TN-07_AReviewSolutionContinuationTechniques =========================================== .. meta:: :description: technical note :keywords: A,Review,of,Solution,Continuation,Techniques:,Methods,and,Software,Technical,Report,2068625-TN-07,Deliverable,4.1,Niall,Bootland*,Tyrone,Rees*,Sue,Thorne(cid:132),September,2023,1,Introduction,In,this,report,,we,consider,methodologies,for,continuation,of,solutions,to,nonlinear,equations,as,we,vary,a,problem,parameter,λ,∈,R.,These,techniques,are,the,focus,of,numerical,bifurcation,analysis,,which,looks,to,examine,how,solutions,change,with,λ,and,analyse,properties,,such,as,stability,,through,numerical,computations.,In,this,work,,we,try,to,pick,out,the,key,approaches,most,relevant,to,modern,computing,for,potentially,large-scale,application,codes,and,give,a,basic,understanding,of,the,types,of,behaviours,that,one,may,observe.,We,acknowledge,primary,references,that,have,helped,inform,the,writing,of,this,report,,the,first,being,lecture,notes,by,Patrick,Farrell,on,bifurcation,analysis,and,,in,particular,,deflation,techniques,[23].,Secondly,,Hannes,Uecker,gives,a,good,,open,access,and,relatively,short,survey,of,key,ideas,in,(classical),continuation,methods,and,bifurcations,in,nonlinear,PDEs,in,[62],,with,experiments,focused,on,the,pde2path,software,in,MATLAB;,a,more,comprehensive,textbook,by,the,same,author,is,[61],and,was,often,consulted.,Thirdly,,a,series,of,lectures,found,in,[41],by,Herbert,Keller,,one,of,the,pioneers,of,the,field.,Finally,,in,terms,of,relevant,physical,applications,,we,note,that,a,wide-ranging,review,of,numerical,bifurcation,methods,applied,to,fluid,dynamics,is,found,in,[19],,which,highlights,their,use,in,various,complex,real-world,fluid,flow,problems;,see,also,the,more,recent,survey,[59].,Other,relevant,textbooks,include,[1,,55,,18,,42].,We,consider,solving,the,nonlinear,problem,F,(u,,λ),=,0,,(1),for,an,unknown,u,and,parameter,λ.,We,can,think,of,F,as,being,a,mapping,F,:,RN,×,R,→,RN,,,which,will,ultimately,be,our,case,after,discretisation,,but,the,problem,can,also,be,formulated,at,the,infinite-,dimensional,level,as,a,mapping,between,Banach,spaces,(see,,e.g.,,[61]).,Note,that,(1),is,a,generic,form,of,problem,and,includes,finding,fixed,points,,such,as,for,G(u,,λ),=,u,wherein,F,(u,,λ),:=,G(u,,λ),−,u,=,0,,and,solving,partial,differential,equations,(PDEs),,for,instance,the,(stationary),Swift–Hohenberg,equation,F,(u,,λ),:=,λu,−,(1,+,∇2)2u,+,u2,−,u3,=,0,,with,suitable,boundary,conditions,,which,is,related,to,the,study,of,thermal,fluctuations,within,a,fluid,near,the,Rayleigh–B´enard,convective,instability,[57].,A,key,feature,of,(1),being,nonlinear,is,that,it,may,have,multiple,solutions,,or,perhaps,no,solutions,,and,the,number,of,solutions,will,,in,general,,depend,on,*Scientific,Computing,Department,,STFC,Rutherford,Appleton,Laboratory,,Harwell,Campus,,Didcot,,OX11,0QX,,UK.,(cid:132)Hartree,Centre,,STFC,Rutherford,Appleton,Laboratory,,Harwell,Campus,,Didcot,,OX11,0QX,,UK.,Email,contact:,sue.thorne@stfc.ac.uk,1,the,parameter,λ.,Moreover,,a,naive,method,to,find,a,solution,of,(1),may,not,result,in,the,desired,,or,physically,relevant,,solution.,Exploration,of,possible,solutions,as,λ,varies,is,therefore,of,key,importance;,this,is,addressed,by,numerical,bifurcation,analysis.,The,key,theoretical,tool,that,justifies,the,concept,of,solution,continuation,and,associated,algorithms,is,the,implicit,function,theorem,(IFT).,This,provides,local,uniqueness,of,solution,branches,and,their,smoothness,under,certain,conditions.,While,the,IFT,can,be,expressed,in,terms,of,Banach,spaces,,we,detail,a,simpler,finite,dimensional,version,and,minimise,terminology,to,focus,on,the,key,points;,a,more,rigorous,statement,is,given,in,,for,example,,[62,,Theorem,2.1].,Suppose,that,we,have,a,mapping,F,:,RN,×,R,→,RN,with,F,(u,,λ),continuously,differentiable,in,u,with,derivatives,given,by,the,Jacobian,matrix,J,∈,RN,×N,(which,we,define,later,in,(4)).,Further,,suppose,we,know,a,point,(u0,,λ0),such,that,F,(u0,,λ0),=,0,,the,Jacobian,J,is,nonsingular,here,,and,F,is,continuous,in,some,neighbourhood,of,the,point.,Then,there,exists,a,neighbourhood,around,(u0,,λ0),where,a,unique,solution,branch,of,(1),exists,,given,by,(H(λ),,λ),for,some,continuous,function,H(λ).,Further,,the,smoothness,(differentiability),of,F,transfers,to,give,the,same,smoothness,of,H,,and,if,F,is,analytic,(and,so,has,a,convergent,Taylor,expansion),then,so,is,H.,Note,that,a,key,ingredient,is,that,the,Jacobian,J,is,nonsingular,,and,hence,invertible,,and,we,will,be,interested,in,what,happens,when,this,is,not,the,case.,We,further,remark,that,the,invertibility,of,J,is,sufficient,but,not,necessary,for,a,unique,resolution,(H(λ),,λ),in,some,edge,cases.,However,,it,is,required,to,obtain,appropriate,smoothness.,Given,a,solution,u0,,for,parameter,value,λ0,,the,goal,of,(local),solution,continuation,is,to,trace,out,the,one-dimensional,manifold,(branch),of,“nearby”,solutions,connected,to,a,(regular),solution,(u0,,λ0).,In,its,simplest,form,,the,task,is,to,determine,a,solution,of,F,(u,,λ0,+,δλ),=,0,,for,some,small,perturbation,δλ,in,the,parameter,space.,That,is,,we,wish,to,find,the,solution,to,a,nearby,problem,,where,the,parameter,has,incremented,,based,on,a,previous,solution,u0.,So,long,as,the,parameter,has,not,changed,too,much,,and,assuming,such,a,solution,exists,(as,given,by,the,IFT),,our,knowledge,of,existing,solutions,helps,us,to,traverse,through,parameter,space,in,order,to,reach,solutions,which,may,otherwise,be,hard,to,find.,One,may,also,be,interested,in,the,harder,problem,of,mapping,all,(or,at,least,a,subset,of),solutions,to,(1),over,a,given,parameter,range,through,global,solution,continuation,,namely,tracing,out,all,solution,branches,of,a,bifurcation,diagram,(see,,e.g.,,Figure,1).,While,local,continuation,is,typically,able,to,traverse,along,a,single,branch,containing,u0,,a,bifurcation,diagram,can,include,several,distinct,branches,which,intersect,at,bifurcation,points,(locally,there,may,be,multiple,nearby,solutions),or,branches,which,are,entirely,disconnected,from,each,other.,These,issues,pose,additional,challenges,for,solution,continuation,techniques.,A,simple,example,of,a,bifurcation,diagram,is,given,in,Figure,1,for,the,case,F,(u,,λ),=,λu,−,u3,=,0.,When,λ,<,0,we,have,only,one,real,solution,,namely,u,=,0,,while,for,λ,>,0,we,have,two,additional,λ.,The,point,u,=,0,,λ,=,0,is,a,bifurcation,point,and,this,situation,represents,the,solutions,u,=,±,canonical,form,of,a,(supercritical),pitchfork,bifurcation.,Note,that,the,derivative,of,F,at,u,=,0,and,λ,=,0,is,zero,,namely,√,dF,du,(u,=,0,,λ,=,0),=,λ,−,3u2|u=0,λ=0,=,0,,which,is,always,the,case,at,a,bifurcation,point,and,reveals,(cf.,the,implicit,function,theorem,outlined,above),the,non-uniqueness,of,solutions,in,a,neighbourhood,around,such,a,point.,2,u,λ,Figure,1:,The,bifurcation,diagram,for,F,(u,,λ),=,λu,−,u3.,The,blue,line,corresponds,to,the,branch,of,solutions,u,=,0,while,the,red,line,corresponds,to,the,branch,of,solutions,u,=,±,λ.,The,point,u,=,0,,λ,=,0,is,a,bifurcation,point,and,represents,a,(supercritical),pitchfork,bifurcation.,√,In,order,to,apply,local,solution,continuation,,most,approaches,use,the,past,known,solution,to,compute,a,predictor,,which,aims,to,approximately,guess,a,new,solution,lying,further,along,the,branch,,before,employing,a,corrector,,which,takes,this,initial,guess,and,tries,to,solve,for,a,true,solution,of,F,(u,,λ),=,0,nearby,,possibly,through,use,of,an,augmented,system.,Typically,the,corrector,used,is,Newton’s,method,,however,,a,cheaper,alternative,such,as,the,chord,method,can,also,be,used,if,derivatives,are,expensive,or,otherwise,difficult,to,obtain.,We,briefly,review,Newton’s,method,to,solve,the,nonlinear,problem,(1).,Suppose,we,either,fix,λ,and,let,f,(u),=,F,(u,,λ),,or,we,otherwise,allow,λ,to,vary,and,combine,with,the,variable(s),u,,so,that,we,must,solve,f,(u),=,0.,(2),In,general,,the,system,in,(2),will,correspond,to,a,vector,equation,for,a,vector,of,unknowns,u.,In,particular,,when,solving,PDE,problems,where,we,must,first,discretise,,u,may,represent,values,on,a,mesh.,To,be,more,precise,,even,if,the,original,system,is,infinite,dimensional,,we,suppose,it,has,been,discretised1,so,that,u,∈,RN,and,f,:,RN,→,RN,for,some,finite,dimension,N,≥,1.,Note,that,if,the,problem,stems,from,discretisation,of,a,PDE,,then,N,can,be,very,large.,Newton’s,method,to,solve,(2),starts,with,a,given,initial,guess,u(0),and,iterates2,with,where,Jf,is,the,Jacobian,matrix,,namely,the,matrix,of,all,first-order,partial,derivatives,u(k+1),=,u(k),−,Jf,(u(k))−1f,(u(k)),,Jf,:=,,,,∂f1,∂u1,...,∂fN,∂u1,·,·,·,.,.,.,·,·,·,,,,.,∂f1,∂uN,...,∂fN,∂uN,(3),(4),Note,that,the,Newton,step,(3),is,simply,solving,a,linearisation,of,the,problem,at,u(k),(in,particular,,tangent,linearisation).,In,practice,,we,do,not,invert,Jf,(u(k)),but,rather,solve,the,linear,system,Jf,(u(k))δu(k+1),=,−f,(u(k)),,(5),for,the,update,δu(k+1),=,u(k+1),−,u(k).,The,method,can,be,terminated,when,δu(k+1),becomes,sufficiently,If,we,swapped,the,Jacobian,for,a,fixed,matrix,,say,Jf,(u(0)),,then,(3),would,become,a,chord,small.,1It,is,not,necessary,to,discretise,,Newton’s,method,can,be,applied,to,find,the,roots,of,a,functional,defined,in,a,Banach,space,(where,it,is,known,as,the,Newton–Kantorovich,method),,in,this,case,we,require,the,existence,of,the,Fr´echet,derivative,of,f,.,To,keep,the,exposition,simple,,we,avoid,delving,into,the,powerful,tools,of,functional,analysis,required,for,the,infinite,dimensional,problem.,2We,will,use,a,superindex,to,denote,Newton,iteration,,with,a,general,iteration,index,k,,and,reserve,subindices,for,the,continuation,process,,with,a,general,iteration,index,n.,3,method.,Approximating,the,Jacobian,gives,rise,to,other,quasi-Newton,methods,,for,example,a,finite,difference,approximation,leads,to,the,secant,method,in,one,dimension,,while,in,higher,dimensions,one,might,employ,Broyden’s,method.,We,note,that,Newton’s,method,(and,others),will,not,always,converge,and,typically,one,must,start,with,a,good,initial,guess,that,is,not,too,far,from,the,desired,solution,in,order,to,converge.,The,classical,conditions,under,which,Newton’s,method,will,converge,are,prescribed,in,the,Newton–Kantorovich,Theorem,(see,[53],and,references,within,for,related,results).,We,note,that,there,are,alternatives,to,using,Newton-like,methods,to,solve,nonlinear,equations;,for,instance,,one,can,use,a,nonlinear,multigrid,method,such,as,the,so-called,full,approximation,scheme,(FAS),[38].,Once,a,predictor–corrector,pair,has,been,chosen,,local,continuation,is,used,to,trace,solution,branches,from,a,set,of,initial,solutions,but,may,fail,at,certain,points.,This,may,be,due,the,non-existence,of,solutions,if,λ,is,fixed,,for,instance,no,solutions,of,F,(u,,λ),=,λ,−,u2,=,0,exist,once,λ,<,0,(λ,=,0,corresponds,to,a,fold,point,and,the,bifurcation,diagram,would,consist,of,only,the,red,curve,in,Figure,1).,Alternatively,,the,Jacobian,may,become,singular,(so,Jf,(u(k)),cannot,be,inverted,in,(3)),,which,corresponds,to,a,bifurcation,In,practice,,one,needs,to,be,point,where,multiple,solutions,exist,in,any,surrounding,neighbourhood.,careful,when,the,Jacobian,becomes,nearly,singular,,in,a,small,vicinity,of,a,bifurcation,point,,and,not,only,at,the,point,itself.,However,,generically,the,local,continuation,method,may,simply,skip,over,bifurcation,points,unnoticed,without,further,checking,,this,leads,to,the,necessity,of,branch,switching.,It,is,important,to,note,that,,in,practice,,we,compute,a,sequence,of,solutions,,that,is,points,along,a,branch,,and,it,is,not,always,immediately,clear,which,branch,they,may,belong,to.,Further,,since,solutions,are,computed,numerically,,we,note,that,some,structures,within,bifurcation,diagrams,are,unstable,to,perturbations,,such,as,pitchfork,bifurcations,as,demonstrated,in,Figure,2,,and,so,one,may,need,to,take,care,in,the,interpretation,of,branches.,u,λ,Figure,2:,The,bifurcation,diagram,for,F,(u,,λ),=,λu,−,u3,+,δ,for,small,perturbation,δ,>,0.,The,blue,line,corresponds,to,the,branch,of,solutions,u,<,0,while,the,red,line,corresponds,to,the,branch,of,solutions,u,>,0.,We,note,that,the,pitchfork,bifurcation,at,u,=,0,,λ,=,0,when,δ,=,0,is,unstable,to,the,perturbation,δ,,breaking,the,symmetry,and,introducing,a,fold,point,as,well,as,two,non-intersecting,branches,instead.,An,alternative,approach,,which,avoids,the,need,for,connectedness,of,branches,,is,to,modify,the,nonlinear,function,F,(u,,λ),so,as,to,avoid,converging,to,already,known,solutions,in,the,hope,that,we,can,find,new,solutions.,This,is,done,in,deflated,continuation,[25,,26],,where,a,deflation,operator,based,on,known,solutions,is,applied,to,F,and,the,modified,system,solved,,typically,with,Newton’s,method.,This,can,be,especially,effective,for,computing,disconnected,bifurcation,diagrams,but,also,avoids,potential,issues,with,switching,of,connected,branches.,Nonetheless,,it,is,important,to,note,that,even,deflation,cannot,guarantee,that,we,find,all,possible,solutions,of,(1),,even,for,a,fixed,λ,,in,the,general,case.,This,is,because,convergence,of,Newton’s,method,depends,on,the,quality,of,the,initial,guess(es).,While,adaptions,to,Newton’s,method,have,been,proposed,to,try,to,attain,global,convergence,(see,,e.g.,,[51,,52,,15],but,note,that,no,attempt,can,actually,achieve,this),,such,methods,are,typically,slower,and,for,large,,complicated,problems,it,may,not,be,feasible,to,expend,the,computational,effort,to,combine,such,approaches,with,deflation,and,find,all,solutions.,Deflation,can,also,be,viewed,as,an,alternative,to,branch,switching,,such,that,by,removing,solutions,on,known,branches,close,to,a,bifurcation,we,can,hope,to,converge,to,solutions,on,new,branches,emanating,from,the,bifurcation,point.,4,We,note,that,techniques,other,than,those,of,predictor–corrector,form,exist,for,solving,the,nonlinear,problem,(1).,One,of,the,main,examples,,which,we,mention,as,it,is,the,basis,of,the,software,package,ManLab,,is,the,asymptotic,numerical,method,(ANM),[35,,36].,This,method,uses,a,high-order,Taylor,series,as,a,predictor,,for,which,it,is,then,claimed,in,[35],that,no,corrector,is,needed,in,general.,A,drawback,of,this,method,is,that,the,nonlinear,system,must,be,recast,in,a,polynomial,form,with,a,quadratic,non-linearity,,although,later,evolutions,of,software,implementing,this,method,leverage,automatic,differentiation,to,reduce,the,burden,for,the,user.,Furthermore,,there,is,a,smoothness,assumption,that,allows,the,solution,branch,to,be,well-approximated,by,a,high-order,Taylor,series,,which,may,not,be,the,case,for,more,complex,problems,of,practical,interest.,We,do,not,discuss,this,type,of,approach,further,here,,and,focus,on,the,more,popular,predictor–corrector,methods.,Before,continuing,,we,briefly,discuss,the,issue,of,obtaining,Jacobian,matrices,J,,as,in,(4),,which,are,typically,required,by,the,corrector.,Broadly,there,are,two,classes,of,Jacobians,that,can,be,computed,,analytical,Jacobians,and,numerical,Jacobians.,Analytical,Jacobians,form,a,way,to,express,the,exact,derivatives,,this,may,simply,be,deriving,the,formulas,by,hand,or,by,using,a,symbolic,computation,tool,to,provide,such,expressions,for,you,,which,are,then,hard,coded.,These,are,good,for,relatively,simple,problems,or,when,you,have,only,a,few,key,fixed,problems,and,the,expressions,can,be,checked,but,the,approach,may,be,unreliable,or,time,consuming,if,such,expressions,need,to,calculated,regularly.,An,alternative,is,to,use,automatic,differentiation,software,[33,,45],to,compute,Jacobians.,This,will,add,an,overhead,to,the,code,runtime,and,,further,,needs,careful,implementation,(unless,using,an,existing,tried-and-tested,package),but,benefits,from,being,black-box,and,not,requiring,the,user,to,specify,the,Jacobian,(which,may,be,error,prone,,especially,for,new,applications).,If,using,software,such,as,FEniCS,or,Firedrake,,which,utilise,unified,form,language,(UFL),,a,much,more,efficient,and,automatic,tool,than,standard,algorithmic,differentiation,is,provided,by,pyadjoint,[50],(or,its,predecessor,dolfin-adjoint,[24]).,This,is,the,current,state-of-the-art,in,modern,software,for,problems,posed,in,a,variational,framework.,The,other,option,is,to,use,a,numerical,approximation,of,the,Jacobian,,typically,via,finite,differences.,This,is,done,by,approximating,each,directional,derivative,,aligned,with,u1,,.,.,.,,uN,,,and,involves,repeated,evaluation,of,the,function,f,.,One,must,exploit,sparsity,of,J,for,large-scale,problems,and,try,to,minimise,the,number,of,calls,to,evaluate,f,.,One,way,to,do,this,is,by,employing,a,colouring,approach,[29,,5],,but,this,may,not,always,be,particularly,efficient.,Within,finite,elements,,a,more,efficient,implementation,can,be,developed,by,performing,the,finite,differences,at,the,local,element,level,before,assembling,the,approximate,Jacobian.,Note,that,for,numerical,Jacobians,,we,typically,end,up,with,a,quasi-Newton,method,as,the,corrector,,while,for,analytical,Jacobians,we,can,harness,the,faster,convergence,of,Newton’s,method.,While,it,is,possible,that,λ,could,be,a,vector,,for,instance,being,two,scalar,parameters,that,are,changed,simultaneously,(as,in,the,case,of,the,unfolding,of,the,pitchfork,bifurcation,in,Figure,2),,we,shall,not,consider,this,case,here.,Further,,we,do,not,address,semismooth,problems,that,arise,from,inequality,constraints;,see,[27],for,details.,We,also,discuss,relatively,little,about,time-stepping,methods,to,find,equilibrium,solutions,and,their,potential,for,use,in,bifurcation,analysis,,more,details,of,which,can,be,found,in,[60,,19].,The,structure,of,the,remainder,of,this,report,is,as,follows.,In,Section,2,,we,discuss,the,now,well-,established,methods,for,continuation,of,connection,solutions,branches.,This,is,complemented,in,Section,3,by,discussion,of,deflation,techniques,to,find,and,continue,potentially,disconnected,branches.,We,then,explore,ideas,from,time-dependent,problems,and,provide,a,dynamical,systems,point,of,view,in,Section,4,,introducing,the,elementary,bifurcations,of,steady,states,and,,further,,consideration,of,periodic,orbits,,which,are,related,to,bifurcations,in,maps.,In,Section,5,,we,then,outline,the,special,role,that,symmetry,plays,and,discuss,necessary,considerations,that,should,be,taken,into,account.,Software,is,considered,in,Section,6,,focusing,on,those,available,to,tackle,more,large-scale,problems,stemming,from,PDEs,,before,we,summarise,our,conclusions,in,Section,7.,2,Continuation,of,connected,solution,branches,We,first,discuss,the,more,classical,style,of,continuation,methods,,which,aim,to,trace,a,branch,of,solutions,from,a,known,initial,solution,u0,or,,analogously,,several,initial,solutions.,To,begin,we,discuss,options,for,the,predictor,which,provides,a,new,initial,guess,to,continue,the,branch,before,discussing,formulations,which,solve,an,augmented,system,based,on,a,predictor–corrector,pairing.,We,then,discuss,selecting,the,parameter,step,size,,along,with,finding,bifurcation,points,and,branch,switching,at,such,points.,5,2.1,Predictors,The,simplest,,and,most,naive,,predictor,for,the,nearby,solution,along,a,branch,at,parameter,value,λ0,+δλ,is,given,by,natural,continuation,,which,chooses,the,known,previous,solution,u0,at,λ0.,That,is,,we,make,a,first-order,approximation,(Taylor,expansion),u(λ0,+,δλ),≈,u(λ0),,(6),where,,by,definition,,u(λ0),=,u0.,The,benefit,of,this,approach,is,that,it,is,essentially,free,and,requires,no,work,to,compute,the,predictor.,However,,this,may,not,be,a,particularly,good,approximation,if,the,parameter,step,size,δλ,is,large,and,,further,,may,require,the,corrector,(say,,Newton’s,method),to,take,an,unnecessarily,large,number,of,iterations,to,converge.,Additionally,,failure,will,occur,at,or,beyond,fold,points,where,the,solution,branch,curves,back,on,itself,and,no,(nearby),solutions,exist,as,the,parameter,is,increased,(or,decreased,if,δλ,<,0).,Considering,the,(local),branch,of,solutions,depending,on,the,parameter,λ,as,a,curve,u(λ),then,,as,with,Newton’s,method,,a,better,predictor,may,be,envisaged,by,considering,the,tangent,to,the,curve.,Equivalently,,we,can,make,a,second-order,Taylor,approximation,u(λ0,+,δλ),≈,u(λ0),+,∂u,∂λ,(λ0)δλ.,(7),However,,we,do,not,know,the,solution,branch,u(λ),to,immediately,calculate,the,derivative,so,we,must,do,some,work,to,compute,it.,We,are,aiming,to,find,u,such,that,F,(u,,λ),=,0,and,so,taking,the,total,derivative,with,respect,to,λ,on,both,sides,we,obtain,dF,dλ,=,∂F,∂u,∂u,∂λ,+,∂F,∂λ,=,0,,along,the,curve,u(λ),defining,the,branch,of,solutions.,This,can,be,rearranged,and,evaluated,at,(u0,,λ0),to,yield,∂u,∂λ,(λ0),by,solving,the,system,Jf,(u0),∂u,∂λ,(λ0),=,−,∂F,∂λ,(u0,,λ0),,(8),where,Jf,is,the,Jacobian,of,f,(u),=,F,(u,,λ0),with,λ0,fixed.,Assuming,that,F,is,not,a,black-box,,so,that,its,dependence,on,λ,is,explicit,,we,can,compute,the,derivative,on,the,right-hand,side,of,(8),and,then,solving,for,∂u,∂λ,(λ0),is,similar,to,solving,one,Newton,step;,cf.,(5).,Combining,(8),and,(7),we,arrive,at,tangent,continuation.,The,cost,of,finding,the,tangent,vector,stems,primarily,from,the,solution,of,(8),,which,is,the,same,cost,as,a,Newton,step,,so,we,would,hope,the,corrector,would,converge,faster,(e.g.,,by,two,Newton,steps),for,the,work,to,pay,off.,Since,we,are,only,finding,a,predictor,,we,need,not,use,an,exact,tangent,and,a,cheaper,predictor,,of,almost,as,good,quality,,can,be,derived,from,secant,approximation,once,we,have,two,solutions,on,the,branch.,This,can,be,thought,of,as,a,simple,finite,difference,approximation,of,the,tangent,at,λn,based,on,the,known,previous,solutions,un,=,u(λn),and,un−1,=,u(λn−1):,∂u,∂λ,(λn),≈,u(λn),−,u(λn−1),λn,−,λn−1,=,un,−,un−1,λn,−,λn−1,.,We,now,approximate,the,solution,at,λn+1,=,λn,+,δλ,as,u(λn+1),≈,u(λn),+,∂u,∂λ,(λn)δλ,≈,un,+,un,−,un−1,λn,−,λn−1,δλ,,(9),which,provides,secant,continuation.,If,δλ,is,fixed,as,we,trace,the,branch,,so,that,λn,=,λn−1,+,δλ,too,,this,simply,reduces,to,un+1,≈,2un,−,un−1.,The,secant,predictor,simply,requires,evaluation,based,on,two,past,solutions,,rather,than,a,solve,with,a,Jacobian,,and,so,is,of,comparable,cost,to,natural,continuation,,albeit,with,the,need,to,store,the,last,two,solutions.,6,While,both,tangent,and,secant,continuation,can,improve,the,initial,guess,provided,to,the,corrector,,they,will,still,fail,at,fold,points,as,neither,will,allow,λ,to,trace,back,on,itself.,This,is,fundamentally,a,problem,of,parametrisation,by,requiring,that,our,branch,is,given,by,a,function,u(λ),,despite,knowing,that,the,underlying,problem,will,likely,have,multiple,solutions,for,some,choices,of,λ.,To,avoid,this,we,must,also,solve,for,λ,as,we,proceed,along,the,branch,,which,leads,to,the,ideas,of,arclength,and,pseudo-arclength,continuation.,It,is,also,possible,to,consider,higher-order,approximation,to,further,improve,the,predictor,,including,fitting,higher,order,polynomials,over,multiple,past,solutions,that,lie,on,the,solution,branch,u(λ),,though,one,should,be,careful,not,to,induce,more,work,than,is,saved,in,the,corrector.,It,may,also,be,preferable,to,parametrise,,instead,,with,arclength,as,we,now,discuss.,2.2,Pseudo-arclength,continuation,A,more,robust,way,to,parametrise,the,curve,of,solutions,that,forms,a,branch,is,by,the,arclength,s,on,the,curve,,measured,from,a,point,,say,(u0,,λ0),,on,the,curve.,Specifically,,consider,a,branch,as,(u(s),,λ(s)),,(10),which,allows,λ,to,vary,and,thus,the,ability,to,trace,round,(multiple),fold,points.,Since,λ,is,no,longer,fixed,we,must,solve,for,λ,as,well,as,u,in,the,continuation,process.,This,requires,an,extra,equation,and,thus,yields,an,augmented,system,to,solve,A(u(s),,λ(s)),:=,(cid:18),F,(u(s),,λ(s)),C(u(s),,λ(s),,s),(cid:19),(cid:19),(cid:18)0,0,,,=,(11),where,C(u,,λ,,s),=,0,is,a,constraint,that,is,used,as,a,condition,to,define,λ,,typically,implicitly.,Note,that,C(u,,λ,,s),=,λ,−,λn,−,δλ,would,return,the,choice,made,by,natural,,tangent,,or,secant,continuation,as,described,in,the,previous,section,,where,λ,is,simply,incremented,by,a,fixed,amount,δλ.,The,augmented,system,(11),is,solved,using,the,corrector,,typically,Newton’s,method.,The,purpose,of,this,is,to,allow,us,to,trace,along,the,curve,a,given,distance,,irrespective,of,how,λ,changes,along,the,curve.,Perhaps,the,most,obvious,choice,is,to,let,C,encode,this,notion,by,saying,we,want,to,find,a,point,(u(s),,λ(s)),on,the,solution,curve,a,distance,δs,=,s,−,sn,away,from,the,last,known,solution,(un,,λn),=,(u(sn),,λ(sn)),at,s,=,sn.,This,is,given,by,arclength,continuation,which,chooses,C(u(s),,λ(s),,s),=,∥u(s),−,un∥2,+,|λ(s),−,λn|2,−,(s,−,sn)2.,(12),Here,,the,norm,∥,·,∥,for,the,solution,space,should,be,chosen,appropriately.,However,,the,main,problem,with,this,approach,is,that,there,will,be,two,solutions,of,(11),in,the,general,case,,one,tracing,forwards,in,s,and,one,tracing,backwards,in,s,,so,we,may,accidentally,converge,to,the,wrong,one.,Further,,the,expression,in,(12),adds,yet,more,nonlinearity,to,the,system,we,want,to,solve,which,can,make,it,harder,for,the,corrector,to,be,effective.,The,more,popular,and,widely,used,approach,,popularised,through,[41],,is,to,add,a,linear,constraint,based,on,arclength,,which,is,known,as,pseudo-arclength,continuation.,Intuitively,,this,uses,a,predictor,on,the,tangent,to,the,solution,curve,(u(s),,λ(s)),at,a,distance,δs,away,from,the,last,known,solution,and,then,constrains,to,look,for,new,solutions,only,in,the,space,that,is,perpendicular,to,the,tangent.,A,simple,diagram,is,given,in,Figure,3,for,1D,,which,can,be,thought,of,as,going,along,the,tangent,and,after,some,small,distance,δs,turning,a,right-angle,towards,the,solution,curve,and,heading,straight,for,that,new,point,of,the,curve.,This,allows,us,to,easily,trace,around,fold,points,provided,δs,is,small,enough,(depending,on,the,curvature,of,the,solution,branch).,7,x,×,×,×,×,λ,Figure,3:,Sketch,of,applying,pseudo-arclength,continuation.,The,solution,branch,is,given,in,black,with,a,fold,point,at,x,=,0,,tangent,vectors,are,given,in,blue,and,the,orthogonal,hyperplanes,are,given,in,dashed,purple.,The,solutions,obtained,are,marked,with,a,red,×,,with,the,initial,solution,marked,in,black.,Mathematically,,the,hyperplane,orthogonal,to,the,tangent,(,˙un,,˙λn),at,the,past,solution,(un,,λn),along,a,distance,δs,is,given,by,C(u(s),,λ(s),,s),=,⟨u(s),−,un,,˙un⟩,+,(λ(s),−,λn),˙λn,−,(s,−,sn),=,0.,(13),Again,,one,should,take,care,in,using,a,suitable,inner,product,⟨·,,·⟩,so,that,the,first,term,in,(13),is,commensurate,with,the,second.,When,solving,PDEs,posed,on,a,domain,Ω,,we,stress,that,the,inner,product,and,norm,used,(here,and,elsewhere),should,be,mesh-independent,,namely,giving,the,same,result,for,equivalent,inputs,when,represented,on,different,meshes.,In,a,simple,scalar,problem,this,might,typically,correspond,to,using,the,L2(Ω),inner,product,and,,for,example,,when,considering,the,discrete,formulation,on,a,uniform,mesh,,where,u,∈,RN,is,a,vector,of,pointwise,values,in,ℓ2,,we,should,normalise,by,the,mesh,spacing,h,and,take,⟨u,,v⟩,=,hdvT,u,,where,d,is,the,spatial,dimension,of,the,domain,Ω.,A,benefit,of,pseudo-arclength,continuation,is,that,the,augmented,system,(11),is,no,longer,singular,at,fold,points,(though,some,care,may,be,needed,when,solving,at,or,very,close,to,fold,points),and,the,approach,easily,allows,us,to,traverse,past,such,points.,Alternate,variations,for,(13),are,also,possible,,such,as,favouring,change,in,u,or,λ,directions,through,a,weighting,parameter,0,<,θ,<,1,and,setting,C(u(s),,λ(s),,s),=,θ⟨u(s),−,un,,˙un⟩,+,(1,−,θ)(λ(s),−,λn),˙λn,−,(s,−,sn),,which,can,equally,be,through,of,as,changing,the,inner,product,on,the,whole,space,of,solution,and,parameter,(u,,λ).,Further,,it,is,not,necessary,to,compute,the,exact,tangent,(,˙un,,˙λn),and,,for,example,,secant,approximation,can,be,made,for,the,predictor,akin,to,(9).,To,compute,the,tangent,along,the,branch,(10),at,a,point,(un,,λn),with,parameter,value,sn,,we,consider,taking,the,total,derivative,(with,respect,to,s),of,the,augmented,system,(11),with,C(u,,λ,,s),defined,in,(13),to,yield,∂F,∂u,(cid:29),+,∂u,∂s,+,˙λn,,,˙un,∂λ,∂s,=,0,,−,1,=,0.,∂F,∂λ,∂λ,∂s,(cid:28),∂u,∂s,Evaluating,at,sn,and,noting,that,,by,definition,,the,tangent,vector,at,this,point,is,(cid:16),˙un,,˙λn,(cid:17),=,(cid:18),∂u,∂s,(sn),,(cid:19),(sn),,,∂λ,∂s,8,we,obtain,the,following,system,JF,(un,,λn),(cid:19),(cid:18),˙un,˙λn,∥,˙un∥2,+,|,˙λn|2,=,1,,=,0,,(14a),(14b),where,JF,:,RN,×R,→,RN,is,the,Jacobian,of,F,(u,,λ),,that,is,the,matrix,of,all,first-order,partial,derivatives,(including,in,λ).,We,note,that,(14b),is,simply,a,length,normalisation,condition,on,the,tangent,vector.,To,solve,the,system,(14),we,note,that,˙λn,is,a,scalar,whose,value,propagates,multiplicatively,through,to,˙u0,in,the,linear,equation,(14a),,which,means,we,can,instead,solve,for,the,un-normalised,ˆun,via,Jf,(un)ˆun,=,−,∂F,∂λ,(un,,λn),,followed,by,the,normalisation,condition,∥ˆun,˙λn∥2,+,|,˙λn|2,=,1,(15),(16),for,˙λn,and,finally,setting,˙un,=,ˆun,˙λn.,We,recall,that,,in,(15),,we,use,the,Jacobian,of,f,(u),=,F,(u,,λn),,where,λn,is,assumed,fixed,,which,is,equivalent,to,standard,tangent,solve,in,(8).,Further,we,can,explicitly,write,the,formula,for,˙λn,from,(16),as,˙λn,=,±1,(cid:112)1,+,∥ˆun∥2,,,(17),where,the,choice,of,sign,should,be,made,such,that,the,orientation,along,the,branch,of,solutions,is,preserved,(assumed,to,be,increasing,s).,One,way,this,can,be,done,is,by,ensuring,the,preceding,tangent,vector,,say,(,˙un−1,,˙λn−1),,has,a,positive,inner,product,with,the,new,one,,namely,that,sign,˙λn,=,sign(⟨,˙un−1,,ˆun⟩,+,˙λn−1).,Since,the,computation,of,the,tangent,carries,some,non-trivial,work,,namely,the,solution,of,(15),,it,may,be,beneficial,to,use,a,secant,approximation,based,on,the,past,two,points,(un,,λn),and,(un−1,,λn−1),to,instead,yield,the,constraint,C(u(s),,λ(s),,s),=,u(s),−,un,,(cid:28),(cid:29),un,−,un−1,sn,−,sn−1,+,(λ(s),−,λn),λn,−,λn−1,sn,−,sn−1,−,(s,−,sn),=,0.,(18),One,can,extend,the,idea,of,using,previous,solutions,to,produce,a,predictive,model,of,the,solution,branch.,For,instance,,suppose,we,store,the,past,m,solutions,,then,a,jth,order,polynomial,in,s,can,be,constructed,for,j,<,m,by,a,least-squares,fit,(or,polynomial,interpolation,for,j,=,m,−,1).,This,type,of,approach,is,taken,in,[66],,which,provides,further,details;,adjustments,are,also,described,,such,as,rescaling,s,and,the,need,to,avoid,j,being,too,large,in,case,of,instability.,In,general,,low-order,methods,are,sufficient,when,the,corrector,is,not,too,expensive,and,tangent,or,secant,predictors,are,standard,in,many,applications.,2.3,Moore–Penrose,continuation,We,also,note,a,related,approach,,called,Moore–Penrose,continuation,(see,,e.g.,,[48,,43]),,which,stems,from,the,use,of,a,Moore–Penrose,pseudoinverse,for,JF,:,RN,×,R,→,RN,to,solve,JF,(u(k),,λ(k)),(cid:19),(cid:18)δu(k+1),δλ(k+1),=,−F,(u(k)).,(19),In,this,sense,,no,constraint,C(u,,λ,,s),=,0,is,actively,chosen,,however,,using,the,pseudoinverse,would,implicitly,apply,the,constraint,that,(δu(k+1),,δλ(k+1))T,is,(ℓ2-),orthogonal,to,any,vector,in,the,kernel,of,JF,,,which,will,be,one-dimensional,away,from,bifurcation,points.,The,approach,can,be,motivated,by,the,fact,that,the,solution,to,(19),is,also,the,solution,to,minimising,the,distance,from,the,initial,guess,(predictor),to,the,solution,branch,determined,by,F,(u,,λ),=,0.,It,can,further,be,interpreted,as,a,variant,of,pseudo-arclength,continuation,in,which,the,tangent,,and,hence,hyperplane,,varies,at,each,corrector,iteration,[48].,9,In,practice,,the,pseudoinverse,is,too,expensive,to,work,with,and,so,the,orthogonality,constraint,is,added,based,on,an,approximation,of,the,kernel,vector.,This,ultimately,adds,another,augmented,system,(with,the,same,matrix),owing,to,the,fact,that,the,approximate,kernel,vector,must,be,computed.,Similar,considerations,to,that,of,pseudo-arclength,continuation,are,required,,as,will,be,discussed,next.,We,remark,that,recent,work,in,[44],has,tried,to,make,this,approach,more,robust,by,adding,several,control,measures,and,by,combining,it,with,deflated,continuation,to,try,to,ascertain,problematic,regimes,in,the,continuation,steps.,Overall,,we,note,that,pseudo-arclength,continuation,appears,to,be,the,more,popular,approach,in,the,literature,and,available,software.,2.4,Solving,bordered,linear,systems,One,of,the,challenges,of,pseudo-arclength,continuation,is,the,need,to,solve,the,augmented,system,(11),,with,C,defined,in,(13),,say.,Applying,the,corrector,,typically,Newton’s,method,,leads,to,a,bordered,linear,system,of,the,form,(cid:19),(cid:18)u,λ,A,:=,(cid:18),J,cT,(cid:19),(cid:19),(cid:18)u,b,λ,d,(cid:19),(cid:18)v,ν,,,=,(20),where,J,∈,RN,×N,is,the,Jacobian,matrix,in,u,(or,some,approximation,thereof),and,b,,c,∈,RN,and,d,∈,R.,In,the,most,common,case,of,using,Newton’s,method,as,the,corrector,and,pseudo-arclength,continuation,given,by,(13),with,a,computed,tangent,(,˙un,,˙λn),at,the,previous,solution,(un,,λn),=,(u(sn),,λ(sn)),,we,specifically,solve,for,the,Newton,updates,δu(k+1),=,u(k+1),−,u(k),and,δλ(k+1),=,λ(k+1),−,λ(k),via,(cid:18)Jf,(u(k),,λ(k)),∂λF,(u(k),,λ(k)),˙uT,n,˙λn,(cid:19),(cid:19),(cid:18)δu(k+1),δλ(k+1),=,(cid:18),−F,(u(k),,λ(k)),(cid:19),−C(u(k),,λ(k),,sn),.,(21),Here,,as,before,,Jf,denotes,the,Jacobian,of,f,(u),=,F,(u,,λ(k)),with,the,parameter,λ(k),considered,fixed,,while,we,abbreviate,∂λF,=,∂F,∂λ,.,The,initial,guess,for,our,Newton,method,here,is,u(0),=,un,+,˙unδs,,λ(0),=,λn,+,˙λnδs,,which,is,our,predictor,in,the,hyperplane,given,by,the,constraint,(13).,It,is,worth,noting,that,the,main,block,J,changes,each,iteration,since,it,depends,on,the,current,iterates,(un,,λn).,There,are,several,ways,to,attack,the,solution,of,the,bordered,linear,system,(20),at,small,scale,,but,this,becomes,more,challenging,for,large-scale,computations,typical,in,PDE,applications.,The,primary,method,in,[41],applies,when,both,J,and,A,are,nonsingular,(away,from,bifurcation,points),and,is,as,follows.,First,solve,two,N,×,N,linear,systems,with,J,(we,assume,,as,is,typical,,that,we,have,a,solver,for,J),given,by,We,can,then,form,the,solution,via,Jy,=,b,,Jz,=,v.,λ,=,ν,−,cT,z,d,−,cT,y,,,u,=,z,−,λy.,(22a),(22b),Note,that,the,denominator,in,the,expression,for,λ,is,the,Schur,complement,of,J,in,A,,namely,d,−,cT,J,−1b.,An,alternative,when,d,̸=,0,,which,corresponds,in,(21),to,˙λn,̸=,0,and,so,when,we,are,away,from,a,fold,point,(or,potentially,another,bifurcation,point),,is,to,first,eliminate,λ,in,(20),as,described,in,[41],to,get,λ,=,1,d,(ν,−,cT,u),,and,so,,by,substitution,of,this,expression,,the,N,×,N,linear,system,(cid:18),J,−,(cid:19),1,d,bcT,u,=,v,−,ν,d,b.,(23a),(23b),The,system,matrix,in,(23b),is,a,rank-one,perturbation,of,J,and,so,its,inversion,can,be,given,through,the,inversion,of,J,by,the,Sherman–Morrison,formula,(cid:19)−1,(cid:18),J,−,1,d,bcT,=,J,−1,+,J,−1bcT,J,−1,d,−,cT,J,−1b,.,(24),10,Hence,,we,are,required,to,solve,two,N,×,N,linear,systems,with,J,,now,with,right-hand,sides,b,and,v,−,ν,d,b.,We,note,that,this,is,very,similar,to,(22),,which,eliminates,u,first,instead,,and,again,we,have,the,appearance,of,the,Schur,complement,in,the,denominator,of,(24).,Both,approaches,will,lose,stability,and,accuracy,when,the,Schur,complement,d,−,cT,J,−1b,approaches,zero,,namely,precisely,when,A,is,nearly,singular.,However,,the,same,is,true,when,J,becomes,nearly,singular,(close,to,bifurcation,points).,Nonetheless,,A,will,remain,nonsingular,at,fold,points,where,J,is,singular.,If,we,can,detect,this,situation,,then,the,system,(20),can,still,be,solved,using,the,approach,in,[41,,Section,4.11].,Mathematically,the,assumptions,are,that,the,null,space,of,the,Jacobian,J,is,of,dimension,one,and,that,b,is,not,in,the,range,space,of,J,nor,c,in,the,range,space,of,J,T,.,That,is,,suppose,ϕ,and,ψ,are,non-trivial,solutions,of,then,we,require,that,Jϕ,=,0,,J,T,ψ,=,0,,N,(J),=,span,ϕ,,ψT,b,̸=,0,,cT,ϕ,̸=,0.,The,approach,of,[41],is,then,to,solve,as,λ,=,ψT,v,ψT,b,,,u,=,xp,−,cT,xp,cT,ϕ,ϕ,+,ν,−,dλ,cT,ϕ,ϕ,,where,xp,is,any,particular,solution,of,Jxp,=,v,−,λb,,(25a),(25b),which,is,consistent,since,v,−,λb,∈,R(J),but,has,infinitely,many,solutions,because,J,has,a,non-trivial,null,space,N,(J).,More,details,,such,as,on,calculating,ϕ,and,ψ,,are,given,in,[41,,Section,4.11].,A,more,careful,treatment,of,the,general,case,where,A,has,more,than,one,additional,row,of,constraints,or,J,has,higher,nullity,,such,as,at,other,bifurcation,points,,is,presented,in,[40],but,note,that,the,methodology,requires,an,LU,-factorisation,of,J,with,full,pivoting;,this,is,typically,prohibitive,at,large,scale.,When,J,is,close,to,being,singular,,iterative,refinement,is,also,possible,,however,,improvement,is,only,seen,in,the,bordering,algorithm,(22),when,the,solver,for,J,is,based,on,factorisation,such,as,an,LU,-,or,QR-decomposition,[31].,When,a,more,general,solver,is,used,,such,as,an,iterative,method,like,preconditioned,CG,,then,a,modified,block-elimination,method,given,in,[31],can,be,used,and,performs,well,provided,A,is,well,conditioned;,see,also,[32].,A,slightly,more,expensive,alternative,is,to,use,deflated,block-elimination,[9,,10],,having,similarities,to,(25).,Another,approach,is,to,adapt,the,Krylov,method,to,ensure,iterates,satisfy,the,orthogonality,constraint,present,in,the,bottom,row,of,(20),exactly,[65].,This,is,done,by,use,of,a,Householder,transformation,,and,is,useful,when,solving,(20),iteratively,with,a,loose,tolerance,whereupon,the,constraint,may,only,be,enforced,very,approximately.,2.5,Parameter,step,size,control,One,topic,not,yet,discussed,is,that,of,selecting,an,appropriate,step,size,for,the,parameter,continuation,,namely,δλ,for,natural,or,purely,tangent-based,methods,or,δs,for,pseudo-arclength,continuation.,A,fixed,step,size,is,the,simplest,choice,but,may,miss,behaviour,of,interest,or,fail,to,find,a,solution,if,chosen,too,big,,yet,waste,computational,resource,and,slow,down,the,procedure,if,chosen,too,small.,Ideally,then,,adaptive,step,size,selection,should,be,employed.,Allgower,and,Georg,discuss,the,use,of,adaptive,step,sizes,in,[1,,Chapter,6].,A,common,theme,for,these,approaches,is,to,exploit,the,natural,idea,of,determining,a,step,size,based,on,how,well,the,corrector,performed,when,finding,the,last,solution;,if,convergence,was,fast,,then,we,can,likely,increase,the,step,size,,but,if,convergence,was,slow,,then,it,may,be,preferable,to,reduce,the,step,size,for,the,next,continuation,step.,A,simple,scenario,would,be,to,double,the,step,size,if,the,corrector,step,was,easy,and,halve,it,if,was,difficult.,The,approach,taken,in,[30],is,to,base,this,on,the,initial,contraction,rate,of,the,corrector,,given,by,the,ratio,of,the,first,two,steps,of,the,corrector.,Upon,assuming,a,suitable,asymptotic,relationship,11,(which,will,depend,on,the,precise,corrector,used),for,small,step,size,,we,can,obtain,an,a,posteriori,estimate,of,the,leading,order,term,of,the,contraction,rate.,Given,a,target,value,for,this,contraction,rate,(which,will,depend,on,the,particulars,of,the,problem,and,how,well,you,wish,to,trace,the,solution,curve),,this,can,be,used,to,determine