TN-03_AReviewTimeSteppingTechniquesPreconditioningHyperbolicAnisotropicEllipticProblem ====================================================================================== .. meta:: :description: technical note :keywords: A,Review,of,Time,Stepping,Techniques,and,Preconditioning,for,Hyperbolic,and,Anisotropic,Elliptic,Problems,Technical,Report,2068625-TN-03,Deliverables,D1.1,and,D2.1,Hussam,Al,Daas*,Niall,Bootland*,Tyrone,Rees*,Sue,Thorne(cid:132),March,2023,1,Introduction,Exascale,targeted,plasma,modelling,will,require,the,efficient,and,accurate,solution,of,systems,of,hyperbolic,partial,differential,equations,(PDEs),,along,with,corresponding,elliptic,problems,,in,the,presence,of,highly,anisotropic,dynamics.,Furthermore,,the,techniques,used,must,scale,with,the,computing,power,available,,and,be,robust,enough,to,be,portable,to,any,emerging,hardware,that,arises,in,the,future.,We,are,anticipating,that,high,order,finite,elements/spectral,elements,will,be,used,to,discretize,the,equations,,and,we,focus,on,methods,amenable,to,such,problems.,In,Section,2,,we,investigate,the,current,state,of,the,art,in,time,advance,techniques,,while,in,Section,3,,we,turn,our,attention,to,the,state,of,the,art,for,preconditioners,of,elliptic,systems.,We,give,a,high,level,summary,of,our,findings,at,the,end,of,each,section.,2,State-of-the-art,time,stepping,techniques,for,hyperbolic,PDEs,We,consider,the,solution,of,hyperbolic,systems,of,the,form,∂u,∂t,=,A(u,,t),,together,with,appropriate,initial,and,boundary,conditions.,Stability,requirements,mean,that,explicit,methods,(such,as,forward,Euler),would,require,an,unfeasibly,small,temporal,step,size.,This,problem,,which,is,compounded,by,the,fact,that,the,step,size,for,the,entire,domain,is,restricted,by,the,finest,mesh,patch,or,wave,velocity,,generally,makes,explicit,methods,unsuitable,for,anisotropic,hyperbolic,equations.,We,can,make,use,of,larger,time,steps,with,an,implicit,(or,semi-implicit),method.,While,such,schemes,may,be,unconditionally,stable,,even,in,this,case,we,must,still,restrict,the,size,of,the,time,step,with,a,CFL-like,condition,to,ensure,that,the,solution,is,sufficiently,accurate.,Also,,with,any,implicit,method,,there,is,the,requirement,to,solve,a,large,system,of,equations,at,each,time,step,,and,we,must,do,this,carefully,to,ensure,performance,on,modern,HPC,systems.,2.1,Fully,Implicit,Methods,The,Method,of,Lines,[49],is,a,technique,to,transform,a,PDE,into,system,of,ordinary,differential,equations,(ODEs),by,applying,a,pre-determined,discretization,strategy,to,the,spatial,dimensions,of,the,PDE.,We,may,then,solve,the,resulting,ODE,with,an,appropriate,temporal,scheme,to,the,required,accuracy.,*Scientific,Computing,Department,,STFC,Rutherford,Appleton,Laboratory,,Harwell,Campus,,Didcot,,OX11,0QX,,UK.,(cid:132)Hartree,Centre,,STFC,Rutherford,Appleton,Laboratory,,Harwell,Campus,,Didcot,,OX11,0QX,,UK.,Email,contact:,sue.thorne@stfc.ac.uk,1,In,the,linear,case,,and,without,algebraic,constraints,,the,ODE,system,takes,the,form,M,u′(t),=,Lu,+,ˆf,(t),in,(0,,T,],,u(0),=,0,,(1),where,M,∈,Rn×n,is,a,mass,matrix,,L,∈,Rn×n,is,a,discrete,linear,operator,,and,ˆf,(t),a,time-dependent,forcing,function.,One,may,solve,the,ODE,(1),by,applying,an,s-stage,Runge–Kutta,scheme:,un+1,=,un,+,δt,s,(cid:88),i=1,biki,,(cid:32),M,ki,=,L,un,+,δt,s,(cid:88),i=1,(cid:33),aijkj,+,f,(tn,+,δtci).,(2),(3),Such,schemes,are,commonly,expressed,in,terms,of,a,Runge–Kutta,matrix,A,=,{aij},∈,Rs×s,,weight,vector,bT,=,(b1,,.,.,.,,,bs)T,,,and,quadrature,nodes,c,=,(c1,,.,.,.,,,cs),,often,presented,in,a,Butcher,tableau:,The,stage,vectors,{ki},are,the,solution,of,the,block,linear,system,,c,A,bT,.,,,M,,,,,.,.,.,M,,,,−,δt,,,,a11L,·,·,·,...,.,.,.,as1L,·,·,·,a1sL,...,assL,,,,,,,,,,,,,=,,,,f1,...,fs,,,,,,(4),k1,...,ks,where,fi,:=,ˆf,(tn,+,δtci),+,L(tn,+,δtci)un.,The,difficulty,in,applying,fully,implicit,Runge–Kutta,methods,lies,in,solving,the,ns,×,ns,block,linear,system,(4).,The,solution,of,nonlinear,systems,requires,solves,with,the,form,(4),,but,with,L,now,being,a,linearized,operator,as,determined,by,,say,,a,Newton,or,Picard,iteration,[82,,48].,We,may,also,incorporate,constraints,(such,as,incompressibility):,if,the,‘Method,of,Lines’,applied,to,a,PDE,gives,the,differential,algebraic,equation,(DAE),M,u′(t),=,N,(u,,w,,t),0,=,G(u,,w,,t),,then,an,s-stage,Runge–Kutta,method,applied,to,this,gives,iterates,of,the,form,(cid:21),(cid:20)un+1,wn+1,=,(cid:21),(cid:20)un,wn,+,δt,s,(cid:88),i=1,(cid:21),(cid:20)ki,ℓi,.,bi,In,the,linear,case,we,obtain,the,stage,vectors,ki,and,ℓi,by,solving,the,system,of,equations,(cid:21),0,.,.,.,,,,,,,,(cid:20)M,,,,,,,,,,,,,,,−,δt,(cid:20)M,(cid:21),0,,,,,,,,a11,as1,(cid:21),(cid:21),(cid:20)Nu,Nw,Gu,Gw,...,(cid:20)Nu,Nw,Gw,Gu,·,·,·,.,.,.,·,·,·,a1s,ass,(cid:20)Nu,Nw,Gu,Gw,...,(cid:20)Nu,Nw,Gw,Gu,(cid:21),,,,,,,,,,,,,,,(cid:21),,,,,,,,k1,ℓ1,...,ks,ℓs,,,,,,,,=,,,,,,,,f1,g1,...,fs,gs,,,,,,,,.,(5),Again,,the,nonlinear,case,is,also,possible,,and,results,in,a,series,of,linearized,systems,of,the,form,(5).,For,more,details,,see,e.g.,,[9,,Section,10.1.3],,[82,,Section,6].,In,the,following,,for,simplicity,of,exposition,,we,consider,only,the,linear,case,without,constraints,(unless,we,state,otherwise),,but,the,ideas,can,also,be,applied,in,the,more,general,case.,For,general,properties,of,such,methods,,we,refer,the,reader,to,Ascher,and,Petzold,[9,,Section,4].,In,the,specific,case,that,interests,us,,the,algebraic,block,is,very,large,and,ill,conditioned,,being,the,spatial,discretization,of,a,partial,differential,equation.,We,can,expect,standard,implementations,of,algorithms,for,solving,ODEs,to,fail,,as,direct,methods,would,struggle,to,solve,even,a,single,system,with,L.,Below,we,describe,the,state,of,the,art.,2,2.1.1,Diagonally-implicit,Runge–Kutta,(DIRK),methods,Diagonally-implicit,Runge–Kutta,(DIRK),methods,have,a,lower,triangular,Runge–Kutta,matrix,,A.,This,simplifies,the,solution,of,(4),considerably,,as,the,implicit,solve,requires,only,a,series,of,n,×,n,systems,,rather,than,one,ns,×,ns,system,solve.,Kennedy,and,Carpenter,[45],performed,a,comprehensive,survey,of,DIRK,methods,for,NASA,,followed,up,by,the,development,of,several,new,methods,[46].,We,recommend,these,papers,,and,the,references,therein,,for,more,detail,on,this,class,of,methods.,DIRK,methods,can,be,further,divided,into,a,series,of,subclasses:,SDIRK,methods,are,DIRK,methods,where,A,has,a,constant,diagonal;,EDIRK,methods,are,DIRK,methods,with,an,explicit,first,stage,(so,a1,1,=,0);,ESDIRK,methods,[50],are,EDIRK,methods,where,the,non-zeros,on,the,diagonal,are,constant.,Nektar++,implements,SDIRK,with,two,and,three,stages,,and,an,ESDIRK,method,with,six,stages;,Yan,et,al.,[90],gives,a,preliminary,comparison,of,the,performance,of,these,methods,against,each,other,and,against,explicit,methods.,Pan,et,al.,[66],point,out,that,one,must,be,careful,when,choosing,the,time,step,,as,making,a,naive,choice,may,lead,to,extra,work,without,any,gain,in,accuracy,(see,,e.g.,,[62]).,They,observe,that