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1 Introduction

Rather than attempting to develop a fully 3-D Exascale targeted plasma edge (or boundary) code
from day one, project NEPTUNE will first focus upon the development of “proxyapps” [1], devel-
oped by partners across the project through a series of Grant calls. These must be designed and
encoded to pave the way to the fully 3-D, actionable and performant NEPTUNE code (or codes)
outlined in the Science Plan. As such, all NEPTUNE proxyapps must capture the functionality and
performance/scalability characteristics of the eventual infrastructure as much as possible. In addi-
tion, all of the solutions across the NEPTUNE programme must eventually be synergistic, leading
to an integrated solution for the eventual code(s) – this will require close cooperation through co-
design across all partner organisations. The baseline proxyapps for the initial years of the project
are described briefly in the Science Plan [2], and expanded upon below to give the “baseline plan”
model equations, geometry and boundary conditions. Note, the baseline plan does not preclude
additional functionality that any bidder may deem useful (or even essential) to the project. Bidders
are encouraged in their response to calls to be creative and ambitious and to describe their own
ideas and plans for delivering above and beyond core scope, provided the aim is to increase im-
pact, quality, reduce risk and/or accelerate delivery (and that deliverables are fully aligned with the
goals of the NEPTUNE Science Plan [2]).

At baseline, proxyapps target x86 (and ideally IBM POWER and ARM CPU) architectures (multi-
core and multiple node) for scalability to first generation Exascale hardware. Proxyapps might
also target other Exascale candidate architectures (eg. GPGPU) and/or demonstrate a capability
to explore the use of novel hardware as it becomes available to the ExCALIBUR project as part of
the novel test-bed programme. In order to execute efficiently on parallel architectures, proxyapps
are expected to examine use of MPI, OpenMP or some other software technology (ideally with a
focus upon performance portability).

The question of what physical units to be employed is discussed later in this section, see Sec-
tion 1.3. Supporting information regarding Braginskii’s transport coefficients for plasma in a strong
magnetic field appears in Section 2. A description of sources of atomic and molecular radiation is
given as an annex in Section A. A second annex Section B tabulates the mathematical symbols
(with their units) used in the current document.

1.1 Overall Plan

In the Science Plan [2] the description of work extending beyond Y3 (early 2022) is deliberately
vague on the subject of “gyrokinetics”, as no widely accepted model for the tokamak edge appears
to be available as of early Y2, and even should one appear, it might not be suitable for use in Y3
in NEPTUNE.

As listed, the proxyapps correspond to Plan A, which assumes that no suitable gyroaveraged
model will emerge in time, hence kinetic implies Particle-in-Cell (PIC). PIC approaches, where
charge conservation is vital to control errors, can anyway usefully be pursued for modelling low
collisionality plasma species, and should simplify nicely to treat neutral species with long mean-
free-paths in tokamak edge problems where mass conservation has been discovered to be critical.
Moreover in the context of classical fluid dynamics, the transition from fluid to particles, or short
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to long mean-free-path, has been well-studied because of the application to the space vehicle
re-entry problem and related hypersonic situations. Thus the hybrid fluid/PIC approach might be
regarded as a relatively low-risk route to achieving a robust numerical algorithm.

Evidently full-orbit PIC has the potential to be extremely inefficient relative to gyroaveraged kinetic
theory because of the need to follow gyro-orbits in detail. Hence if this can be avoided, either
through gyroaveraging or clever numerics or indeed a combination of both, then Plan B will see
kinetic imply gyroaveraged kinetic theory for modelling plasma species in the proxyapps.

Regarding implementation at the Exascale there is also a conservative Plan A approach which
sees the use of relatively simple data structures such as scalar and vector arrays to transfer data,
and consequent use of existing code-coupling technologies. Plan B is an aggressive approach to
implementation which sees custom data structures allowing for all physical data (particle arrays
and fluid field vectors) colocated near a point to be held close in memory, permitting very tight
custom code-coupling. As with the kinetic options, this Plan B promises significantly faster solu-
tions than the corresponding Plan A, but its adoption depends on the outcome of research work
to de-risk.

1.2 Proxyapps Summary

The overall thinking behind the proxyapps is to explore potential ‘roadblocks’ to the Exascale as
early and in as simple a context as is possible, beginning with algorithmic roadblocks. NEPTUNE
is directed towards producing ‘actionable’ code as the basis for large procurements, whereas
more physics-focussed software projects conducted by the worldwide nuclear fusion have already
advanced to greater complexity, minimising the risk that unexpected problems will appear in the
full model.

The numbering of proxyapps below corresponds to the Science Plan.

