TN-02_LinearSystemsEquationsPreconditionersRelatingNeptuneProgrammeABrief ========================================================================= .. meta:: :description: technical note :keywords: NEPTUNE,Technical,Report,2047353-TN-02,Deliverables,1.1,,2.1,and,3.1,Linear,systems,of,equations,and,preconditioners,relating,to,the,NEPTUNE,Programme,A,brief,overview,Authors:,V.,Alexandrov,,A.,Lebedev,,E.,Sahin,,S.,Thorne,April,22,,2021,Contents,1,Landscape,of,Preconditioners,1.2.2,1.2.1,1.2.2.4.1,1.2.2.4.2,1.2.2.4.3,1.1,Motivational,Theory,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2,Preconditioner,Classes,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,Scalings,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.1.1,Point-Jacobi,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.1.2,Norm-based,scaling,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,Incomplete,Factorizations,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.2.1,D-ILU,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,ILU,-,Incomplete,LU,Decomposition,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.2.2,1.2.2.3,IC,-,Incomplete,Cholesky,Decomposition,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.2.4,Additive,Factorization,-,Splitting,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,Jacobi,(Symmetric),Gauss-Seidel,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,(Symmetric),SOR,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.3,Approximate,Inverses,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,SPAI,-,SParse,Approximate,Inverse,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.3.1,1.2.3.2,FSAI,-,Factorized,Sparse,Approximate,Inverse,.,.,.,.,.,.,.,.,.,.,1.2.3.3,AINV,-,Approximate,INVerse,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.2.3.4,MCMCMI,-,Markov,Chain,Monte,Carlo,Matrix,Inversion,.,.,.,1.2.4,Multigrid,Methods,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,lAIR,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,4,4,6,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9,9,1.2.4.1,9,Stochastic,Methods,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,10,1.2.5.1,10,1.2.5.2,MCMCMI,-,Markov,Chain,Monte,Carlo,Matrix,Inversion,.,.,.,10,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,11,1.3.1,On,Parallelism,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,11,1.3.1.1,Domain,decomposition,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,11,11,1.3.2,On,Matrices,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.4,Summary,of,Preconditioners,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,11,SP,-Stochastic,Projection,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,1.3,Further,Remarks,1.2.5,2,Application,Cases,14,2.1,Introduction,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,14,14,2.2,Elliptic,Problems,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,2.3,Hyperbolic,Problems,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,14,2.4,Comments,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,16,3,Implementations,17,Introduction,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,17,3.1,3.2,Elliptic,Problems,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,17,3.3,Hyperbolic,Problems,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,17,2,3.4,Other,libraries,of,interest,to,the,NEPTUNE,Programme,.,.,.,.,.,.,.,.,.,.,.,.,.,18,Bibliography,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,19,3,Chapter,1,Landscape,of,Preconditioners,1.1,Motivational,Theory,Intermediate-,and,large-scale,linear,systems,A~x,=,~b,are,most,commonly,solved,using,iterative,methods,such,as,•,(symmetric),successive,over-relaxation,((S)SOR),,•,Jacobi,over-relaxation,(JOR),,•,conjugate,gradient,(CG),,•,biconjugate,gradient,stabilized,(BiCGstab),,•,conjugate,gradient,squared,(CGS),,•,minimal,residual,method,(MINRES),,•,generalized,minimal,residual,method,(GMRES),,•,quasi-minimal,residual,(QMR),and,•,transpose-free,QMR,(TFQMR),,(1.1),see,[1],,[8],,[12],,[24],or,any,university-level,introduction,to,numerical,mathematics,,such,as,[30].,These,methods,do,not,compute,the,inverse,system,matrix,A−1,or,factors,of,A,but,approximate,the,solution,via,an,iterative,method,of,the,form,~xk,=,~xk−1,+,~sk,.,(1.2),Their,convergence,rates,are,typically,bounded,from,above,by,expressions,involving,the,condition,number,of,the,system,matrix,A,,which,is,given,here,for,the,2-norm:,κ2(A),=,kAk2kA−1k2,≡,maxλi∈σ(A),|λi|,minλj,∈σ(A),|λj|,,,(1.3),where,σ(A),denotes,the,spectrum,of,A.,In,general,,the,larger,the,value,of,the,condition,number,,the,slower,the,rate,of,convergence,but,other,characteristics,such,as,the,eigenvalues,being,highly,clustered,into,a,few,groups,can,significantly,reduce,the,number,of,iterations,required,to,achieve,the,desired,level,of,accuracy.,The,above,immediately,shows,that,matrices,which,are,almost,singular,,i.e.,,for,which,an,eigenvalue,λk,exists,s.t.,|λk|,≈,0,the,condition,number,becomes,very,large,,are,likely,to,have,slow,convergence.,For,example,,this,occurs,when,a,finite-element,discretization,of,a,PDE,is,performed,with,very,high,spatial,resolution,or,with,almost,degenerate,finite,elements.,4,e,v,i,t,i,s,o,p,c,i,r,t,e,m,m,y,s,a,s,e,t,o,n,e,d,.,.”,d,p,.,s,“,e,r,e,H,.,s,t,n,e,m,e,r,i,u,q,e,r,r,e,n,o,i,t,i,d,n,o,c,e,r,p,y,n,a,d,n,a,s,e,i,t,r,e,p,o,r,p,r,i,e,h,t,h,t,i,w,s,d,o,h,t,e,m,e,v,i,t,a,r,e,t,i,f,o,y,r,a,m,m,u,S,:,1,.,1,e,l,b,a,T,.,x,i,r,t,a,m,e,t,i,n,fi,e,d,s,t,n