,,when,solving,Navier–Stokes,equations,using,a,Discontinuous,Galerkin,discretization,in,the,spatial,domain,,an,ESDIRK,method,in,temporal,domain,,and,solving,the,nonlinear,system,using,a,Jacobian,Free-Newton,Krylov,method,(JFNK),[48],,then,the,error,in,one,time,step,is,the,sum,of,the,local,temporal,error,(from,ESDIRK),,and,the,averaged,spatial,error,(from,DG),and,the,averaged,algebraic,JFNK,error,(from,preconditioned,GMRES).,They,therefore,propose,a,system,,implemented,in,Nektar++,[90],,which,uses,explicit,formulae,for,the,spatial,truncation,error,and,temporal,error,to,estimate,the,errors,in,these,components.,These,are,then,used,to,choose,a,priori,a,time,step,and,a,Newton,tolerance,such,that,the,temporal,and,iterative,errors,are,smaller,than,the,spatial,errors,,thus,ensuring,that,the,accuracy,is,enough,to,ensure,sufficient,convergence,,but,not,too,much,to,waste,CPU,time.,Since,this,method,is,based,on,local,errors,,there,is,no,guarantee,on,the,global,errors;,however,,it,suggests,a,reasonable,heuristic,which,has,been,shown,to,be,effective,on,the,isentropic,vortex,,Taylor-Green,vortex,,flat,plate,boundary,layer,,and,turbulent,flow,over,a,cylinder,model,problems.,While,this,approach,provides,an,upper,bound,for,the,time,step,,this,may,not,be,enough,to,maintain,stability,for,challenging,problems,,yet,the,method,is,a,promising,approach,for,automatic,simulation,pipelines.,2.1.2,High,order,implicit,Runge–Kutta,(IRK),method,While,DIRK,schemes,are,attractive,,since,they,simplify,the,structure,of,the,linear,systems,,they,come,with,a,number,of,drawbacks,,as,outlined,in,[45].,For,a,DIRK,method,with,formal,integration,order,p,and,stage-order,q,,the,order,of,accuracy,observed,in,practice,for,stiff,nonlinear,PDEs,or,DAEs,is,approximately,min{p,,q,+,1}.,Stable,DIRK,methods,have,a,maximum,order,of,p,=,s,+,1,,and,the,stage-order,,q,,is,usually,1,,although,can,be,2,for,DIRK,methods,with,an,explicit,first,stage.,However,,DIRK,methods,cannot,have,a,stage-order,larger,than,2.,Symplectic,DIRK,methods,can,be,at,most,4th,order,,and,have,the,additional,restriction,that,documented,methods,above,order,two,have,Runge–Kutta,matrices,with,negatives,on,the,diagonal,,which,usually,leads,to,more,difficult,linear,systems,to,solve.,Overall,,DIRK,methods,have,limited,accuracy,and,,while,this,is,often,good,enough,for,the,application,at,hand,,it,can,be,an,issue,for,difficult,modelling,problems.,Fully,implicit,Runge–Kutta,(IRK),methods,,in,contrast,,can,have,high-order,accuracy,,since,they,may,have,any,stage-order:,an,s-stage,IRK,method,may,have,accuracy,of,order,2s.,However,,the,linear,system,solved,at,each,step,(4),is,formidable,,and,is,intractable,for,realistic,sized,problems,without,careful,handling,of,the,linear,algebra.,Common,IRK,methods,include,the,Gauss–Legendre,,Gauss–Lobatto,and,Gauss–Radau,families,,which,contain,classical,techniques,such,as,backward,Euler,(RadauIIA),,and,Crank–Nicolson,(LobattoIIIA).,Farrell,et,al.,[30],have,developed,a,high-level,library,called,Irksome,for,manipulating,UFL,(Unified,Form,Language),expressions,of,semidiscrete,variational,forms,to,obtain,UFL,expressions,for,the,coupled,Runge–Kutta,stage,equations,(3),at,each,time,step.,Irksome,works,with,the,Firedrake,package,to,enable,the,efficient,solution,of,the,resulting,coupled,algebraic,systems,,which,are,solved,matrix-free.,Irksome,solves,the,matrix,(4),using,a,Krylov,method,with,preconditioner,which,has,been,shown,[55],to,be,a,good,preconditioner,for,parabolic,problems.,blkdiag,(M,−,a1,1δtL,,·,·,·,,,M,−,as,sδtL),,,3,The,system,(4),can,be,re-written,in,Kronecker,product,form,as,(I,⊗,M,−,δtA,⊗,L)k,=,f,,(6),which,is,the,Sylvester,matrix,equation.,Such,systems,arise,commonly,in,model,order,reduction,and,control,applications,,and,we,refer,the,reader,to,Simoncini’s,survey,[80],on,techniques,for,solving,matrix,equations.,This,connection,has,led,to,a,number,of,interesting,approaches,for,the,solution,of,(4),using,fully-implicit,IRK,methods,over,the,past,few,years,[83,,82,,42,,56,,71].,Southworth,et,al.,introduce,a,theoretical,and,algorithmic,preconditioning,framework,for,solving,(4),in,the,linear,[83],and,nonlinear,[82],setting.,This,framework,also,naturally,applies,to,discontinuous,Galerkin,discretizations,in,time.,Under,quite,general,assumptions,on,the,spatial,discretization,that,yield,stable,time,integration,,they,prove,that,the,preconditioned,operator,has,a,condition,number,bounded,by,a,small,,order-one,constant,,independent,of,the,spatial,mesh,and,time-step,size,,and,with,only,weak,dependence,on,number,of,stages/polynomial,order;,for,example,,the,preconditioned,operator,for,10th-order,Gauss,IRK,has,a,condition,number,less,than,two,,independent,of,the,spatial,discretization,and,time,step.,The,proposed,method,can,be,used,with,arbitrary,existing,preconditioners,for,backward,Euler-type,time-stepping,schemes,and,is,amenable,to,the,use,of,three-term,recursion,Krylov,methods,when,the,un-,derlying,spatial,discretization,is,symmetric.,In,[83],,the,authors,apply,their,method,to,various,high-order,finite,difference,and,finite,element,discretizations,of,linear,parabolic,and,hyperbolic,problems,,demon-,strating,fast,,scalable,solution,with,up,to,10th-order,accuracy.,The,proposed,method,,in,several,cases,,can,achieve,4th-order,accuracy,using,Gauss,integration,with,roughly,half,the,number,of,preconditioner,applications,and,wall-clock,time,than,as,is,required,using,standard,DIRK,methods.,In,[82],the,authors,treat,the,nonlinear,case,along,with,the,problem,of,DAEs,,applying,the,method,to,the,nonlinear,Navier–,Stokes,equation.,Again,,the,method,only,requires,an,efficient,preconditioner,for,matrices,arising,from,the,classical,backward,Euler,scheme.,The,numerical,experiments,in,[83,,82],used,the,software,MFEM,[8],,and,employs,multigrid,precondi-,tioners,that,are,available,within,HYPRE,(see,Section,3).,We,highlight,that,Masud,et,al.,[56],presented,a,similar,approach,to,that,of,Southworth,et,al.,,treating,the,parabolic,case.,Common,to,all,the,approaches,described,here,are,fast,methods,for,the,solution,of,a,sequence,of,linear,systems,of,the,form,(αiM,−,L)x,=,fi,or,(cid:20)αiM,−,L,BT,C,B,(cid:21),(cid:21),(cid:20)x1,x2,=,(cid:21),(cid:20)fi1,fi2,,,(7),depending,on,if,constraints,are,present,or,not,,where,M,is,a,mass,matrix,,L,is,a,linear,differential,operator,,and,B,,BT,and,C,represent,the,differential,algebraic,constraints.,The,parameters,αi,depend,on,the,values,in,the,Runge–Kutta,matrix,A,and,can,be,assumed,to,be,positive.,The,symmetry,and,definiteness,of,(7),therefore,depends,on,the,linear,differential,operator,L.,We,point,to,Section,3,for,a,description,of,recent,advances,in,preconditioning,(7),for,both,the,symmetric,and,nonsymmetric,case.,2.2,Linear,Multistep,Methods,Linear,multistep,time,integration,techniques,applied,to,(1),take,the,form,0,(cid:88),j=−k,αk+jM,ui+j,=,δt,0,(cid:88),j=−k,βk+j,(L(ui+j),+,f,(ti+j)),,,for,a,given,set,of,αi,and,βj.,Methods,with,βk,=,0,are,explicit,,for,example