TN-08-1_ExcaliburNeptuneTask24NonIntrusiveUqBout1DFluidSolver ============================================================= .. meta:: :description: technical note :keywords: Excalibur-Neptune,report,2047356-TN-08-1,Task,2.4,Non-intrusive,UQ,with,BOUT++,1D,fluid,solver,Ben,Dudson,,Peter,Hill,,Ed,Higgins,,David,Dickinson,,and,Steven,Wright,University,of,York,David,Moxey,KCL,March,29,,2022,Contents,1,Executive,summary,2,Introduction,3,Using,easyvvuq,with,BOUT++,models,4,SD1D,configuration,and,general,approach,5,Uncertainty,quantification,for,SD1D,case-04,1,1,4,5,11,5.1,Polynomial,Chaos,Expanison,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,11,5.2,Stochastic,Collocation,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,14,6,Conclusions,7,Acknowledgements,A,Stochastic,collocation,code,listing,1,Executive,summary,20,21,21,In,this,report,we,summarise,experience,gained,in,the,application,of,non-intrusive,uncertainty,quantifiaction,(UQ),to,a,sample,test,case,from,the,SD1D,[1],test,cases,set,out,in,task,83-2.1,[2].,This,provides,a,test,ground,for,the,practical,aspects,of,UQ,for,somewhat,realistic,plasma,simulations,and,showcases,the,easyvvuq,package,to,faciliate,the,construction,of,UQ,workflows.,2,Introduction,Simulations,are,a,vital,tool,for,developing,understanding,of,systems,and,for,extrapolating,beyond,existing,facilities.,This,means,that,they,can,be,used,as,1,evidence,towards,significant,decisions,,such,as,substantial,investment,in,produc-,t/facility,development,(e.g.,STEP,[3]).,The,output,of,such,simulations,will,be,sensitive,to,its,inputs,to,varying,degrees.,Understanding,how,sensitive,outputs,are,to,inputs,is,known,as,sensitivity,analysis,and,this,can,give,an,insight,into,how,important,it,is,to,pin,down,the,inputs,to,simulations.,A,related,,but,dif-,ferent,,area,is,that,of,uncertainty,quantification,(UQ).,Here,,we,are,interested,in,the,uncertainty,on,the,output,of,simulations,given,some,probability,distribu-,tion,function,for,the,input,parameters.,This,can,play,an,important,role,in,the,verification,and,validation,(VV),of,computational,models,,improving,our,confi-,dence,in,these,models,whilst,also,allowing,more,nuanced,interpretation,of,the,predictions,the,model,makes.,There,are,several,approaches,to,uncertainty,quan-,tification.,One,split,is,between,intrusive,and,non-intrusive.,Applying,intrusive,approaches,to,an,existing,simulation,code,can,require,substantial,modification,of,the,code,in,order,to,effectively,project,the,system,state,onto,a,“random,trial,basis”,of,size,N,and,substitute,this,into,the,system,of,equations.,This,gives,an,increase,in,the,effective,number,of,equations,to,evolve,in,a,single,run,by,a,factor,related,to,N,.,Such,approaches,can,be,challenging,to,implement,into,an,existing,code,due,to,the,significant,modifications,potentially,required.,Non-intrusive,UQ,,on,the,other,hand,,does,not,require,modification,to,the,existing,code,but,rather,requires,the,user,to,effectively,run,multiple,copies,of,the,simulation,with,inputs,varied,according,to,their,probability,distribution.,One,of,the,exciting,opportunities,offered,by,exascale,computing,is,the,increased,throughput,which,will,greatly,enable,our,ability,to,run,large,ensembles,of,sim-,ulations.,This,will,start,to,enable,more,routine,study,of,sensitivity,and,uncer-,tainty,in,code,outputs,due,to,inputs,,by,directly,simulating,a,range,of,cases,within,the,probable,inputs.,One,challenge,introduced,by,this,is,the,need,to,analyse,a,large,number,of,simulations,in,order,to,extract,information,about,the,expected,results,and,associated,uncertainty.,Fortunately,such,analysis,exhibits,regular,patterns,across,different,domains,and,several,generic,toolkits,exist,to,assist,with,implementing,a,UQ,workflow,with,existing,codes.,Here,we,explore,the,easyvvuq,toolkit,[4,,5],developed,through,the,VECMA,project,[6].,In,essence,,the,UQ,work,flow,can,be,summarised,as,being,comprised,of,several,distinct,generic,stages,,with,the,breakdown,used,by,easyvvuq,outlined,in,fig-,ure,1.,Discussion,of,these,stages,is,provided,in,the,easyvvuq,documentation,[7],,so,here,we,only,give,a,brief,summary,of,the,key,aspects.,Firstly,it,is,useful,to,2,Figure,1:,Breakdown,of,stages,in,a,generic,VVUQ,workflow,as,considered,by,easyvvuq.,Figure,reproduced,from,[7].,note,that,easyvvuq,introduces,the,concept,of,a,Campaign.,This,is,a,class,de-,signed,to,coordinate,a,given,UQ,workflow,instance,and,interfaces,to,a,database,stored,on,the,filesystem,recording,information,about,the,model,system,,the,runs,performed,and,other,aspects,of,the,workflow.,To,construct,a,campaign,,the,first,step,,“Parameter,Space,Description”,,is,to,describe,the,relevant,model,param-,eters,along,with,their,properties.,This,takes,the,form,of,a,python,dictionary,with,parameter,names,as,the,keys,and,then,other,relevant,properties,such,as,data,type,,default,values,and,expected,ranges,forming,a,secondary,dictionay,as,the,value.,This,does,not,need,to,be,a,complete,listing,of,all,model,parameters,,but,rather,any,parameters,which,one,may,wish,the,UQ,tools,to,be,aware,of.,This,is,most,likely,to,contain,the,uncertain,input,parameters,for,which,we,wish