2-1 2-D model of anisotropic heat transport. It is important to determine early the degree of
anisotropy that high-order elements can treat without special coding. If this is unsatisfactorily
small, then there are implications for geometry input as well as algorithmic developments that
are best addressed as early as possible.

2-2 2-D elliptic solver in complex geometry. One of the indicated elliptic solvers is Grad-Shafranov
to produce high order (‘spectrally’) accurate magnetic fields for use in many other proxyapps.
Since Sovinec [3] has already produced a spectral element Grad-Shafranov code, the corre-
sponding NEPTUNE development should mainly serve to identify practical issues concern-
ing implementing high order fe models. The second solver additionally presents a chance
to explore comparatively novel meshing techniques developed under Activity A2.1, and later
the preconditioning techniques of A2.7.

2-3 1-D fluid solver with simplified physics but with UQ and realistic boundary conditions. This
will determine the capability of spectral/hp element to handle sonic outflow boundary condi-
tions needed to represent sheaths, together with large source terms, as well as identifying
practical issues concerning intrusive UQ. This software is already potentially useful in its own
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right for example in modelling MAST-U divertor, and other workers might be drawn in to add
additional physical effects to this end.

2-4 Spatially 1-D plasma model incorporating velocity space effects. From the numerical analytic
point-of-view, this is a key demonstration of spectral/hp element capability to handle particle
interactions. However, again this could be a basis for divertor modelling, to explore sheath
effects depending on fieldline incidence on surface, and with minor modification the spread
of particle energy around tile edges and corners as performed by Gunn et al [4, 5] for ITER
application.

2-5 Spatially 1-D multispecies plasma model. Multispecies throws up a surprising number of
issues concerning data definitions (eg. changes to the Coulomb logarithm), structures to deal
with different number of species, and perhaps most significantly, complicated inter-species
interaction terms both within and at the domain boundaries. This is also an opportunity to
mix fluid and kinetic representations of different species within the volume.

2-6 Spatially 2-D plasma model incorporating velocity space effects. With the 1-D multispecies
fluid work’s having made the generalisation to 2-D straightforward, the challenge here is
to start writing a complex proxyapp in production mode, incorporating the research put into
design, documentation, code generation and benchmarking. There is an opportunity to study
species with both fluid and kinetic representations depending on location relative to the wall.
Again this is potentially a useful tool in its own right, capable of revealing deficiencies in
previous 2-D modelling work.

2-7 Interaction between models of different dimensionality. This should verify that the design
has the right data structures to handle additional further complexity beyond intrusive and
ensemble-based UQ and model order reduction. The hopefully burgeoning NEPTUNE com-
munity could develop this into a design tool with a capability both to explore a large area of
tokamak edge parameter space quickly in 0-D or 1-D and also to focus on relatively small
but critical 2-D features, such as tile edges.

2-8 Spatially 3-D plasma kinetic models. These will represent the full fluid model produced by
the 5-year NEPTUNE project, incorporating features of 2-D fluid and kinetic work in a 3-D
code.

3-1 2-D particle-based model of neutral gas & impurities with critical physics. This will be a
2d3v code (ie. spatially 2-D distribution of particles with 3 velocity components) designed
from the outset to interact with a high-order finite-element fluid model of plasma. It gives an
opportunity to check out ideas on optimal usage of particles.

3-2 2-D moment-based model of neutral gas & impurities. Constructing a 2-D fluid code of
neutral gas from the Nektar++ software should be a valuable educational exercise, whilst
providing scope for cross-validating the 2-D particle model.

3-3 Interaction with 2-D plasma model when available. Building on the 1-D multispecies fluid
work, the challenge here is to incorporate in the fluid code of Proxyapp PA2-6, particle effects
from PA3-1, which will in the higher dimensional space be more subject to lack of numerical
resolution or ‘noise’. Should PA3-3 be accelerated, it could usefully treat both plasma and
neutrals via particle models.
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3-4 3-D model of neutral gas & impurities. This is now at full dimensional complexity, incorporat-
ing selected ideas on optimal usage of particles.

3-5 Interaction with 3-D plasma model. This will represent the full model produced by the 5-year
NEPTUNE project, a coupling of fluid and kinetic software developed under the FM-WP2
work-package as PA2-8, incorporating features of Proxyapps 3-1 to 3-4, and allowing for
additional input from PA3-6.

3-6 Staged introduction of additional neutral gas/impurity physics. It is expected that the NEP-
TUNE community will join in to supplement the software with a wide-ranging capability to
treat a wide range of additional nuclear, atomic and molecular effects.