,a,step,size,which,,based,on,the,observed,initial,contraction,rate,from,the,previous,application,of,the,corrector,,would,yield,approximately,the,desired,target,and,thus,informs,how,to,adjust,the,current,step,size.,Other,quantities,can,also,be,tracked,on,assumption,that,they,follow,a,suitable,asymptotic,relationship,,such,as,the,initial,corrector,step,length,or,the,angle,between,two,consecutive,steps.,Further,details,and,examples,for,Newton’s,method,or,a,chord,method,can,be,found,in,[1,,Section,6.1].,Instead,of,monitoring,an,additional,quantity,such,as,contraction,rate,,the,approach,of,[14],uses,the,number,of,iterations,required,by,the,corrector,to,reach,a,given,tolerance,to,control,the,step,size,,this,requires,an,error,model,for,the,corrector,iteration.,This,has,the,advantage,of,being,more,widely,applicable,as,it,does,not,assume,asymptotic,relationships.,Suppose,for,generality,that,h,is,our,parameter,we,wish,to,control,the,step,size,of,and,denote,the,predictor,(e.g.,,tangent,predictor),as,v0(h).,Further,,let,the,corrector,steps,(e.g.,,an,iteration,of,Newton’s,method),be,given,by,application,of,a,map,T,so,that,we,obtain,iterates,vi+1(h),=,T,(vi(h)),where,we,suppose,that,the,limit,v∞(h),=,lim,vi(h),exists,,i→∞,for,sufficiently,small,h.,We,would,like,to,compute,a,deceleration,factor,q,to,update,the,step,parameter,as,h,(cid:55)→,h/q,based,on,a,desired,number,of,corrector,iterations,˜k,,the,actual,number,required,to,find,the,previous,solution,k,,and,the,associated,iterates,vi(h).,We,follow,the,discussion,of,this,in,[1,,Section,6.2].,To,proceed,,we,make,use,of,an,assumption,that,the,corrector,essentially,operates,orthogonally,to,the,predictor,and,,moreover,,that,the,(modified),error,in,the,solution,from,terminating,the,corrector,at,iteration,k,,namely,satisfies,an,inequality,of,the,form,ϵk(h),:=,γ∥v∞(h),−,vk(h)∥,,ϵk+1(h),≤,ψ(ϵk(h)),,for,some,error,model,function,ψ,which,is,monotonic,,and,where,γ,>,0,is,a,constant,independent,of,h.,Two,such,error,models,for,the,Newton,corrector,are,derived,in,[14],based,on,Newton–Kantorovich,theory,,namely,ψ(ϵ),=,ψ(ϵ),=,,,ϵ2,3,−,2ϵ,√,ϵ,+,10,−,ϵ2,5,−,ϵ2,ϵ2,,0,≤,ϵ,≤,1,,0,≤,ϵ,≤,1.,Once,an,appropriate,error,model,ψ,is,determined,,we,can,then,a,posteriori,evaluate,the,quotient,ω(h),:=,∥vk(h),−,vk−1(h)∥,∥vk(h),−,v0(h)∥,≈,∥v∞(h),−,vk−1(h)∥,∥v∞(h),−,v0(h)∥,=,ϵk−1(h),ϵ0(h),and,use,the,estimate,ϵk−1(h),≤,ψk−1(ϵ0(h)),to,obtain,ω(h),⪅,ψk−1(ϵ0(h)),ϵ0(h),,,(26),(27),from,which,we,can,find,an,estimate,for,ϵ0(h),by,solving,for,equality.,We,then,want,to,find,where,the,modified,error,ϵ˜k(h/q),after,˜k,iterations,is,small,enough,to,terminate,the,corrector,based,on,this,estimate,for,ϵ0(h).,After,calculating,ω,as,defined,in,(26),,we,do,this,by,determining,ϵ,such,that,(27),holds,with,equality,and,then,˜ϵ,such,that,ψ˜k(˜ϵ),=,ψk(ϵ),and,finally,set,q,=,(cid:112)ϵ/˜ϵ.,Note,that,q,is,typically,also,restricted,so,that,it,can,not,be,too,big,or,small,,such,as,by,enforcing,that,1,2,≤,q,≤,2.,See,[1,,Section,6.2],for,further,justification,on,this,approach,,along,with,examples,and,modifications.,Other,approaches,have,also,been,considered,in,the,literature.,By,noting,a,connection,of,step,size,selection,with,damping,Newton’s,method,,under,suitable,conditions,,[3],suggest,damping,of,the,step,size,until,a,sufficient,decrease,criterion,is,reached.,Standard,line,search,techniques,can,then,be,used,to,12,determine,appropriate,damping.,The,use,of,higher-order,predictors,can,also,be,used,in,tandem,with,step,size,choice,,as,discussed,in,[1,,Section,6.3].,A,separate,issue,occurs,when,we,are,close,to,a,bifurcation,point,where,two,or,more,branches,intersect,in,that,we,may,accidentally,jump,to,a,different,branch,in,our,continuation,method.,This,can,also,happen,if,two,branches,are,sufficiently,close,even,if,they,do,not,meet,,for,instance,with,perturbed,(or,imperfect),transcritical,or,pitchfork,bifurcations.,As,a,rule,,we,may,at,first,want,to,take,a,long,enough,step,to,pass,the,bifurcation,point,,rather,than,taking,many,small,steps,attempting,to,remain,on,the,same,branch.,We,can,then,aim,to,locate,the,bifurcation,point,afterwards;,this,will,be,discussed,in,the,next,section.,To,try,to,mitigate,branch,jumping,,[61,,Section,3.6.2],suggests,using,multiple,predictors,(which,can,be,applied,in,parallel);,this,approach,is,implemented,in,the,MATLAB,software,pde2path.,Such,multipredictors,are,given,along,the,tangent,but,now,using,p,step,sizes,iδs,,for,i,∈,1,,.,.,.,,,p,,this,allows,for,long,predictors.,The,idea,is,heuristic,and,based,on,the,assumption,that,the,corrector,will,converge,slowly,when,it,is,converging,to,a,solution,on,a,different,branch,,since,the,corrector,will,have,to,change,the,shape,of,the,approximate,solution,until,it,fits,with,the,solution,properties,on,the,new,branch.,Thus,the,criterion,used,as,to,whether,to,accept,or,reject,the,outcome,from,each,predictor,is,that,the,residual,in,the,(Newton),corrector,has,to,decrease,by,at,least,a,factor,α,<,1,at,each,step,(in,a,suitable,norm).,The,hope,is,that,,while,some,intermediary,predictors,near,the,bifurcation,may,converge,to,different,branches,,a,suitably,long,predictor,will,pass,the,bifurcation,and,converge,quickly,to,the,original,branch,on,the,other,side,of,the,bifurcation,point.,While,there,is,no,guarantees,,[61],reports,that,the,idea,works,remarkably,well,in,practice,(within,their,scope,of,nonlinear,PDE,problems);,here,a,factor,α,=,10−3,is,typically,used,but,they,sometimes,require,a,smaller,value,of,10−6.,Further,,if,the,residuals,do,not,decrease,sufficiently,,instead,of,reducing,δs,,a,relaxed,condition,can,be,used,such,that,a,factor,α,decrease,in,the,residual,norm,need,only,be,reached,within,some,fixed,number,of,iterations,greater,than,one.,This,highlights,that,no,one-size-fits-all,approach,will,unfailingly,work,and,one,should,be,mindful,of,the,particular,problem,at,hand,as,much,as,possible.,2.6,Locating,bifurcation,points,While,a,continuation,method,is,being,employed,,it,is,often,of,interest,to,find,bifurcation,points,as,we,traverse,solution,branches,as,these,determine,where,qualitative,changes,in,solution,behaviour,occur,and,may,represent,some,physical,phenomenon,of,interest.,To,detect,that,a,bifurcation,has,occurred3,,we,measure,some,property,as,we,continue,along,the,branch,until,it,reveals,an,appropriate,change.,This,usually,relates,to,eigenvalues,of,the,Jacobian,J.,A,simple,test,relates,to,the,sign,of,the,determinant,of,the,Jacobian,at,a,point,(u,,λ),,namely,sign,(det,J(u,,λ)),=,sign,(cid:33),µi(u,,λ),,,(cid:32),(cid:89),i,(28),where,µi,are,the,eigenvalues,of,J,,including,multiplicities.,At,a,bifurcation,point,the,determinant,of,the,Jacobian,is,zero,,as,the,Jacobian,has,a,zero,eigenvalue.,Since,for,so-called,simple,bifurcation,points,a,single,eigenvalue,crosses,the,origin,,we,can,detect,such,bifurcations,by,monitoring,(28);,this,method,works,when,any,odd,number,of,eigenvalues,cross,zero,,but,cannot,detect,even,numbers.,The,determinant,in,(28),can,be,readily,calculated,from,an,LU,-decomposition,,however,,this,is,only,feasible,for,relatively,small,problems.,In,general,,one,must,track,eigenvalues,with,real,part,close,to,zero.,This,can,be,done,at,scale,by,computing,a,small,number,of,eigenvalues,at,each,continuation,step.,Note,that,at,fold,points,an,eigenvalue,will,approach,zero,but,not,cross,to,change,sign,and,so,(28),will,not,detect,a,fold,point,,however,,this,can,instead,be,inferred,by,tracking,whether,λ,is,increasing,or,decreasing.,Once,we,have,detected,that,bifurcation,has,occurred,,we,may,wish,to,localise,in,order,to,find,the,bifurcation,point,more,precisely.,A,simple,technique,,given,a,detection,test,such,as,that,in,(28),,is,bisection.,For,instance,,if,we,have,two,points,where,the,sign,of,the,determinant,changes,then,we,can,bisect,the,interval,in,half,to,determine,a,smaller,interval,which,contains,the,bifurcation,point.,Since,the,interval,only,halves,each,time,,convergence,to,the,bifurcation,point,is,linear,and,this,may,be,slow,if,we,want,high,precision.,3In,general,,we,may,need,to,exclude,certain,technicalities.,This,includes,cases,where,branches,intersect,tangentially,,indeed,,in,such,situations,it,may,not,be,clear,which,branch,is,which.,13,An,alternative,to,determining,the,bifurcation,point,more,efficiently,is,given,by,noting,that,a,necessary,condition,for,(u,,λ),to,be,a,bifurcation,point,is,that,the,Jacobian,J(u,,λ),is,singular.,This,means,that,the,bifurcation,point,satisfies,the,extended,(Seydel–Moore–Spence),system,F,(u,,λ),=,0,,J(u,,λ)v,=,0,,∥v∥,=,1,,(29a),(29b),(29c),where,v,is,an,eigenvector,of,the,Jacobian.,The,extended,system,(29),can,be,solved,for,u,,v,and,λ,using,,say,,Newton’s,method.,To,reduce,the,nonlinearity,from,(29c),,in,practice,one,can,replace,this,with,⟨c,,v⟩,=,1,for,some,random,unit,vector,c,,which,will,work,with,probability,one,(i.e.,,so,long,as,c,is,not,orthogonal,to,v).,This,approach,allows,us,to,directly,target,the,bifurcation,point,and,allows,for,faster,convergence.,At,fold,points,the,convergence,is,quadratic,,however,,the,Jacobian,associated,with,the,extended,system,(29),is,singular,at,other,bifurcation,points,and,so,we,can,expect,slower,convergence.,While,it,is,possible,to,construct,other,extended,systems,for,a,variety,of,bifurcations,(see,,e.g.,,[47,,Section,3.3]),,this,is,limited,in,the,sense,that,we,need,to,know,what,type,of,bifurcation,point,we,are,trying,to,localise,in,order,to,regain,faster,convergence.,2.7,Branch,switching,After,finding,a,bifurcation,point,where,two,(or,more),branches,intersect,,often,known,as,a,branch,point,when,the,intersection,is,non-tangential,,in,order,to,continue,along,the,new,branch,we,must,employ,branch,switching.,From,the,theoretical,standpoint,this,can,be,determined,via,Lyapunov–Schmidt,reduction;,see,,e.g.,,[61,,Chapter,2].,Under,some,assumptions,,this,states,that,,if,the,dimension,of,the,kernel,of,the,Jacobian,at,the,bifurcation,point,is,m,,all,solution,branches,of,F,=,0,are,related,to,solutions,of,an,m,×,m,algebraic,system,(in,the,infinite-dimensional,case,it,is,possible,that,this,algebraic,system,is,not,square,but,for,our,purposes,it,always,will,be).,In,the,simplest,case,,at,the,bifurcation,point,we,have,a,single,real,eigenvalue,(of,no,higher,multiplicity),of,the,Jacobian,J,of,f,(u),=,F,(u,,λ),which,crosses,through,zero.,This,case,is,analysed,in,the,Crandall–,Rabinowitz,theorem,which,in,essence,states—under,the,technical,assumptions,of,both,the,dimension,of,the,kernel,of,J,and,the,codimension,of,the,range,of,J,being,one,,sufficient,smoothness,of,F,around,the,branch,point,,and,a,transversality,condition—that,we,do,have,a,branch,point,and,the,non-trivial,branch,(the,one,we,are,seeking),is,given,locally,as,a,continuously,differential,curve,branching,off,in,a,direction,given,,at,leading,order,,by,the,single,kernel,vector,of,J.,Furthermore,,all,solutions,of,F,(u,,λ),close,to,the,branch,point,are,either,on,the,original,trivial,branch,or,the,single,bifurcating,branch.,See,,e.g.,,[62,,Section,2.2],for,a,technical,and,rigorous,statement.,This,gives,the,theoretical,framework,for,the,existence,of,a,bifurcating,branch,and,the,associated,tangent,vector,in,the,simplest,case.,While,Lyapunov–Schmidt,reduction,is,a,powerful,theoretical,tool,,in,practice,we,do,not,know,enough,to,determine,the,m,×,m,algebraic,system.,Taylor,approximation,can,be,used,,as,exhibited,in,[61,,Section,3.2],(see,further,in,[47,,Section,6.7]),,but,becomes,challenging,when,m,is,relatively,large;,see,also,approaches,in,[1,,Chapter,8],and,[41,,Section,5.26].,Instead,,the,expedient,approach,may,simply,be,to,use,brute,force,with,many,initial,guesses,to,find,the,desired,bifurcating,solution,branches.,One,may,also,try,to,use,deflation,techniques,to,remove,known,solutions,in,order,to,help,converge,to,the,bifurcating,branches,,in,this,way,deflation,can,be,seen,as,an,alternative,to,traditional,branch,switching,techniques.,The,Taylor,approximation,approach,results,in,a,set,of,algebraic,bifurcation,equations.,At,second,order,we,arrive,at,the,so-called,quadratic,bifurcation,equations,(QBE),which,determine,all,branches,only,in,the,simplest,case,described,above,(i.e.,,giving,both,branches).,To,determine,branches,for,(generic),pitchfork,bifurcations,we,end,up,requiring,a,third,order,Taylor,expansion,and,thus,a,set,of,cubic,bifurcation,equations,(CBE).,There,are,cases,of,higher-order,indeterminacy,which,require,even,more,derivatives,in,the,Taylor,expansion,and,this,can,become,challenging,and,complicated,to,pursue,in,general.,Nonetheless,,it,is,reported,in,[61],that,the,combined,use,of,both,QBE,and,CBE,works,well,in,practice,,with,some,occasional,fine,tuning,,for,all,the,PDE,problems,they,consider,but,note,that,care,should,be,taken,in,the,case,of,having,continuous,symmetries,,as,we,will,discuss,in,Section,5,,where,preprocessing,required.,To,see,how,the,Taylor,approximation,works,,following,[62,,Section,2.3],,consider,the,case,where,the,dimension,of,kernel,of,J,is