,filters,using,the,locally,optimal,proposals,outperform,filters,using,the,bootstrap,proposals.,Here,we,are,using,a,relatively,coarse,numerical,approximation,to,the,underlying,SDE,,with,a,single,step,Euler-Maruyama,based,scheme,used,to,give,a,Gaussian,approximation,to,Markov,transitions,between,states,at,the,observation,times.,If,we,had,larger,inter-observation,intervals,or,wanted,to,use,a,fine,time,resolution,when,simulating,the,underlying,SDE,system,,we,could,a,discretisation,scheme,which,uses,multiple,smaller,steps,in,each,inter-observation,interval.,There,are,also,numerical,schemes,for,simulating,SDE,systems,with,higher,orders,of,convergence,such,as,the,Milstein,method,(Mil’shtejn,22,Figure,22:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,500,and,locally,optimal,proposals.,Figure,23:,True,state,trajectories,(orange),,observed,data,(green,markers),and,filtering,estimates,(blue),for,stochastic,ANAET,model,using,particle,filter,with,P,=,500,and,bootstrap,proposals.,Top,panel,shows,1975),which,could,be,used,in-place,of,an,Euler-Maruyama,approximation.,In,these,cases,while,we,can,sample,from,the,resulting,Markov,transition,kernels,M1:N,,,they,would,no,longer,have,tractable,density,functions.,While,we,could,still,apply,a,particle,filter,with,bootstrap,proposals,to,such,SSMs,,use,of,the,locally,optimal,proposals,would,no,longer,be,possible.,The,assumption,of,fixed,known,parameters,made,here,is,limiting,in,practice,where,often,we,would,wish,to,jointly,infer,these,parameters,with,the,state,trajectories.,One,option,for,jointly,inferring,the,parameters,and,state,trajectories,is,to,use,particle,MCMC,methods,(Andrieu,,Doucet,,and,Holenstein,2010),which,run,a,particle,filter,to,generate,proposed,updates,to,both,the,state,trajectories,and,parameters,within,a,pseudo-marginal,MCMC,method,(Andrieu,and,Roberts,2009).,Nesting,a,particle,filter,within,a,MCMC,scheme,can,be,computationally,expensive,however,,and,pseudo-marginal,MCMC,schemes,often,suffer,from,a,‘sticking’,pathology,whereby,chains,will,show,long,series,of,rejected,proposals,(Murray,and,Graham,2016).,An,alternative,is,to,use,gradient-based,MCMC,methods,directly,targetting,the,joint,posterior,distribution,on,the,state,trajectories,and,parameters.,The,high,dimensional,latent,space,and,complex,dependencies,between,the,latent,variables,can,lead,to,a,23,challenging,posterior,geometry,in,such,settings,however,MCMC,schemes,have,been,proposed,which,can,perform,efficient,inference,in,this,setting,(Graham,,Thiery,,and,Beskos,2022).,7,Software,and,Implementation.,HPC,Deployment,Deliverable,D3.1,and,D3.2:,D3.1:,The,new,release,28,March,2023,of,the,SEAVEA,toolkit,featuring,advanced,surrogate,modelling,(see,above,new,SSC,method).,Further,releases,will,integrate,more,of,the,methods,developed,in,AQUIFER.,D3.2:,Release,of,the,DA,platform,was,achieved,as,FabParticleDA.,The,link,to,the,SEAVEA,UQ,platform,is,within,the,SEAVEA,UQ,platform,released,28,March,2023:,https://github.com/djgroen/FabParticleDA/tree/master.,The,test,case,works,locally.,HPC,deployment,at,scale,is,part,of,Activity,4.,HPC,deployment:,As,part,of,our,efforts,to,support,NEPTUNE,,we,have,been,working,on,cou-,pling,codes,using,MUSCLE3,as,outlined,in,the,proposal.,Firstly,,we,replaced,the,MPI,implementation,with,MUSCLE3,and,verified,a,test,case,with,both,MUSCLE3,and,MPI,versions.,We,found,that,the,results,from,the,MUSCLE3,implementation,matched,those,obtained,with,the,MPI,version.,We,then,conducted,a,test,case,on,single,desktop,,which,showed,that,MUSCLE3,was,10x,slower,than,the,MPI,version.,However,,we,expected,this,due,to,the,smaller,size,of,the,test,case,,and,communications,time,on,MUSCLE3,took,too,much,time,comparing,with,the,computational,time.,Next,,we,deployed,MUSCLE3,on,Archer2,using,a,larger,test,case,and,ran,both,an,MPI,job,and,a,MUSCLE3,job,on,the,same,resources.,We,found,that,they,completed,almost,at,the,same,time.,This,gives,us,confidence,that,MUSCLE3,has,the,potential,to,efficiently,couple,large,HPC,codes.,Moving,forward,,our,next,step,is,to,evaluate,the,performance,of,MUSCLE3,with,larger,test,cases,with,more,complex,scenarios,which,should,help,the,NEPTUNE,project,perform,HPC,simulations,across,different,scales.,References,Andrieu,,Christophe,,Arnaud,Doucet,,and,Roman,Holenstein,(2010).,“Particle,Markov,chain,Monte,Carlo,methods”.,In:,Journal,of,the,Royal,Statistical,Society:,Series,B,(Statistical,Methodology),72.3,,pp.,269–342.,Andrieu,,Christophe,and,Gareth,O.,Roberts,(2009).,“The,pseudo-marginal,approach,for,efficient,Monte,Carlo,computations”.,In:,The,Annals,of,Statistics,37.2,,pp.,697–725.,doi:,10.1214/07-,AOS574.,url:,https://doi.org/10.1214/07-AOS574.,Arter,,Wayne,(2012).,Blue,Sky,Solutions,to,the,Magnetohydrodynamic,Trigger,Problem.,UK-Germany,National,Astronomy,Meeting,NAM2012.,url:,https://doi.org/10.13140/RG.2.2.35052.,77449.,Au,,Khai,Xiang,,Matthew,M,Graham,,and,Alexandre,H,Thiery,(2020).,“Manifold,lifting:,scaling,MCMC,to,the,vanishing,noise,regime”.,In:,arXiv,preprint,arXiv:2003.03950.,Calderhead,,Ben,,Mark,Girolami,,and,Neil,Lawrence,(2008).,“Accelerating,Bayesian,inference,over,nonlinear,differential,equations,with,Gaussian,processes”.,In:,Advances,in,Neural,Information,Processing,Systems,21.,Cockayne,,Jon,et,al.,(2022).,“Testing,whether,a,learning,procedure,is,calibrated”.,In:,Journal,of,Machine,Learning,Research,23,,pp.,1–36.,Dai,,Chenguang,et,al.,(2022).,“An,invitation,to,sequential,Monte,Carlo,samplers”.,In:,Journal,of,the,American,Statistical,Association,117.539,,pp.,1587–1600.,Del,Moral,,Pierre,,Arnaud,Doucet,,and,Ajay,Jasra,(2006).,“Sequential,Monte,Carlo,samplers”.,In:,Journal,of,the,Royal,Statistical,Society:,Series,B,(Statistical,Methodology),68.3,,pp.,411–436.,Dondelinger,,Frank,et,al.,(2013).,“ODE,parameter,inference,using,adaptive,gradient,matching,with,Gaussian,processes”.,In:,Artificial,Intelligence,and,Statistics.,PMLR,,pp.,216–228.,Doucet,,Arnaud,,Simon,Godsill,,and,Christophe,Andrieu,(2000).,“On,sequential,Monte,Carlo,sampling,methods,for,Bayesian,filtering”.,In:,Statistics,and,computing,10,,pp.,197–208.,24,Duane,,Simon,et,al.,(1987).,“Hybrid,Monte,Carlo”.,In:,Physics,letters,B,195.2,,pp.,216–222.,Edeling,,Wouter,Nico,,Richard,P,Dwight,,and,Pasquale,Cinnella,(2016).,“Simplex-stochastic,collo-,cation,method,with,improved,scalability”.,In:,Journal,of,Computational,Physics,310,,pp.,301–,328.,Gardner,,David,J,et,al.,(2022).,“Enabling,new,flexibility,in,the,SUNDIALS,suite