1.3 Physical Units and Internal Scalings

As far as is compatible with numerical stability and accuracy, NEPTUNE will employ SI units, with
the main exception that temperature may be specified in electron-Volts eV . Algorithmically the ex-
ception is easily handled by always writing kT for temperature T where the dimensional quantity k
ensures that the product kT has units of energy. (So k = |e| if T is given in eV or Boltzmann’s
constant if T is measured in Kelvin.) The units system will be referred to as ‘SIx2’ units, since a
further practical exemption arises from the need to interface with CAD systems, which typically
work in millimetres mm, where the recommendation is to scale geometry to metres as soon as is
practicable.

NEPTUNE will not accept models expressed in dimensionless units because of the potential for
confusion when a range of different physical time and length-scales are involved. It is of course,
entirely reasonable for theorists to pick scalings appropriate to their particular problem, and indeed
to incorporate purely numerical factors in the scalings to simplify the coefficients of the equations,
and hence their analytic work. Why this causes problems for NEPTUNE can be understood by
considering the situation when a user or developer wants to introduce an additional physical effect
not considered by the original theorist, for then the newcomer needs to know precisely what was
done before, and then has to scale terms representing the new effect before their introduction into
the software. It is worthwhile emphasising the word ‘precisely’ - the inclusion of purely numerical
factors in the scaling may well introduce ambiguity. Moreover, there are only a small number of
fundamental dimensional quantities, namely time, length, charge and mass, so a limited number
of ways in which terms can be non-dimensionalised unambiguously. (Temperature in Kelvin and
angular quantities are dimensionless fundamental quantities.)

An example of the problem of ambiguity in the scaling, occurs when augmenting Magnetohydro-
dynamics (MHD) with electrostatic phenomena. In MHD, scaling magnetic field by a reference
value B0 causes no difficulty, but as soon as electric charge is introduced and scaled, typically by
the charge on the electron |e|, since in SI units magnetic induction has unit 1T= kgs−1C−1, there
may arise the ambiguity as to whether B0 or say mu/(|e|ts) is appropriate for non-dimensionalising
a new magnetic field term.

Internally, however, NEPTUNE needs to scale fields so that their values are expressible efficiently
in floating point, meaning that large exponents of either sign are to be avoided. The suggested
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limit is to exponents smaller than 38 in absolute value, a criterion set by the standard single pre-
cision representation of floating-point numbers. This is expected to be best achieved by non-
dimensionalising, but ‘under the hood’, ie. with minimal user interaction, as explained in Section 2
below. There will be allowed one permissible exception to the rule that no purely numerical factors
should appear in scalings, namely to introduce a factor Nref to reduce number densities to more
reasonable magnitudes, and a factor wref to allow for the representation of many plasma parti-
cles by a single computational super-particle, in effect to allow for the smallness of an individual
particle’s charge and mass. With that, the key scalings are

1. time in units of ts,

2. length in units of Ls,

3. mass in units of mu, the atomic mass unit

4. electric charge in units of |e| = |qe|, the absolute value of the charge on the electron

5. number densities such as ne made dimensionless with respect to an additional factor of Nref

as well as L−D
s where D is the spatial dimensionality of the problem

6. superparticles carry weight wref , eg. a charge wrefqe is carried by each ‘super-’electron

The above scalings combine to give an energy scaling of mu(Ls/ts)
2, from which follows a tem-

perature scale given by kTs = mu(Ls/ts)
2. Scalings also follow for the electric and magnetic

fields. In practice, the ratio of absolute electron charge to atomic mass unit (≃ proton mass) ap-
pears frequently enough to warrant its own symbol KM = |e|

mu
≈ 108, eg. the electric field unit

becomes U2
s

LsKM
and the magnetic field unit becomes Us

LsKM
.

The NEPTUNE website has a section on “Physical properties of the edge plasma” which gives
likely values for ts and Ls. Equivalently Ls and the velocity scale Us may be specified instead, thus
depending on the relevant physics Us = 103 − 107ms−1, Ls = 10−5 − 10m. These two scalings
could be set by the user (together with Nref and wref ), once for a given simulation. In keeping with
the application to the Exascale, the pure number Nref = 1018, whilst taking wref = 1010 seems
most convenient.

2 Braginskii coefficients

Braginskii’s transport coefficients are widely used in tokamak edge modelling. Object-oriented
Fortran code to compute the Braginskii coefficients is available at the web-site [6].
Note that the constant k is introduced such that

k = kB or k = |e| (1)

where kB is Boltzmann’s constant and |e| is the unit of charge, depending whether T is measured
in Kelvin or eV , so that kT is in energy units.
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2.1 General

Except in Boltzmann’s constant kB, suffix B denotes a quantity from the Plasma Formulary [7].
See also Braginskii’s paper [8]. The subsequent corrections by Epperlein and Haines, and by
Mikhailovski and Tsypin are not relevant to this work.