,the,Adams–Bashforth,(AB),family,,while,non-zero,βk,give,implicit,methods,,for,example,the,Adams–Moulton,(AM),and,backward,differentiation,formulae,(BDF),families).,There,are,,however,,a,number,of,drawbacks,which,limit,their,application,to,hyperbolic,PDEs.,Al-,though,they,do,not,suffer,from,the,same,accuracy,issues,of,DIRK,methods,,there,are,no,implicit,multistep,methods,which,are,A-stable,and,of,order,greater,than,two.,There,are,also,no,generally,symplectic,mul-,tistep,methods.,By,the,nature,of,multistep,methods,,which,build,approximations,to,the,solution,using,solutions,at,previous,points,in,time,,multistep,methods,are,more,memory,intensive,than,Runge–Kutta,methods,and,so,may,not,be,so,applicable,for,large,simulations,at,exascale.,4,2.3,Implicit–Explicit,(IMEX),methods,It,is,often,the,case,that,time-dependent,PDEs,take,the,form,∂u,∂t,=,B(u,,t),+,C(u,,t),,where,the,operators,B(u,,t),and,C(u,,t),model,phenomena,present,at,different,time-scales;,examples,include,a,non-stationary,convection–diffusion,equation,where,we,follow,the,convected,time-scale,,where,B(u,,t),and,C(u,,t),may,represent,the,diffusive,and,convective,terms,,respectively,,or,coupled,multi-physics,problems,,where,mixed,fluids,may,have,different,behaviours.,The,presence,of,the,fast,term,precludes,the,use,of,fully,explicit,integrators,,as,we,would,require,a,prohibitively,small,time-step,to,ensure,convergence.,On,the,other,hand,,using,a,fully,implicit,method,may,ask,too,much,of,the,linear,(or,nonlinear),solvers.,Implicit–Explicit,(IMEX),time,integration,schemes,exploit,the,structure,of,the,problem,by,solving,for,the,slow,term,explicitly,,where,we,may,safely,take,larger,time,steps,,and,solving,for,the,fast,term,implicitly.,The,split,between,the,two,different,regimes,is,not,always,clear,,and,schemes,may,leak,stiffness.,IMEX,methods,also,may,suffer,from,accuracy,issues,,and,fully,implicit,methods,may,need,to,be,used,if,a,tight,tolerance,is,required.,A,number,of,IMEX,schemes,have,recently,been,proposed,for,general,hyperbolic,problems[38,,20,,67],,for,multi-physics,problems,(see,[47,,Section,3.2.2],and,the,references,therein),,and,for,plasma,modelling,[59].,Nektar++,implements,a,scheme,by,Karniadakis,et,al.[43],for,thermal,convection,problems[41];,we,note,that,Nektar++,uses,an,equivalence,between,IMEX,methods,and,general,linear,methods,to,ease,the,switch,between,various,implicit,,explicit,and,IMEX,methods,[87].,The,PETSc,TS,package,[12,,Section,6],provides,interfaces,to,the,IMEX,methods,proposed,in,[10,,20,,37,,44,,67],(mostly,using,an,SDIRK,implicit,solver).,We,would,like,to,highlight,that,IMEX,methods,(together,with,bespoke,preconditioners,for,the,implicit,solves),have,recently,been,successfully,applied,at,scale,as,the,integrator,in,the,Unified,Model,[57,,16].,2.4,Parallel-in-time,As,the,parallel,performance,of,spatial,solvers,has,become,saturated,,there,has,been,an,increasing,interest,in,parallel,in,time,(PinT),methods;,see,the,survey,by,Gander,[32].,The,development,of,the,parareal,method,by,Lions,,Maday,and,Turinici,in,2001,[51],was,the,catalyst,for,much,of,this,activity.,The,parareal,algorithm,combines,two,solvers;,a,cheap,,global,‘coarse’,solver,,and,a,more,accurate,‘fine’,solver.,The,basic,concept,is,simple:,we,employ,a,fine,solver,in,parallel,,which,constitutes,the,bulk,of,the,computational,effort,,and,then,combine,the,results,into,a,global,solution,using,the,coarse,solver.,While,most,results,in,the,literature,apply,this,method,to,fairly,simple,model,problems,and,,in,particular,,those,of,a,diffusive,nature,,there,has,been,some,success,in,applying,the,parareal,paradigm,to,real,scientific,applications,with,a,hyperbolic,PDE,,most,notably,in,the,work,of,Samaddar,et,al.,on,tokamak,edge,plasma,simulations,[79,,78,,77,,15,,75,,27,,74,,76].,Key,in,this,work,is,the,selection,of,an,appropriate,coarse,grid,solver,,and,unfortunately,there,is,currently,little,(if,any),theoretical,guidance,on,which,schemes,may,prove,successful,for,other,problems.,Nevertheless,,these,studies,report,a,speed,up,of,roughly,a,factor,of,ten,by,using,parareal,over,conventional,time-stepping,techniques.,An,alternative,approach,to,parareal,is,multigrid,reduction,in,time,(MGRIT),[29],,a,method,built,on,the,equivalence,between,a,traditional,time,integration,method,and,a,block,lower,triangular,system,of,equations.,The,parareal,method,is,equivalent,to,a,two,grid,(in,time),multigrid,method,[33],and,MGRIT,is,,in,some,ways,,the,natural,extension,,considering,a,hierarchy,of,grids.,XBraid,software,[1],is,an,implementation,of,MGRIT,,and,has,been,shown,to,give,speed-ups,of,up,to,a,factor,of,fifty,over,sequential,time-stepping.,Both,parareal,and,MGRIT,struggle,on,hyperbolic,problems.,Southworth,et,al.,[81],recently,pro-,vided,a,convergence,analysis,detailing,whether,or,not,parareal,or,two-level,MGRIT,will,converge,on,a,given,problem,,as,well,as,what,spatial,or,temporal,discretizations,are,applicable,with,MGRIT.,Recent,work,by,Wathen,and,collaborators,[58,,24],and,Gander,et,al.,[34],,based,on,the,development,of,block,preconditioners,for,the,large,block,lower-triangular,time-stepping,matrix,,has,potential,to,overcome,this,limitation.,We,highlight,there,is,an,ExCALIBUR,project,to,compare,the,performance,of,parallel,in,time,methods,for,exascale,use,,the,findings,of,which,will,be,relevant,here.,https://excalibur.ac.uk/projects/,exposing-parallelism-parallel-in-time/,5,Summary,(cid:136),DIRK,time-stepping,methods,,where,applicable,,are,well,developed,and,the,review,[45],provides,a,nice,summary.,(cid:136),Fully,implicit,Runge–Kutta,methods,were,largely,dismissed,as,impractical,for,hyperbolic,prob-,lems,,but,recent,advances,in,preconditioning,techniques,may,mean,this,is,no-longer,the,case;,Southworth,et,al.,[83,,82],describes,(and,advances),the,state,of,the,art,here.,(cid:136),The,theory,of,IMEX,methods,is,also,well,developed,and,should,be,used,where,appropriate.,(cid:136),Recent,work,on,parallel-in-time,methods,may,help,break,the,inherently,sequential,nature,of,traditional,time,integration,algorithms,,which,rely,exclusively,on,the,solution,of,the,spatial,discretization,for,parallelism.,(cid:136),All,approaches,for,solving,implicit,time-stepping,problems,require,good,methods,for,solving,(variations,of),the,stationary,system;,see,Section,3.,3,State-of-the-art,approaches,for,preconditioning,elliptic,prob-,lems,discretized,with,high-order,methods,Existing,and,emerging,computing,architectures,suffer,from,an,exponentially,growing,gap,between,the,time,necessary,to,perform,a,floating,point,operation,and,the,time,to,move,data,across,the,network,on,a,distributed,memory,environment.,High-order,numerical,methods,provide,higher,accuracy,with,fewer,degrees,of,freedom,,at,the,cost,of,more,arithmetic,operations,performed,per,degree,of,freedom.,Because,of,their,high,arithmetic,intensity,,high-order,methods,are,promising,candidates,to,get,the,best,performance,on,exascale,systems.,A,finite,element,or,discontinuous,Galerkin,method,of,polynomial,degree,p,in,d,spatial,dimensions,will,have,O(pd),degrees,of,freedom,per,element,,and,hence,the,system,matrix,will,have,O(p2d),non-zero,entries.,For,this,reason,it,is,often,the,case,that,the,coefficient,matrix,is,not,assembled,and,associated,operations,are,carried,out,in,a,matrix-free,fashion.,A,matrix-free,method,reduces,the,memory,requirements,to,O(pd),and,,making,use,of,sum,factorization,techniques,,the,cost,of,a,matrix–vector,product,can,be,reduced,to,O(dpd+1)[65].,The,condition,number,of,the,discretized,matrix,increases,quadratically,with,the,polynomial,degree.,Due,to,the,large,bandwidth,,direct,methods,for,solving,linear,systems,are,not,an,option.,We,therefore,must,turn,to,iterative,solvers,and,it,is,vital,that,we,pair,the,Krylov,subspace,solver,with,an,appropriate,preconditioner,to,get,good,performance.,In,this,section,,we,summarize,the,state-of-the-art,in,techniques,proposed,to,precondition,linear,systems,arising,from,the,discretization,of,elliptic,PDEs,with,high-order,methods.,We,point,the,reader,to,the,NEPTUNE,report,[7],for,an,overview,of,general-purpose,preconditioners,,as,well,as,the,excellent,review,by,Wathen[88].,3.1,Preconditioning,high,order,finite,element,matrices,There,is,a,good,body,of,work,on,preconditioners,for,low-,to,moderate-order,finite,elements,and,there,are,some,excellent,implementations,of,algorithms,which,have,been,used,in,a,wide,variety,of,practical,situations;,see,Section,3.2.,However,,it,has,been,observed,that,such,methods,often,give,less,than,desirable,performance,when,applied,to,high-order,discretization,(however,,see,Heys,et,al.,[40],,who,show,that,AMG,can,be,applied,successfully—albeit,with,a,mild,p-dependence—through,minor,modifications).,One,technique,that,has,proved,successful,,first,proposed,by,Orszag,in,1980,[65],,is,to,exploit,the,spectral,equivalence,between,low-order,and,high-order,operators,,known,as,FEM–SEM,equivalence;,see,the,review,by,Canuto,,Gervasio,and,Quarteroni[22],and,the,references,therein.,This,approach,allows,us,to,use,a,low-order,discretization,to,precondition,the,high-order,problem,,allowing,the,use,of,methods,outlined,in,Section,3.2,as,a,fast,approximation,to,this,‘ideal’,,low-order,,preconditioner.,6,In,practice,,the,tensor-product,of,the,Gauss–Lobatto–Legendre,points,used,to,generate,the,grid,for,spectral,element,methods,result,in,anisotropic,finite,element,meshes,,which,challenge,basic,multigrid,and,domain,decomposition,methods[52].,Nevertheless,,there,has,been,considerable,success,in,the,development,of,such,methods,in,recent,years:,Pazner,and,Kolev,[69,,70],develop,a,multigrid,preconditioner,for,high-,order,continuous,and,discontinuous,Galerkin,methods,with,hp-refinement;,Chalmers,and,Warburton[23],and,Olson[63],apply,this,idea,to,simplexes,in,two,and,three,dimensions;,Bello-Maldonado,and,Fischer[14],create,a,scheme,that,uses,a,preconditioner,based,on,P,1-elements,,using,a,meshing,technique,for,rect-,angular,and,hexahedral,elements;,Pazner,,Dohrmann,and,Kolev,[72,,25],show,this,can,be,applied,to,finite,element,problems,on,H(curl),and,H(div),spaces,(using,N´ed´elec,and,Raivart–Thomas,elements,,respectively).,These,methods,are,typically,independent,of,the,polynomial,degree,,mesh,size,and,,for,DG,methods,,the,penalty,parameter.,A,comparison,by,Sundar,,Stadler,and,Biros,[85],concludes,that,this,approach,is,more,advantageous,than,h-,or,p-multigrid.,We,particularly,highlight,the,work,of,Pazner,,Dohrmann,and,Kolev,[72],,who,present,numerical,experiments,using,the,finite,element,library,MFEM,,with,which,the,construction,of,such,preconditioners,requires,only,one,or,two,lines,of,code.,These,tests,corroborate,the,theoretical,properties,of,the,proposed,preconditioners,,and,demonstrate,the,flexibility,and,scalability,of,the,method,on,a,range,of,challenging,three-dimensional,problems.,These,new,solvers,are,flexible,and,easy,to,use;,any,black-box,preconditioner,for,low-order,problems,can,be,used,to,create,an,effective,and,efficient,preconditioner,for,the,corresponding,high-order,problem.,The,lor_solvers,miniapp,,and,its,parallel,counterpart,plor_solvers,,illustrate,the,construction,of,low-order-refined,(LOR),discretizations,and,solvers,,and,come,distributed,within,the,MFEM,source,code,,available,at,https://github.com/mfem/mfem.,An,alternative,approach,is,to,use,the,observation,of,Pavarino[68],that,additive,Schwartz,,together,with,an,additive,coarse,space,of,order,one,and,a,vertex-centred,space,decomposition,,is,robust,with,respect,to,both,p,and,h,for,symmetric,and,coercive,problems.,The,local,solves,for,such,problems,are,dense,and,solved,with,a,direct,method.,Furthermore,,the,coarse-grid,operator,is,also,fairly,dense,and,can,quickly,become,expensive.,However,,in,recent,years,good,methods,for,solving,this,system,have,become,available;,see,,e.g.,,Lottes,and,Fischer[52].,Recently,Brubeck,and,Farrell[21],introduced,a,p-robust,preconditioner,which,uses,the,additive,Schwarz,method,with,vertex,patches,combined,with,a,low-order,coarse,space,as,a,solver,for,symmetric,and,coercive,problems.,By,constructing,a,tensor,product,basis,that,diagonalizes,the,blocks,in,the,stiffness,matrix,for,the,internal,degrees,of,freedom,of,each,individual,cell,,they,show,that,the,patch,problem,is,as,sparse,as,a,low-order,finite,difference,discretization,and,having,a,sparse,Cholesky,factorization,allows,them,to,scale,to,large,polynomial,degree,p,and,afford,the,assembly,and,factorization,of,the,matrices,in,the,vertex-patch,problems.,They,successfully,apply,their,method,to,the,Poisson,equation,and,the,mixed,formulation,of,linear,elasticity,both,with,constant,coefficient,problems,and,claim,that,the,theory,of,[11],suggests,that,it,would,remain,effective,for,spatially,varying,coefficients.,In,their,conclusion,,they,state,that,the,downsides,of,their,approach:,(1),its,narrow,applicability:,it,will,not,be,effective,on,more,general,problems,(tested,on,Poisson,and,mixed,formulation,of,linear,elasticity),,especially,for,those,where,the,dominant,terms,include,mixed,derivatives,and,mixed,vector,components;,(2),their,method,relies,on,having,a,good,quality,mesh,,with,the,performance,depending,on,the,minimal,angle.,Finally,,we,highlight,that,even,explicit,time,integration,methods,require,the,solution,of,a,mass,matrix,at,each,time,step.,While,this,is,trivial,for,low-order,discretization,,it,is,less,obviously,the,case,for,high-,order,problems,,as,the,condition,number,of,the,mass,matrix,grows,algebraically,with,the,polynomial,order.,Ainsworth,and,Jiang[2,,3],describe,an,efficient,preconditioner,for,the,mass,matrix,,independent,of,h,and,p,,based,on,a,specific,choice,of,hierarchical,basis,,which,involves,only,diagonal,solves.,3.2,Preconditioners,for,low,order,problems,The,methods,described,above,depend,on,a,robust,and,efficient,linear,solver,for,low-order,finite,ele-,ment,systems.,Outside,of,basic,PDEs,on,uniform,grids,,where,fast,multipole,methods,and,fast,Fourier,transforms,may,be,applied,successfully[36],,the,main,choice,is,between,multigrid,methods,and,domain,decomposition,methods.,7,3.2.1,Multigrid,methods,Multigrid,(MG),methods[86],are,split,into,algebraic,(AMG),and,geometric,(GMG),variants.,AMG,methods,use,the,algebraic,properties,of,the,assembled,matrix,to,restrict,to,coarser,grids,,whereas,GMG,solvers,use,information,about,the,underlying,mesh,connectivity.,GMG,solvers,can,be,over,an,order,of,magnitude,faster,than,the,best,AMG,solvers,[36],,since,they,can,be,used,matrix-free,,and,operators,can,be,modified,on,different,levels,,which,can,be,advantageous,when,solving,,e.g.,,advection–diffusion,problems[73],,or,when,needing,to,accommodate,non-standard,boundary,conditions.,However,,there,are,excellent,robust,AMG,implementations,available,which,work,well,off-the-shelf,for,a,wide,range,of,problems,,which,we,describe,below,,and,AMG,solvers,and,preconditioners,are,some,of,the,fastest,black-,box,numerical,methods,to,solve,linear,systems.,The,convergence,of,AMG,solvers,is,well,established,for,symmetric,positive,definite,(SPD),linear,systems,resulting,from,the,discretization,of,general,elliptic,PDEs,or,the,spatial,discretization,of,parabolic,PDEs.,Hyperbolic,PDEs,remain,a,challenge,for,AMG,,as,well,as,other,fast,linear,solvers,,in,part,because,the,resulting,linear,systems,are,often,highly,nonsymmetric.,Nevertheless,,modern,AMG,implementations,can,perform,well,on,a,wide,range,of,problems.,The,HYPRE,library[28],,originating,from,the,Lawrence,Livermore,National,Laboratories,,contains,a,number,of,high,quality,implementations,of,multigrid,preconditioners.,BoomerAMG,[39],is,a,paral-,lel,implementation,of,the,classical,Ruge,and,St¨uben,AMG,method,,and,offers,a,range,of,coarsening,,interpolation,,and,smoothing,options.,The,ML,preconditioner,within,Trilinos,[35],,developed,by,Sandia,National,Laboratory,,is,another,fully,featured,algebraic,multigrid,implementation,,offering,a,range,of,multilevel,schemes,,smoothers,,and,coarse,solvers.,The,GAMG,preconditioner,within,PETSc,[12,,Section,4.4.5],uses,a,smoothed,aggregation,coarsening,strategy,,and,offers,a,reference,implementation,of,the,classical,Ruge,and,St¨uben,method.,It,also,provides,unsmoothed,aggregation,,which,can,be,useful,for,nonsymmetric,problems.,Note,that,both,HYPRE,and,ML,are,also,available,via,the,PETSc,interface.,The,AGMG,method,of,Notay,[61,,60],is,another,aggregation-based,algebraic,multigrid,method,which,can,be,applied,to,any,system,matrix,that,has,positive,diagonal,entries.,The,implementation,can,use,MPI,,multithreading,,or,both.,A,variety,of,multigrid,relaxation,methods,,based,on,a,topological,construction,,are,incorporated,into,a,unifying,software,abstraction,called,PCPATCH,[31],,implemented,in,PETSc.,This,allows,a,range,of,schemes,to,be,available,through,simple,manipulation,of,solver,options,at,runtime,and,so,enables,ready,exploration,of,suitable,multigrid,methods,for,challenging,problems.,Various,parameter-robust,preconditioners,for,physical,applications,are,discussed,which,fit,within,this,framework,and,a,Firedrake,example,code,is,provided.,It,is,well,known,that,AMG,methods,do,not,perform,well,‘out-of-the-box’,for,anisotropic,problems,,and,may,require,some,problem-specific,tuning;,the,PETSc,documentation,[12,,Section,4.4.5],gives,some,advice,for,this.,Manteuffel,et,al.,[53],present,a,new,variation,on,classical,AMG,for,nonsymmetric,matrices,(denoted,ℓ-AIR),,based,on,a,local,approximation,to,the,ideal,restriction,operator,,coupled,with,F-relaxation.,They,demonstrate,the,efficacy,of,the,proposed,preconditioner,on,systems,arising,from,the,discrete,form,of,the,advection–diffusion–reaction,equation.,The,ℓ-AIR,approach,is,shown,to,be,a,robust,solver,for,various,discretizations,of,the,advection–diffusion–reaction,equation,,including,time-dependent,and,steady-state,,from,purely,advective,to,purely,diffusive.,Convergence,is,robust,for,discretizations,on,unstructured,meshes,and,using,higher-order,finite,elements,,and,is,particularly,effective,on,upwind,discontinuous,Galerkin,discretizations.,We,note,that,ℓ-AIR,is,available,in,PyAMG,[64],,and,an,implementation,through,HYPRE,is,underway.,In,a,related,work,,Manteuffel,et,al.[54],present,a,reduction-based,AMG,method,developed,for,up-,wind,discretizations,of,hyperbolic,PDEs,,based,on,the,concept,of,a,Neumann,approximation,to,ideal,restriction,(n-AIR).,The,n-AIR,approach,can,be,seen,as,a,variation,of,local,AIR,(ℓ-AIR),specifically,targeting,matrices,with,triangular,structure.,Although,less,versatile,than,ℓ-AIR,,setup,times,for,n-AIR,can,be,substantially,faster,for,problems,with,high,connectivity.,The,n-AIR,algorithm,is,shown,to,be,an,effective,and,scalable,solver,of,steady,state,transport,for,discontinuous,,upwind,discretizations,,with,unstructured,meshes,,and,up,to,6th-order,finite,elements,,offering,a,significant,improvement,over,existing,AMG,methods.,It,is,also,shown,to,be,effective,on,several,classes,of,nearly,triangular,matrices,resulting,8,from,curvilinear,finite,elements,and,artificial,diffusion.,In,a,very,recent,preprint,,Wimmer,et,al.,[89],propose,a,solver,for,anisotropic,heat,flux,tailored,towards,applications,in,magnetic,confinement,fusion,plasmas,where,there,is,strong,anisotropy.,This,is,a,combination,of,a,new,finite,element,discretization,of,the,problem,,using,a,discontinuous,Galerkin,approach,on,a,mixed,formulation,which,introduces,heat,flux,,and,an,algebraic,multigrid,method,based,on,the,AIR,paradigm.,They,show,fast,convergence,even,in,the,highly,anisotropic,case,where,diffusion-based,AMG,methods,typically,struggle.,3.2.2,Domain,decomposition,methods,Domain,decomposition,methods,are,among,the,most,efficient,for,solving,sparse,linear,systems,of,equations,on,massively,parallel,architectures;,see,,e.g.,,the,book,by,Dolean,,Jolivet,and,Nataf,[26],for,a,recent,overview,of,the,field.,Their,effectiveness,relies,on,a,judiciously,chosen,coarse,space.,Spillane,et,al.,introduced,GenEO,,a,spectral,coarse,space,,in,[84].,GenEO,proved,to,be,very,attractive,as,it,can,be,constructed,efficiently,and,adapts,to,the,difficulties,posed,in,the,underlying,problem,with,a,minimum,amount,of,effort,from,the,user,perspective.,This,method,is,theoretically,proved,to,be,efficient,and,robust,with,respect,to,the,problem,size,,mesh,,discretization,type,,and,order,for,elliptic,PDEs,[4,,13],,along,with,any,problem,parameters.,That,is,,the,preconditioner,can,be,constructed,efficiently,such,that,the,condition,number,of,the,preconditioned,matrix,is,bounded,from,above,by,a,user,defined,number.,Further,,a,theory,has,recently,been,developed,to,analyse,a,GenEO-type,coarse,space,for,indefinite,and,non-self-adjoint,problems,[18],,in,particular,considering,the,convection–diffusion–reaction,equation.,A,related,approach,is,also,shown,to,be,effective,for,heterogeneous,Helmholtz,problems,at,moderately,high,frequencies,[17,,19].,Al,Daas,et,al.,[6],have,recently,extended,GenEO,to,be,applicable,as,a,black-box,method,to,