,to,perform,a,UQ,analysis.,Alongside,this,information,,the,campaign,must,also,be,able,to,generate,relevant,simulation,inputs,,execute,simulations,using,these,inputs,and,extract,the,appropriate,output,of,the,simulations.,This,corresponds,to,the,“Encoder”,,“Model,Evaluation”,and,“Decoder”,stages,respectively,and,these,are,stored,together,within,a,easyvvuq,“Actions”,class,.,Whilst,easyvvuq,provides,some,example,decoders,useful,for,output,stored,in,a,few,simple,file,types1,it,will,often,be,necessary,to,write,a,specific,decoder,for,the,code,at,hand.,Indeed,,it,is,possible,for,this,decoder,to,go,beyond,simply,returning,the,raw,output,of,the,simulation,and,instead,to,perform,any,required,post-processing,,3,analysis,and,data,reduction,stages,before,returning,the,relevant,data,of,interest.,Similarly,,it,will,often,be,necessary,to,write,a,custom,decoder,for,the,particular,input,format,of,the,code,being,used.,This,will,be,given,a,set,of,parameters,with,values,and,must,be,able,to,create,the,relevant,input,file(s),in,a,provided,directory,alongside,any,further,setup,(e.g.,providing,other,files,to,be,accessed,by,the,code).,It,is,also,necessary,to,describe,how,to,run,the,simulation.,This,can,take,several,forms,but,here,we,will,focus,on,the,“local,execute”,approach,,in,which,we,simply,provide,a,list,of,strings,with,the,command,to,be,run,and,any,options.,More,sophisticated,approaches,,including,the,submission,of,runs,to,a,slurm,queue-managed,system,are,provided,by,easyvvuq.,Given,this,information,about,how,to,construct,,execute,and,extract,the,output,of,runs,all,that,remains,is,to,decide,which,runs,should,be,performed,and,the,collation,and,analysis,of,the,series,of,runs,generated.,The,decision,of,which,simulation,cases,should,be,performed,is,controlled,by,a,“Sampler”,object.,This,can,be,a,key,choice,in,the,construction,of,the,UQ,workflow,and,it,can,determine,how,many,and,which,simulations,are,required,as,well,as,how,the,analysis,is,performed.,We,defer,further,discussion,of,this,stage,to,section,5.,Finally,,analysis,of,the,collection,of,simulations,is,automated,by,easyvvuq,and,leverages,other,packages,such,as,ChaosPy,[8],,with,the,user,simply,needing,to,choose,what,properties,to,explore,such,as,the,mean,and,standard,deviation,of,the,result,and,the,Sobol,indices,representing,the,relative,importance,of,the,different,input,uncertainities,on,the,output,quantity,of,interest.,3,Using,easyvvuq,with,BOUT++,models,Here,we,briefly,describe,the,approach,taken,within,this,work,in,order,to,use,easyvvuq,with,BOUT++,[9],(and,specifically,SD1D,[1]).,Encoders,and,de-,coders,for,use,with,BOUT++,have,been,created,2,and,have,been,made,publicly,available,[10]3.,We,use,these,encoders,and,decoders,in,this,work.,The,input,format,for,BOUT++,is,a,simple,text,file,in,“config”,format,and,we,note,that,the,test,cases,here,do,not,require,any,further,inputs,(i.e.,no,grid,files).,As,1Specifically,json,,csv,and,yaml.,2This,work,was,supported,through,VECMA,hackathons,run,through,the,financial,year,2021/22,and,the,access,to,the,VECMA,team,that,this,provided.,3We,also,note,that,there,are,severals,examples,of,using,easyvvuq,with,various,models,implemented,with,BOUT++,also,provided,in,this,repository.,The,SD1D,examples,in,branch,“sd1d”,of,[10],are,closely,related,to,the,approach,used,here.,4,such,,the,encoder,is,relatively,straightforward.,Several,decoders,are,provided,to,demonstrate,a,number,of,different,scenarios,,such,as,1.,Reading,a,quantity,at,the,final,time,in,the,simulation.,This,is,a,relatively,simple,,but,common,use,case.,2.,Sampling,a,quantity,onto,a,fixed,grid.,This,can,be,helpful,to,allow,com-,parison,across,cases,in,which,the,simulation,grid,may,change,,for,example.,3.,A,decoder,specific,to,the,blob2d,model,,calculating,and,returning,derived,quantities,rather,than,the,raw,output.,For,the,results,shown,later,we,make,use,of,the,first,,simple,,option.,Finally,,it,is,helpful,to,discuss,the,approach,taken,to,executing,simulations.,As,the,test,cases,used,here,,based,on,case-04,of,SD1D,,are,relatively,cheap,to,run,on,a,single,core,we,opt,to,use,the,“local,execute”,approach,and,we,will,describe,this,in,more,detail,in,section,4.,Clearly,,for,more,expensive,simulations,one,must,look,to,use,a,distributed,approach.,Branch,“slurm”,of,the,repository,[10],demonstrates,one,approach,to,the,use,of,a,slurm,managed,system.,4,SD1D,configuration,and,general,approach,We,will,use,case-04,of,SD1D,as,an,example,case,with,which,we,can,demonstrate,an,easyvvuq,facilitated,UQ,workflow.,This,test,case,consists,of,coupled,single,plasma,and,neutral,fluids,in,1D,with,sheath,boundary,conditions,and,is,de-,scribed,in,more,detail,in,the,report,for,83-2.2,[11].,We,note,that,we,use,branch,bout-next,of,SD1D,at,commit,7bd6bc91,and,then,build,this,using,BOUT++,commit,080f3b27,4.,We,configure,BOUT++,to,enable,its,interface,to,PETSc,[12],and,link,to,a,version,of,PETSc,configured,with,HYPRE,[13],support.,This,enables,access,to,the,“beuler”,time,solver,,which,is,very,effective,when,seeking,steady,state,solutions,,and,the,efficient,preconditioners,provided,by,HYPRE.,To,demonstrate,how,this,is,implemented,,we,show,example,python,code,for,running,a,small,UQ,analysis,workflow,for,case-02,of,SD1D.,In,listing,1,we,4This,is,not,the,BOUT++,commit,which,will,be,used,by,default,if,SD1D,is,not,supplied,with,an,existing,BOUT++,build.,5,show,the,creation,of,the,encoder,,decoder,and,local,exectute,action,and,how,these,are,used,to,create,a,campaign.,For,completeness,,listing,2,shows,how,one,then,creates,a,sampler,,adds,this,to,the,campaign,and,launches,the,simulations,,whilst,listing,3,shows,how,this,is,used,to,create,some,simple,plots,showing,the,uncertainty,on,the,plasma,density,,Ne,,output.,Figure,2,shows,example,outputs,from,these,listings,for,second,and,sixth,order,PCE,samplers.,One,can,see,that,whilst,the,mean,density,agrees,fairly,well,between,the,two,orders,,there,is,more,significant,disagreement,between,the,1st,and,99th,percentiles,and,the,Sobol,indices.,Whilst,the,second,order,sampler,required,9,separate,simulations,and,the,sixth,order,sampler,required,49,simulations,,the,time,to,solution,was,broadly,comparable,here,as,we,ran,on,a,single,node,of,Archer2.,This,provides,128,cores,and,the,“local,execute”,action,provided,by,easyvvuq,will,create,a,thread,pool,which,uses,these,cores,to,run,the,planned,simulations,in,parallel.,This,demonstrates,the,useful,ability,to,run,a,number,of,the,identified,simulations,in,parallel,,dependent,on,available,CPU,resource.,However,,it,is,perhaps,worth,noting,that,this,can,lead,to,inefficient,resource,utilisation.,For,example,,when,running,a,large,analysis,the,run,time,across,the,parameter,space,being,sampled,may,vary,somewhat.,The,analysis,cannot,be,completed,until,all,simulations,are,complete.,As,such,,the,total,resource,usage,is,dependent,on,the,slowest,simulation,encountered,and,this,is,likely,to,become,a,more,significant,concern,as,the,number,of,samples,increases.,In,such,scenarios,a,more,suitable,approach,may,be,to,use,the,slurm,action,instead.,6,#!/usr/bin/env,python3,import,boutvecma,import,easyvvuq,as,uq,import,chaospy,import,os,import,numpy,as,np,import,time,import,matplotlib.pyplot,as,plt,#,Path,to,the,executable,EXE_PATH="./sd1d",#,Create,an,encoder,to,produce,input,files,encoder,=,boutvecma.BOUTEncoder(template_input="BOUT.inp"),#,Create,a,decoder,to,extract,data,of,interest,(here,just,Ne),decoder,=,boutvecma.SimpleBOUTDecoder(variables=["Ne"]),#,Specify,the,parameters,of,interest,params,=,{,"P:powerflux":,{"type":,"float",,"min":,1e7,,"max":,1e8,,"default":,2e7},,"Ne:flux":,{"type":,"float",,"min":,1e23,,"max":,1e24,,"default":,4e23},,},#,Now,we,can,create,a,local_execute,action,describing,how,to,create,,run,and,analyse,#,a,single,run,actions,=,uq.actions.local_execute(,encoder,,os.path.abspath(,EXE_PATH,+,",-d,.,solver:type=beuler,input:error_on_unused_options=false,-q,-q,-q",),,decoder,,),#,Create,the,campaign,campaign,=,uq.Campaign(name="SD1D_Case02_order3.",,actions=actions,,params=params),Listing,1:,Example,python,code,to,create,a,BOUT++,UQ,campaign.,7,#,Describe,the,distribution,of,the,uncertain,inputs,vary,=,{,"P:powerflux":,chaospy.Uniform(1e7,,1e8),,"Ne:flux":,chaospy.Uniform(1e23,,1e24),,},#,Create,a,PCE,sampler,for,this,system,of,uncertain,inputs,sampler,=,uq.sampling.PCESampler(vary=vary,,polynomial_order=3),#,Attach,sampler,to,campaign,campaign.set_sampler(sampler),print(f"Code,will,be,evaluated,{sampler.n_samples},times"),#,Actually,run,the,simulations,,wait,for,the,runs,to,finish,and,collect,outputs,time_start,=,time.time(),campaign.execute().collate(progress_bar=True),time_end,=,time.time(),print(f"Finished,,took,{time_end,-,time_start}"),results_df,=,campaign.get_collation_result(),print(results_df),results,=,campaign.analyse(qoi_cols=["Ne"]),Listing,2:,Example,python,code,to,create,a,polynomial,chaos,expansion,sampler,,add,this,to,an,existing,campaign,and,run,and,analyse,the,simulations.,8,#,Helper,method,to,make,standard,plots,def,make_plots(campaign,,variable_name,,xlabel,=,r'$\rho$',,ylabel,=,None):,#,Plot,results,of,interest,moment_plot_filename,=,os.path.join(f"{campaign.campaign_dir}",,sobols_plot_filename,=,os.path.join(f"{campaign.campaign_dir}",,variable_name,+,"_moments.png"),variable_name,+,"_sobols_first.png"),fig,,ax,=,plt.subplots(),xvalues,=,np.arange(len(results.describe(variable_name,,"mean"))),ax.fill_between(,xvalues,,results.describe(variable_name,,"mean"),-,results.describe(variable_name,,"std"),,results.describe(variable_name,,"mean"),+,results.describe(variable_name,,"std"),,label="std",,alpha=0.2,,),ax.plot(xvalues,,results.describe(variable_name,,"mean"),,label="mean"),try:,ax.plot(xvalues,,results.describe(variable_name,,"1%"),,"--",,label="1%",,color="black"),ax.plot(xvalues,,results.describe(variable_name,,"99%"),,"--",,label="99%",,color="black"),except,RuntimeError:,pass,ax.grid(True),if,ylabel,is,None:,ylabel,=,variable_name,ax.set_ylabel(ylabel),ax.set_xlabel(xlabel),ax.legend(),fig.savefig(moment_plot_filename),plt.figure(),results.plot_sobols_first(variable_name,,print(f"Results,are,in:\n\t{moment_plot_filename}\n\t{sobols_plot_filename}"),xlabel=xlabel,,filename=sobols_plot_filename),make_plots(campaign,,"Ne",,ylabel,=,r'$N_e$'),Listing,3:,Example,python,