In a magnetic field, the direction of which is given by unit vector b, Goedbloed and Poedts [9]
define three auxilliary vectors for a vector v, viz.

v∥ = b(b · v), v∧ = b× v and v⊥ = (b× v)× b (2)

If v = (v1, v2, v∥) and b is aligned with the 3-axis in a Cartesian coordinate system, then

v∥ = (0, 0, v∥), v∧ = (−v2, v1, 0) and v⊥ = (v1, v2, 0) (3)

It may be shown that a tensor T which is symmetric under rotation about b has the form (in
Cartesians)

T =

T⊥ −T∧ 0
T∧ T⊥ 0
0 0 T∥

 (4)

so that
T · v = T∥v∥ + T∧v∧ + T⊥v⊥ (5)

2.2 Conduction, Viscous and Resistive Coefficients

The electron parallel thermal conductivity in the Braginskii theory is given as [7]

Ke∥ = 3.2
NkTe
me

τe (6)

a formula valid in either cgs or SI units, where τe is the electron relaxation time (measured in
seconds), defined below. The notation is standard, with N the number density of electrons, ap-
proximately the same as the number density of ions, me the electron mass, and Tα, s = i, e the
temperature of species α. The perpendicular electron thermal conductivity satisfies similarly

Ke⊥ = 4.7
NkTe
me

τe ·
1

(ωceτe)2
(7)

where the electron cyclotron frequency

ωce =
e

me
·B (8)

Equivalent expressions for ions are

Ki∥ = 3.9
NkTi
mi

τi (9)

Ki⊥ = 2
NkTi
mi

τi ·
1

(ωciτi)2
(10)
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where the ion cyclotron frequency

ωci =
ZeB

mi
=

e

mp
· ZB
A

(11)

where Z is the charge state of the ion and A its atomic mass. The definitions above have to be
interpreted in the context of the equations given in [7], so that thermal diffusivities are obtained
by dividing by 3nα/2 where α = i, e is the species index. It is also convenient to introduce the
dimensionless factors

xe = ωceτe (12)

xi = ωciτi (13)

Kinematic viscosities in the Braginskii theory may be taken as

νe∥ = 0.73NkTeτe/(Nme) = 0.73
kTe
me

τe (14)

νe⊥ = 0.51NkTeτe/(Nme)
1

x2e
= 0.51

kTe
me

τe
1

x2e
(15)

νi∥ = 0.96NkTiτi/(Nmi) = 0.96
kTi
mi

τi (16)

νi⊥ = 0.3NkTiτi/(Nmi)
1

x2i
= 0.3

kTi
mi

τi
1

x2i
(17)

Key quantities in the calculation of all these terms are τα, α = i, e. The first step in their calculation
is to convert their formulas, usually given in cgs, to SI units, giving

τe = 6
√
2π3

ϵ20
√
me

e4
(kTe)

3/2

Z2NΛ
= 3.44× 10−7 (Te)

3/2

Z2(N/1018)Λ
(18)

τi = 12
√
π3
ϵ20
√
mp

e4
(kTi)

3/2
√
A

Z4NΛ
= 2.09× 10−5 (Ti)

3/2
√
A

Z4(N/1018)Λ
(19)

where the notation is standard with Te and Ti measured in eV , except possibly the use of Λ for the
Coulomb logarithm. The above check with expressions in Wesson [10, § 14]. Note that Z2τi differs
from τe in being larger by a factor of

√
2mi/me ≈ 60

√
A (also substituting Ti for Te is necessary).

The factors in Z are taken from the original Braginskii paper [8].

It follows that the xα factors may be conveniently written

xe = 6.05× 104
(Te)

3/2B

Z2(N/1018)Λ
(20)

xi = 1997
(Ti)

3/2B

Z3(N/1018)
√
AΛ

(21)

The large coefficients in Equations(20) and (21) explain why classical transport is so anisotropic.
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Substituting the explicit expression for τe in Equations(6) and (9) gives respectively, the thermal
parallel diffusivities are

κe∥ = 13
√
2π3

1
√
me

ϵ20
e4

· (kTe)
5/2

Z2NΛ
(22)

κi∥ = 16
√
π3

1
√
mp

ϵ20
e4

· (kTi)
5/2

Z4NΛ
√
A

(23)

and the ratios are

xe =
6
√
2π3ϵ20√
mee3

· (kTe)
3/2B

Z2NΛ
(24)

xi =
12
√
π3ϵ20√

mpe3
· (kTi)

3/2B

Z3NΛ
√
A

(25)

An expression for the perpendicular ion conductivity, maintaining the fixed physical factors is of
interest

κi⊥ =
e2
√
mp

9
√
π3ϵ20

· Z
2NΛ

√
A

(kTi)1/2B2
(26)