,m,and,∂λF,is,in,the,range,of,J,at,the,bifurcation,point,,namely,dim,N,(J),=,m,and,∂λF,∈,R(J).,This,means,that,we,have,linearly,independent,spanning,sets,for,the,kernel,of,J,and,14,its,adjoint,,given,by,N,(J),=,span{ϕ1,,.,.,.,,,ϕm},and,N,(J,T,),=,span{ψ1,,.,.,.,,,ψm},with,⟨ϕi,,ψj⟩,=,δi,j.,Furthermore,this,gives,the,existence,of,a,unique,ϕ0,∈,N,(J)⊥,such,that,Jϕ0,+,∂λF,=,0,with,⟨ϕ0,,ψj⟩,=,0.,We,now,suppose,that,we,have,a,smooth,solution,branch,parametrised,by,s,,namely,(u(s),,λ(s)),,with,a,bifurcation,point,at,(u0,,λ0),where,s,=,s0.,Since,we,have,F,(u(s),,λ(s)),=,0,along,the,branch,we,can,differentiate,in,s,to,obtain,,by,the,chain,rule,,J,˙u(s0),+,∂λF,˙λ(s0),=,0,,(30),where,˙u,and,˙λ,denote,derivates,in,s.,Thus,˙u(s0),can,be,expressed,as,an,expansion,in,the,vectors,ϕj,for,0,≤,j,≤,m,,say,˙u(s0),=,m,(cid:88),j=0,αjϕj,,(31),with,α0,=,˙λ(s0),and,αj,=,⟨ϕj,,˙u(s0)⟩,for,1,≤,j,≤,m.,To,derive,equations,that,prescribe,the,coefficients,αj,we,differentiate,(30),again,in,s,to,obtain,J,¨u,+,∂λF,¨λ,=,−,(cid:16),∂uJ[,˙u,,˙u],+,2∂λJ,˙u,˙λ,+,∂λλF,˙λ2(cid:17),,,(32),valid,at,s,=,s0,,where,we,use,the,notation,∂uJ[,˙u,,˙u],from,[62],to,denote,the,tensor,contraction,(∂uJ[,˙u,,˙u])i,=,∂2Fi,∂uj∂uk,∂uk,∂s,∂uj,∂s,.,(cid:88),j,k,Now,since,the,left-hand,side,of,(32),is,in,the,range,space,R(J),,then,so,must,be,the,right-hand,side.,Thus,by,taking,inner,products,with,the,ψi,for,1,≤,i,≤,m,we,obtain,a,system,of,m,equations,in,m,+,1,unknowns,but,which,is,homogeneous,and,allows,us,to,solve,for,the,coefficients,of,the,tangent,vector,in,(31),up,to,a,multiplicative,constant.,These,are,the,quadratic,bifurcations,equations,(QBE),B(α0,,α),=,0,∈,Rm,,with,α,=,(α1,,.,.,.,,,αm),,where,Bi(α0,,α),:=,m,(cid:88),m,(cid:88),aijkαjαk,+,2,m,(cid:88),bijαjα0,+,ciα2,0,,1,≤,i,≤,m,,j=1,j=1,k=1,aijk,:=,⟨ψi,,∂uJ[ϕj,,ϕk]⟩,,,bij,:=,⟨ψi,,∂uJ[ϕj,,ϕ0],+,∂λJϕj⟩,,,ci,:=,⟨ψi,,∂uJ[ϕ0,,ϕ0],+,∂λJϕ0,+,∂λλF,⟩,.,Note,that,this,simplifies,quite,substantially,in,the,simplest,case,of,m,=,1,to,a,single,quadratic,in,α0,and,α1.,Similar,ideas,apply,to,derive,the,cubic,bifurcation,equations,(CBE),by,taking,another,derivative,in,s,,with,some,simplification,to,(32),on,the,assumption,that,the,QBE,is,insufficient,,but,the,formulation,becomes,lengthy,and,more,complex.,They,can,be,found,in,,for,instance,,[61,,Section,3.2],which,also,gives,details,on,approximating,(by,finite,differences),the,higher-order,derivatives,of,the,Jacobian,that,appear,in,both,quadratic,and,cubic,bifurcation,equations.,Clearly,there,is,some,non-trivial,work,involved,in,branch,switching,and,the,more,prior,information,about,the,bifurcation,at,hand,,the,better,tools,we,have,to,determine,new,branches.,Nonetheless,,since,we,must,ultimately,solve,an,m,×,m,system,,where,m,is,the,typically,small,dimension,of,the,kernel,of,the,Jacobian,,these,approaches,are,able,to,scale,to,relatively,large,problem,sizes,through,approximation,of,the,higher-order,derivatives,of,the,Jacobian,,since,we,usually,do,not,need,the,tangent,vectors,along,new,branches,with,high,accuracy.,An,alternative,that,we,touched,upon,earlier,is,to,use,deflation,as,a,tool,not,only,to,find,solutions,but,to,naturally,aid,in,branch,switching,,this,alleviates,some,of,the,complexity,of,the,algebraic,bifurcation,equations.,We,now,turn,to,this,alternative,perspective.,3,Continuation,of,disconnected,solution,branches,with,deflation,The,discussions,in,previous,sections,have,focused,on,techniques,applicable,to,continuing,connected,branches,of,solutions.,It,may,well,be,the,case,that,some,branches,in,the,bifurcation,diagram,are,not,15,connected,to,the,initial,known,solution,and,,as,such,,will,remain,unobtainable.,This,is,one,of,the,main,motivations,behind,the,use,of,deflation,,a,technique,which,does,not,require,connectedness,of,solution,branches,to,find,solutions.,While,deflation,is,not,a,new,approach,,see,[8],,it,was,considered,to,be,some-,what,unreliable,and,lack,robustness,until,recent,redevelopment,[25,,26,,11],where,it,has,proved,very,successful.,We,remark,that,there,is,no,guarantee,to,find,all,solutions,but,in,practice,we,can,find,many,more,solutions,this,way,,which,makes,it,,in,the,words,of,[61],,a,“robust,partial,success”.,The,deflation,approach,is,simple,in,essence,,for,a,fixed,λ,we,use,a,suitable,initial,guess,to,find,a,solution,(e.g.,,by,Newton’s,method),and,then,remove,this,solution,by,deflation,so,that,we,will,not,find,it,again.,We,then,search,anew,from,the,same,initial,guess,in,the,hope,of,finding,a,new,solution,(on,a,different,branch),with,any,such,new,solution,again,being,deflated,away,until,we,cannot,find,further,solutions.,We,can,then,either,use,an,alternative,initial,guess,,if,available,,or,terminate,and,increment,λ,to,repeat,the,process.,Note,,each,solution,at,the,previous,value,of,λ,can,now,be,used,to,compute,an,initial,guess,,for,instance,via,a,tangent,predictor.,Suppose,we,fixed,λ,so,that,we,wish,to,solve,f,(u),:=,F,(u,,λ),=,0,and,that,we,already,have,a,known,solution,u∗.,The,key,properties,required,by,a,deflation,operator,D(u;,u∗),,applied,so,that,we,solve,are,that,and,g(u),:=,D(u;,u∗)f,(u),=,0,,f,(u),=,0,⇐⇒,g(u),=,0,for,u,̸=,u∗,,lim,inf,u→u∗,∥g(u)∥,>,0.,(33),(34a),(34b),These,conditions,are,summarised,as,preserving,all,solutions,of,the,original,problem,aside,from,u∗,,(34a),,and,removing,the,known,solution,u∗,as,a,solution,to,g(u),=,0,,(34b).,When,more,than,one,known,solutions,are,required,to,be,deflated,away,,say,u∗,1,,u∗,l,,,we,can,simply,concatenate,the,deflation,operators,to,utilise,2,,.,.,.,,,u∗,D(u;,u∗,1,,u∗,2,,.,.,.,,,u∗,l,),:=,D(u∗,1)D(u∗,2),.,.,.,D(u∗,l,),,or,potentially,combine,all,solutions,into,the,form,of,the,deflation,operator,(see,a,later,example,in,(37)).,The,deflation,operator,proposed,in,[25,,26],is,given,by,D(u;,u∗),=,(cid:18),1,∥u,−,u∗∥p,+,σ,(cid:19),I,,(35),for,some,power,p,∈,N,,shift,σ,∈,R,,and,where,I,is,the,identity.,Note,that,this,is,effectively,a,scalar,function,which,multiplies,f,and,we,subsequently,treat,it,as,such.,In,(35),an,appropriate,norm,should,be,used;,for,PDE,problems,this,may,be,a,discretised,version,of,the,L2(Ω)-norm,or,other,problem-relevant,norm,on,Ω.,The,addition,of,a,non-zero,shift,σ,(typically,σ,=,1),ensures,we,have,the,correct,limits,at,both,u∗,and,∞,,namely,D(u;,u∗),→,∞,D(u;,u∗),→,σ,̸=,0,as,u,→,u∗,,as,u,→,∞.,The,latter,is,important,to,ensure,the,function,f,is,not,destroyed,by,sending,it,to,zero,away,from,u∗.,For,(34b),to,hold,,we,require,that,p,is,large,enough,to,counteract,the,multiplicity,of,the,solution,u∗;,since,this,is,typically,not,known,in,advance,,we,can,keep,applying,deflation,for,a,fixed,p,until,we,have,removed,the,solution,up,to,and,including,all,its,multiplicities.,In,practice,,numerical,experiments,in,[26],always,use,p,=,2,and,σ,=,1.,A,desirable,property,of,the,deflation,approach,is,that,we,only,require,the,solution,of,Newton-like,systems,(and,not,extended,systems),so,if,a,good,approach,to,solve,each,step,of,the,Newton,method,for,f,(u),=,0,is,available,(e.g.,,via,a,preconditioned,iterative,method,for,solving,with,the,Jacobian,Jf,),then,this,automatically,translates,into,a,good,approach,to,solve,the,deflated,systems,of,the,form,Jg(u)δug,=,−g(u).,(36),16,To,see,this,,consider,the,Jacobian,Jg(u),given,by,the,product,rule,Jg(u),=,D(u;,u∗)Jf,(u),+,g(u)J,T,D(u).,The,first,term,is,simply,a,scalar,multiple,of,Jf,(u),but,the,second,term,is,a,generally,dense,addition,that,may,seem,problematic,,however,,this,second,term,represents,a,rank-one,perturbation,(we,will,have,D(u),∈,R1×N,),and,so,we,can,apply,the,Sherman–Morrison,formula,,as,in,(24),,to,g(u),∈,RN,×1,and,J,T,only,require,to,solve,systems,involving,Jf,(u).,In,fact,,if,one,follows,through,the,algebra,,we,only,require,a,single,solve,with,Jf,(u),rather,than,the,usual,two,and,the,algorithm,to,solve,(36),can,be,written,as,follows:,1.,Solve,the,Newton,system,Jf,(u)δuf,=,−f,(u);,2.,Evaluate,the,scalar,ν,=,J,T,D(u)δuf,;,3.,Evaluate,the,scalar,τ,=,1,+,D−1ν,1,−,D−1ν,;,4.,The,solution,is,computed,as,δug,=,τ,δuf,.,A,strength,of,the,deflation,approach,to,continuation,is,its,simplicity.,It,is,not,required,to,use,pseudo-,arclength,continuation,(though,this,can,be,used,in,complement,to,deflation),,tangent,prediction,is,readily,available,and,we,are,not,so,worried,about,jumping,branch,,all,we,must,do,is,repeatedly,solve,Newton,systems,with,the,Jacobian,of,the,original,function,f,.,This,will,typically,piece,together,a,bifurcation,diagram,and,localisation,of,bifurcations,can,be,performed,afterwards,,rather,than,as,a,requirement,to,find,new,branches.,It,is,an,open,question,as,to,how,best,utilise,both,the,more,classical,continuation,approaches,in,Section,2,and,deflation,approaches,in,an,optimally,complementary,way.,In,We,remark,that,other,choices,for,the,deflation,operator,,of,a,similar,style,,can,also,be,used.,particular,,[61,,Section,3.6.3],proposes,a,modification,when,many,solutions,are,already,known,(for,a,fixed,λ),so,that,we,use,D(u;,u∗,1,,u∗,2,,.,.,.,,,u∗,l,),:=,,α1,+,l,(cid:89),j=1,,−1,min(∥u,−,u∗,j,∥p,p,,α2),,,,(37),with,default,values,α1,=,1,and,α2,=,1.,Here,the,use,of,α2,in,the,minimum,is,due,to,the,fact,that,the,product,may,otherwise,be,large,even,when,u,is,close,to,some,u∗,j,as,it,may,well,be,far,from,other,solutions,u∗,i,.,This,choice,of,deflation,operator,loses,differentiability,on,null,sets,around,each,known,solution,,depending,on,α2,,but,this,appears,not,to,be,an,issue,in,practice.,In,general,,there,is,a,balance,between,wanting,to,ensure,we,deflate,away,known,solutions,effectively,,so,that,Newton’s,method,does,not,try,to,converge,to,them,at,any,point,,and,keeping,the,rest,of,the,function,g,as,nice,as,possible,to,enable,the,best,chance,of,converging,to,a,new,solution.,This,can,also,be,problem,dependent,,as,is,the,choice,for,p,and,σ,in,(35);,an,exploration,of,this,is,found,in,[25].,Deflation,can,also,be,applied,to,coupled,systems,,an,example,of,which,is,given,in,[7],for,Rayleigh–,B´enard,convection,with,no-slip,boundary,conditions,in,two,dimensions.,The,steady-state,problem,for,fluid,velocity,u,,pressure,p,,and,temperature,T,is,given,in,nondimensionalised,form,as,−u,·,∇u,−,∇p,+,Pr,∆u,+,Pr,Ra,T,ˆz,=,0,,∇,·,u,=,0,,−u,·,∇T,+,∆T,=,0,,(38a),(38b),(38c),where,Pr,is,the,Prandtl,number,,Ra,is,the,Rayleigh,number,,and,ˆz,is,the,buoyancy,direction.,Here,the,Oberbeck–Boussinesq,approximation,has,been,made;,see,[7],for,further,details,on,the,derivation,and,simplifications,made,to,obtain,(38).,The,continuation,parameter,used,is,Ra,and,the,equations,in,(38),are,collected,together,to,form,the,nonlinear,problem,F,(ϕ,,Ra),=,0,,where,ϕ,=,(u,,p,,T,).,In,this,case,,the,deflation,operator,takes,into,account,u,and,T,and,is,given,by,D((u,,p,,T,);,(u∗,,p∗,,T,∗)),=,1,∥u,−,u∗∥2,2,+,∥∇(u,−,u∗)∥2,2,+,∥T,−,T,∗∥2,2,+,1,,(39),17,for,known,solution,ϕ∗,=,(u∗,,p∗,,T,∗).,Note,that,the,pressure,p,is,not,present,in,(39),so,as,to,deflate,all,solutions,which,are,trivially,related,to,the,known,solution,by,the,addition,of,a,constant,to,the,pressure.,Similar,considerations,should,be,made,for,symmetries,in,the,underlying,problem,,as,detailed,in,Section,5.1,,and,considered,in,examples,from,the,physics,of,Bose–Einstein,condensates,in,[11,,12,,6].,Deflation,has,also,been,considered,for,computing,equilibrium,states,within,cholesteric,liquid,crystals,[22].,4,Dynamical,systems,So,far,we,have,only,considered,solutions,of,(1),in,the,stationary,sense,,that,is,without,depending,on,time.,In,practice,,many,problems,of,interest,are,time-dependent,and,steady,solutions,may,bifurcate,into,time-,dependent,(or,even,turbulent),solutions,,adding,additional,complexity,into,consideration,of,continuation,methods.,A,typical,starting,point,is,an,ordinary,differential,equation,(ODE),du,dt,=,F,(u,,λ),,(40),for,a,vector,field,F,.,In,this,context,,in,the,previous,sections,we,have,been,considering,steady,solutions,given,by,(1),,which,are,fixed,points,of,(40),in,the,sense,that,solutions,do,not,change,over,time.,A,key,feature,of,(40),is,that,it,is,autonomous,,namely,F,does,not,depend,explicitly,on,time,t,(only,through,the,solution,u).,This,means,that,,from,an,initial,state,u0,at,time,t,=,0,,the,solution,in,time,u(t;,u0),satisfies,u(t,+,τ,;,u0),=,u(t,,u(τ,;,u0)),,(41),which,is,the,key,defining,property,of,a,dynamical,system.,With,the,introduction,of,time,,we,also,need,to,consider,the,concept,of,stability,of,fixed,points,,i.e.,,solutions,of,(1).,A,fixed,point,is,stable,if,nearby,solutions,always,stay,nearby,for,all,forward,times,,otherwise,it,is,unstable;,this,is,related,to,eigenvalues,of,the,Jacobian,and,is,used,to,categorise,various,bifurcations,,such,as,pitchforks,,as,subcritical,or,supercritical,depending,on,the,stability,properties,of,the,branches.,If,all,nearby,solutions,tend,to,the,fixed,point,,then,it,is,asymptotically,stable,and,the,fixed,point,is,an,attractor.,As,well,as,fixed,points,(steady,states),,other,types,of,attractors,may,be,encountered,in,the,time-dependent,case,,such,as,periodic,orbits,,invariant,tori,,and,other,more