,e,m,e,r,i,u,q,e,r,r,e,n,o,i,t,i,d,n,o,c,e,r,P,A,n,o,s,t,n,e,m,e,r,i,u,q,e,r,r,e,h,t,O,A,c,i,r,t,e,m,m,y,s,-,n,o,N,A,c,i,r,t,e,m,m,y,S,d,o,h,t,e,M,e,v,i,t,a,r,e,t,I,A,/,N,A,/,N,A,/,N,.,d,.,p,.,s,e,n,o,N,e,n,o,N,.,d,.,p,.,s,e,n,o,N,e,n,o,N,e,n,o,N,r,a,l,u,g,n,i,s,-,n,o,n,),A,(,g,a,i,d,r,a,l,u,g,n,i,s,-,n,o,n,),A,(,g,a,i,d,r,a,l,u,g,n,i,s,-,n,o,n,),A,(,g,a,i,d,e,t,i,n,fi,e,d,e,v,i,t,i,s,o,p,e,n,o,N,e,n,o,N,e,n,o,N,e,n,o,N,e,n,o,N,e,n,o,N,s,e,Y,o,N,s,e,Y,o,N,s,e,Y,s,e,Y,o,N,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,s,e,Y,B,A,T,S,G,C,B,i,S,E,R,N,M,I,S,E,R,M,G,R,M,Q,F,T,R,M,Q,S,G,C,R,O,S,S,R,O,S,R,O,J,G,C,6,CHAPTER,1.,LANDSCAPE,OF,PRECONDITIONERS,To,speed-up,the,iteration,,one,can,use,left,and/or,right,preconditioners,PL,and,PR,,respec-,tively,,and,solve,the,equivalent,system,PLAPR~y,=,PL,~b,where,x,=,PR˜y,,(1.4),and,choose,preconditioners,for,which,PLAPR,has,lower,condition,number,than,A,or,clusters,the,eigenvalues,into,a,few,groups,such,that,the,number,of,iterations,is,significantly,reduced,,and,for,which,calculating,the,action,of,PL,and,PR,multiplied,by,a,vector,is,relatively,cheap,to,initialise,and,then,compute.,For,simplicity,within,this,report,,we,will,assume,that,one,of,PL,or,PR,is,the,identity,matrix,and,we,will,refer,to,the,other,preconditioner,as,P.,When,considering,a,preconditioner,for,a,given,problem,it,is,beneficial,to,keep,in,mind,what,category,of,PDE,has,given,rise,to,the,linear,system,at,hand,as,well,as,the,structure,properties,of,the,system,matrix,A.,The,latter,are,especially,important,if,methods,relying,on,the,symmetry,and,positive,definiteness,of,the,system,matrix,A,are,employed,(e.g.,,CG,iteration).,In,such,a,case,,usage,of,a,preconditioner,that,is,not,symmetric,and,positive,definite,may,slow,the,convergence,of,the,iterative,method,or,result,in,the,method,breaking,down.,We,provide,a,summary,of,the,different,methods,mentioned,in,Table,1.1.,1.2,Preconditioner,Classes,1.2.1,Scalings,A,simple,way,to,reduce,the,condition,number,of,a,matrix,is,to,scale,its,rows/columns,to,be,of,approximately,equal,magnitude,w.r.t.,a,given,norm,[24],[1].,Generally,,the,effectiveness,of,scaling,preconditioners,can,be,neglected,when,comparing,them,to,the,other,classes,listed,below.,They,should,,nevertheless,,not,be,neglected,,given,that,they,are,extremely,cheap,to,compute,and,can,be,beneficial,in,cases,where,the,computation,of,the,matrix-vector,product,is,highly,susceptible,to,round-off,errors,(i.e.,,when,using,mixed,precision,computations).,1.2.1.1,Point-Jacobi,The,simplest,preconditioner,is,the,so-called,point-Jacobi,preconditioner,[30],,[17],,[8].,defined,as,It,is,P,:=,diag(A)−1,.,(1.5),Due,to,its,simplicity,the,preconditioner,can,be,directly,computed,and,applied,to,the,iterations,of,the,chosen,method.,A,further,benefit,of,the,simplicity,is,the,trivial,parallelizability,(there,are,no,data-dependencies).,The,simplicity,comes,at,the,cost,of,effectiveness,,this,preconditioner,will,generally,only,slightly,reduce,the,number,of,iterations,required,to,achieve,convergence.,1.2.1.2,Norm-based,scaling,If,one,chooses,P,=,diag,(cid:26),1,dii,(cid:27)n,!,i=1,:=,diag,(,1,)n,!,k~aikm,i=1,(1.6),where,~ai,can,be,either,the,i-th,row,of,the,matrix,A,or,its,i-th,column,and,k,·,km,is,the,m,norm,of,a,vector,,then,the,preconditioner,can,be,trivially,inverted,for,a,direct,application,to,the,iteration,vector.,Such,preconditioners,are,generally,referred,to,as,row-/column-scalings.,Formally,it,can,be,proven,that,κ∞(,˜P,A),≤,κ∞(P,A),(1.7),1.2.,PRECONDITIONER,CLASSES,7,for,any,scaling,P,if,˜P,is,computed,using,the,1,norm,(k~ak1,=,P,ditioner,is,an,optimal,scaling.,j,|aj|),in,(1.6),,i.e.,,the,precon-,1.2.2,Incomplete,Factorizations,Factorization,methods,that,decompose,a,matrix,into,a,product,of,matrices,,i.e.,,A,=,LU,,,can,be,used,as,a,basis,to,derive,preconditioners.,Note,that,the,factors,of,the,matrix,will,generally,become,dense,,even,if,A,is,sparse.,This,is,generally,avoided,by,performing,the,factorization,only,for,a,pre-defined,number,of,non-zero,elements.,Such,a,factorization,is,generally,incomplete,,hence,the,name,of,this,preconditioner,class.,One,strategy,is,to,preserve,the,non-zero,pattern,of,the,matrix,A,,which,results,in,zero-fill,preconditioners.,Due,to,the,sequential,nature,of,the,underlying,factorization,,these,methods,generally,require,a,preliminary,graph,partitioning,(element,reordering),to,be,parallelized.,The,scalability,of,such,methods,is,thus,limited,by,the,number,of,(strongly),connected,components,of,the,graph,obtained,if,the,matrix,is,interpreted,as,an,adjacency,matrix,of,a,graph.,1.2.2.1,D-ILU,The,second,on,the,triviality,scale,is,the,D-ILU,preconditioner,[11].,It,is,based,on,the,decom-,position,of,the,matrix,A,similar,to,the,Jacobi,iteration:,P,:=,(D,+,LA)D−1(D,+,UA),,,(1.8),where,D,is,now,not,simply,the,diagonal,of,A,but,determined,according,to,a,different,scheme,and,UA,,LA,are,the,strict,upper/lower,triangular,parts,of,the,matrix,A.,1.2.2.2,ILU,-,Incomplete,LU,Decomposition,A,solution,of,LU,x,=,b,,where,L,,U,are,obtained,by,LU-decomposition,(Gaussian,elimination),of,A,is,equivalent,to,x,=,A−1b.,Here,,L,is,a,lower,triangular,matrix,and,U,is,an,upper,triangular,matrix.,As,such,one,obvious,choice,for,a,preconditioner,is,the,LU-decomposition,of,A.,However,,a,full,LU-decomposition,may,change,a,sparse,matrix,A,into,a,dense,one,so,we,could,,instead,,only,perform,a,step,of,the,LU,decomposition,if,and,only,if,ai,j,6=,0.,This,yields,the,so-called,zero