,of,nonlinear,and,differential/algebraic,equation,solvers”.,In:,ACM,Transactions,on,Mathematical,Software,(TOMS).,doi:,10.1145/3539801.,Giles,,D.,et,al.,(2023).,“ParticleDA.jl,v.1.0:,A,real-time,data,assimilation,software,platform”.,In:,Geoscientific,Model,Development,Discussions,2023,,pp.,1–20.,doi:,10.5194/gmd-2023-38.,url:,https://gmd.copernicus.org/preprints/gmd-2023-38/.,Gordon,,Neil,J,,David,J,Salmond,,and,Adrian,FM,Smith,(1993).,“Novel,approach,to,nonlinear/non-,Gaussian,Bayesian,state,estimation”.,In:,IEE,proceedings,F,(radar,and,signal,processing).,Vol.,140.,2.,IET,,pp.,107–113.,Graham,,Matthew,M,,Alexandre,H,Thiery,,and,Alexandros,Beskos,(2022).,“Manifold,Markov,chain,Monte,Carlo,methods,for,Bayesian,inference,in,diffusion,models”.,In:,Journal,of,the,Royal,Statis-,tical,Society,Series,B:,Statistical,Methodology,84.4,,pp.,1229–1256.,Hindmarsh,,Alan,C,et,al.,(2005).,“SUNDIALS:,Suite,of,nonlinear,and,differential/algebraic,equation,solvers”.,In:,ACM,Transactions,on,Mathematical,Software,(TOMS),31.3,,pp.,363–396.,doi:,10.,1145/1089014.1089020.,Hoffman,,Matthew,D,,Andrew,Gelman,,et,al.,(2014).,“The,No-U-Turn,sampler:,adaptively,setting,path,lengths,in,Hamiltonian,Monte,Carlo”.,In:,J.,Mach.,Learn.,Res.,15.1,,pp.,1593–1623.,Mil’shtejn,,GN,(1975).,“Approximate,integration,of,stochastic,differential,equations”.,In:,Theory,of,Probability,&,Its,Applications,19.3,,pp.,557–562.,Ming,,Deyu,and,Serge,Guillas,(2021).,“Linked,Gaussian,process,emulation,for,systems,of,computer,models,using,Mat´ern,kernels,and,adaptive,design”.,In:,SIAM/ASA,Journal,on,Uncertainty,Quan-,tification,9.4,,pp.,1615–1642.,Ming,,Deyu,,Daniel,Williamson,,and,Serge,Guillas,(2022).,“Deep,gaussian,process,emulation,using,stochastic,imputation”.,In:,Technometrics,,pp.,1–12.,Murray,,Iain,and,Matthew,Graham,(2016).,“Pseudo-marginal,slice,sampling”.,In:,Artificial,Intelligence,and,Statistics.,PMLR,,pp.,911–919.,Neal,,Radford,M,et,al.,(2011).,“MCMC,using,Hamiltonian,dynamics”.,In:,Handbook,of,Markov,chain,Monte,Carlo,2.11,,p.,2.,Paun,,L,Mihaela,and,Dirk,Husmeier,(2022).,“Emulation-accelerated,Hamiltonian,Monte,Carlo,algo-,rithms,for,parameter,estimation,and,uncertainty,quantification,in,differential,equation,models”.,In:,Statistics,and,Computing,32,,pp.,1–25.,Seyboldt,,Adrian,et,al.,(Dec.,2022).,pymc-devs/sunode:,v0.4.0.,url:,https://github.com/pymc-,devs/sunode.,Timonen,,Juho,et,al.,(2022).,“An,importance,sampling,approach,for,reliable,and,efficient,inference,in,Bayesian,ordinary,differential,equation,models”.,In:,arXiv,preprint,arXiv:2205.09059.,Vehtari,,Aki,et,al.,(2021).,“Rank-normalization,,folding,,and,localization:,An,improved,ˆR,for,assessing,convergence,of,MCMC,(with,discussion)”.,In:,Bayesian,analysis,16.2,,pp.,667–718.,Wiecki,,Thomas,et,al.,(Mar.,2023).,pymc-devs/pymc:,v5.1.2.,Version,v5.1.2.,doi:,10.5281/zenodo.,7730656.,url:,https://doi.org/10.5281/zenodo.7730656.,Zhang,,Ruda,,Simon,Mak,,and,David,Dunson,(2022).,“Gaussian,Process,Subspace,Prediction,for,Model,Reduction”.,In:,SIAM,Journal,on,Scientific,Computing,44.3,,A1428–A1449.,25 :pdfembed:`src:_static/TN-02_AdvancedQuantificationUncertaintiesInFusionModellingAtExascaleModelOrderReductio.pdf, height:1600, width:1100, align:middle`