code,using,the,analysed,results,to,produce,a,sum-,mary,of,the,simulation,output,with,uncertainties.,9,(a),(b),(c),(d),Figure,2:,Plots,of,the,mean,normalised,plasma,density,,Ne,,as,a,function,of,par-,allel,arc,length,along,with,the,mean,±,the,standard,deviation,and,1st,and,99th,percentiles,for,a,2nd,(a),and,6th,(c),order,PCE,sampler,and,the,corresponding,first,order,Sobol,indices,(b/d).,10,5,Uncertainty,quantification,for,SD1D,case-04,We,now,turn,to,our,more,realistic,case,,including,a,neutral,fluid.,As,discussed,in,the,report,for,83-2.2,[11],,the,performance,of,this,case,can,be,quite,sensi-,tive,to,the,preconditioning,approach,adopted.,Here,we,choose,to,use,HYPRE’s,euclid,preconditioner.,This,implements,a,parallel,ILU,preconditioner.,Whilst,we,continue,to,run,each,simulation,on,a,single,core,,it,has,been,observed,that,the,euclid,preconditioner,gives,runs,with,the,default,input,file,which,are,ap-,proximately,twice,as,fast,as,PETSC’s,serial,ILU,,resulting,in,run,times,of,the,order,of,30,seconds,per,simulation.,We,will,comment,further,on,performance,considerations,shortly.,We,will,explore,two,approaches,to,sampling;,the,“polynomial,chaos,expansion”,(PCE),sampler,and,stochastic,collocation,(SC),sampler.,By,default,,these,result,in,the,same,set,of,simulations,(i.e.,the,same,input,samples).,However,,they,enable,different,analysis,chains.,In,particular,,SC,is,compatible,with,an,adaptive,approach,in,which,the,UQ,study,can,be,refined,by,adding,points,in,the,“most,useful”,quantity,(i.e.,the,one,in,which,we,have,identified,having,the,most,influence,on,the,uncertainty,of,the,result).,This,is,important,as,the,number,of,uncertain,inputs,increases,as,unfortunately,,as,this,increases,the,number,of,samples,increases,rapidly.,Specifically,the,number,of,samples,(i.e.,simulations),in,a,non-adaptive,approach,is,(p,+,1)d,where,p,is,the,order,of,polynomial,and,d,is,the,number,of,uncertain,inputs.,5.1,Polynomial,Chaos,Expanison,We,begin,by,exploring,the,uncertainty,associated,with,the,input,plasma,density,and,pressure,sources,,as,done,in,section,4,and,no,change,is,required,to,the,earlier,code,listings,aside,from,changing,the,template,input,file.,Figures,3,and,4,show,the,uncertainty,in,plasma,density,and,pressure,for,order,1,,2,,3,and,4,polynomials,(corresponding,to,4,,9,,16,and,25,simulations,respectively),from,a,study,with,uncertain,density,and,pressure,sources.,The,distributions,are,taken,to,be,uniform,ranging,from,2,×,1023,to,1,×,1024,and,1,×,107,to,5,×,107,respectively.,One,can,see,that,the,first,order,case,gives,somewhat,different,results,for,the,density,than,the,other,orders.,By,fourth,order,,the,results,have,mostly,converged,to,a,good,degree.,Figure,5,shows,the,Sobol,indices,11,for,the,density,and,pressure,from,the,fourth,order,simulation.,This,demonstrates,that,the,uncertainty,on,the,density,is,primarily,due,to,the,uncertainty,in,the,density,source.,However,,the,pressure,is,sensitve,to,both,sources,and,is,in,fact,most,sensitive,to,the,density,source,near,the,target.,In,performing,such,studies,one,can,note,that,the,run,time,of,the,individual,samples,can,be,quite,variable.,Here,we,can,identify,the,slowest,simulations,as,those,with,the,largest,pressure,source,and,the,smallest,density,source,,suggesting,effectively,a,large,upstream,temperature,source,,potentially,increasing,the,significance,of,the,heat,conduction,term.,(a),(b),(c),(d),Figure,3:,Plots,of,the,mean,normalised,plasma,density,,Ne,,as,a,function,of,parallel,arc,length,along,with,the,mean,±,the,standard,deviation,and,1st,and,99th,percentiles,for,first,(a),,second,(b),,third,(c),and,fourth,(d),order,PCE,samplers,with,uncertain,density,and,pressure,sources.,In,addition,to,the,density,and,pressure,sources,one,may,wish,to,explore,the,uncertainty,in,the,recyling,fraction,,the,redistribution,of,neutrals,,the,sheath,heat,transmission,coefficient,etc.,Here,we,include,uncertainty,on,the,sheath,heat,transmission,coefficient,with,uniform,distribution,from,6,to,7,and,uncertainty,12,(a),(b),(c),(d),Figure,4:,Plots,of,the,mean,normalised,plasma,pressure,,P,,,as,a,function,of,parallel,arc,length,along,with,the,mean,±,the,standard,deviation,and,1st,and,99th,percentiles,for,first,(a),,second,(b),,third,(c),and,fourth,(d),order,PCE,samplers,with,uncertain,density,and,pressure,sources.,on,the,recycling,fraction,with,uniform,distribution,from,0,to,0.95.,We,show,results,from,a,second,order,case,in,figure,6,and,it,can,be,seen,that,introducing,these,additional,terms,has,had,a,significant,impact,on,the,density,and,pressure.,We,note,that,the,Sobol,indices,indicate,that,both,the,density,and,pressure,are,most,sensitive,to,the,recycling,fraction,,whilst,both,have,very,little,dependence,on,the,sheath,heat,transmission,coefficient.,Despite,the,lack,of,dependence,on,sheath,heat,we,have,had,to,treat,this,as,all,other,parameters.,If,we,had,excluded,this,parameter,from,the,sampling,the,number,of,simulations,would,have,reduced,from,81,to,27.,This,motivates,an,adaptive,scheme,which,can,iteratively,refine,along,the,most,significant,directions.,13,(a),(b),Figure,5:,Plots,of,the,Sobol,indices,for,the,normalised,plasma,density,