precon-,dition,general,sparse,linear,system.,They,assessed,the,efficiency,and,scalability,of,the,algebraic,GenEO,method,using,a,variety,of,very,challenging,problems,arising,from,a,wide,range,of,applications,and,in-,cluding,highly,nonsymmetric,problems,such,as,the,advection,dominated,advection–diffusion,equation.,Comparisons,against,state-of-the-art,multigrid,preconditioners,illustrated,the,robustness,and,efficiency,of,algebraic,GenEO.,Al,Daas,et,al.,[5],recently,introduced,an,algebraic,extension,of,GenEO,for,the,diagonally,weighted,normal,equation,matrix.,Their,motivation,was,to,precondition,iterative,methods,for,solving,linear,least-,squares,problems.,The,weighted,normal,equation,matrix,also,arises,in,block,preconditioning,where,a,preconditioner,is,required,for,the,(approximate),Schur,complement,matrix.,The,preconditioner,proposed,in,[5],can,be,directly,employed,within,a,block,preconditioner,resulting,in,a,robust,,efficient,and,scalable,preconditioner,for,the,(approximate),Schur,complement,matrix.,Implementations,of,the,algebraic,GenEO,methods,proposed,in,[6,,5],are,available,through,the,PETSc,preconditioner,PCHPDDM,,and,only,require,the,coefficient,matrix.,Summary,(cid:136),The,most,promising,method,for,solving,matrices,stemming,from,high-order,elliptic,PDEs,is,to,precondition,with,a,low-order,finite,element,operator;,low-order,solvers,have,become,robust,enough,to,solve,the,resulting,(challenging),linear,systems,[72].,(cid:136),Multigrid,and,domain,decomposition,based,preconditioners,are,the,leading,contenders,for,performant,parallel,iterative,solves,on,anisotropic,elliptic,problems,of,low,order.,(cid:136),There,are,several,excellent,algebraic,multigrid,packages,available,that,are,highly,parallel.,However,,to,get,good,performance,it,is,vital,to,tune,the,parameters,for,a,given,problem.,A,well-implemented,geometric,multigrid,method,would,give,superior,performance,to,an,algebraic,multigrid.,(cid:136),The,GenEO,method,[84],is,the,domain,decomposition,method,with,most,promise,,with,a,good,trade-off,between,performance,and,ease,of,setup;,the,recent,development,of,fully,algebraic,variants,[6,,5],make,this,even,more,the,case.,9,References,[1],XBraid:,Parallel,multigrid,in,time.,http://llnl.gov/casc/xbraid.,[2],M.,Ainsworth,and,S.,Jiang.,Preconditioning,the,mass,matrix,for,high,order,finite,element,approxi-,mation,on,tetrahedra.,SIAM,Journal,on,Scientific,Computing,,43(1):A384–A414,,2021.,[3],M.,Ainsworth,and,S.,Jiang.,A,systematic,approach,to,constructing,preconditioners,for,the,hp-,version,mass,matrix,on,unstructured,and,hybrid,finite,element,meshes.,SIAM,Journal,on,Scientific,Computing,,44(2):A901–A934,,2022.,[4],H.,Al,Daas,,L.,Grigori,,P.,Jolivet,,and,P.-H.,Tournier.,A,multilevel,Schwarz,preconditioner,based,on,a,hierarchy,of,robust,coarse,spaces.,SIAM,Journal,on,Scientific,Computing,,43(3):A1907–A1928,,2021.,[5],H.,Al,Daas,,P.,Jolivet,,and,J.,A.,Scott.,A,robust,algebraic,domain,decomposition,preconditioner,for,sparse,normal,equations.,SIAM,Journal,on,Scientific,Computing,,44(3):A1047–A1068,,2022.,[6],H.,Al,Daas,,P.,Jolivet,,and,T.,Rees.,Efficient,algebraic,two-level,Schwarz,preconditioner,for,sparse,matrices.,Accepted,in,SIAM,Journal,on,Scientific,Computing,,2023.,[7],V.,Alexandrov,,A.,Lebedev,,E.,Sahin,,and,S.,Thorne.,Linear,systems,of,equations,and,precondition-,ers,relating,to,the,NEPTUNE,Programme.,NEPTUNE,Technical,Report,2047353-TN-04,,CCFE,Culham,,2021.,[8],R.,Anderson,,J.,Andrej,,A.,Barker,,J.,Bramwell,,J.-S.,Camier,,J.,C.,V.,Dobrev,,Y.,Dudouit,,A.,Fisher,,T.,Kolev,,W.,Pazner,,M.,Stowell,,V.,Tomov,,I.,Akkerman,,J.,Dahm,,D.,Medina,,and,S.,Zampini.,MFEM:,A,modular,finite,element,methods,library.,Computers,&,Mathematics,with,Applications,,81:42–74,,2021.,[9],U.,M.,Ascher,and,L.,R.,Petzold.,Computer,Methods,for,Ordinary,Differential,Equations,and,Differential-Algebraic,Equations.,SIAM,,1998.,[10],U.,M.,Ascher,,S.,J.,Ruuth,,and,R.,J.,Spiteri.,Implicit-Explicit,Runge-Kutta,methods,for,time-,dependent,partial,differential,equations.,Applied,Numerical,Mathematics,,25(2):151–167,,1997.,[11],O.,Axelsson,and,J.,Kar´atson.,Equivalent,operator,preconditioning,for,elliptic,problems.,Numerical,Algorithms,,50(3):297–380,,2009.,[12],S.,Balay,,S.,Abhyankar,,M.,Adams,,J.,Brown,,P.,Brune,,K.,Buschelman,,L.,Dalcin,,A.,Dener,,V.,Eijkhout,,W.,Gropp,,D.,Karpeyev,,D.,Kaushik,,M.,Knepley,,D.,May,,L.,Curfman,McInnes,,R.,Mills,,T.,Munson,,K.,Rupp,,P.,Sanan,,B.,Smith,,S.,Zampini,,H.,Zhang,,and,H.,Zhang.,PETSc,Users,Manual.,2019.,[13],P.,Bastian,,R.,Scheichl,,L.,Seelinger,,and,A.,Strehlow.,Multilevel,spectral,domain,decomposition.,SIAM,Journal,on,Scientific,Computing,,pages,S1–S26,,2022.,doi:,10.1137/21M1427231.,Published,online,in,advance.,[14],P.,D.,Bello-Maldonado,and,P.,F.,Fischer.,Scalable,low-order,finite,element,preconditioners,for,high-order,spectral,element,Poisson,solvers.,SIAM,Journal,on,Scientific,Computing,,41(5):S2–S18,,2019.,[15],L.,A.,Berry,,W.,Elwasif,,J.,M.,Reynolds-Barredo,,D.,Samaddar,,R.,Sanchez,,and,D.,E.,Newman.,Event-based,parareal:,A,data-flow,based,implementation,of,parareal.,Journal,of,Computational,Physics,,231(17):5945–5954,,2012.,[16],J.,Betteridge,,T.,H.,Gibson,,I.,G.,Graham,,and,E.,H.,M¨uller.,Multigrid,preconditioners,for,the,hybridised,discontinuous,Galerkin,discretisation,of,the,shallow,water,equations.,Journal,of,Compu-,tational,Physics,,426:109948,,2021.,[17],N.,Bootland,and,V.,Dolean.,Can,DtN,and,GenEO,coarse,spaces,be,sufficiently,robust,for,heteroge-,neous,Helmholtz,problems?,Mathematical,and,Computational,Applications,,27(3),,2022.,10,[18],N.,Bootland,,V.,Dolean,,I.,G.,Graham,,C.,Ma,,and,R.,Scheichl.,Overlapping,Schwarz,methods,with,GenEO,coarse,spaces,for,indefinite,and,nonself-adjoint,problems.,IMA,Journal,of,Numerical,Analysis,,2022.,doi:,10.1093/imanum/drac036.,Published,online,in,advance,,drac036.,[19],N.,Bootland,,V.,Dolean,,I.,G.,Graham,,C.,Ma,,and,R.,Scheichl.,GenEO,coarse,spaces,for,heteroge-,neous,indefinite,elliptic,problems.,In,S.,C.,Brenner,,E.,Chung,,A.,Klawonn,,F.,Kwok,,J.,Xu,,and,J.,Zou,,editors,,Domain,Decomposition,Methods,in,Science,and,Engineering,XXVI,,pages,115–122,,Cham,,Switzerland,,2023.,Springer.,[20],S.,Boscarino,,L.,Pareschi,,and,G.,Russo.,Implicit-explicit,Runge–Kutta,schemes,for,hyperbolic,systems,and,kinetic,equations,in,the,diffusion,limit.,SIAM,Journal,on,Scientific,Computing,,35(1):,A22–A51,,2013.,[21],P.,D.,Brubeck,and,P.,E.,Farrell.,A,scalable,and,robust,vertex-star,relaxation,for,high-order,FEM.,SIAM,Journal,on,Scientific,Computing,,44(5):A2991–A3017,,2022.,[22],C.,Canuto,,P.,Gervasio,,and,A.,Quarteroni.,Finite-element,preconditioning,of,G-NI,spectral,methods.,SIAM,Journal,on,Scientific,Computing,,31(6):4422–4451,,2010.,[23],N.,Chalmers,and,T.,Warburton.,Low-order,preconditioning,of,high-order,triangular,finite,elements.,SIAM,Journal,on,Scientific,Computing,,40(6):A4040–A4059,,2018.,[24],F.,Danieli,,B.,S.,Southworth,,and,A.,J.,Wathen.,Space-time,block