,exotic,structures,in,higher,dimensions.,These,objects,themselves,can,bifurcate,as,problem,parameters,vary,and,can,give,rise,to,other,bifurcation,behaviour,,such,as,period,doubling,of,periodic,orbits.,We,will,discuss,some,aspects,of,periodic,orbits,below.,Many,real-world,problems,are,represented,not,by,ODEs,such,as,(40),,but,by,PDEs,of,the,form,∂u,∂t,=,F,(u,,λ),,(42),where,F,may,now,contain,spatial,differential,operators;,again,we,assume,such,a,system,is,autonomous.,Numerical,continuation,and,bifurcation,methods,for,(42),are,arguably,the,same,as,those,for,(40),in,that,we,typically,discretise,first,in,space,to,obtain,a,semidiscrete,system,of,the,form,(40).,The,key,difference,is,that,now,the,system,(40),is,much,larger,due,to,the,spatial,discretisation,and,so,F,:,RN,+1,→,RN,where,N,is,large,,in,particular,such,that,direct,solvers,for,the,Jacobian,(such,as,via,an,LU,-decomposition),are,prohibitive.,This,relates,to,discussions,in,Section,2.4,and,it,should,be,kept,in,mind,that,additional,implementation,issues,arise,due,to,the,large,size,of,the,dynamical,systems,when,solving,PDE,problems.,One,way,to,find,steady,state,solutions,of,(40),is,to,use,some,kind,of,time-stepping,technique,in,the,hope,of,converging,to,a,solution,for,large,time,t.,This,will,only,be,able,to,find,stable,solutions,but,may,avoid,difficulty,in,the,linear,algebra,for,the,types,of,large,systems,arising,from,PDEs.,It,is,further,possible,to,reformulate,finding,steady,states,within,the,wider,setting,of,fixed,points,of,the,map,v,(cid:55)→,u(T,;,v),,(43),where,u(T,;,v),is,the,solution,of,time-stepping,(40),to,time,T,from,initial,state,v.,We,can,then,look,for,fixed,points,of,the,nonlinear,map,(43),(e.g.,,by,applying,Newton’s,method);,see,[19,,Section,3.1],and,also,[56].,Fixed,points,will,include,steady,states,but,also,T,-periodic,orbits,,should,any,exist,,and,so,it,must,be,checked,whether,solutions,found,are,true,steady,states.,There,is,a,balance,between,making,T,large,,which,tends,to,make,the,nonlinear,solve,easier,,and,making,T,small,to,reduce,the,work,from,18,the,time-stepper.,Hence,,T,should,be,chosen,to,optimise,the,total,computation,time,,which,usually,requires,some,numerical,experimenting,to,determine,a,good,value.,Similar,ideas,can,be,applied,to,other,attractors,,such,as,periodic,orbits,and,invariant,tori,,as,described,in,[19,,Section,3.1].,We,will,discuss,shortly,this,further,in,relation,to,periodic,orbits.,We,now,consider,standard,bifurcations,that,arise,from,steady,states,of,(40),where,λ,is,a,scalar.,Each,has,a,normal,form,in,which,the,bifurcation,is,exhibited,in,its,most,fundamental,formulation.,The,first,is,the,so-called,saddle-node,bifurcation,,also,known,as,a,fold,in,the,terminology,of,previous,sections,,which,has,the,normal,form,du,dt,=,λ,±,u2.,√,√,λ,−λ,In,the,supercritical,case,,given,by,the,negative,sign,,the,branch,given,by,u,=,is,unstable.,This,is,reversed,in,the,subcritical,case,,given,by,the,positive,sign,,where,the,branch,u,=,is,unstable,and,u,=,−,λ,is,stable,while,u,=,−,√,−λ,is,stable.,√,A,transcritical,bifurcation,corresponds,to,two,branches,intersecting,at,an,angle,,in,the,normal,form,the,bifurcation,occurs,at,the,intersection,of,two,straight,lines,as,In,both,the,supercritical,case,(negative,sign),and,subcritical,case,(positive,sign),the,fixed,points,given,by,the,two,branches,change,stability,at,the,bifurcation,point.,A,pitchfork,bifurcation,takes,the,form,du,dt,=,λu,±,u2.,du,dt,=,λu,±,u3.,√,Here,in,the,supercritical,case,the,trivial,branch,u,=,0,is,stable,for,λ,<,0,and,stability,is,exchanged,with,the,conjugate,solutions,u,=,±,λ,upon,bifurcation,at,λ,=,0,,with,the,trivial,branch,then,becoming,unstable,for,λ,>,0.,However,,in,the,subcritical,case,the,solutions,u,=,±,−λ,are,unstable,,restricting,convergence,to,the,stable,trivial,branch,for,λ,<,0,,which,ultimately,undergoes,a,so-called,catastrophic,loss,of,stability,upon,bifurcation,,with,all,solutions,(here,just,the,trivial,branch),becoming,unstable,for,λ,>,0.,√,Transcritical,and,pitchfork,bifurcations,are,both,structurally,unstable,as,small,perturbations,destroy,their,structure,(as,in,Figure,2,in,Section,1),,and,this,means,they,are,non-generic,and,typically,arise,due,to,symmetry,of,the,underlying,system.,In,fact,,two,parameters,are,required,to,obtain,all,local,behaviour,(e.g.,,δ,in,Figure,2,as,well,as,λ),and,so,such,bifurcations,are,said,to,be,of,co-dimension,two;,see,[21].,In,contrast,,saddle-node,(fold),bifurcations,are,of,co-dimension,one,,as,is,the,final,bifurcation,of,steady,states,that,we,now,consider.,A,Hopf,bifurcation,relates,to,the,birth,(or,death),of,a,periodic,orbit,from,a,steady,state.,Note,that,this,is,therefore,a,dynamic,bifurcation.,The,normal,form,requires,two,components,and,is,typically,given,in,polar,coordinates,(r,,θ),as,dr,dt,dθ,dt,=,λr,±,r3,,=,ω,,√,for,ω,̸=,0.,This,has,some,resemblance,to,a,pitchfork,bifurcation,,as,can,be,seen,in,the,r-equation,,but,instead,of,a,conjugate,pair,of,solutions,,we,instead,have,a,periodic,orbit,interacting,with,a,fixed,point.,In,the,supercritical,case,,the,trivial,solution,r,=,0,again,transfers,its,stability,,this,time,to,a,periodic,λ,,as,λ,increases,through,the,bifurcation,point,at,λ,=,0.,In,fact,,the,periodic,orbit,attracts,orbit,at,r,=,nearby,solutions,at,an,exponential,rate,in,time.,The,generic,Hopf,bifurcation,occurs,when,two,complex,conjugate,eigenvalues,(of,the,Jacobian),cross,the,imaginary,axis.,In,the,subcritical,case,,an,unstable,periodic,orbit,is,present,along,with,the,stable,trivial,branch,for,λ,<,0,,in,this,case,solutions,inside,the,periodic,orbit,(r,<,−λ),are,attracted,by,the,trivial,fixed,point,while,outside,of,the,periodic,orbit,they,diverge.,√,19,4.1,Periodic,orbits,To,address,stability,and,potential,bifurcation,of,periodic,orbits,we,can,consider,Poincar´e,maps.,The,idea,is,to,introduce,a,hyperplane,Σ,,called,a,Poincar´e,section,,which,intersects,the,periodic,orbit,in,a,transverse,manner.,This,should,be,constructed,so,that,Σ,only,intersects,the,orbit,once,(not,twice,,i.e.,,not,“on,the,way,back,round”,too),,for,instance,corresponding,to,r,>,0,and,θ,=,0,in,the,normal,form,of,the,Hopf,bifurcation,above.,Note,that,transversality,requires,that,the,intersection,point,u∗,of,the,periodic,orbit,,say,˚u(t;,u0),,and,the,Poincar´e,section,Σ,should,be,linearly,independent,from,F,(u∗,,λ).,More,details,on,parametrising,Σ,can,be,found,in,[54].,We,can,then,define,the,Poincar´e,map,Π,:,Σ,→,Σ,to,be,the,first,intersection,of,the,forward,orbit,of,an,initial,state,u0,∈,Σ,to,(40),with,Σ.,That,is,,for,u0,∈,Σ,we,have,Π(u0),=,u(T1,,u0),where,T1,>,0,is,the,first,time,the,solution,u(t;,u0),returns,to,Σ.,A,sketch,is,given,in,Figure,4.,The,stability,of,a,periodic,orbit,˚u(t;,u∗),,where,u∗,∈,Σ,is,its,intersection,with,Σ,,is,determined,by,the,associated,stability,of,the,fixed,point,u∗,of,the,Poincar´e,map,Π.,Σ,+,u0,+,u1,+,u2,Figure,4:,Sketch,of,a,Poincar´e,map,in,action,with,associated,Poincar´e,section,Σ,in,blue.,The,initial,state,is,u0,with,its,orbit,u(t;,u0),given,by,the,black,spiral,,which,tends,to,the,periodic,orbit,˚u(t;,u∗),in,dashed,red.,The,Poincar´e,map,Π,is,such,that,Π(u0),=,u1,,Π(u1),=,u2,,and,so,on.,Stability,depends,on,the,eigenvalues,of,the,linearisation,of,Π,around,u∗,,in,a,similar,way,that,stability,of,fixed,points,depends,on,the,eigenvalues,of,the,Jacobian.,In,practice,,this,relates,to,a,(non-unique),monodromy,matrix,M,;,see,[55,,Chapter,7],for,much,more,detail.,One,way,to,construct,a,monodromy,matrix,is,by,considering,the,(in,general,nonautonomous),matrix,valued,ODE,dΦ,dt,=,Jf,(u∗)Φ,,Φ(0),=,I,,where,I,is,the,identity,matrix,,and,defining,M,=,Φ(T1).,As,before,,Jf,is,the,Jacobian,of,f,(u),:=,F,(u,,λ).,While,the,monodromy,matrix,depends,on,the,phase,of,the,periodic,orbit,,namely,given,by,the,position,of,Σ,,the,eigenvalues,do,not.,These,eigenvalues,of,M,are,called,Floquet,multipliers,and,we,always,have,a,unit,multiplier,γ,=,1,which,relates,to,the,translation,invariance,of,the,periodic,orbit,,that,is,t,(cid:55)→,˚u(t,+,τ,),is,the,same,periodic,orbit,for,any,τ,.,The,remaining,multipliers,determine,stability,,with,(asymptotic),stability,only,when,all,but,the,trivial,multiplier,satisfy,|γ|,<,1.,If,any,multiplier,has,|γ|,>,1,,then,the,periodic,orbit,is,unstable.,We,emphasise,that,Π,is,a,map,,namely,being,discrete,rather,than,continuous,like,(40).,Such,discrete,maps,also,present,a,rich,source,of,bifurcations,which,,in,this,case,,correspond,to,bifurcations,of,the,periodic,orbits,(rather,than,solely,steady,states).,Bifurcations,now,occur,when,non-trivial,multipliers,cross,the,unit,circle,in,the,complex,plane.,In,one,dimensional,maps,we,can,only,have,the,non-trivial,multiplier,cross,through,γ,=,1,or,γ,=,−1.,The,former,corresponds,to,the,standard,bifurcations,previously,discussed,for,steady,states,,namely,saddle-node,(fold),,transcritical,and,pitchfork,bifurcations,(now,of,20,periodic,orbits).,The,case,γ,=,−1,gives,rise,to,a,so-called,period-doubling,bifurcation,,where,the,periodic,orbit,will,double,its,period,(i.e.,,return,time,T1,of,the,Poincar´e,map),,or,equivalently,halve,its,period,,depending,on,whether,the,parameter,λ,is,increasing,or,decreasing.,This,bifurcation,in,maps,is,of,co-,dimension,one,and,we,note,that,it,can,lead,to,the,onset,of,chaotic,dynamics,[16].,In,two,or,more,dimensions,we,can,have,a,pair,of,complex,conjugate,eigenvalues,cross,the,unit,circle,at,e±iθ,for,θ,not,a,multiple,of,π.,This,is,a,(Poincar´e–Andronov–)Hopf,bifurcation.,If,θ/2π,is,rational,,say,p/q,,then,this,results,in,a,periodic,orbit,with,a,potentially,much,larger,period,related,to,the,denominator,q.,Otherwise,,the,orbit,becomes,dense,on,an,invariant,two-dimensional,torus,,that,is,if,we,start,on,the,torus,,we,remain,on,the,torus,and,eventually,the,orbit,cover,all,parts,of,the,torus.,Note,that,,even,in,the,rational,case,,the,orbit,will,lie,on,a,torus,but,in,this,case,,due,to,extra,periodicity,,will,not,be,dense.,Due,to,such,structure,this,bifurcation,is,also,called,a,torus,bifurcation.,More,generally,the,bifurcation,in,the,discrete,time,map,is,called,a,Naimark–Sacker,bifurcation.,More,on,periodic,orbits,,calculating,the,monodromy,matrix,,and,bifurcation,behaviour,can,be,found,in,[55,,Chapter,7].,At,this,point,we,remark,that,,in,sufficiently,high,dimensions,,other,invariant,manifolds,,such,as,invariant,tori,,can,bifurcate,and,that,there,is,a,whole,zoo,of,increasingly,complex,bifurcation,behaviour,to,explore,if,one,is,willing,to,go,looking.,We,briefly,consider,the,concept,of,global,bifurcations,in,complement,to,aforementioned,examples,of,local,bifurcations.,4.2,Global,bifurcations,Other,types,of,bifurcations,for,periodic,orbits,to,those,discussed,above,also,exist,,including,a,so-called,blue-sky,catastrophe,,which,relates,to,infinite,period,and,infinite,length,periodic,orbits,[46],,thus,global,In,general,,bifurcation,not,only,refers,to,local,changes,in,behaviour,,as,we,have,so,far,behaviour.,considered,,but,also,changes,in,the,global,behaviour,of,solutions,,which,manifests,as,global,bifurcations.,The,simplest,example,is,that,of,a,homoclinic,bifurcation,where,a,periodic,orbit,merges,with,a,saddle,point.,As,we,approach,the,bifurcation,point,the,period,of,the,periodic,orbit,tends,to,infinity,and,at,bifurcation,becomes,a,homoclinic,orbit,(starting,and,ending,at,the,saddle,point).,After,bifurcation,the,periodic,orbit,ceases,to,exist.,In,general,,global,bifurcations,are,more,difficult,to,find,and,analyse,,as,well,as,to,compute,,by,the,nature,of,being,related,to,global,phenomena.,Typically,a,good,understanding,of,the,problem,at,hand,is,required,to,investigate,the,behaviour.,We,refer,to,[42],and,references,therein,for,a,variety,of,topics,related,to,applied,bifurcation,theory.,We,will,not,consider,further,issues,related,to,global,bifurcation.,5,Symmetries,In,this,section,,we,comment,on,the,special,roles,that,symmetry,can,play,and,how,this,may,affect,branching,and,bifurcation.,We,have,seen,the,presence,of,symmetry,,in,particular,in,pitchfork,bifurcations,(see,Figure,1,in,Section,1).,In,the,simplest,one-dimensional,case,for,F,(x,,λ),=,0,,the,symmetry,stems,from,the,transformation,x,(cid:55)→,−x,with,F,(−x,,λ),=,−F,(x,,λ),,which,is,present,in,the,normal,form,of,the,pitchfork,F,(x,,λ),=,λx,±,x3.,This,symmetry,can,be,broken,by,a,low,order,perturbation,term,,namely,for,F,(x,,λ),=,λx,−,x3,+,δ,with,δ,>,0,small,(see,Figure,2,in,Section,1),and,is,a,consequence,of,the,fact,that,pitchfork,bifurcations,are,of,co-dimension,two.,We,note,that,in,numerical,computation,the,symmetry,might,also,be,broken,by,the,discretisation,if,it,is,nonsymmetric,or,on,a,non-uniform,mesh.,This,has,consequences,for,continuation,methods,designed,for,connected,solutions,branches,as,it,may,disconnect,the,branches,that,otherwise,would,meet,at,a,pitchfork.,If,we,are,able,to,enforce,and,maintain,symmetry,,then,connectedness,is,retained,and,the,pitchfork,bifurcation,effectively,reduces,to,be,of,co-dimension,one