-fill,incomplete,LU,factorization,-,in,short:,ILU(0).,ILU(k),denotes,an,ILU,preconditioner,with,a,user-defined,fill-in,level,k,≥,0.,Higher,k,correspond,generally,to,a,better,approximation,of,the,LU,decomposition,but,result,in,a,much,denser,preconditioner.,As,a,rule,k,>,3,is,seldom,used,[11].,ILUT(ρ,τ,),is,a,threshold,variant,of,ILU,,in,which,entries,are,removed,from,the,precondi-,tioner,if,their,magnitude,falls,under,the,threshold,τ,or,the,fraction,ρ,of,additional,values,per,row,is,exceeded.,1.2.2.3,IC,-,Incomplete,Cholesky,Decomposition,Applying,the,same,methodology,to,the,Cholesky,decomposition,for,symmetric,positive,definite,matrices,,the,IC(k),(incomplete,Cholesky,decomposition,with,fill-level,k),factorization,is,ob-,tained.,Similar,to,the,common,Cholesky,decomposition,[1],,it,requires,∼,1,2,as,many,operations,to,compute,,as,ILU,and,the,resulting,decomposition,is,symmetric,,positive,definite,,making,it,a,prime,candidate,for,an,incomplete,factorization,preconditioner,for,symmetric,(positive,definite),matrices,and,methods,which,rely,on,the,symmetry,of,the,linear,operator,(e.g.,CG).,The,same,caveats,regarding,fill-in,as,for,ILU(k),apply.,8,CHAPTER,1.,LANDSCAPE,OF,PRECONDITIONERS,1.2.2.4,Additive,Factorization,-,Splitting,Methods,which,rely,on,a,splitting,of,the,matrix,A,into,A,=,L+D,+R,which,are,,by,themselves,,not,modified,are,designated,”splitting,methods”,and,can,roughly,be,assigned,to,the,class,of,factorization,methods.,In,the,following,,we,assume,that,D,is,defined,as,for,the,Jacobi,preconditioner,,L,is,the,strict,lower,triangular,part,of,A,and,R,is,the,strict,upper,triangular,part,of,A.,While,we,provide,the,preconditioner,matrices,below,these,are,generally,never,computed,and,an,application,of,any,splitting,preconditioner,corresponds,to,the,execution,of,one,iteration,step,of,the,corresponding,iterative,solver,method.,1.2.2.4.1,Jacobi,This,preconditioner,,which,is,also,considered,in,Section,1.5,,can,be,con-,sidered,a,splitting,or,scaling,preconditioner,,since,it,corresponds,to,the,preconditioner,matrix,P,=,D−1.,1.2.2.4.2,Seidel,preconditioner,is,(Symmetric),Gauss-Seidel,The,preconditioner,matrix,of,the,simple,Gauss-,P,=,(D,+,L)−1,.,For,the,symmetric,form,,the,preconditioner,matrix,is,P,=,(D,+,R)−1D(D,+,L)−1,.,(1.9),(1.10),1.2.2.4.3,(Symmetric),SOR,This,preconditioner,is,equivalent,to,the,Successive,Overre-,laxation,(SOR),method,,resulting,in,the,preconditioner,matrix,P,=,ω(D,+,ωL)−1,.,(1.11),Here,ω,is,a,parameter,supplied,by,the,user,with,ω,∈,(0,,2).,Its,symmetrised,counterpart,is,given,by,P,=,ω(2,−,ω)(D,+,ωR)−1D(D,+,ωL)−1,.,(1.12),The,(s)SOR,preconditioners,correspond,to,shortened,(ω,<,1),or,prolonged,(ω,>,1),Gauss-Seidel,steps,and,,as,such,,can,be,attempted,once,it,has,been,established,that,the,(s)GS,preconditioners,do,not,result,in,the,desired,reduction,of,step,number.,Since,an,iterative,solution,is,,simply,put,,an,update,of,the,proposed,solution,~xk,at,step,k,by,a,correction,-,the,residual,~rk,-,one,may,introduce,an,importance,weighting,of,the,correction,ω:,~xk+1,=,~xk,+,ω~rk.,Dependent,upon,the,problem,and,the,current,approximation,~xk,a,larger,or,smaller,correction,to,~xk,can,be,performed.,1.2.3,Approximate,Inverses,Instead,of,computing,an,approximate,factorization,of,the,sparse,matrix,A,sequentially,,one,may,directly,approximate,its,inverse,by,minimizing,kI,−,BAk2,(1.13),w.r.t.,B,in,one,go.,This,class,of,preconditioners,generally,yields,better,to,parallelisation,attempts,,at,the,cost,of,higher,memory,complexity,,since,(1.13),essentially,factorizes,into,independent,least-squares,approximations.,Note,that,while,for,the,true,inverse,holds,A−1A,=,I,=,AA−1,this,does,not,hold,for,approximate,inverses,,i.e.,a,right-inverse,obtained,using,kI,−,ABk2,will,generally,differ,from,a,left,inverse,,obtained,from,kI,−,BAk2.,1.2.,PRECONDITIONER,CLASSES,9,1.2.3.1,SPAI,-,SParse,Approximate,Inverse,The,method,enlarges,the,non-zero,pattern,of,the,approximant,B,dynamically,until,the,mini-,mization,problem,is,solved,to,within,a,provided,tolerance.,Minimisation,of,the,residual,results,in,the,method,providing,robust,preconditioners,at,the,cost,of,being,time-consuming.,This,approach,does,not,guarantee,that,the,approximate,inverse,B,of,a,symmetric,matrix,will,be,symmetric.,1.2.3.2,FSAI,-,Factorized,Sparse,Approximate,Inverse,This,variant,of,SPAI,does,not,approximate,B,=,A−1,directly,but,rather,the,Cholesky,factors,of,B,,i.e.,,L,in,A−1,≈,LtL.,Usage,of,Cholesky,factors,imposes,the,same,restrictions,on,the,matrix,A,as,the,(incomplete),Cholesky,decomposition,1.2.2.3,-,A,has,to,be,symmetric,positive,definite.,If,A,is,s.p.d.,,then,FSAI,is,well-defined,,the,converse,-,in,general,-,does,not,hold.,1.2.3.3,AINV,-,Approximate,INVerse,Similar,to,FSAI,this,method,approximates,the,inverses,of,triangular,factors,which,,if,fully,computed,,transform,the,matrix,A,into,a,diagonal,matrix:,L−1AU,−1,=,D.,1.2.3.4,MCMCMI,-,Markov,Chain,Monte,Carlo,Matrix,Inversion,This,method,computes,a,sparse,approximate,inverse,approximation,via,a,random,walk,on,the,graph,defined,by,interpreting,A,as,an,adjacency,matrix.,We,discuss,this,further,in,Sec-,tion,1.2.5.2.,1.2.4,Multigrid,Methods,Similar,to,the,splitting,preconditioners,,multigrid,preconditioners,originate,from,multigrid,so-,lution,methods.,The,latter,are,intended,to,accelerate,the,convergence,of,,e.g.,,Gauss-Seidel,iterations,for,large,systems,by,essentially,coarsening,the,solution,vector,~x,(e.g.,,by,selecting,only,every,second,