Assuming Ti is measured in eV , and N in units of 1018 m−3, then

κi⊥ = 6.67× 10−4 · Z
2(N/1018)Λ

√
A

(Ti)1/2B2
m2s−1 (27)

and

κe⊥ = 5.26× 10−5 · Z
2(N/1018)Λ

(Te)1/2B2
m2s−1 (28)

The plasma resistivity is taken as

η = ηB/µ0 =
0.51

√
mee

2

6
√
2π3µ0ϵ20

· ZΛ

(kTe)3/2
(29)

Assuming Te is measured in eV , then

η = ηB/µ0 = 41.9 · ZΛ

(Te)3/2
m2s−1 (30)

2.3 Prandtl Numbers

The above expressions (except for the resistivity) apply strictly only when there are separate equa-
tions for ion and electron transport, so decisions have to be taken about how to combine the trans-
port coefficients to treat the plasma as a single fluid. For the thermal transport, since pressures
pe ≈ pi, it is sufficient to add the κα. However, the values for ions and electrons are so disparate
because mp ≫ me that one or other might be neglected, assuming B is of order unity (in Tesla)
and Te ≈ Ti, thus κe∥ ≫ κi∥ and hence κ∥ ≈ κe∥, since(

xi
xe

)2

=
2me

Z2Amp

(
Ti
Te

)3

(31)
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It also follows that
κe⊥
κi⊥

= 0.078

(
Ti
Te

)1/2 1√
A

(32)

thus κ⊥ ≈ κi⊥. There is the caveat that if Ti is approximately spatially constant radially, then κe⊥
might become relevant.

As for viscosity, since the ion momentum is so much greater than the electron momentum, then
ν ≈ νi.

For interchange motions where flows are perpendicular to the field, take κ = κi⊥, then on the
Cambridge definition, the magnetic Prandtl number is

ζ =
η

κi⊥
=

0.765√
2

1

µ0

√
me

mp
· B2

ZN
√
A

(kTi)
1/2

(kTe)3/2
(33)

which evaluates as (Tα in eV , N in units of 1018 m−3)

ζ =
η

κi⊥
= 62 700 · B2

Z(N/1018)
√
A

(Ti)
1/2

(Te)3/2
(34)

It may be argued that it is more appropriate to use the ‘anomalous’ value of 1m2s−1, in which case
Equation (30) without units gives the ‘Cambridge’ magnetic Prandtl number.

The usual (viscous) Prandtl number is

Pr =
νi⊥
κi⊥

= 0.23 (35)

Note that P.H.Roberts [11] defines the magnetic Prandtl number as PrM = ν/η = Pr/ζ, and his
definition is more widely used.

2.4 Using Braginskii and Other Coefficients

2.4.1 Introduction to Scaling

The Braginskii coefficients might be used in a multispecies context over a range of different
timescales. Ultimately finite element codes, indeed most numerical schemes, depend on solu-
tion of a linear algebra problem

Ax = b (36)

where x are field values to be determined, and A and b follow from the model. Take the simplest
case of a 2× 2 model

A =

(
a11 a12
a21 a22

)
, b = (b1 b2)

T , x = (x1 x2)
T (37)

where the demands of multispecies and multiscale may lead to widely different values of all coef-
ficients and unknowns. To make these values comparable, which is desirable from the numerical
standpoint, exploit the fact that it is possible to multiply each each equation separately without
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changing the value of the solution x. Further, provided the coefficients aij are appropriately ad-
justed, each component xj of x may be scaled separately. Thus(

a11 a12
a21 a22

)(
x1
x2

)
=

(
b1
b2

)
(38)

and (
s1a11t1 s1a12t2
s2a21t1 s2a22t2

)(
x̃1
x̃2

)
=

(
b̃1
b̃2

)
(39)

where
x̃ = (x1/t1 x2/t2)

T , b̃ = (s1b1 s2b2)
T (40)

give the same x, although likely by solving equations with very different sized coefficients for very
different sized unknowns x̃. This approach is written more elegantly in matrix notation as

SAT−1T x̃ = Sb̃ (41)

where S and T are diagonal matrices

S =

(
s1 0
0 s2

)
, T =

(
1/t1 0
0 1/t2

)
(42)

(so that T may be viewed as an elementary preconditioner).