,Ne,,(a),and,pressure,,P,,,(b),for,a,fourth,order,PCE,sampler,with,uncertain,density,and,pressure,sources.,5.2,Stochastic,Collocation,We,now,turn,our,attention,to,developing,an,adaptive,scheme,more,appropriate,for,systems,with,a,large,number,of,uncertain,inputs.,The,general,strategy,for,an,adaptive,scheme,is,as,follows,1.,Draw,initial,samples,and,run,simulations,2.,Analyse,current,results.,3.,If,stopping,condition,has,been,met,go,to,step,8.,4.,Determine,all,allowable,sample,points,at,the,next,refinement,level.,This,is,handled,by,look,ahead,of,the,SC,sampler.,5.,Run,simulations,at,all,new,sample,points.,6.,Determine,which,of,the,new,sample,points,should,be,included,in,the,anal-,ysis,stage.,This,is,handled,by,adapt,dimension,of,the,SC,analysis,in-,stance,and,one,must,choose,which,quantity,of,interest,(output),to,use,in,determing,the,optimal,direction.,7.,Go,to,step,2.,8.,Peform,final,analysis,and,save,results.,14,(a),(b),(c),(d),Figure,6:,Plots,of,the,mean,normalised,plasma,density,(a),and,pressure,(b),as,a,function,of,parallel,arc,length,along,with,the,mean,±,the,standard,deviation,and,1st,and,99th,percentiles,for,second,order,PCE,samplers,with,uncertain,density,and,pressure,sources,,recycling,fraction,and,sheath,heat,transmission,coefficient.,The,first,order,Sobol,indices,are,also,shown,for,the,density,(c),and,pressure,(d).,In,order,to,achieve,this,practically,,we,switch,our,sampler,type,from,PCE,to,SC.,Whilst,this,can,be,used,in,the,same,way,as,the,PCE,solver,,some,additional,settings,are,required,in,order,make,this,suitable,for,an,adaptive,scheme.,The,full,code,listing,is,given,in,appendix,A,and,the,other,steps,to,construct,the,campaign,are,unchanged,from,the,earlier,examples.,Once,the,campaign,has,been,created,we,must,launch,our,simulations.,We,then,continue,to,refine,the,study,by,executing,steps,2-7,of,the,general,strategy.,One,must,choose,an,appropriate,stopping,condition.,This,could,be,something,simple,like,halting,after,a,fixed,number,of,refinements,or,something,more,sophisticated.,Here,,we,track,the,mean,change,in,the,first,order,Sobol,indices,between,iterations,and,halt,when,this,drops,below,some,tolerance5.,Of,course,each,simulation,output,of,interest,will,have,different,Sobol,indices,,so,one,must,consider,how,to,deal,with,this.,15,Common,options,will,be,to,average,the,Sobol,indices,over,all,outputs,or,to,focus,on,the,“main”,output,of,interest,used,in,adapt,dimension.,We,start,by,repeating,the,original,case,of,section,5.1,in,which,there,are,just,two,uncertain,inputs,,the,density,and,pressure,source,fluxes.,We,choose,a,Sobol,convergence,tolerance,of,0.005,and,use,just,the,density,Sobol,indices,in,the,convergence,test.,For,this,setup,the,analysis,finishes,after,4,iterations,,having,run,13,simulations.,Figure,7,shows,the,total,sampling,points,used,at,each,iteration,of,the,refinement.,It,can,be,seen,that,we,start,by,refining,the,density,flux,,and,it,was,shown,in,the,equivalent,PCE,study,that,this,has,the,most,influence,on,the,density,(i.e.,largest,Sobol,index).,Following,this,,the,direction,of,refinement,alternates,,indicating,that,both,inputs,have,a,significant,impact,on,the,density,output.,Figure,8,shows,the,mean,density,and,the,Sobol,indices,at,the,second,and,fourth,(final),iteration.,There,is,very,little,discernable,difference,in,the,density,output,,but,it,can,be,seen,that,the,Sobol,metrics,have,gained,a,higher,order,contribution,by,the,final,iteration.,This,study,was,repeated,with,the,plasma,pressure,as,the,output,of,interest.,This,used,the,same,number,of,simulations,but,completed,in,just,three,iterations.,The,refinement,began,in,the,pressure,flux,direction,,but,was,qualitatively,similar,to,that,seen,in,the,density,focused,study.,We,now,turn,to,the,system,with,four,uncertain,inputs;,the,density,and,pressure,sources,,the,sheath,heat,transmission,coefficient,and,the,recycling,fraction.,To,achieve,this,one,simply,needs,to,add,the,relevant,distributions,to,the,vary,object,passed,to,the,sampler.,This,study,completed,after,seven,iterations,and,used,41,simulations.,Figure,9,shows,the,sampling,points,during,the,start,,middle,and,end,of,the,refinement,phase.,It,can,be,seen,that,the,first,input,refined,is,the,recycling,fraction,,sd1d:frecycle,,and,that,this,input,is,the,most,heavily,refined,by,the,end,of,the,study.,Furthermore,,it,can,be,seen,that,no,refinement,has,occured,in,the,sheath,heat,transmission,coefficient,,sd1d:sheath,gamma.,These,observations,are,consistent,with,the,results,of,the,PCE,results,in,figure,6,which,showed,that,the,density,output,was,most,sensitive,to,the,recycling,fraction,and,insensitive,to,the,sheath,coefficient.,The,adaptive,scheme,here,has,therefore,correctly,avoided,refining,inputs,which,do,not,impact,the,final,results.,The,5Whilst,often,effective,,it,is,important,to,note,that,there,is,no,guarantee,that,the,Sobol,indices,have,a,monotonic,dependence,and,one,can,sometimes,find,promising,convergence,followed,by,signifcant,jumps.,Such,jumps,can,indicate,a,physics,regime,change,or,may,be,associated,with,refinement,along,a,new,input.,16,(a),(b),(c),(d),(e),(f),Figure,7:,Sample,points,for,each,iteration,of,