element),,computing,a,solution,with,~x,as,the,right-hand,side,vector,~b,of,a,smaller,linear,system,and,finally,interpolating,the,coarse,solution,onto,the,original,solution,and,updating,the,original,~x,[31].,Originally,,the,methods,were,conceived,for,the,solution,of,elliptic,PDE,where,highly,oscilla-,tory,components,of,the,residual,solution,can,be,damped,by,solving,computing,a,solution,on,a,coarser,mesh,and,updating,the,solution,on,the,finer,mesh.,Algebraic,multigrid,methods,(AMG),abstract,the,geometric,picture,of,a,mesh,away,and,attempt,to,replicate,the,procedure,given,only,the,system,matrix,A.,Multigrid,methods,vary,by,the,choice,of,the,coarsening,and,interpolation,operators,as,well,as,of,the,coarsening/refinement,cycles.,These,methods,are,very,well,suited,for,linear,systems,resulting,from,the,discretization,of,elliptic,PDE.,They,are,especially,suited,for,approaches,where,iterative,mesh,refinement,is,utilised.,Furthermore,,these,methods,scale,well,,provided,the,utilised,solver,is,well-parallelised.,In,the,case,of,a,strongly,heterogeneous,system,(i.e.,,multiscale,system),or,of,strongly,irregular,meshes,(e.g.,,mesh,refinement,at,a,sharp,tip),these,methods,are,known,to,fail.,1.2.4.1,lAIR,Classical,AMG,method,variants,are,available,for,both,symmetric,and,nonsymmetric,problems,although,the,former,are,more,widely,known,and,used.,The,lAIR,preconditioner,is,a,variation,on,classical,AMG,for,nonsymmetric,matrices,[22].,The,method,is,based,on,a,local,approximation,to,an,ideal,restriction,operator,,which,is,coupled,with,F-relaxation.,For,a,given,mesh,with,10,CHAPTER,1.,LANDSCAPE,OF,PRECONDITIONERS,vertex,set,V,,the,set,V,is,partitioned,into,F-points,and,C-points,,where,C-points,represent,vertices,on,the,coarse,grid.,The,matrix,A,can,then,be,symbolically,ordered,into,the,following,block,form:,A,=,Af,f,Af,c,Acf,Acc,!,,,where,Af,f,corresponds,to,the,F-points.,F-relaxation,improves,the,solution,at,the,F-points,and,this,accuracy,is,then,distributed,at,the,C-points,via,the,coarse-grid,correction,(ideal,restriction):,(cid:16),R,=,−Acf,A−1,f,f,(cid:17),.,I,It,has,been,shown,to,be,a,robust,solver,for,various,discretizations,of,the,advection-diffusion-,reaction,equation,in,regimes,ranging,from,purely,advective,to,purely,diffusive,and,including,time-dependent,and,steady-state,problems.,1.2.5,Stochastic,Methods,The,methods,presented,above,are,deterministic,and,generally,touch,each,value,of,the,matrix,at,least,once,during,the,computation.,Stochastic,methods,aim,to,reduce,computational,costs,by,utilising,only,the,“important,subset”,of,the,matrix/vector,entries.,A,fairly,accurate,interpretation,of,stochastic,methods,would,be,as,“measurement”,,where,a,systematic,error,(equivalent,to,the,tolerances,for,deterministic,methods),is,to,be,balanced,with,a,stochastic,measurement,error.,Usage,of,stochastic,methods,for,the,computation,of,preconditioners,uses,the,fact,that,a,preconditioner,does,not,have,to,be,excellent,to,be,usable,,but,instead,has,to,be,effective,and,quick,to,compute.,1.2.5.1,SP,-Stochastic,Projection,The,basic,idea,is,fairly,simple,and,the,implementation,follows,roughly,equation,(2.13),of,[34].,The,main,idea,is,to,project,the,solution,vector,successively,and,orthogonally,onto,arbitrarily,chosen,subspaces,of,the,row-space,of,the,matrix,until,the,accumulated,effect,leads,the,iteration,into,the,subspace,of,the,true,solution.,An,obvious,extension,to,block-projections,has,been,mentioned,in,[34],with,the,iteration,step,given,as,follows:,~xk+1,=,~xk,+,At,i,(cid:16),AiAt,i,(cid:17)−1,(cid:16)~bi,−,Ai~xk,(cid:17),.,(1.14),Here,Ai,is,a,randomly,selected,block,of,rows,of,the,matrix,and,~bi,the,corresponding,subset,of,entries,of,the,right-hand-side,vector,of,A~x,=,~b,.,(1.15),The,intuitive,simplicity,of,this,approach,is,paid,for,by,its,performance.,Furthermore,,the,computation,of,a,matrix,inverse,in,each,step,is,required.,Depending,on,the,block,size,of,the,computation,of,said,inverse,,or,a,solution,of,a,dense,system,,may,incur,a,significant,cost.,1.2.5.2,MCMCMI,-,Markov,Chain,Monte,Carlo,Matrix,Inversion,This,method,computes,a,sparse,approximate,inverse,by,performing,a,random,walk,on,the,graph,defined,by,interpreting,the,matrix,A,as,an,adjacency,matrix.,The,entries,of,the,inverse,are,computed,by,utilising,the,Neumann,series:,A−1,=,∞,X,(I,−,A)i,.,i=0,(1.16),1.3.,FURTHER,REMARKS,11,This,requires,ρ(A),<,1,in,general,,but,by,proper,scaling,can,be,used,even,when,this,condition,is,not,fulfilled.,The,benefit,of,this,method,is,that,it,does,not,require,the,matrix,A,to,be,explicitly,known,and,the,computational,cost,of,computing,either,one,row,of,the,inverse,or,one,element,of,the,solution,vector,scales,as,O(N,T,),,where,N,is,the,number,of,Markov,chains,and,T,the,mean,length,of,a,chain.,1.3,Further,Remarks,1.3.1,On,Parallelism,As,has,been,remarked,above,,many,of,the,factorization,methods,require,a,prior,graph-partitioning,to,restructure,the,system,matrix,-,ideally,in,a,block-diagonal,form.,The,Gauss-Seidel,precon-,ditioning,iteration,,for,instance,,carries,an,explicit,data,dependency.,This,can,be,circumvented,by,usage,of,so-called,wave-front,parallelization,[13],but,is,,as,a,rule,,not,part,of,the,solver,implementation.,Approximate,inverses,are,generally,much,more,amenable,to,parallelization,due,to,the,afore-,mentioned,independence,of,the,least-squares,problems,that,need,to,be,solved.,Stochastic,methods,such,as,MCMCMI,fall,into,the,same,category.,1.3.1.1,Domain,decomposition,The,decomposition,of,the,computational,simulation,domain,with,a,local,ordering,of,the,nodes,of,the,mesh,improves,the,feasibility,of,factorization,methods,by,reducing,the,effects,of,data,dependencies,and,concentrating,matrix,entries,relevant,for,the,local,physical,domain,on,the,local,computational,domain.,This,in,turn,simplifies,the,partitioning,of,the,system,matrix,into,block-diagonal,form,(with,or,without,overlap).,An,additive,Schwarz,preconditioner,performs,a,factorization,on,the,(overlapping),blocks,in,parallel,,with,an,additive,averaging,on,the,overlaps.,1.3.2,On,Matrices,Most,of,the,aforementioned,methods,can,be,used,matrix-free,,since,they,generally,only,require,the,ability,to,determine,the,elements,of,the,matrix,and,compute,a,matrix-vector,product.,Incomplete,factorizations,with,fill-in,(ILU(k),,IC(k)),are,less,amenable,to,usage,with,matrix-,free,methods,due,to,the,need,to,compute,the,fill,indices,of,the,matrix,elements,and,to,create,a,factorization,with,a,non-zero,pattern,larger,than,the,original,system,matrix.,Scalings,and,approximate,inverses,are,more,amenable,to,use,with,matrix-free,methods,due,to,the,only,requirement,being,the,computation,of,the,matrix,elements.,1.4,Summary,of,Preconditioners,In,Table,1.2,,we,summarise,the,preconditioners,as,well,as,their,prerequisites,and,limitations.,We,distinguish,between,regular,(i.e.,,non-singular,,invertible),matrices,and,general,matrices.,The,latter,do,not,have,to,be,square,,in,which,case,one,computes,an,approximate,pseudo-inverse,,rather,than,an,approximate,true,inverse.,The,column,”CG,usable”,indicates,whether,a,preconditioner,computed,with,a,given,method,is,usable,with,an,iterative,solver,which,requires,a,symmetric,,positive,matrix,(represented,by,the,CG,iteration),,i.e.,,whether,the,method,produces,a,symmetric,,positive,definite,preconditioner.,This,information,is,intended,as,a,rough,guide,only,,since,asymmetric,preconditioners,(e.g.,,as,computed,by,SPAI,or,MCMCMI),may,still,work,as,intended.,12,CHAPTER,1.,LANDSCAPE,OF,PRECONDITIONERS,Constraints,on,the,system,matrix,given,in,the,second,column,stem,,in,part,,from,theoretical,considerations.,Methods,such,as,IC,,(s)SOR,,FSAI,may,still,compute,a,valid,preconditioner,if,the,system,matrix,is,indefinite,but,the,theory,guarantees,that,,with,exact,arithmetic,,these,methods,will,not,fail,if,the,matrix,is,symmetric,and,positive,definite.,n,a,”,r,a,l,u,g,e,r,“,,,x,i,r,t,a,m,e,t,i,n,fi,e,d,e,v,i,t,i,s,o,p,c,i,r,t,e,m,m,y,s,a,s,e,t,o,n,e,d,”,.,d,.,p,.,s,“,e,r,e,H,.,s,o,i,r,a,n,e,c,s,n,o,i,t,a,c,i,l,p,p,a,r,i,e,h,t,d,n,a,s,r,e,n,o,i,t,i,d,n,o,c,e,r,p,f,o,y,r,a,m,m,u,S,:,2,.,1,e,l,b,a,T,”,P,W,“,d,n,a,i,”,g,n,n,o,i,t,i,t,r,a,p,h,p,a,r,g,“,s,e,t,a,i,v,e,r,b,b,a,”,P,G,“,.,l,a,n,o,g,a,i,d,t,n,a,n,i,m,o,d,a,”,.,d,.,d,“,d,n,a,x,i,r,t,a,m,),e,r,a,u,q,s,-,n,o,n,(,l,a,r,e,n,e,g,a,”,l,a,r,e,n,e,g,“,,,x,i,r,t,a,m,e,l,b,i,t,r,e,v,n,i,.,],3,1,[,”,n,o,i,t,a,z,i,l,e,l,l,a,r,a,p,t,n,o,r,f,e,v,a,w,“,e,l,b,a,s,u,G,C,e,l,b,a,z,i,l,e,l,l,a,r,a,p,y,l,t,i,c,i,l,p,x,e,d,e,r,i,u,q,e,r,A,e,e,r,f,-,x,i,r,t,a,M,e,p,y,t,E,D,P,s,e,Y,s,e,Y,s,e,Y,o,N,s,e,Y,y,l,n,o,S,G,s,y,l,n,o,R,O,S,s,o,N,s,e,Y,o,N,s,e,Y,-,o,N,o,N,s,e,Y,s,e,Y,P,G,a,i,v,P,G,a,i,v,P,G,a,i,v,P,W,P,W,a,i,v,a,i,v,s,e,Y,s,e,Y,d,e,t,i,m,i,l,s,e,Y,i,d,e,n,m,r,e,t,e,d,n,u,s,e,Y,s,e,Y,o,N,o,N,o,N,s,e,Y,s,e,Y,o,N,o,N,o,N,o,N,o,N,o,N,o,N,o,N,o,N,s,e,Y,s,e,Y,s,e,Y,o,N,o,N,s,e,Y,s,e,Y,o,N,o,N,o,N,s,e,Y,s,e,Y,s,e,Y,o,N,l,a,r,e,n,e,g,l,a,r,e,n,e,g,l,a,r,e,n,e,g,l,a,r,e,n,e,g,),c,i,t,p,i,l,l,e,(,l,a,r,e,n,e,g,l,a,r,e,n,e,g,),c,i,t,p,i,l,l,e,(,l,a,r,e,n,e,g,l,a,r,e,n,e,g,),c,i,t,p,i,l,l,e,(,l,a,r,e,n,e,g,l,a,r,e,n,e,g,c,i,l,o,b,a,r,a,p,,,c,i,l,o,b,r,e,p,y,h,,,c,i,t,p,i,l,l,e,c,i,l,o,b,a,r,a,p,,,c,i,t,p,i,l,l,e,l,a,r,e,n,e,g,l,a,r,e,n,e,g,x,i,r,t,a,m,m,e,t,s,y,S,r,a,l,u,g,e,r,,,),A,(,g,a,i,d,/∈,0,r,a,l,u,g,e,r,r,a,l,u,g,e,r,,,),A,(,g,a,i,d,/∈,0,r,a,l,u,g,e,r,.,d,.,p,.,s,.,d,.,d,,,r,a,l,u,g,e,r,.,d,.,p,.,s,l,a,r,e,n,e,g,.,d,.,p,.,s,r,a,l,u,g,e,r,r,a,l,u,g,e,r,r,a,l,u,g,e,r,l,a,r,e,n,e,g,l,a,r,e,n,e,g,),τ,,,ρ,(,T,U,L,I,/,),0,≥,k,(,U,L,I,r,e,n,o,i,t,i,d,n,o,c,e,r,P,i,b,o,c,a,J,g,n,i,l,a,c,S,U,L,I,-,D,),0,≥,k,(,C,I,R,O,S,),s,(,S,G,),s,(,I,A,P,S,I,A,S,F,V,N,A,I,G,M,A,I,R,A,l,P,S,I,M,C,M,C,M,Chapter,2,Application,Cases,2.1,Introduction,Due,to,the,limited,duration,of,the,NEPTUNE,Preconditioning,Project,,the,variety,of,problems,and,test,cases,available,within,the,NEPTUNE,programme,[2],has,to,be,reduced,to,a,manageable,level.,In,the,following,we,present,the,equations,and,test,cases,that,will,be,considered,within,the,given,project.,2.2,Elliptic,Problems,For,elliptic,problems,,System,2-2,from,[2],is,our,priority,,which,consists,of,a,2-D,elliptic,solver,in,complex,geometry.,BOUT++,[9],already,has,some,test,cases,and,Nektar++,[35],also,has,some,suitable,cases.,BOUT++,has,finite,difference,examples,whilst,Nektar++,uses,finite,and,spectral/hp,elements,for,its,discretizations.,There,is,a,solver,in,BOUT++,that,sets,up,a,matrix,problem,and,calls,PETSc,[29],,and,another,implementation,of,the,same,problem,which,calls,HYPRE,[10].,Since,BOUT++,uses,finite,differences,and,not,finite,,high,order,,elements,,there,are,plans,within,the,NEPTUNE,Programme,to,implement,the,Nektar++,version,over,the,next,6,months,or,so.,2.3,Hyperbolic,Problems,For,hyperbolic,problems,,System,2-3,from,[2],is,our,priority,case.,There,is,already,a,BOUT++,test,case,called,SD1D,[9],that,models,the,dynamics,along,the,magnetic,field,,utilises,finite,differences,and,is,a,matrix-free,implementation,that,uses,SUNDIALS,[40].,A,version,of,this,test,problem,is,going,to,be,set,up,using,Nektar++,during,the,next,few,months.,For,the,dynamics,across,the,magnetic,field,,there,are,2D,problems,like,Hasegawa-Wakatani,,which,are,a,similar,to,incompressible,fluid,dynamics:,∂n,∂t,∂ω,∂t,=,−{φ,,n},+,α(φ,−,n),−,κ,∂φ,∂z,+,Dn∇2,⊥n,=,−{ω,,n},+,α(ω,−,n),+,Dω∇2,⊥ω,∇2φ,=,ω,.,(2.1a),(2.1b),(2.1c),Here,n,is,the,plasma,number,density,,ω,:=,~b0,·∇×~v,is,the,vorticity,with,~v,being,the,~E,×,~B,drift,velocity,in,a,constant,magnetic,field,and,~b0,is,the,unit,vector,in,the,direction,of,the,equilibrium,magnetic,field.,The,operator,{·,,·},in,(2.1),is,the,Poisson,bracket.,14,2.3.,HYPERBOLIC,PROBLEMS,15,Let,us,assume,for,simplicity,,that,n,,ω,,φ,are,discretized,using,the,same,basis,in,space,and,an,implicit,Euler,method,is,used,for,the,time,evolution,,then,the,following,set,of,non-linear,equations,is,obtained,from,(2.1):,(cid:17),−,αM,0,=,M,(~ni,−,~ni−1),+,∆t,(cid:16)~φi,−,~ni,0,=,M,(~ωi,−,ωi−1),+,∆t,(cid:16)~φi,−,~ni,0,=,K,~φi,−,M,~ωi,,,−,αM,(cid:17),(cid:16),(cid:17),(cid:16),~φi,Lx,diag,~φi,−,DnK~ni,−,κLz,(cid:17),(cid:16),(cid:16),~φi,Lx,diag,(cid:17),−,DωK~ωi,Lz~ni,−,diag,(cid:17),(cid:16),Lz,~φi,(cid:17),Lx~ni,Lz~ωi,−,diag,(cid:16),Lz,~φi,(cid:17),Lx~ωi,(2.2a),(2.2b),(2.2c),where,K,,M,are,the,stiffness,and,mass,matrices,respectively,and,Lx,,Lz,are,transport,matrices,and,represent,the,discretized,versions,of,∂x,,∂z,[6].,Note,that,the,first,two,terms,in,the,∆t,bracket,in,the,first,two,equations,(the,terms,with,two,L,operators),are,straightforward,discretizations,~φ,,is,necessary,of,the,Poisson,bracket,{f,,g},=,∂xf,∂zg,−,∂zf,∂xg,where,the,recasting,of,,e.g.,Lz,(cid:17),to,ensure,that,the,result,of,diag,Lx~ni,is,again,a,vector,(a,discretized,function).,~φi,Lz,(cid:16),Since,the,equations,are,non-linear,they,have,to,be,solved,e.g.,via,Newton’s,method,,which,requires,the,Jacobian,of,the,system.,The,latter,has,the,following,form:,J,:=,,,,A,E,0,B,C,G,0,−M,K,,,,,,where,the,constituent,matrices,are,the,following,A,=,M,+,∆t,(cid:16),diag,(cid:16),Lx,~φi,(cid:17),Lz,−,diag,(cid:16),Lz,~φi,(cid:17),Lx,+,αM,−,DnK,(cid:17),B,=,α∆tM,C,=,M,+,∆t,(cid:16),diag,(cid:16),Lx,~φi,(cid:17),Lz,−,diag,(cid:16),Lz,~φi,(cid:17),Lx,−,DωK,(cid:17),E,=,∆t,(diag,(Lz~ni),Lx,−,diag(Lx~ni)Lz,−,αM,−,κLz),G,=,∆t,(diag(Lz~ωi)Lx,−,diag(Lx~ωi)Lz),.,(2.3),(2.4a),(2.4b),(2.4c),(2.4d),(2.4e),Alternatively,the,last,equation,of,(2.2),can,be,used,to,eliminate,~φi,by,virtue,of,~φi,=,K,−1M,~ωi.,The,Jacobian,of,the,reduced,system,is,then,of,the,form,˜J,:=,#,"P,R,Q,S,,,with,the,constituent,matrices,P,=,M,+,∆t,(cid:16),diag,(cid:16),LxK,−1M,~ωi,(cid:17),Lz,−,diag,(cid:16),LzK,−1M,~ωi,(cid:17),Lx,+,αM,−,DnK,(cid:17),Q,=,α∆tM,(cid:16),R,=,∆t,diag,(Lz~ni),LxK,−1M,−,diag(Lx~ni)LzK,−1M,−,αM,K,−1M,−,κLzK,−1M,Lz,+,diag,(Lz~ωi),LxK,−1M,−,αM,K,−1M,−,DωK,LxK,−1M,~ωi,diag,(cid:16),(cid:16),(cid:17),S,=,M,+,∆t,(cid:17),(2.5),(2.6a),(2.6b),(2.6c),(2.6d),(cid:17),As,mentioned,above,,even,if,the,stiffness,matrix,K,is,sparse,its,inverse,will,generally,be,dense.,Hence,,for,the,discretization,methods,of,interest,for,the,project,,the,Jacobian,of,the,reduced,system,˜J,will,not,be,sparse.,Therefore,,one,of,the,questions,is,whether,to,(a),use,the,16,CHAPTER,2.,APPLICATION,CASES,reduced,system,but,have,a,dense,Jacobian,,or,(b),treat,the,elliptic,problem,as,a,constraint,but,have,a,sparse,,larger,and,more,ill-conditioned,Jacobian.,Option,(a),is,normally,done,but,experiments,have,also,been,done,in,BOUT++,(b),in,order,to,use,PETSc’s,matrix,coloring,to,extract,an,approximate,matrix,for,pre-,conditioning,from,our,matrix-free,code.,Nektar++,also,has,an,implementation,of,the,Hasegawa-Wakatani,problem.,2.4,Comments,When,possible,,Nektar++,examples,should,have,higher,priority,than,BOUT++,due,to,the,expectation,that,finite,element,and,spectral,discretizations,will,be,the,method,of,choice,for,future,simulations.,In,addition,,we,should,expect,adaptive,hp-refinement,to,be,used.,Nektar++,is,moving,towards,matrix-free,implementations.,For,Nektar++,,we,need,to,keep,in,contact,with,David,Moxey.,Chapter,3,Implementations,3.1,Introduction,For,scientific,computing,,there,are,widely-used,platforms,such,as,(among,others),PETSc/TAO,[29],,Trilinos,,BOUT++,[9],,Nektar++[35],and,SUNDIALS,[40],available.,According,to,the,prioritised,equations,in,Chapters,2,,there,are,several,studies,using,these,platforms,accessible,in,the,literature.,3.2,Elliptic,Problems,As,indicated,in,Chapter,2,,the,Grad-Shafranov,equations,is,used,to,generate,spectrally,accurate,magnetic,fields,to,use,in,other,proxyapps,[2].,There,are,highly-scalable,,multi-physics,imple-,mentations,for,Grad-Shafranov,using,finite,difference,[20],[41],and,finite,element,[28],methods,with,PETSc,as,well,as,finite,element,methods,[32],[5],with,Trilinos.,To,solve,another,equation,of,interest,,the,non-Boussinesq,vorticity,equation,,[3],used,preconditioned,Conjugate,Gradient,with,a,Block–Jacobi,preconditioner,from,PETSc.,In,[18],,an,inexact,Newton-Krylov,approach,with,PETSc,was,used,to,solve,a,similar,problem.,In,addition,,[4],uses,a,matrix-free,method,from,PETSc,to,solve,a,non-Boussinesq,formulation,of,polythermal,ice,flow.,In,[33],,similar,problems,were,solved,with,massive,MPI,parrallelism,using,Krylov,methods,with,preconditioners,(ILU(k),and,block,Jacobi),from,PETSc.,As,discussed,in,Chapter,2,,there,are,implementations,and,suitable,cases,available,in,BOUT++,[9],and,Nektar++,[35].,There,are,also,tools,which