Scaling each row of the matrix and each unknown becomes very expensive for a nonlinear and/or
timestepping problem where A and b are large and continually changing. Thus it is helpful on
this account only to scale by equation subsystem and by field, where by subsystem is meant eg.
momentum balance for species X, and field is meant say number density of the coupled species Y.
Hence it is convenient to regard x1 as corresponding to an entire vector of discrete values of the
number density of species X and x2 similarly to represent the density of species Y, so that the
coefficients aij for each i and each j separately represent a possibly very large matrix. Such a
grouping is convenient for making the equations dimensionless, in that s1 may compensate for the
dimensions of the equation

a11x1 + a12x2 = b1 (43)

and s2 for the dimensions of
a21x1 + a22x2 = b2 (44)

whereas tj may serve make dimensionless xj for each j = 1, 2. There should be a reduced,
hopefully avoidable, need to rescale equations as fields evolve, and properly dimensioned values
should be easily restored as needed.

2.4.2 Fluid Models

In the above context, there is no need, having evaluated the Braginskii coefficients to convert
them to non-dimensional form. Selected terms from the energy evolution equation demonstrate
how the above scalings are to implemented in practice. For demonstration purposes, the factor of
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B can be omitted from System 2-3 [12]. The following terms in the energy evolution equation are
representative

∂

∂t

(
3

2
(NkTd)

)
+ . . . = N

∂

∂s∥
κe∥

∂kTe
∂s∥

+ . . . (45)

The overall scaling of this equation to render its terms dimensionless is evidently ts
kTs

· L3
s

Nref
and the

unknowns to be solved for areN and Td, which have respectively dimensions/scalings Nref

L3
s

and Ts.
The time dependent term in Equation (45) involves both unknowns, hence needs re-expressing as

∂

∂t

(
3

2
(NkTd)

)
=

3

2
Nk

∂Td
∂t

+
3

2
kTd

∂N

∂t
(46)

so that 3
2Nk and 3

2kTd are equivalents of coefficients aT and aN of matrix A. The partial deriva-
tive ∂/∂t leads to discrete operators ∆̃t/∆t where ∆̃t is a (dimensionless) difference operator so
the scaling factorisations have

3
2Nk

∆t
∆̃t(T ) →

L3
sts

NrefkTs
·
3
2Nk

∆t
· Ts∆̃t

(
Td
Ts

)
(47)

and
3
2kTd

∆t
∆̃t(N) → L3

sts
NrefkTs

·
3
2kTd

∆t
·
Nref

L3
s

∆̃t(n) (48)

where ∆̃t operates on unknowns of scaled temperature Td/Ts and density n = L3
sN/Nref re-

spectively. The partial derivative ∂2/∂s2∥ leads to a discrete operator ∆̃2
s/(∆s∥)

2 where ∆̃s is a
(dimensionless) difference operator so the scaling factorisation for aκ is

L3
sts

NrefkTs
·
Nkκe∥

(∆s∥)2
· Ts∆̃2

s

(
T

Ts

)
(49)

where ∆̃2
s operates on the unknown of scaled electron temperature Te/Ts.

The algorithm above producing the scaled matrix coefficients involves multiplying 3 factors to-
gether. If T is measured in eV , then k = |e|. Suppose Ls = 10m and ts = Ls/10

5ms−1 = 10−4 s,
(Ts ≈ 100 eV ) N = 1016m−3, Td = Te = 10eV, and approximating |e| → 10−19, 3/2 → 1, taking
∆t = 0.1ts and ∆s∥ = 0.1Ls, then numerically

L3
sts

NrefkTs
· Nk
∆t

· Ts → 103−4−18+19−2 · 10−19+16+5 · 102 (50)

L3
sts

NrefkTs
· kTd
∆t

·
Nref

L3
s

→ 103−4−18+19−2 · 10−19+1+5 · 1018−3 (51)

L3
sts

NrefkTs
·
Nkκe∥

(∆s∥)2
· Ts → 103−4−18+19−2 · 1016−19κe∥ · 102 (52)

so that each factor is not unmanageably different from unity when using single precision arithmetic.
(The largest numerical value is the number density scaling of 1015 if κe∥ is estimated as 109m2s−1.)
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Ultimately, the scaled values of the coefficients aT , aN and aκ are easily shown to be equal to
respectively

ãT =
tsn

∆t
, ãN =

ts
∆t

Td
Ts
, ãκ =

tsκe∥

(∆s∥)2
n (53)

which are all evidently of order unity.

If it is necessary to iterate to a solution for Te or Ti, then the coefficient should be evaluated for
T = Ts. For example κe∥, which varies proportional to T 5/2, should be evaluated as

κe∥(T ) = κe∥(Ts)

(
T

Ts

) 5
2

(54)

and then any further work, for example linearisation, may proceed using the dimensionless group T/Ts.