.,Similar,principles,apply,in,higher,dimensions,and,to,other,bifurcations,that,relate,to,symmetry.,Equivariant,branching,is,the,name,given,to,the,branching,phenomena,that,occur,when,a,higher-,dimensional,kernel,arises,from,symmetries,of,the,underlying,problem.,The,natural,language,to,express,more,complex,symmetries,is,via,a,symmetry,group,and,the,ideas,here,lead,to,the,key,result,of,the,equivariant,branching,lemma,,which,gives,the,existence,of,a,branch,related,by,symmetry.,The,machinery,required,becomes,somewhat,technical,,involving,compact,Lie,groups,,so,we,refrain,from,a,description,here;,see,,e.g.,,[61,,Section,2.5].,We,note,that,an,equivariant,Hopf,bifurcation,theorem,also,exists,[39,,Chapter,4].,In,essence,,symmetries,are,encoded,by,the,fact,that,F,(γu,,λ),=,γF,(u,,λ),for,all,γ,in,a,symmetry,group,Γ,,with,γu,and,γF,being,appropriate,actions,of,the,group.,For,homogenous,PDE,21,problems,this,can,stem,from,symmetry,of,the,domain,,such,as,through,rotation,or,reflection.,For,instance,,the,symmetries,for,a,square,domain,are,given,by,the,dihedral,group,D4,,stemming,from,the,generators,of,rotation,by,90◦,and,reflection,in,one,axis.,See,[39,,Section,4.3],for,an,example,on,the,square,and,[61,,Section,2.5],for,an,example,on,an,equilateral,triangle;,see,also,[61,,Section,6.5].,Discrete,symmetries,can,lead,to,a,higher,multiplicity,of,branches,intersecting,at,a,bifurcation,point,,which,can,cause,trouble,with,branch,switching,and,finding,all,branches,that,emanate,in,practice.,However,,it,is,also,possible,to,have,a,continuous,symmetry,,described,by,a,Lie,group,of,operators,that,have,a,(continuous),manifold,structure;,we,follow,the,discussion,in,[61,,Section,3.5].,Now,it,becomes,possible,that,,instead,of,solution,branches,as,(one-dimensional),curves,,they,may,form,higher,dimensional,objects,such,as,a,sheet,of,solutions.,Here,,non-trivial,solutions,of,F,(u,,λ),can,come,in,continuous,families,related,by,the,group,orbit,,namely,OΓ(u),=,{γu,|,γ,∈,Γ}.,This,degenerate,situation,results,in,at,least,one,zero,eigenvalue,of,the,Jacobian.,Since,solution,families,are,linked,by,the,continuous,symmetry,,the,objects,of,interest,here,should,be,the,group,orbits,rather,than,individual,solutions;,that,is,we,should,remove,the,continuous,symmetry,from,the,problem,we,are,trying,to,solve.,One,way,to,remove,the,continuous,symmetry,is,to,constrain,the,problem,so,that,,given,a,solution,u∗,,we,require,any,new,solutions,to,be,transverse,to,the,group,orbit,of,u∗.,Given,a,suitable,inner,product,⟨·,,·⟩,,this,can,be,achieved,through,orthogonality,,namely,a,phase,condition,⟨∂γu∗,,u,−,u∗⟩,=,0,,where,∂γ,stems,from,the,group,action,which,in,turn,is,dictated,by,the,generators,of,the,group.,A,simple,example,comes,from,the,use,of,periodic,boundary,conditions,in,x,for,a,homogeneous,problem,,in,which,case,we,have,∂γ,=,∂x.,Note,that,this,can,also,arise,in,polar,,cylindrical,,or,spherical,co-ordinates,where,periodicity,in,an,angle,θ,is,to,be,expected.,We,further,remark,that,while,spatial,discretisation,may,break,the,symmetry,this,will,only,be,weakly,and,lead,to,ill-conditioning,and,instability,of,the,continuation,methodology,,which,should,be,avoided.,Implementation,of,a,phase,condition,can,be,done,through,use,of,a,Lagrange,multiplier,η,,which,is,an,extra,parameter,to,solve,for,,and,the,modified,system,F,(u,,λ),+,η∂γu,=,0.,More,details,on,treating,continuous,symmetries,can,be,found,in,[4],and,examples,in,pde2path,are,discussed,in,[61,,Section,6.8].,Our,primary,purpose,here,is,to,emphasise,that,care,must,be,taken,when,the,problem,has,symmetry,,which,may,also,be,a,hidden,symmetry,which,is,not,immediately,evident,from,the,structure,,for,example,,of,the,PDE,or,domain.,5.1,Treating,symmetries,in,deflated,continuation,When,using,deflated,continuation,,instead,of,deflating,away,the,known,solution,u∗,,in,the,presence,of,a,continuous,symmetry,group,we,must,deflate,away,the,whole,group,orbit,OΓ(u∗).,To,do,this,the,deflation,operator,should,be,constructed,so,that,it,is,invariant,to,the,action,of,the,underlying,Lie,group.,A,rich,example,of,this,approach,is,given,in,[11,,12,,6],by,considering,the,(complex-valued),Gross–Pitaevskii,equation,,here,described,in,3D,as,−,1,2,∆u,+,x2,+,y2,+,z2,2,u,−,λu,+,|u|2u,=,0,,on,a,domain,Ω,with,suitable,boundary,conditions,(for,instance,,homogeneous,Dirichlet,conditions,so,long,as,the,domain,is,suitably,large).,This,is,a,nonlinear,Schr¨odinger,equation,with,a,parabolic,potential,and,relates,to,atomic,Bose–Einstein,condensates.,The,PDE,here,has,the,continuous,symmetry,group,SO(2),(the,special,orthogonal,group,on,the,plane),corresponding,to,complex,phase,shifts,u(x),(cid:55)→,eiθu(x),,for,θ,∈,R.,In,this,case,,given,a,solution,u∗,,we,can,build,a,deflation,operator,invariant,to,this,symmetry,as,D(u;,u∗),=,∥|u|,−,|u∗|∥−2,+,1,,for,a,suitable,norm,(e.g.,,the,H,1-norm,in,[11]),and,where,|u|,is,the,amplitude,of,the,complex-valued,wavefunction,u.,22,A,further,symmetry,group,also,exists,,namely,SO(3),corresponding,to,fixed-body,rotations,R,∈,R3×3,in,space,,that,is,u(x),(cid:55)→,u(Rx),,for,R−1,=,RT,with,det,R,=,1.,This,time,an,appropriate,deflation,operator,can,be,given,by,D(u;,u∗),=,∥|ˆu|,−,|ˆu∗|∥−2,+,1,,where,,in,spherical,coordinates,,ˆu(r,,θ,,ψ),is,the,average,of,u,over,a,shell,of,radius,r;,see,[12],for,a,more,concrete,example,in,2D.,The,practicality,of,the,approach,for,more,complex,symmetry,groups,remains,open,as,,while,there,are,good,ideas,on,what,exactly,must,be,computed,,the,computation,itself,becomes,challenging,and,difficult,to,parallelise,due,to,non-local,behaviour.,Finally,,we,reiterate,that,even,with,symmetry,considerations,the,deflated,continuation,approach,will,not,always,find,all,solution,branches,and,,in,general,,the,quality,of,the,initial,guess(es),for,Newton’s,method,are,of,key,importance;,in,[11],an,example,of,this,is,shown,and,additional,knowledge,was,used,to,supply,initial,guesses,that,revealed,new,solutions,branches,that,deflated,continuation,alone,missed.,Indeed,,we,highlight,one,of,the,conclusions,from,this,work,which,states,that,“deflated,continuation,should,not,be,thought,of,as,a,universal,method,that,blindly,reveals,all,solutions,to,a,particular,bifurcation,problem,,but,as,a,useful,tool,that,becomes,even,more,powerful,when,combined,with,physical,insight”.,Nonetheless,,deflation,has,proved,itself,to,be,an,essential,part,of,solving,challenging,PDE,continuation,problems,when,bifurcation,results,in,many,solutions,branches.,6,Available,software,There,is,a,good,variety,of,high,quality,,robust,and,well-maintained,software,packages,that,are,available,for,numerical,continuation.,We,recommend,that,,where,appropriate,,the,NEPTUNE,project,should,utilise,these,instead,of,re-implementing,well,known,algorithms.,We,summarise,some,of,the,more,popular,packages,in,Table,1.,A,more,complete,list,of,software,for,dynamical,systems,can,be,found,on,the,SIAM,Dynamical,Systems,website4,,while,a,selection,of,those,capable,of,continuation,and,bifurcation,analysis,are,highlighted,on,the,BifurcationKit.jl,website5.,In,Table,1,,we,have,included,information,about,when,the,software,was,last,updated,,its,primary,language,,and,what,are,the,terms,of,its,license.,As,it,is,important,for,NEPTUNE,that,the,software,is,suitable,for,large-scale,problems,,and,supports,deflation,,we,have,identified,these,packages,in,the,table.,We,also,include,details,about,the,main,algorithms,implemented,by,the,software,and,any,package-specific,notes.,Of,these,packages,,we,have,identified,pde2path,,BifurcationKit.jl,and,defcon,,which,all,support,large-scale,problems,and,deflation,,as,the,best,candidates,in,the,context,of,NEPTUNE.,The,Trilinos,package,LOCA,does,not,support,deflation,at,the,moment,,but,is,otherwise,fully,featured,and,well,developed,,and,may,also,be,worth,exploring.,We,note,that,LOCA,(along,with,its,companion,package,NOX,for,the,nonlinear,systems),aims,to,be,generic,and,general-purpose,,thus,making,it,less,straightforward,to,use,to,begin,with.,We,directly,quote,from,the,review,article,[19]:,“The,main,obstacle,involved,in,devising,such,a,library,is,that,the,performance,and,robustness,often,depend,largely,on,the,inner,linear,solver,method,,and,its,application-specific,data,structures,and,preconditioners.,So,,a,general,purpose,package,must,use,abstract,layers,around,the,linear,algebra,so,the,bifurcation,analysis,algorithms,can,be,written,independently,of,the,linear,algebra.,This,makes,it,harder,to,write,,and,to,interface,to,,than,might,be,expected.”,One,potential,issue,with,the,existing,software,implementations,currently,available,is,that,they,tend,to,require,that,the,user,describes,the,problem,in,their,own,language;,for,example,,defcon,works,with,FEniCS,or,Firedrake,,and,pde2path,only,solves,PDE,systems,of,a,certain,(albeit,broad),type,,using,its,own,discretisation.,Note,also,that,BifurcationKit.jl,does,not,natively,solve,PDE,systems,,but,the,companion,package,GridapBifurcationKit.jl,[63],allows,the,solution,of,such,problems,using,the,Julia,Finite,Element,packages,Gridap.jl,[2].,4https://dsweb.siam.org/Software,5https://bifurcationkit.github.io/BifurcationKitDocs.jl/stable/#Other-softwares,23,e,w,n,m,u,l,o,c,d,e,t,n,e,m,e,l,p,m,i,s,m,h,t,i,r,o,g,l,a,e,h,t,n,i,h,t,i,W,.,),y,l,l,a,c,i,t,e,b,a,h,p,l,a,n,e,h,t,d,n,a,e,g,a,u,g,n,a,l,i,g,n,m,m,a,r,g,o,r,p,y,b,d,e,r,e,d,r,o,(,e,r,a,w,t,f,o,s,n,o,i,t,a,u,n,i,t,n,o,c,f,o,y,r,a,m,m,u,S,:,1,e,l,b,a,T,e,b,n,a,c,y,e,h,t,n,e,h,w,s,r,o,t,c,i,d,e,r,p,e,h,t,t,s,i,l,y,l,n,o,n,o,i,t,a,u,n,i,t,n,o,c,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,p,r,o,f,d,n,a,d,e,fi,i,c,e,p,s,e,s,i,w,r,e,h,t,o,s,s,e,l,n,u,t,l,u,a,f,e,d,y,b,d,o,h,t,e,m,n,o,t,w,e,N,r,a,l,u,g,e,r,a,e,m,u,s,s,a,y,t,i,r,a,e,n,i,l,n,o,n,c,i,t,a,r,d,a,u,q,r,a,e,n,i,l,n,o,n,s,e,r,i,u,q,e,R,h,t,i,w,l,a,i,m,o,n,y,l,o,p,e,b,o,t,m,e,t,s,y,s,b,i,l,E,S,F,r,o,E,D,P,O,O,y,l,n,O,.,),r,e,d,r,o,h,g,i,h,(,a,f,o,s,m,e,l,b,o,r,p,s,e,v,l,o,s,s,s,a,l,c,E,D,P,n,i,a,t,r,e,c,n,o,d,e,s,a,b,s,E,D,P,e,k,a,r,d,e,r,i,F,r,e,h,t,i,e,s,e,s,U,S,C,i,n,E,F,r,o,n,o,t,w,e,N,d,e,p,m,a,d,/,n,o,t,w,e,N,h,t,i,w,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,l,a,c,i,r,e,m,u,n,c,i,t,o,t,p,m,y,s,A,),M,N,A,(,d,o,h,t,e,m,–,e,r,o,o,M,/,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,e,s,o,r,n,e,P,e,l,p,i,t,l,u,m,/,c,i,t,a,r,d,a,u,q,/,l,a,r,u,t,a,n,e,l,b,a,l,i,a,v,a,o,s,l,a,s,r,o,t,c,i,d,e,r,p,h,t,i,w,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,;,n,o,t,w,e,N,d,r,o,h,c,/,r,a,l,u,g,e,r,e,l,p,i,t,l,u,m,/,l,a,i,m,o,n,y,l,o,p,/,l,a,r,u,t,a,n,s,a,e,l,b,a,l,i,a,v,a,o,s,l,a,s,r,o,t,c,i,d,e,r,p,–,e,r,o,o,M,/,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,h,t,i,w,e,s,o,r,n,e,P,),M,N,A,(,d,o,h,t,e,m,l,a,c,i,r,e,m,u,n,c,i,t,o,t,p,m,y,s,a,e,h,t,s,a,l,l,e,w,r,o,t,c,i,d,e,r,p,t,n,a,c,e,s,/,t,n,e,g,n,a,t,h,t,i,w,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,s,o,n,i,l,i,r,T,e,h,t,f,o,t,r,a,P,e,g,a,k,c,a,p,/,t,n,a,c,e,s,/,t,n,e,g,n,a,t,/,l,a,r,u,t,a,n,h,t,i,w,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,,,n,o,i,t,a,u,n,i,t,n,o,c,s,t,r,o,p,p,u,S,s,d,o,h,t,e,m,n,o,i,t,a,u,n,i,t,n,o,c,d,e,t,n,e,m,u,c,o,d,l,l,e,w,t,o,n,e,t,i,n,fi,a,y,l,n,i,a,m,t,u,b,—,y,r,a,r,b,i,l,t,n,e,m,e,l,e,r,o,t,c,i,d,e,r,p,m,o,d,n,a,r,h,t,g,n,e,l,c,r,a,-,o,d,u,e,s,P,✓,✓,✓,✓,✓,✓,✓,✓,s,e,t,o,N,d,e,t,n,e,m,e,l,p,m,i,s,m,h,t,i,r,o,g,l,a,n,i,a,M,?,n,o,i,t,a,fl,e,D,?,e,l,a,c,s,-,e,g,r,a,L,C,-,L,L,I,C,e,C,B,A,L,T,A,M,9,1,0,2,t,s,u,g,u,A,],4,3,[,b,a,L,n,a,M,),7,.,1,.,4,v,(,e,c,n,e,c,i,L,L,P,G,e,g,a,u,g,n,a,L,B,A,L,T,A,M,d,e,t,a,d,p,U,t,s,a,L,0,2,0,2,h,c,r,a,M,e,r,a,w,t,f,o,S,],3,1,[,O,C,O,C,.,r,o,t,c,i,d,e,r,p,t,n,e,g,n,a,t,t,l,u,a,f,e,d,e,h,t,f,o,e,d,i,s,t,u,o,e,n,o,N,B,A,L,T,A,M,3,2,0,2,y,r,a,u,n,a,J,],7,1,[,t,n,o,C,t,a,M,L,P,G,B,A,L,T,A,M,r,e,b,m,e,t,p,e,S,),0,.,3,v,(,1,2,0,2,),4,.,7,v,(,],9,4,[,h,t,a,p,2,e,d,p,I,T,M,a,i,l,u,J,3,2,0,2,e,n,u,J,l,j,.,t,i,K,n,o,i,t,a,c,r,u,f,i,B,24,),9,.,2,.,0,v,(,],4,6,[,L,P,G,n,o,h,t,y,P,3,2,0,2,e,n,u,J,],8,2,[,n,o,c,f,e,d,e,n,o,N,D,S,B,/,n,a,r,t,r,o,F,n,o,h,t,y,P,+,+,C,1,2,0,2,t,s,u,g,u,A,3,2,0,2,e,n,u,J,),0,.,2,.,4,1,v,(,),3,.,9,.,0,v,(,],0,2,[,O,T,U,A,],8,5,[,A,C,O,L,L,P,G,L,+,+,C,2,2,0,2,y,r,a,u,n,a,J,],7,3,[,h,p,m,o,o,7,Summary,and,conclusions,In,this,report,,we,have,given,a,survey,of,the,state-of-the-art,in,numerical,continuation,methods.,This,is,a,large,field,of,study,,with,numerous,well-written,reference,works,and,mature,software,packages,,to,which,we,have,pointed,to,here.,We,have,considered,both,classical,approaches,for,tracing,continuous,solution,branches,and,deflation,techniques,capable,of,finding,disconnected,branches.,We,have,further,discussed,various,phenomena,which,may,be,encountered,and,the,relevance,of,symmetry,in,the,underlying,problem.,We,have,seen,that,some,approaches,will,typically,not,scale,well,to,large,problems,,this,will,likely,include,pseudo-arclength,continuation,due,to,requirement,to,solve,large,bordered,systems,unless,a,robust,and,scalable,solver,can,be,devised.,Numerical,bifurcation,algorithms,which,we,believe,are,possible,at,large,scale,are,natural,,secant,and,tangent,continuation;,step,size,control;,time-stepping,to,find,stable,solutions;,locating,bifurcations,via,tracking,eigenvalues,of,the,Jacobian;,branch,switching;,and,deflated,continuation,(including,in,the,presence,of,simple,symmetries).,In,the,context,of,NEPTUNE,,we,have,highlighted,that,many,of,the,existing,implementations,rely,on,a,(dense),LU,-factorisation,to,solve,the,linear,systems,,which,is,infeasible,for,large-scale,problems,arising,from,PDEs.,It,is,important,that,the,software,employed,in,the,project,allows,the,use,of,custom,linear,system,solvers,and,,in,particular,,permits,the,use,of,preconditioners,that,have,been,tuned,for,the,specific,problems,of,interest.,Thus,,a,core,part,of,the,overall,development,should,focus,on,providing,efficient,linear,algebra,and,solvers,,typically,for,the,Jacobian,systems,that,arise,in,the,chosen,numerical,continuation,method.,Subproblem,solvers,that,should,be,available,from,the,underlying,software,for,NEPTUNE,are,solving,systems,involving,the,Jacobian,matrix;,Newton’s,method,(or,quasi-Newton,if,desired);,computing,a,small,number,of,eigenvalues,of,the,Jacobian,(with,real,part,closest,to,0);,and,finding,kernel,vectors,of,the,Jacobian,and,its,adjoint.,Another,potential,issue,is,that,in,the,presence,of,discretisation,errors,,even,connected,bifurcation,diagrams,may,become,disconnected,,and,so,it,is,important,that,the,continuation,software,used,is,paired,with,a,deflation,method,in,order,to,capture,as,many,of,the,solution,branches,as,possible.,Deflation,techniques,also,have,the,benefit,of,simplifying,the,overall,approach,,with,no,necessity,to,solve,augmented,systems,or,rely,on,potentially,difficult,branch,switching,procedures,and,avoidance,of,unintentional,branch,jumping.,Nonetheless,,in,all,approaches,,having,good,initial,guesses,can,be,a,great,benefit,and,may,be,necessary.,In,this,sense,,as,much,physical,knowledge,of,the,underlying,problem,should,be,utilised,as,possible,rather,than,the,whole,procedure,seen,as,a,black-box,routine.,References,[1],E.,L.,Allgower,and,K.,Georg.,Introduction,to,Numerical,Continuation,Methods.,SIAM,,2003.,[2],S.,Badia,and,F.,Verdugo.,Gridap:,An,extensible,Finite,Element,toolbox,in,Julia.,Journal,of,Open,Source,Software,,5(52):2520,,2020.,[3],R.,E.,Bank,and,H.,D.,Mittelmann.,Stepsize,selection,in,continuation,procedures,and,damped,Newton’s,method.,Journal,of,Computational,and,Applied,Mathematics,,26(1):67–77,,1989.,[4],W.-J.,Beyn,and,V.,Th¨ummler.,Phase,conditions,,symmetries,and,PDE,continuation.,Numerical,Continuation,Methods,for,Dynamical,Systems:,Path,following,and,boundary,value,problems,,pages,301–330,,2007.,[5],I.,Bogle,,G.,M.,Slota,,E.,G.,Boman,,K.,D.,Devine,,and,S.,Rajamanickam.,Parallel,graph,coloring,algorithms,for,distributed,GPU,environments.,Parallel,Computing,,110:102896,,2022.,[6],N.,Boull´e,,E.,G.,Charalampidis,,P.,E.,Farrell,,and,P.,G.,Kevrekidis.,Deflation-based,identification,of,nonlinear,excitations,of,the,three-dimensional,Gross-Pitaevskii,equation.,Physical,Review,A,,102,(5):053307,,2020.,[7],N.,Boull´e,,V.,Dallas,,and,P.,E.,Farrell.,Bifurcation,analysis,of,two-dimensional,Rayleigh-B´enard,convection,using,deflation.,Physical,Review,E,,105(5):055106,,2022.,[8],K.,M.,Brown,and,W.,B.,Gearhart.,Deflation,techniques,for,the,calculation,of,further,solutions,of,a,nonlinear,system.,Numerische,Mathematik,,16:334–342,,1971.,25,[9],T.,F.,Chan.,Deflation,techniques,and,block-elimination,algorithms,for,solving,bordered,singular,systems.,SIAM,Journal,on,Scientific,and,Statistical,Computing,,5(1):121–134,,1984.,[10],T.,F.,Chan,and,D.,C.,Resasco.,Generalized,deflated,block-elimination.,SIAM,Journal,on,Numerical,Analysis,,23(5):913–924,,1986.,[11],E.,Charalampidis,,P.,Kevrekidis,,and,P.,E.,Farrell.,Computing,stationary,solutions,of,the,two-,dimensional,Gross–Pitaevskii,equation,with,deflated,continuation.,Communications,in,Nonlinear,Science,and,Numerical,Simulation,,54:482–499,,2018.,[12],E.,Charalampidis,,N.,Boull´e,,P.,E.,Farrell,,and,P.,G.,Kevrekidis.,Bifurcation,analysis,of,station-,ary,solutions,of,two-dimensional,coupled,Gross–Pitaevskii,equations,using,deflated,continuation.,Communications,in,Nonlinear,Science,and,Numerical,Simulation,,87:105255,,2020.,[13],H.,Dankowicz,and,F.,Shilder.,COCO,,January,2020.,URL,https://sourceforge.net/projects/,cocotools/.,[14],C.,den,Heijer,and,W.,C.,Rheinboldt.,On,steplength,algorithms,for,a,class,of,continuation,methods.,SIAM,Journal,on,Numerical,Analysis,,18(5):925–948,,1981.,[15],P.,Deuflhard.,Newton,Methods,for,Nonlinear,Problems:,Affine,Invariance,and,Adaptive,Algorithms.,Springer,,2011.,[16],R.,L.,Devaney.,An,Introduction,to,Chaotic,Dynamical,Systems.,CRC,Press,,third,edition,,2022.,[17],A.,Dhooge,,W.,Govaerts,,Y.,A.,Kuznetsov,,H.,G.,E.,Meijer,,and,B.,Sautois.,MatCont,,2023.,URL,https://sourceforge.net/projects/matcont/.,[18],H.,A.,Dijkstra,and,F.,W.,Wubs.,Bifurcation,Analysis,of,Fluid,Flows.,Cambridge,University,Press,,2023.,[19],H.,A.,Dijkstra,,F.,W.,Wubs,,A.,K.,Cliffe,,E.,Doedel,,I.,F.,Dragomirescu,,B.,Eckhardt,,A.,Y.,Gelfgat,,A.,L.,Hazel,,V.,Lucarini,,A.,G.,Salinger,,et,al.,Numerical,bifurcation,methods,and,their,application,to,fluid,dynamics:,analysis,beyond,simulation.,Communications,in,Computational,Physics,,15(1):,1–45,,2014.,[20],E.,Doedel,,A.,Champneys,,F.,Dercole,,T.,Fairgrieve,,Y.,Kuznetsov,,B.,Oldeman,,R.,Paffenroth,,B.,Sandstede,,X.,Wang,,and,C.,Zhang.,AUTO,,2021.,URL,http://cmvl.cs.concordia.ca/auto/.,[21],P.,G.,Drazin.,Nonlinear,systems.,Cambridge,University,Press,,1992.,[22],D.,B.,Emerson,,P.,E.,Farrell,,J.,H.,Adler,,S.,P.,MacLachlan,,and,T.,J.,Atherton.,Computing,equilibrium,states,of,cholesteric,liquid,crystals,in,elliptical,channels,with,deflation,algorithms.,Liquid,Crystals,,45(3):341–350,,2018.,[23],P.,E.,Farrell.,Lecture,notes,from,a,short,course,on,numerical,bifurcation,analysis,at,the,EMS,summer,school,on,mathematical,modelling,,numerical,analysis,and,scientific,computing,in,K´acov,,Czechia,,2023.,https://pefarrell.org/files/kacov2023.pdf.,Accessed:,5th,June,2023.,[24],P.,E.,Farrell,,D.,A.,Ham,,S.,W.,Funke,,and,M.,E.,Rognes.,Automated,derivation,of,the,adjoint,of,high-level,transient,finite,element,programs.,SIAM,Journal,on,Scientific,Computing,,35(4):C369–,C393,,2013.,[25],P.,E.,Farrell,,A.,Birkisson,,and,S.,W.,Funke.,Deflation,techniques,for,finding,distinct,solutions,of,nonlinear,partial,differential,equations.,SIAM,Journal,on,Scientific,Computing,,37(4):A2026–A2045,,2015.,[26],P.,E.,Farrell,,C.,H.,L.,Beentjes,,and,´A.,Birkisson.,The,computation,of,disconnected,bifurcation,diagrams.,arXiv,preprint,arXiv:1603.00809,,2016.,[27],P.,E.,Farrell,,M.,Croci,,and,T.,M.,Surowiec.,Deflation,for,semismooth,equations.,Optimization,Methods,and,Software,,35(6):1248–1271,,2020.,26,[28],P.,E.,Farrell,,J.,Pollard,,R.,C.,Kirby,,J.,Blechta,,M.,Croci,,N.,J.,C.,Sime,,and,N.,Boull´e.,defcon,,2023.,URL,https://bitbucket.org/pefarrell/defcon/src/master/.,[29],A.,H.,Gebremedhin,,F.,Manne,,and,A.,Pothen.,What,color,is,your,Jacobian?,Graph,coloring,for,computing,derivatives.,SIAM,Review,,47(4):629–705,,2005.,[30],K.,Georg.,A,note,on,stepsize,control,for,numerical,curve,following.,In,B.,Curtis,Eaves,,F.,J.,Gould,,H.-O.,Peitgen,,and,M.,J.,Todd,,editors,,Homotopy,Methods,and,Global,Convergence,,pages,145–154.,Springer,,1983.,[31],W.,Govaerts.,Stable,solvers,and,block,elimination,for,bordered,systems.,SIAM,Journal,on,Matrix,Analysis,and,Applications,,12(3):469–483,,1991.,[32],W.,Govaerts,and,J.,Pryce.,Mixed,block,elimination,for,linear,systems,with,wider,borders.,IMA,Journal,of,Numerical,Analysis,,13(2):161–180,,1993.,[33],A.,Griewank,and,A.,Walther.,Evaluating,Derivatives:,Principles,and,Techniques,of,Algorithmic,Differentiation.,SIAM,,2008.,[34],L.,Guillot,,B.,Cochelin,,and,C.,Vergez.,ManLab,,January,2019.,URL,http://diamanlab.lma.,cnrs-mrs.fr/.,v4.1.7.,[35],L.,Guillot,,B.,Cochelin,,and,C.,Vergez.,A,generic,and,efficient,Taylor,series–based,continuation,method,using,a,quadratic,recast,of,smooth,nonlinear,systems.,International,Journal,for,Numerical,Methods,in,Engineering,,119(4):261–280,,2019.,[36],L.,Guillot,,B.,Cochelin,,and,C.,Vergez.,A,Taylor,series-based,continuation,method,for,solutions,of,dynamical,systems.,Nonlinear,Dynamics,,98:2827–2845,,2019.,[37],M.,Heil,and,A.,Hazel.,oomph,,2022.,URL,https://oomph-lib.github.io/oomph-lib/doc/html/.,[38],V.,Henson,et,al.,Multigrid,methods,nonlinear,problems:,an,overview.,Computational,Imaging,,5016:,36–48,,2003.,[39],R.,B.,Hoyle.,Pattern,Formation:,An,Introduction,to,Methods.,Cambridge,University,Press,,2006.,[40],H.,B.,Keller.,The,bordering,algorithm,and,path,following,near,singular,points,of,higher,nullity.,SIAM,Journal,on,Scientific,and,Statistical,Computing,,4(4):573–582,,1983.,[41],H.,B.,Keller.,Lectures,on,numerical,methods,in,bifurcation,problems.,Lectures,on,Mathematics,and,Physics,,Tata,Institute,of,Fundamental,Research,(Bombay),,1987,,1987.,[42],Y.,A.,Kuznetsov.,Elements,of,Applied,Bifurcation,Theory.,Springer,,fourth,edition,,2023.,[43],S.,L´eger,,J.,Deteix,,and,A.,Fortin.,A,Moore–Penrose,continuation,method,based,on,a,Schur,com-,plement,approach,for,nonlinear,finite,element,bifurcation,problems.,Computers,&,Structures,,152:,173–184,,2015.,[44],S.,L´eger,,P.,Larocque,,and,D.,LeBlanc.,Improved,Moore-Penrose,continuation,algorithm,for,the,computation,of,problems,with,critical,points.,Computers,&,Structures,,281:107009,,2023.,[45],C.,C.,Margossian.,A,review,of,automatic,differentiation,and,its,efficient,implementation.,Wiley,interdisciplinary,reviews:,data,mining,and,knowledge,discovery,,9(4):e1305,,2019.,[46],V.,S.,Medvedev.,The,bifurcation,of,the,“blue,sky,catastrophe”,on,two-dimensional,manifolds.,Mathematical,Notes,,51(1):76–81,,1992.,[47],Z.,Mei.,Numerical,Bifurcation,Analysis,for,Reaction-Diffusion,Equations.,Springer,,2000.,[48],H.,Meijer,,F.,Dercole,,and,B.,Oldeman.,Numerical,bifurcation,analysis.,In,R.,Meyers,,editor,,Encyclopedia,of,Complexity,and,Systems,Science,,pages,6329–6352.,Springer,,2009.,[49],A.,Meiners,,J.,Rademacher,,H.,Uecker,,H.,deWitt,,T.,Dohnal,,and,D.,Wetzel.,pde2path,,July,2023.,URL,https://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/.,27,[50],S.,Mitusch,,S.,Funke,,and,J.,Dokken.,dolfin-adjoint,2018.1:,automated,adjoints,for,FEniCS,and,Firedrake.,Journal,of,Open,Source,Software,,4(38):1292,,2019.,[51],J.,Nocedal,and,S.,J.,Wright.,Numerical,Optimization.,Springer,,second,edition,,2006.,[52],R.,P.,Pawlowski,,J.,N.,Shadid,,J.,P.,Simonis,,and,H.,F.,Walker.,Globalization,techniques,for,Newton–,Krylov,methods,and,applications,to,the,fully,coupled,solution,of,the,Navier–Stokes,equations.,SIAM,Review,,48(4):700–721,,2006.,[53],B.,T.,Polyak.,Newton–Kantorovich,method,and,its,global,convergence.,Journal,of,Mathematical,Sciences,,133(4):1513–1523,,2006.,[54],J.,S´anchez,,M.,Net,,B.,Garcıa-Archilla,,and,C.,Sim´o.,Newton–Krylov,continuation,of,periodic,orbits,for,Navier–Stokes,flows.,Journal,of,Computational,Physics,,201(1):13–33,,2004.,[55],R.,Seydel.,Practical,Bifurcation,and,Stability,Analysis.,Springer,Science,&,Business,Media,,2009.,[56],G.,M.,Shroff,and,H.,B.,Keller.,Stabilization,of,unstable,procedures:,the,recursive,projection,method.,SIAM,Journal,on,Numerical,Analysis,,30(4):1099–1120,,1993.,[57],J.,Swift,and,P.,C.,Hohenberg.,Hydrodynamic,fluctuations,at,the,convective,instability.,Physical,Review,A,,15(1):319,,1977.,[58],The,LOCA,Project,Team,(Sandia,National,Laboratories).,LOCA,,2023.,URL,https://trilinos.,github.io/nox_and_loca.html.,[59],L.,S.,Tuckerman.,Computational,challenges,of,nonlinear,systems.,Emerging,Frontiers,in,Nonlinear,Science,,pages,249–277,,2020.,[60],L.,S.,Tuckerman,and,D.,Barkley.,Bifurcation,analysis,for,timesteppers.,In,E.,Doedel,and,L.,Tuck-,erman,,editors,,Numerical,Methods,for,Bifurcation,Problems,and,Large-Scale,Dynamical,Systems,,pages,453–466.,Springer,,2000.,[61],H.,Uecker.,Numerical,Continuation,and,Bifurcation,in,Nonlinear,PDEs.,SIAM,,2021.,[62],H.,Uecker.,Continuation,and,bifurcation,in,nonlinear,PDEs–Algorithms,,applications,,and,experi-,ments.,Jahresbericht,der,Deutschen,Mathematiker-Vereinigung,,pages,1–38,,2022.,[63],R.,Veltz.,GridBifurcationKit.jl,,2022.,URL,https://github.com/bifurcationkit/,GridapBifurcationKit.,[64],R.,Veltz.,BifurcationKit.jl,,June,2023.,URL,https://bifurcationkit.github.io/,BifurcationKitDocs.jl/stable/.,[65],H.,F.,Walker.,An,adaptation,of,Krylov,subspace,methods,to,path,following,problems.,SIAM,Journal,on,Scientific,Computing,,21(3):1191–1198,,1999.,[66],I.,Waugh,,S.,Illingworth,,and,M.,Juniper.,Matrix-free,continuation,of,limit,cycles,for,bifurcation,analysis,of,large,thermoacoustic,systems.,Journal,of,Computational,Physics,,240:225–247,,2013.,28 :pdfembed:`src:_static/TN-07_AReviewSolutionContinuationTechniques.pdf, height:1600, width:1100, align:middle`