the,adaptive,SC,scheme,for,the,case,with,uncertain,density,and,pressure,sources,(a-e),along,with,the,error,vs,iteration,count,(f).,change,in,output,from,the,second,iteration,to,the,final,(seventh),interation,is,shown,in,figure,10,The,41,simulations,used,here,sits,between,that,required,for,the,equivalent,PCE,study,of,second,order,(81),and,first,order,(16).,Despite,involving,around,half,the,17,(a),(b),(c),(d),Figure,8:,Plots,showing,mean,density,(a/c),and,first,order,Sobol,indices,(b/d),at,the,second/final,iteration,for,the,case,with,two,uncertain,inputs.,simulations,of,the,second,order,PCE,study,,the,time,to,solution,was,very,similar,in,this,instance.,Whilst,the,PCE,sampler,is,able,to,generate,and,run,all,cases,at,once,,the,adaptive,SC,sampler,can,only,generate,a,small,number,of,cases,at,each,refinement,interation.,This,effecitvely,limits,the,opportunity,for,simulation,level,parallelisation,,forcing,more,synchronisation,points,within,the,UQ,workflow.,This,is,likely,to,become,particularly,accute,in,systems,using,a,large,number,of,refinement,levels,with,jobs,being,submitted,to,a,queue,managed,system.,It,is,currently,not,possible,to,generate,the,simulations,for,the,next,refinement,iteration,until,the,current,iteration,has,completed,in,full.,This,means,that,the,simulations,for,each,level,cannot,be,generated,and,submitted,to,the,queue,until,the,previous,stage,has,completed.,For,facilities,and,problem,sizes,where,the,queuing,time,is,substantial,this,could,lead,to,a,large,increase,in,the,time,to,solution,when,compared,to,an,approach,which,can,more,readily,pipeline,the,simulations.,Despite,this,,the,adaptive,approach,outlined,here,is,a,powerful,tool,18,enabling,the,study,of,systems,with,a,large,number,of,uncertain,inputs,which,would,not,be,possible,with,a,direct,approach,such,as,the,PCE,sampler.,(a),(b),(c),Figure,9:,Sample,points,for,the,first,(a),,third,(b),and,seventh,(c),iteration,of,the,adaptive,SC,scheme,for,the,case,with,uncertain,density,and,pressure,sources,,sheath,heat,transmission,coefficient,and,recycling,fraction.,19,(a),(b),(c),(d),Figure,10:,Plots,showing,mean,density,(a/c),and,first,order,Sobol,indices,(b/d),at,the,third/final,iteration,for,the,case,with,four,uncertain,inputs.,6,Conclusions,In,this,report,we,have,introduced,some,of,the,practical,aspects,of,using,the,easyvvuq,toolkit,to,construct,a,non-intrusive,UQ,workflow,for,an,existing,real-,istic,physics,code.,In,producing,such,a,workflow,the,user,both,needs,to,supply,a,means,to,generate,,run,and,analyse,simulations,for,passed,settings,and,to,decide,which,approaches,to,sampling,and,analysis,will,be,taken.,We,explored,non-adaptive,PCE,and,adaptive,SC,based,approaches,and,applied,this,to,an,SD1D,realistic,test,case.,Whilst,the,PCE,based,approach,offered,some,perfor-,mance,related,benefits,(e.g.,a,single,trivially,parallelisable,group,of,simulations),the,adaptive,SC,approach,is,more,flexible,and,can,avoid,sampling,along,inputs,which,do,not,impact,the,final,result.,This,can,potentially,save,a,lot,of,cpu,time,and,can,enable,the,study,of,problems,with,a,large,number,of,uncertain,inputs.,It,also,enables,campaigns,to,be,easily,restarted,and,expanded,,although,this,20,has,not,been,shown,here6.,Future,work,should,move,towards,yet,more,realistic,problems.,In,particular,it,will,be,useful,to,explore,changes,to,the,approach,required,when,studying,problems,for,which,the,simulations,require,a,substantial,number,of,processors.,This,will,require,a,change,to,the,execution,approach,to,use,the,slurm,executor.,It,will,also,be,important,to,explore,appropriate,convergence,criteria,to,halt,adaptive,studies.,As,the,problem,becomes,yet,more,complex,it,may,be,necessary,to,consider,developing,cheaper,surrogate,models.,Fortunately,,projects,such,as,VECMA,are,developing,additional,packages,alongside,easyvvuq,to,facilitate,the,construction,of,such,problems,and,as,these,are,developed,further,the,entire,community,can,benefit,from,improvements.,7,Acknowledgements,We,gratefully,acknowledge,compute,time,provided,on,CIRRUS,and,Archer2,through,the,Excalibur,SEAVEA,project,[14].,A,Stochastic,collocation,code,listing,The,code,used,in,section,5.2,is,shown,below.,This,is,based,on,workflows,available,in,reference,[10],and,[15].,#!/usr/bin/env,python3,import,boutvecma,import,easyvvuq,as,uq,import,chaospy,import,os,import,numpy,as,np,import,time,import,matplotlib,6See,the,sc,adaptive,restartable,workflow,of,[10],for,an,example.,21,#,Do,not,open,figures:,matplotlib.use("Agg"),import,matplotlib.pyplot,as,plt,#,Path,to,the,executable,EXE_PATH="./sd1d",MINIMUM_NUMBER_OF_REFINEMENTS,=,3,MAXIMUM_NUMBER_OF_REFINEMENTS,=,30,ERROR_TOLERANCE,=,5.0e-4,QOI="Ne",QOI_YLABEL=r'$N_e$',#,Determine,which,points,are,allowable,,run,simulations,here,and,then,accept,#,must,relevant,points,into,campaign.,def,refine_sampling_plan(number_of_refinements,,campaign,,analysis,,sampler):,for,i,in,range(number_of_refinements):,#,compute,the,admissible,indices,sampler.look_ahead(analysis.l_norm),#,run,the,ensemble,campaign.execute().collate(progress_bar,=,True),#,accept,one,of,the,multi,indices,of,the,new,admissible,set,data_frame,=,campaign.get_collation_result(),analysis.adapt_dimension(QOI,,data_frame),#,Plot,the,current,set,of,sample,points.,Here,we,assume,four,#,parameters,in,vary,,powerflux,,flux,,frecycle,and,sheath_gamma,def,plot_grid_2D(i,,sample,,analysis,,filename="out.pdf"):,fig,=,plt.figure(figsize=[12,,4]),ax1,=,fig.add_subplot(,121,),ax2,=,fig.add_subplot(,122,),accepted_grid,=,sampler.generate_grid(analysis.l_norm),22,ax1.plot(accepted_grid[:,,0],,accepted_grid[:,,1],,"o"),ax1.set_xlabel('P:powerflux'),;,ax1.set_ylabel('Ne:flux'),ax2.plot(accepted_grid[:,,2],,accepted_grid[:,,3],,"o"),ax2.set_xlabel('sd1d:frecycle'),;,ax2.set_ylabel('sd1d:sheath_gamma'),ax1.set_title("iteration,",+,str(i)),plt.tight_layout(),plt.savefig(filename),plt.close(),#,Produce,plot,of,output,with,uncertainty,def,custom_moments_plot(results,,filename,,i,,quantity,,ylabel,=,None):,fig,,ax,=,plt.subplots(),xvalues,=,np.arange(len(results.describe(quantity,,"mean"))),ax.fill_between(,xvalues,,results.describe(quantity,,"mean"),-,results.describe(quantity,,"std"),,results.describe(quantity,,"mean"),+,results.describe(quantity,,"std"),,label="std",,alpha=0.2,,),ax.plot(xvalues,,results.describe(quantity,,"mean"),,label="mean"),ax.grid(True),if,ylabel,is,None:,ylabel,=,quantity,ax.set_ylabel(ylabel),ax.set_xlabel(r"$\rho$"),ax.set_title("iteration,",+,str(i)),ax.set_ylim(-0.5,2.5),ax.legend(),fig.savefig(filename),plt.close(),def,make_error_vs_iterations_plot(error_vs_its):,plt.figure(),plt.plot(error_vs_its),plt.xlabel("Iterations"),plt.ylabel("Summed,error"),plt.tight_layout(),23,plt.savefig("error_vs_iterations.png"),plt.close(),plt.figure(),plt.semilogy(error_vs_its),plt.xlabel("Iterations"),plt.ylabel("Summed,error"),plt.tight_layout(),plt.savefig("error_vs_iterations_log.png"),plt.close(),def,make_samples_vs_iterations_plot(samples_vs_its):,plt.figure(),plt.plot(samples_vs_its),plt.xlabel("Iterations"),plt.ylabel("Samples"),plt.tight_layout(),plt.savefig("samples_vs_iterations.png"),plt.close(),plt.figure(),plt.semilogy(samples_vs_its),plt.xlabel("Iterations"),plt.ylabel("Samples"),plt.tight_layout(),plt.savefig("samples_vs_iterations_log.png"),plt.close(),if,__name__,==,"__main__":,encoder,=,boutvecma.BOUTEncoder(template_input="./BOUT.inp"),decoder,=,boutvecma.SimpleBOUTDecoder(variables=[QOI]),params,=,{,"P:powerflux":,{"type":,"float",,"min":,1e7,,"max":,5e7,,"default":,2e7},,"Ne:flux":,{"type":,"float",,"min":,2e23,,"max":,1e24,,"default":,5e23},,"sd1d:frecycle":,{"type":,"float",,"min":,0.0,,"max":,1.0,,"default":,0.2},,"sd1d:sheath_gamma":,{"type":,"float",,"min":,6.0,,"max":,7.0,,"default":,6.5},,},24,actions,=,uq.actions.local_execute(,encoder,,os.path.abspath(,EXE_PATH,+,",-d,.,-q,-q,-q,solver:type=beuler",+,"input:error_on_unused_options=false,",+,"solver:petsc:ksp_initial_guess_nonzero=yes,",+,"solver:kspsetinitialguessnonzero=true,solver:petsc:pc_type=ilu",),,decoder,,),campaign,=,uq.Campaign(name="adaptive_sc.",,actions=actions,,params=params),vary,=,{,"P:powerflux":,chaospy.Uniform(1e7,,5e7),,"Ne:flux":,chaospy.Uniform(2e23,,1e24),,"sd1d:frecycle":,chaospy.Uniform(0.0,,0.95),,"sd1d:sheath_gamma":,chaospy.Uniform(6.0,7.0),,},sampler,=,uq.sampling.SCSampler(,vary=vary,,polynomial_order=1,,quadrature_rule="C",,sparse=True,,growth=True,,midpoint_level1=True,,dimension_adaptive=True,,),campaign.set_sampler(sampler),print(f"Computing,{sampler.n_samples},samples"),time_start,=,time.time(),campaign.execute().collate(progress_bar,=,True),#,Create,an,analysis,class,and,run,the,analysis.,analysis,=,uq.analysis.SCAnalysis(sampler=sampler,,qoi_cols=[QOI]),25,campaign.apply_analysis(analysis),plot_grid_2D(0,,sampler,,analysis,,"grid0.png"),i,=,0,sobols_error,=,1e6,error_vs_its,=,[,np.nan],samples_vs_its,=,[,1,],while,sobols_error,>,ERROR_TOLERANCE,or,i,<,MINIMUM_NUMBER_OF_REFINEMENTS:,print("Iteration,"+str(i)),i,+=,1,refine_sampling_plan(1,,campaign,,analysis,,sampler),campaign.apply_analysis(analysis),results,=,campaign.last_analysis,samples_vs_its.append(sampler.n_samples),plot_grid_2D(i,,sampler,,analysis,,"grid",+,str(i),+,".png"),moment_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"moments",+,str(i),+,".png",),sobols_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"sobols_first",+,str(i),+,".png",),plt.figure(),results.plot_sobols_first(,QOI,,ylabel=r"Sobol,indices,at,iteration,",+,str(i),,xlabel=r"$\rho$",,filename=sobols_plot_filename,,),plt.ylim(-0.05,,1.05),plt.savefig("sobols",+,str(i),+,".png"),plt.close(),plt.figure(),custom_moments_plot(results,,moment_plot_filename,,i,,QOI,,ylabel,=,QOI_YLABEL),plt.close(),26,#,Prevent,overwrite,of,old,fig,plt.figure("stat_conv").clear(),analysis.plot_stat_convergence(),plt.savefig("stat_convergence.png"),plt.close(),sobols,=,analysis.get_pce_sobol_indices(QOI)[2],if,i,>,1:,sobols_error,=,0,count,=,0,for,j,in,sobols:,count,+=,1,sobols_error,+=,np.mean(abs(sobols[j],-,sobols_last[j])),sobols_error,=,sobols_error,/,count,error_vs_its.append(sobols_error),print("Iteration,"+str(i),+,",:,Error,",+,str(sobols_error)),else:,#,Not,possible,to,compute,error,here,so,store,Nan,error_vs_its.append(np.nan),sobols_last,=,sobols,#,