2.4.3 Scalings for Particle Models

The above considerations also apply in the case of particle evolution. Given the choice of units, if
the equations of motion are posed in terms of superparticles of weight wp,

wpmα
dv

dt
= wpqα(E+ v ×B) (55)

It is convenient to introduce a reference particle weight wref , cf. Nref , to make scalings more
manageable numerically. The overall equation scaling to render the terms dimensionless is then
evidently ts

wrefmu
· ts
Ls

= t2s
wrefLsmu

and the unknown to be solved for, namely v, has dimensions Ls
ts

.
Consider the acceleration in Equation (55), which leads to discrete coefficient terms of the form
mα
∆t , then the scaling factorisation is

wpmα

∆t
v → t2s

Lswrefmu
· wpmα

∆t
· Ls

ts
(56)

to be applied to dimensionless velocity

v → ts
Ls

v (57)

As explained above, the numerical values of the 3 factors should be estimated. For definiteness,
suppose |v| = 105ms−1, B = 1T, then the gyro-radius is approx. 10−3m, so take Ls = 10−3 m as
a typical lengthscale, then ts = 10−3−5 = 10−8 s, and a timestep size ∆t of order 10−9 is indicated.
Approximate the amu→ 10−27 kg, and if A = Z = 1 and suppose wp = wref = 1010, the resulting
factors follow as

t2s
Lswrefmu

· wpmα

∆t
· Ls

ts
→ 10−16+3−10+27 · 1010−27+9 · 10−3+8 (58)

so that each factor is not unmanageably different from unity when using single precision arithmetic.
(The smallest numerical value is 10−8.)

The scaled coefficient is easily shown to simplify as

ã =
t2s

wrefmuLs
· wpmα

∆t
· Ls

ts
=
tsA

∆t
(59)
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if wref = wp, which is clearly of order unity. Evidently ã has a numerical value of order the number
of timesteps chosen to discretise a gyro-period, typically a number of order unity. The magnetic
field term may similarly be treated

wp|qαv ×B| → t2s
Lswrefmu

· wp|qα|B · Ls

ts
(60)

whence
t2s

Lswrefmu
· wp|qα|B · Ls

ts
→ 10−16+3−10+27 · 1010−19 · 105 (61)

ie. the smallest numerical factor is 10−9, and

ã = tsZKM |B| ≈ 10−8+8 = 100 = 1 (62)
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3 System 2-1: 2-D model of anisotropic heat transport

The model for time evolution of the temperature field T is thermal diffusion, which in a plasma
gives

3

2
N
∂T

∂t
= ∇ · K∇T (63)

where the thermal conductivity tensor is K. (Compare the model for a solid

ρmcp
∂T

∂t
= ∇ · kc∇T (64)

where the thermal conductivity tensor is kc, ρm is the mass density of the medium and cp is its
specific heat at constant pressure, implying that the thermal diffusivity tensor is κ = kc/ρmcp.)
Introducing vector components as in Section 1, thermal diffusion in a plasma after Braginskii is
thus

3

2
N
∂T

∂t
= ∇ ·

(
K∥b[b.∇T ] +K⊥(∇T − b[b.∇T ]) +K∧b×∇T

)
(65)

Henceforth, the ‘wedge’ transport ie. in due to the term in K∧ is neglected for the reason that it
may be rearranged to give a convection-like term, via the identity

∇ · K∧b×∇T = ∇ · (u∧T ) (66)

where
u∧ = ∇× (K∧b) (67)

(In any event, if K∧ is a function purely of T , and ∇·b = 0, then the terms in Equation (66) vanish.)

Expressions for the thermal diffusivities κ⊥ and κ∥ for the different species are given in Section 2.2,
where they incorporate the factor 3

2N , ie. κ(⊥,∥)e,i = K(⊥,∥)/(
3
2N).

3.1 Test Cases

The aim of the work is to calculate in a series of calculations that increasingly approach the re-
alistic model, the magnitude of the spurious numerical diffusion perpendicular to the magnetic
field direction b. The main interest concerns how much diffuses in the plasma, not the solid sur-
face, even though the deposition of power is on the surface, reason: all sorts of complicated extra
physics come into play in the plasma especially near surfaces.

3.1.1 Starting Case

For the 2-D test case illustrated in Figure 1, it is suggested that κ⊥ = 0 so that any perpendicular
diffusion is numerical in origin. Given this, the problem can be analysed using any spatial scale
and any convenient κ∥. However an order of magnitude estimate for tile dimensions is one metre,
discharge timescale is one second upwards. For plasma properties assume N = 1018 m−3, Ti =
Te = 10eV, Z = A = 1, B = 3T and solid temperatures say 500o C.
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Figure 1: Sketch of the test configuration, showing fieldlines in direction b and the boundary
between anisotropic conductor and perfect insulator.