,use,the,mixture,of,platforms,such,as,libMesh,[16],and,CoolFluiD[19],framework,specialised,for,plasma,and,multi-physics,simulations.,3.3,Hyperbolic,Problems,As,stated,in,Chapter,2,,the,hyperbolic,case,focuses,on,system,2-3,of,[2],,of,which,several,related,implementations,and,test,cases,exist,in,BOUT++,and,Nektar++.,In,the,literature,,several,studies,exist,in,which,highly,parallelized,solvers,for,a,2-fluid,model,have,been,considered,and,implemented.,In,[23],,the,linearized,two-fluid,MHD,equations,were,solved,using,a,matrix-free,Newton-Krylov,method,of,solution,in,XTOR-2F,(PETSc),with,MPI,parallelism.,In,[39],,an,MPI,parallelized,Vlasov,Fokker-Planck,(VFP),set,of,equations,was,solved,(IMPACT,[15]),using,BICGstab,as,solver,with,an,ILU,preconditioner,provided,by,PETSc.,In,[21],,a,system,of,multi-fluid,equations,was,solved,using,GMRES,with,a,parallel,Additive,Schwarz,preconditioner,provided,by,PETSc.,VFP-based,equations,are,also,solved,by,a,package,introduced,in,[25],and,based,on,PETSc,with,MPI,parallelism.,In,addition,,there,is,a,package,[38],available,within,Trilinos.,17,18,CHAPTER,3.,IMPLEMENTATIONS,3.4,Other,libraries,of,interest,to,the,NEPTUNE,Pro-,gramme,Clearly,,the,preconditioners,from,PETSc,and,Trilinos,are,already,highly-used,and,their,applica-,bility,for,future,exascale,implementations,will,need,exploring.,However,,our,literature,searches,also,identified,other,interesting,libraries,libraries.,DUNE,is,an,open-source,high-performance,iterative,solver,that,has,an,implementation,of,the,GenEO,preconditioner,[36],for,strongly,anisotropic,elliptic,partial,differential,equations,implemented,within,dune-pdelab.,This,preconditioner,has,a,MPI,implementation:,good,weak,and,strong,scalability,demonstrated,on,ARCHER.,We,note,that,there,is,a,version,of,the,GenEO,preconditioner,is,available,in,PETSc.,HYPRE,[10],is,a,library,of,scalable,linear,solvers,and,multigrid,methods,from,Lawrence,Livermore,National,Laboratory.,MPI,implementations,are,provided.,HSL,MI20,is,an,implementation,of,an,algebraic,multigrid,preconditioner,for,nonsymmetric,systems,from,the,HSL,library,[14].,Unfortunately,,parallelism,is,only,provided,through,the,use,of,parallelized,Level,3,BLAS,subroutine,calls,and,it,is,not,suitable,for,matrix-free/operator,only,provision,of,A.,MUMPS,[26],is,a,Fortran,95,library,that,utilizes,MPI,and,OpenMP,to,solve,large,sparse,systems,via,direct,methods,and,would,be,a,good,option,for,comparing,iterative,methods,with,direct,methods.,The,library,is,developed,within,a,consortium,of,people,from,CERFACS,,ENS,Lyon,,INPT(ENSEEIHT)-IRIT,,Inria,,Mumps,Technologies,and,the,University,of,Bordeaux.,PaStiX,(Parallel,Sparse,matriX,package),[27],is,a,scientific,library,that,provides,a,high,performance,parallel,solver,for,very,large,sparse,linear,systems,based,on,direct,methods.,The,library,can,also,be,used,to,form,preconditioners.,As,well,as,using,MPI,and,OpenMP,,the,most,recent,versions,of,the,library,also,support,the,use,of,GPUs.,The,STRUMPACK,[37],library,provides,linear,algebra,routines,and,linear,system,solvers,for,sparse,and,for,dense,rank-structured,linear,systems.,The,library,has,Fortran,and,C,interfaces,and,can,also,be,used,to,compute,incomplete,LU,factorization-based,preconditioners.,Paral-,lization,is,provided,via,MPI,and,OpenMP,but,the,preconditioner,routines,do,not,currently,support,GPUs.,We,also,direct,the,reader,to,Jack,Dongarra’s,list,of,freely,available,software,for,linear,algebra,[7],,which,provides,a,list,of,software,and,associated,attributes,,and,is,periodically,updated.,Bibliography,[1],P.,Arbenz,,O.,Chinellato,,M.,Gutknecht,,and,M.,Sala.,Software,for,Numerical,Linear,Algebra.,online,,2006.,[2],W.,Arter,and,R.,Akers.,ExCALIBUR,equations,for,NEPTUNE,Proxyapps.,techreport,,UK,Atomic,Energy,Authority,,2020.,[3],B.,Bigot,,T.,Bonometti,,L.,Lacaze,,and,O.,Thual.,A,simple,immersed-boundary,method,for,solid–fluid,interaction,in,constant-and,stratified-density,flows.,Computers,&,Fluids,,97:126–142,,2014.,[4],J.,Brown,,M.,G.,Knepley,,D.,A.,May,,L.,C.,McInnes,,and,B.,Smith.,Composable,linear,solvers,for,multiphysics.,In,2012,11th,International,Symposium,on,Parallel,and,Distributed,Computing,,pages,55–62.,IEEE,,2012.,[5],P.,Daniel,,A.,Ern,,I.,Smears,,and,M.,Vohral´ık.,An,adaptive,hp-refinement,strategy,with,com-,putable,guaranteed,bound,on,the,error,reduction,factor.,Computers,&,Mathematics,with,Appli-,cations,,76(5):967–983,,2018.,[6],P.,Deuflhard,and,M.,Weiser.,Adaptive,Numerical,Solution,of,PDEs.,deGruyter,,2013.,[7],J.,Dongarra.,Freely,Available,Software,for,Linear,Algebra,,2018.,URL,http://www.netlib.org/utk/people/JackDongarra/la-sw.html.,[8],J.,Dongarra,,R.,Barett,,M.,Berry,,T.,F.,Chan,,J.,Demmel,,J.,M.,Donato,,V.,Eijkhout,,R.,Pozo,,C.,Romine,,and,H.,V.,der,Vorst.,Templates,for,the,Solution,of,Linear,Systems:,Building,Blocks,for,Iterative,Methods.,SIAM,,2014.,[9],B.,Dudson,,P.,Hill,,and,J.,Parker.,BOUT++.,online,repository,,2020.,URL,http://boutproject.github.io.,[10],R.,Falgout,,A.,Barker,,T.,Kolev,,R.,Li,,S.,Osborn,,D.,Osei-Kuffuor,,V.,P.,Magri,,and,J.,Schroeder.,HYPRE:,Scalable,Linear,Solvers,and,Multigrid,Methods.,online,,2017.,URL,https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods.,[11],M.,Ferronato.,Preconditioning,for,Sparse,Linear,Systems,at,the,Dawn,of,the,21st,Century:,ISRN,Applied,Mathematics,,2012:49,,History,,Current,Developments,,and,Future,Prospects.,October,2012.,doi:,10.5402/2012/127647.,[12],G.,H.,Golub,and,C.,F.,Van