,preconditioning,for,incompressible,flow.,SIAM,Journal,on,Scientific,Computing,,44(1):A337–A363,,2022.,[25],C.,R.,Dohrmann.,Spectral,equivalence,of,low-order,discretizations,for,high-order,H(curl),and,H(div),spaces.,SIAM,Journal,on,Scientific,Computing,,43(6):A3992–A4014,,2021.,[26],V.,Dolean,,P.,Jolivet,,and,F.,Nataf.,An,Introduction,to,Domain,Decomposition,Methods:,Algorithms,,Theory,,and,Parallel,Implementation.,SIAM,,2015.,[27],W.,R.,Elwasif,,S.,S.,Foley,,D.,E.,Bernholdt,,L.,A.,Berry,,D.,Samaddar,,D.,E.,Newman,,and,R.,Sanchez.,A,dependency-driven,formulation,of,parareal:,Parallel-in-time,solution,of,PDEs,as,a,many-task,application.,In,Proceedings,of,the,2011,ACM,International,Workshop,on,Many,Task,Computing,on,Grids,and,Supercomputers,,pages,15–24.,Association,for,Computing,Machinery,,New,York,,NY,,USA,,2011.,[28],R.,D.,Falgout,and,U.,M.,Yang.,hypre:,A,library,of,high,performance,preconditioners.,In,P.,M.,A.,Sloot,,A.,G.,Hoekstra,,C.,J.,K.,Tan,,and,J.,J.,Dongarra,,editors,,Computational,Science,—,ICCS,2002,,pages,632–641,,Berlin,,Heidelberg,,2002.,Springer.,[29],R.,D.,Falgout,,S.,Friedhoff,,T.,V.,Kolev,,S.,P.,MacLachlan,,and,J.,B.,Schroder.,Parallel,time,integration,with,multigrid.,SIAM,Journal,on,Scientific,Computing,,36(6):C635–C661,,2014.,[30],P.,E.,Farrell,,R.,C.,Kirby,,and,J.,Marchena-Men´endez.,Irksome:,Automating,Runge–Kutta,time-,stepping,for,finite,element,methods.,ACM,Transactions,on,Mathematical,Software.,,47(4),,2021.,[31],P.,E.,Farrell,,M.,G.,Knepley,,L.,Mitchell,,and,F.,Wechsung.,PCPATCH:,Software,for,the,topological,construction,of,multigrid,relaxation,methods.,ACM,Transactions,on,Mathematical,Software,,47(3),,2021.,[32],M.,J.,Gander.,50,years,of,time,parallel,time,integration.,In,T.,Carraro,,M.,Geiger,,S.,K¨orkel,,and,R.,Rannacher,,editors,,Multiple,Shooting,and,Time,Domain,Decomposition,Methods,,pages,69–113,,Cham,,2015.,Springer,International,Publishing.,[33],M.,J.,Gander,and,S.,Vandewalle.,Analysis,of,the,parareal,time-parallel,time-integration,method.,SIAM,Journal,on,Scientific,Computing,,29(2):556–578,,2007.,[34],M.,J.,Gander,,J.,Liu,,S.-L.,Wu,,X.,Yue,,and,T.,Zhou.,ParaDiag:,Parallel-in-time,algorithms,based,on,the,diagonalization,technique.,arXiv:2005.09158,,2021.,11,[35],M.,Gee,,C.,Siefert,,J.,Hu,,R.,Tuminaro,,and,M.,Sala.,Ml,5.0,smoothed,aggregation,user’s,guide.,Technical,Report,SAND2006-2649,,Sandia,National,Laboratories,,2006.,[36],A.,Gholami,,D.,Malhotra,,H.,Sundar,,and,G.,Biros.,FFT,,FMM,,or,multigrid?,A,comparative,study,of,state-of-the-art,Poisson,solvers,for,uniform,and,nonuniform,grids,in,the,unit,cube.,SIAM,Journal,on,Scientific,Computing,,38(3):C280–C306,,2016.,[37],F.,X.,Giraldo,,J.,F.,Kelly,,and,E.,M.,Constantinescu.,Implicit-explicit,formulations,of,a,three-,dimensional,nonhydrostatic,unified,model,of,the,atmosphere,(NUMA).,SIAM,Journal,on,Scientific,Computing,,35(5):B1162–B1194,,2013.,[38],S.,Gottlieb,,Z.,J.,Grant,,J.,Hu,,and,R.,Shu.,High,order,strong,stability,preserving,multiderivative,implicit,and,IMEX,Runge–Kutta,methods,with,asymptotic,preserving,properties.,SIAM,Journal,on,Numerical,Analysis,,60(1):423–449,,2022.,[39],V.,E.,Henson,and,U.,M.,Yang.,BoomerAMG:,A,parallel,algebraic,multigrid,solver,and,preconditioner.,Applied,Numerical,Mathematics,,41(1):155–177,,2002.,[40],J.,J.,Heys,,T.,A.,Manteuffel,,S.,F.,McCormick,,and,L.,N.,Olson.,Algebraic,multigrid,for,higher-order,finite,elements.,Journal,of,Computational,Physics,,204(2):520–532,,2005.,[41],M.,Z.,Hossain,,C.,D.,Cantwell,,and,S.,J.,Sherwin.,A,spectral/hp,element,method,for,thermal,convection.,International,Journal,for,Numerical,Methods,in,Fluids,,93(7):2380–2395,,2021.,[42],X.,Jiao,,X.,Wang,,and,Q.,Chen.,Optimal,and,low-memory,near-optimal,preconditioning,of,fully,implicit,Runge–Kutta,schemes,for,parabolic,PDEs.,SIAM,Journal,on,Scientific,Computing,,43(5):,A3527–A3551,,2021.,[43],G.,E.,Karniadakis,,M.,Israeli,,and,S.,A.,Orszag.,High-order,splitting,methods,for,the,incompressible,Navier-Stokes,equations.,Journal,of,Computational,Physics,,97(2):414–443,,1991.,[44],C.,A.,Kennedy,and,M.,H.,Carpenter.,Additive,Runge–Kutta,schemes,for,convec-,tion–diffusion–reaction,equations.,Applied,Numerical,Mathematics,,44(1):139–181,,2003.,[45],C.,A.,Kennedy,and,M.,H.,Carpenter.,Diagonally,Implicit,Runge-Kutta,Methods,for,Ordinary,Differential,Equations.,A,Review.,Technical,Report,NF1676L-19716,,2016.,[46],C.,A.,Kennedy,and,M.,H.,Carpenter.,Diagonally,implicit,Runge–Kutta,methods,for,stiff,ODEs.,Applied,Numerical,Mathematics,,146:221–244,,2019.,[47],D.,E.,Keyes,,L.,C.,McInnes,,C.,Woodward,,W.,Gropp,,E.,Myra,,M.,Pernice,,J.,Bell,,J.,Brown,,A.,Clo,,J.,Connors,,E.,Constantinescu,,D.,Estep,,K.,Evans,,C.,Farhat,,A.,Hakim,,G.,Hammond,,G.,Hansen,,J.,Hill,,T.,Isaac,,X.,Jiao,,K.,Jordan,,D.,Kaushik,,E.,Kaxiras,,A.,Koniges,,K.,Lee,,A.,Lott,,Q.,Lu,,J.,Magerlein,,R.,Maxwell,,M.,McCourt,,M.,Mehl,,R.,Pawlowski,,A.,P.,Randles,,D.,Reynolds,,B.,Rivi`ere,,U.,R¨ude,,T.,Scheibe,,J.,Shadid,,B.,Sheehan,,M.,Shephard,,A.,Siegel,,B.,Smith,,X.,Tang,,C.,Wilson,,and,B.,Wohlmuth.,Multiphysics,simulations:,Challenges,and,opportunities.,The,Inter-,national,Journal,of,High,Performance,Computing,Applications,,27(1):4–83,,2013.,[48],D.,A.,Knoll,and,D.,E.,Keyes.,Jacobian-free,Newton–Krylov,methods:,A,survey,of,approaches,and,applications.,Journal,of,Computational,Physics,,193(2):357–397,,2004.,[49],H.-O.,Kreiss,and,G.,Scherer.,Method,of,lines,for,hyperbolic,differential,equations.,SIAM,Journal,on,Numerical,Analysis,,29(3):640–646,,1992.,[50],A.,Kværnø.,Singly,diagonally,implicit,Runge–Kutta,methods,with,an,explicit,first,stage.,BIT,Numerical,Mathematics,,44(3):489–502,,2004.,[51],J.-L.,Lions,,Y.,Maday,,and,G.,Turinici.,A,“parareal”,in,time,discretization,of,PDE’s.,Comptes,Rendus,de,l’Acad´emie,des,Sciences,-,Series,I,-,Mathematics,,332:661–668,,2001.,[52],J.,W.,Lottes,and,P.,F.,Fischer.,Hybrid,multigrid/Schwarz,algorithms,for,the,spectral,element,method.,Journal,of,Scientific,Computing,,24(1):45–78,,2005.,12,[53],T.,A.,Manteuffel,,J.,Ruge,,and,B.,S.,Southworth.,Nonsymmetric,algebraic,multigrid,based,on,local,approximate,ideal,restriction,(ℓAIR).,SIAM,Journal,on,Scientific,Computing,,40(6):A4105–A4130,,2018.,[54],T.,A.,Manteuffel,,S.,M¨unzenmaier,,J.,Ruge,,and,B.,S.,Southworth.,Nonsymmetric,reduction-based,algebraic,multigrid.,SIAM,Journal,on,Scientific,Computing,,41(5):S242–S268,,2019.,[55],K.