Make,plot,of,error,vs,iteration,now,to,allow,user,#,to,monitor,progress,of,the,job,make_error_vs_iterations_plot(error_vs_its),make_samples_vs_iterations_plot(samples_vs_its),if,i,>,MAXIMUM_NUMBER_OF_REFINEMENTS:,break,time_end,=,time.time(),print(f"Finished,,took,{time_end,-,time_start}"),make_error_vs_iterations_plot(error_vs_its),make_samples_vs_iterations_plot(samples_vs_its),27,sobols_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"sobols_first_final.png",),moment_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"moments_final.png",),results.plot_sobols_first(QOI,,xlabel=r"$\rho$",,filename=sobols_plot_filename),custom_moments_plot(results,,moment_plot_filename,,'final',,QOI,,ylabel,=,QOI_YLABEL),analysis.merge_accepted_and_admissible(),df,=,campaign.get_collation_result(),results,=,analysis.analyse(df),sobols_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"sobols_first_final_all.png",),moment_plot_filename,=,os.path.join(,f"{campaign.campaign_dir}",,"moments_final_all.png",),results.plot_sobols_first(QOI,,xlabel=r"$\rho$",,filename=sobols_plot_filename),custom_moments_plot(results,,moment_plot_filename,,'final,(merged)',,QOI,,ylabel,=,QOI_YLABEL),print(f"Results,are,in:\n\t{moment_plot_filename}\n\t{sobols_plot_filename}"),28,B,References,[1],Benjamin,Dudson.,SD1D:,Sol,and,Divertor,in,1D.,https://github.com/,boutproject/SD1D.,[2],Benjamin,Dudson,,Peter,Hill,,Ed,Higgins,,David,Dickinson,,Steven,Wright,and,David,Moxey.,1D,fluid,model,tests.,https:,//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/,2047356/TN-04.pdf.,[3],UKAEA.,Spherical,Tokamak,for,Energy,Production.,https://step.,ukaea.uk.,[4],Wright,,David,W.,and,Richardson,,Robin,A.,and,Edeling,,Wouter,and,Lakhlili,,Jalal,and,Sinclair,,Robert,C.,and,Jancauskas,,Vytautas,and,Suleimenova,,Diana,and,Bosak,,Bartosz,and,Kulczewski,,Michal,and,Pio-,ntek,,Tomasz,and,Kopta,,Piotr,and,Chirca,,Irina,and,Arabnejad,,Hamid,and,Luk,,Onnie,O.,and,Hoenen,,Olivier,and,Weglarz,,Jan,and,Crommelin,,Daan,and,Groen,,Derek,and,Coveney,,Peter,V.,Building,confidence,in,simulation:,Applications,of,easyvvuq.,Advanced,Theory,and,Simulations,,3(8):1900246,,2020,,doi:https://doi.org/10.1002/adts.201900246.,[5],Richardson,,Robin,A.,and,Wright,,David,W.,and,Edeling,,Wouter,and,Jan-,causkas,,Vytautas,and,Lakhlili,,Jalal,and,Coveney,,Peter,V.,EasyVVUQ:,A,library,for,verification,,validation,and,uncertainty,quantification,in,high,performance,computing.,Journal,of,Open,Research,Software,,8(1):1–8,,2020,,doi:10.5334/JORS.303.,[6],VECMA,Team.,Verified,Exascale,Computing,for,Multiscale,Applications.,https://www.vecma.eu.,[7],EasyVVUQ,team.,EasyVVUQ,Manual,:,Concepts.,https://easyvvuq.,readthedocs.io/en/dev/concepts.html.,[8],Jonathan,Feinberg,and,Hans,Petter,Langtangen.,Chaospy:,An,open,source,tification.,tool,for,designing,methods,Journal,of,Computational,Science,,of,uncertainty,11:46–57,,quan-,2015,,doi:https://doi.org/10.1016/j.jocs.2015.08.008.,[9],Benjamin,Daniel,Dudson,,Peter,Alec,Hill,,David,Dickinson,,Joseph,Parker,,Adam,Dempsey,,Andrew,Allen,,Arka,Bokshi,,Brendan,Shanahan,,Brett,29,Friedman,,Chenhao,Ma,,David,Bold,,Dmitry,Meyerson,,Eric,Grinaker,,George,Breyiannis,,Hasan,Muhammed,,Haruki,Seto,,Hong,Zhang,,Ilon,Joseph,,Jarrod,Leddy,,Jed,Brown,,Jens,Madsen,,John,Omotani,,Joshua,Sauppe,,Kevin,Savage,,Licheng,Wang,,Luke,Easy,,Marta,Estarellas,,Matt,Thomas,,Maxim,Umansky,,Michael,Løiten,,Minwoo,Kim,,M,Leconte,,Nicholas,Walkden,,Olivier,Izacard,,Pengwei,Xi,,Peter,Naylor,,Fabio,Riva,,Sanat,Tiwari,,Sean,Farley,,Simon,Myers,,Tianyang,Xia,,Tongnyeol,Rhee,,Xiang,Liu,,Xueqiao,Xu,,Zhanhui,Wang,,Sajidah,Ahmed,,and,Toby,James.,BOUT++,,3,2022.,[10],Joseph,Parker,,Peter,Hill,,David,Dickinson,and,Benjamin,Dud-,son.,BOUT++,Vecma,Hackathon.,https://github.com/boutproject/,VECMA-hackathon.,[11],Benjamin,Dudson,,Peter,Hill,,Ed,Higgins,,David,Dickinson,,Steven,Wright,and,David,Moxey.,Implementation,of,1D,fluid,model,with,realistic,bound-,ary,conditions.,https://github.com/ExCALIBUR-NEPTUNE/Documents/,blob/main/reports/2047356/.,[12],Satish,Balay,,Shrirang,Abhyankar,,Mark,F.,Adams,,Steven,Benson,,Jed,Brown,,Peter,Brune,,Kris,Buschelman,,Emil,M.,Constantinescu,,Lisandro,Dalcin,,Alp,Dener,,Victor,Eijkhout,,William,D.,Gropp,,V´aclav,Hapla,,Tobin,Isaac,,Pierre,Jolivet,,Dmitry,Karpeev,,Dinesh,Kaushik,,Matthew,G.,Knepley,,Fande,Kong,,Scott,Kruger,,Dave,A.,May,,Lois,Curfman,McInnes,,Richard,Tran,Mills,,Lawrence,Mitchell,,Todd,Munson,,Jose,E.,Roman,,Karl,Rupp,,Patrick,Sanan,,Jason,Sarich,,Barry,F.,Smith,,Stefano,Zampini,,Hong,Zhang,,Hong,Zhang,,and,Junchao,Zhang.,PETSc,Web,page.,https:,//petsc.org/,,2021.,[13],Chow,,E,and,Cleary,,A,and,Falgout,,R.,Design,of,the,HYPRE,precondi-,tioner,library.,9,1998.,[14],SEAVEA,Team.,Software,Environment,for,Actionable,and,VVUQ-,evaluated,Exascale,Applications.,https://excalibur.ac.uk/projects/,seavea/.,[15],EasyVVUQ,Team.,Dimension,adaptive,sampling,tutorial.,https:,//easyvvuq.readthedocs.io/en/nbsphinx/notebooks/dimension_,adaptive_tutorial.html.,30 :pdfembed:`src:_static/TN-08-1_ExcaliburNeptuneTask24NonIntrusiveUqBout1DFluidSolver.pdf, height:1600, width:1100, align:middle`