,Loan.,Matrix,computations,,volume,3.,JHU,press,,2013.,[13],G.,Hager,and,G.,Wellein.,Introduction,to,High,Performance,Computing,for,Scientists,and,Engi-,neers.,Chapman,and,Hall/CRC,,2011.,Asian,Reprint.,[14],HSL,Development,Team.,The,HSL,Mathematical,Software,Library,,2015.,URL,https://www.hsl.rl.ac.uk.,[15],R.,Kingham,and,A.,Bell.,An,implicit,Vlasov–Fokker–Planck,code,to,model,non-local,electron,transport,in,2-D,with,magnetic,fields.,Journal,of,Computational,Physics,,194(1):1–34,,2004.,19,20,BIBLIOGRAPHY,[16],B.,S.,Kirk,,J.,W.,Peterson,,R.,H.,Stogner,,and,G.,F.,Carey.,libMesh:,a,C++,library,for,parallel,adaptive,mesh,refinement/coarsening,simulations.,Engineering,with,Computers,,22(3-4):237–254,,2006.,[17],D.,Kressner.,Lecture,notes,for,the,course,on,Numerical,Methods,held,by,Daniel,Kressner,in,the,spring,semester,2010,at,the,ETH,Zurich.,(Numerische,Methoden,Vorlesungsskript,zur,Veranstal-,tung,Numerische,Methoden,gehalten,von,Daniel,Kressner,im,FS,2010,an,der,ETH,Z¨urich).,ETH,Z¨urich,,May,2010.,[18],M.,Kumar,and,G.,Natarajan.,Unified,solver,for,thermobuoyant,flows,on,unstructured,meshes.,In,Fluid,Mechanics,and,Fluid,Power–Contemporary,Research,,pages,569–580.,Springer,,2017.,[19],A.,Lani,,T.,Quintino,,D.,Kimpe,,H.,Deconinck,,S.,Vandewalle,,and,S.,Poedts.,The,COOLFluiD,framework:,design,solutions,for,high,performance,object,oriented,scientific,computing,software.,In,International,Conference,on,Computational,Science,,pages,279–286.,Springer,,2005.,[20],S.,Liu,,Q.,Tang,,and,X.-Z.,Tang.,A,parallel,cut-cell,algorithm,for,the,free-boundary,Grad-,Shafranov,problem.,arXiv,preprint,arXiv:2012.06015,,2020.,[21],Y.,G.,Maneva,,A.,A.,Laguna,,A.,Lani,,and,S.,Poedts.,Multi-fluid,modeling,of,magnetosonic,wave,propagation,in,the,solar,chromosphere:,effects,of,impact,ionization,and,radiative,recombination.,The,Astrophysical,Journal,,836(2):197,,2017.,[22],T.,Manteuffel,,J.,Ruge,,and,B.,Southworth.,Nonsymmetric,algebraic,multigrid,based,on,local,approximate,ideal,restriction,(lair).,SIAM,Journal,on,Scientific,Computing,,6(40):4105–4130,,2018.,[23],A.,Marx,and,H.,L¨utjens.,Hybrid,parallelization,of,the,XTOR-2F,code,for,the,simulation,of,two-fluid,MHD,instabilities,in,tokamaks.,Computer,Physics,Communications,,212:90–99,,2017.,[24],A.,Meister.,Numerics,of,systems,of,linear,equations,(Numerik,Linearer,Gleichungssysteme).,Springer,Spektrum,,5,edition,,2014.,doi:,10.1007/978-3-658-07200-1.,With,MATLAB,exercises.,[25],S.,Mijin,,A.,Antony,,F.,Militello,,and,R.,J.,Kingham.,SOL-KiT—Fully,implicit,code,for,kinetic,simulation,of,parallel,electron,transport,in,the,tokamak,Scrape-Off,Layer.,Computer,Physics,Communications,,258:107600,,2021.,[26],MUMPS,Development,Team.,MUMPS:,MUltifrontal,Massively,Parallel,sparse,direct,Solver,,2020.,URL,http://mumps.enseeiht.fr/index.php?page=home.,[27],PaStiX,Development,Team.,PaStiX:,Parallel,Sparse,matriX,package,,2019.,URL,http://pastix.gforge.inria.fr/files/README-txt.html.,[28],Z.,Peng,,Q.,Tang,,and,X.-Z.,Tang.,An,Adaptive,Discontinuous,Petrov–Galerkin,Method,for,the,Grad–Shafranov,Equation.,SIAM,Journal,on,Scientific,Computing,,42(5):B1227–B1249,,2020.,[29],PETSc,Development,Team.,PETSc,Web,page,,2019.,URL,https://www.mcs.anl.gov/petsc.,[30],A.,Quarteroni,,R.,Sacco,,and,F.,Saleri.,Numerical,Mathematics.,Springer,,2002.,[31],R.,Rabenseifner,,A.,Meister,,et,al.,Iterative,Solvers,and,Parallelization,-,Course,material,for,HLRS,Course,2016-ITER-S,,2016.,[32],N.,V.,Roberts,,D.,Ridzal,,P.,B.,Bochev,,and,L.,Demkowicz.,A,toolbox,for,a,class,of,discontinuous,Petrov-Galerkin,methods,using,Trilinos.,Technical,Report,SAND2011-6678,,Sandia,National,Laboratories,,2011.,[33],A.,L.,Rossa,and,A.,L.,Coutinho.,Parallel,adaptive,simulation,of,gravity,currents,on,the,lock-,exchange,problem.,Computers,&,Fluids,,88:782–794,,2013.,BIBLIOGRAPHY,21,[34],K.,Sabelfeld,and,N.,Loshchina.,Stochastic,iterative,projection,methods,for,large,linear,systems.,Monte,Carlo,Methods,and,Applications,,2010.,doi:,10.1515/mcma.2010.020.,[35],S.,Sherwin,,M.,Kirby,,C.,Cantwell,,and,D.,Moxey.,Nektar++.,online,,2021.,URL,https://www.nektar.info.,[36],N.,Spillane,,V.,Dolean,,P.,Hauret,,F.,Nataf,,C.,Pechstein,,and,R.,Scheichl.,Abstract,robust,coarse,spaces,for,systems,of,PDEs,via,generalized,eigenproblems,in,the,overlaps.,Numerische,Mathematik,,1(126):741–770,,2014.,[37],STRUMPACK,Development,Team.,STRUMPACK,-,STRUctured,Matrix,PACKage,,2021.,URL,https://portal.nersc.gov/project/sparse/strumpack/v5.0.0/index.html.,[38],Trilinos,Project,Team.,Stokhos,Package,for,Intrusive,Stochastic,Galerkin,Methods,,2021.,URL,https://trilinos.github.io/stokhos.html.,[39],B.,Williams,and,R.,Kingham.,Hybrid,simulations,of,fast,electron,propagation,including,magne-,tized,transport,and,non-local,effects,in,the,background,plasma.,Plasma,Physics,and,Controlled,Fusion,,55(12):124009,,2013.,[40],C.,S.,Woodward,,D.,R.,Reynolds,,A.,C.,Hindmarsh,,D.,J.,Gardner,,and,C.,J.,Balos.,SUN-,DIALS:,SUite,of,Nonlinear,and,DIfferential/ALgebraic,Equation,Solvers.,online,,2021.,URL,https://computing.llnl.gov/projects/sundials.,[41],P.,Zhu,,C.,Sovinec,,C.,Hegna,,A.,Bhattacharjee,,and,K.,Germaschewski.,Nonlinear,ballooning,instability,in,the,near-Earth,magnetotail:,Growth,,structure,,and,possible,role,in,substorms.,Journal,of,Geophysical,Research:,Space,Physics,,112(A6),,2007. :pdfembed:`src:_static/TN-02_LinearSystemsEquationsPreconditionersRelatingNeptuneProgrammeABrief.pdf, height:1600, width:1100, align:middle`