-A.,Mardal,,T.,K.,Nilssen,,and,G.,A.,Staff.,Order-optimal,preconditioners,for,implicit,Runge–,Kutta,schemes,applied,to,parabolic,PDEs.,SIAM,Journal,on,Scientific,Computing,,29(1):361–375,,2007.,[56],M.,Masud,Rana,,V.,E.,Howle,,K.,Long,,A.,Meek,,and,W.,Milestone.,A,new,block,preconditioner,for,implicit,Runge–Kutta,methods,for,parabolic,PDE,problems.,SIAM,Journal,on,Scientific,Computing,,43(5):S475–S495,,2021.,[57],C.,Maynard,,T.,Melvin,,and,E.,H.,M¨uller.,Multigrid,preconditioners,for,the,mixed,finite,element,dynamical,core,of,the,LFRic,atmospheric,model.,Quarterly,Journal,of,the,Royal,Meteorological,Society,,146(733):3917–3936,,2020.,[58],E.,McDonald,,J.,Pestana,,and,A.,Wathen.,Preconditioning,and,iterative,solution,of,all-at-once,systems,for,evolutionary,partial,differential,equations.,SIAM,Journal,on,Scientific,Computing,,40,(2):A1012–A1033,,2018.,[59],S.,T.,Miller,,E.,C.,Cyr,,J.,N.,Shadid,,R.,M.,J.,Kramer,,E.,G.,Phillips,,S.,Conde,,and,R.,P.,Pawlowski.,IMEX,and,exact,sequence,discretization,of,the,multi-fluid,plasma,model.,Journal,of,Computational,Physics,,397:108806,,2019.,[60],Y.,Notay.,An,aggregation-based,algebraic,multigrid,method.,Electronic,Transactions,on,Numerical,Analysis,,37(6):123–146,,2010.,[61],Y.,Notay.,Aggregation-based,algebraic,multigrid,for,convection-diffusion,equations.,SIAM,Journal,on,Scientific,Computing,,34(4):A2288–A2316,,2012.,[62],G.,Noventa,,F.,Massa,,F.,Bassi,,A.,Colombo,,N.,Franchina,,and,A.,Ghidoni.,A,high-order,discontin-,uous,Galerkin,solver,for,unsteady,incompressible,turbulent,flows.,Computers,&,Fluids,,139:248–260,,2016.,[63],L.,Olson.,Algebraic,multigrid,preconditioning,of,high-order,spectral,elements,for,elliptic,problems,on,a,simplicial,mesh.,SIAM,Journal,on,Scientific,Computing,,29(5):2189–2209,,2007.,[64],L.,N.,Olson,and,J.,B.,Schroder.,PyAMG:,Algebraic,multigrid,solvers,in,Python,v4.0,,2018.,URL,https://github.com/pyamg/pyamg.,Release,4.0.,[65],S.,A.,Orszag.,Spectral,methods,for,problems,in,complex,geometries.,Journal,of,Computational,Physics,,37(1):70–92,,1980.,[66],Y.,Pan,,Z.-G.,Yan,,J.,Peir´o,,and,S.,J.,Sherwin.,Development,of,a,balanced,adaptive,time-stepping,strategy,based,on,an,implicit,JFNK-DG,compressible,flow,solver.,Communications,on,Applied,Mathematics,and,Computation,,2021.,[67],L.,Pareschi,and,G.,Russo.,Implicit–explicit,Runge–Kutta,schemes,and,applications,to,hyperbolic,systems,with,relaxation.,Journal,of,Scientific,Computing,,25(1):129–155,,2005.,[68],L.,F.,Pavarino.,Additive,Schwarz,methods,for,the,p-version,finite,element,method.,Numerische,Mathematik,,66(1):493–515,,1993.,[69],W.,Pazner.,Efficient,low-order,refined,preconditioners,for,high-order,matrix-free,continuous,and,discontinuous,Galerkin,methods.,SIAM,Journal,on,Scientific,Computing,,42(5):A3055–A3083,,2020.,[70],W.,Pazner,and,T.,Kolev.,Uniform,subspace,correction,preconditioners,for,discontinuous,Galerkin,methods,with,hp-refinement.,Communications,on,Applied,Mathematics,and,Computation,,4(2):,697–727,,2022.,13,[71],W.,Pazner,and,P.-O.,Persson.,Stage-parallel,fully,implicit,Runge–Kutta,solvers,for,discontinuous,Galerkin,fluid,simulations.,Journal,of,Computational,Physics,,335:700–717,,2017.,[72],W.,Pazner,,T.,Kolev,,and,C.,Dohrmann.,Low-order,preconditioning,for,the,high-order,finite,element,de,Rham,complex.,SIAM,Journal,on,Scientific,Computing,,45(2):A675–A702,,2023.,[73],A.,Ramage.,A,multigrid,preconditioner,for,stabilised,discretisations,of,advection–diffusion,problems.,Journal,of,Computational,and,Applied,Mathematics,,110(1):187–203,,1999.,[74],J.,M.,Reynolds,Barredo,,D.,E.,Newman,,R.,Sanchez,,D.,Samaddar,,L.,A.,Berry,,and,W.,Elwasif.,In,53rd,Toward,the,application,of,the,Parareal,algorithm,to,5D,gyrokinetic,plasma,turbulence.,Annual,Meeting,of,the,APS,Division,of,Plasma,Physics,,page,TP9.053,,2011.,[75],J.,M.,Reynolds-Barredo,,D.,E.,Newman,,R.,Sanchez,,D.,Samaddar,,L.,A.,Berry,,and,W.,R.,Elwasif.,Mechanisms,for,the,convergence,of,time-parallelized,,parareal,turbulent,plasma,simulations.,Journal,of,Computational,Physics,,231(23):7851–7867,,2012.,[76],D.,Samaddar,,D.,E.,Newman,,and,R.,S´anchez.,Parallelization,in,time,of,numerical,simulations,of,fully-developed,plasma,turbulence,using,the,parareal,algorithm.,Journal,of,Computational,Physics,,229(18):6558–6573,,2010.,[77],D.,Samaddar,,T.,A.,Casper,,S.,H.,Kim,,L.,A.,Berry,,W.,R.,Elwasif,,D.,Batchelor,,and,W.,A.,Houlberg.,Time,parallelization,of,advanced,operation,scenario,simulations,of,ITER,plasma.,Journal,of,Physics:,Conference,Series,,410:012032,,2013.,[78],D.,Samaddar,,D.,P.,Coster,,X.,Bonnin,,C.,Bergmeister,,E.,Havl´ı˘ckov´a,,L.,A.,Berry,,W.,R.,El-,wasif,,and,D.,B.,Batchelor.,Temporal,parallelization,of,edge,plasma,simulations,using,the,parareal,algorithm,and,the,SOLPS,code.,Computer,Physics,Communications,,221:19–27,,2017.,[79],D.,Samaddar,,D.,P.,Coster,,X.,Bonnin,,L.,A.,Berry,,W.,R.,Elwasif,,and,D.,B.,Batchelor.,Ap-,plication,of,the,parareal,algorithm,to,simulations,of,ELMs,in,ITER,plasma.,Computer,Physics,Communications,,235:246–257,,2019.,[80],V.,Simoncini.,Computational,methods,for,linear,matrix,equations.,SIAM,Review,,58(3):377–441,,2016.,[81],B.,S.,Southworth,,W.,Mitchell,,A.,Hessenthaler,,and,F.,Danieli.,Tight,two-level,convergence,of,Linear,Parareal,and,MGRIT:,Extensions,and,implications,in,practice.,In,B.,Ong,,J.,Schroder,,J.,Shipton,,and,S.,Friedhoff,,editors,,Parallel-in-Time,Integration,Methods,,pages,1–31,,Cham,,2021.,Springer,International,Publishing.,[82],B.,S.,Southworth,,O.,Krzysik,,and,W.,Pazner.,Fast,solution,of,fully,implicit,Runge–Kutta,and,discontinuous,Galerkin,in,time,for,numerical,PDEs,,Part,II:,nonlinearities,and,DAEs.,SIAM,Journal,on,Scientific,Computing,,44(2):A636–A663,,2022.,[83],B.,S.,Southworth,,O.,Krzysik,,W.,Pazner,,and,H.,D.,Sterck.,Fast,solution,of,fully,implicit,Runge–,Kutta,and,discontinuous,Galerkin,in,time,for,numerical,PDEs,,Part,I:,the,linear,setting.,SIAM,Journal,on,Scientific,Computing,,44(1):A416–A443,,2022.,[84],N.,Spillane,,V.,Dolean,,P.,Hauret,,F.,Nataf,,C.,Pechstein,,and,R.,Scheichl.,Abstract,robust,coarse,spaces,for,systems,of,PDEs,via,generalized,eigenproblems,in,the,overlaps.,Numerische,Mathematik,,126(4):741–770,,2014.,[85],H.,Sundar,,G.,Stadler,,and,G.,Biros.,Comparison,of,multigrid,algorithms,for,high-order,continuous,finite,element,discretizations.,Numerical,Linear,Algebra,with,Applications,,22(4):664–680,,2015.,[86],U.,Trottenberg,,C.,Oosterlee,,and,A.,Sch¨uller.,Multigrid.,Academic,Press,,2000.,[87],P.,E.,Vos,,C.,Eskilsson,,A.,Bolis,,S.,Chun,,R.,M.,Kirby,,and,S.,J.,Sherwin.,A,generic,framework,for,time-stepping,partial,differential,equations,(PDEs):,General,linear,methods,,object-oriented,implementation,and,application,to,fluid,problems.,International,Journal,of,Computational,Fluid,Dynamics,,25(3):107–125,,2011.,14,[88],A.,J.,Wathen.,Preconditioning.,Acta,Numerica,,24:329–376,,2015.,[89],G.,A.,Wimmer,,B.,S.,Southworth,,T.,J.,Gregory,,and,X.,Tang.,A,fast,algebraic,multigrid,solver,and,accurate,discretization,for,highly,anisotropic,heat,flux,I:,open,field,lines.,arXiv:2301.13351,,2023.,[90],Z.-G.,Yan,,Y.,Pan,,G.,Castiglioni,,K.,Hillewaert,,J.,Peir´o,,D.,Moxey,,and,S.,J.,Sherwin.,Nektar++:,Design,and,implementation,of,an,implicit,,spectral/hp,element,,compressible,flow,solver,using,a,Jacobian-free,Newton,Krylov,approach.,Computers,&,Mathematics,with,Applications,,81:351–372,,2021.,15 :pdfembed:`src:_static/TN-03_AReviewTimeSteppingTechniquesPreconditioningHyperbolicAnisotropicEllipticProblem.pdf, height:1600, width:1100, align:middle`