In Figure 1, T = T0 > 0 over the interval on the left hand boundary that is connected by field in
direction b with the thick red line, elsewhere on the blue fieldlines, T = 0. The red region lies on a
black line which denotes the boundary between anisotropic conductor and perfect insulator. The
exact steady-state solution has T = constant along fieldlines, but numerical diffusion will result in
non-zero T in the region of blue fieldlines. The relative size of this numerical diffusion must be
estimated as a function of incidence angle θ, where interest attaches to small θ ≤ 2o.

3.1.2 Intermediate Case

To test curvature effects the whole 2-D domain of Figure 1 could be distorted by conformal map-
ping (which preserves angles).

3.1.3 Realistic Case

This needs to be 3-D and involve JET divertor tile descriptions derived from the output of the CAD
design tool, together with information describing the magnetic field as a function of position, which
will be supplied. The magnetic equilibrium may be supplied analytically after Solovev, but the
usual input is as an .eqdsk file. The EQDSK G format is a “non-standard” standard for solutions
ψ(R,Z), p(ψ), I(ψ) of the Grad-Shafranov equation, where ψ is the magnetic flux and (R,Z) are
cylindrical coordinates in planes normal to the toroidal direction. The functions p and I give the
variation of the pressure and toroidal field respectively. The basic standard for EQDSK G may
be found at: https://fusion.gat.com/theory/Efitgeqdsk (which may be password-protected)
or else at https://w3.pppl.gov/ntcc/TORAY/G_EQDSK.pdf The flux ψ(R,Z) is sampled at uni-
formly spaced points on a direct product grid, for which the .eqdsk header defines the mesh-size,
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as well as other useful information, such as the flux on axis and at boundary. Unfortunately the
strict EQDSK G standard uses a Fortran format that does not require spaces between samples,
hence there are many variants for languages that cannot handle this situation, that have intro-
duced other features such as mistakes in field helicity, factors of 2π in the flux, etc. Routines that
calculate magnetic field B using cubic spline interpolation could be made available. It would be
desirable for the output of System 2-2 to be used.

3.1.4 Extended Case

An extended test would allow for heat transfer in the solid surface sketched at bottom of Figure 1,
taking say thermal diffusivity for Tungsten κ ≈ 3× 10−5 m2 s−1.
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Figure 2: Sketch of the test configuration, showing tokamak cross-section and the boundary of the
Last Closed Flux Surface (LCFS).

4 System 2-2: 2-D elliptic solver in complex geometry

The geometry will be representative of a tokamak cross-section, possibly omitting the region con-
taining the central hot plasma, so that topologically it will be at most as complex as an annulus
(one-hole). Figure 2 provides an example. The Last Closed Flux Surface (LCFS) may be param-
eterised by arc-length in the cross-sectional plane of projection.

The elliptic equations to be considered now follow.

4.1 Simplified Grad-Shafranov equation

This elliptic equation is a simplified version of the Grad-Shafranov equation, see [13]

R2∇ · 1

R2
∇ψ = −2µ0Rjϕ (68)

where ψ is the poloidal magnetic flux and (R,Z) are cylindrical coordinates in planes normal to
the toroidal direction ϕ, with the toroidal current

jϕ = R
dp(ψ)

dψ
+

I

µ0R

dI(ψ)

dψ
+ jext(R,Z) (69)

The functions p and I give the variation as functions of ψ of the pressure and toroidal field respec-
tively, and jext(R,Z) may be produced in several ways, of which the commonest is by poloidal
field circuits, ie. localised current sources in cross-section. Note that the operator in Equation (68)
simplifies to

∂2

∂R2
− 1

R

∂

∂R
+

∂2

∂Z2
(70)

which implies that mathematically, ψ satisfies a steady-state 2-D advection-diffusion equation cor-
responding to unit diffusivity in the flow uR = 1/R.
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To provide the simple test case, take jϕ = jext only with localised current sources. The boundary
conditions are ψ = 0 on the LCFS and ψ ∝ 1/

√
(R2 + Z2) as R, Z → ∞.

Note that the Grad-Shafranov equation has been solved using spectral elements by others, eg.
Sovinec [3].

4.2 Simplified non-Boussinesq vorticity equation

A simplified version of the non-Boussinesq vorticity equation to be solved for the scalar field
Φ(R,Z) in cylindrical polar coordinates (R,Z) is

∇⊥ ·
(

1

B2
∇⊥Φ

)
= n (71)

where B = |B| is the amplitude of the imposed magnetic field, density n acts as a source term,
and the elliptic is to be solved for Φ, subject to boundary conditions Φ = 0. The operator ∇⊥, ignor-
ing the components of magnetic field directed within the (R,Z) plane, reduces to the usual gradi-
ent ∇ in cylindrical polars of axisymmetric fields, hence mathematically Equation (71) is equivalent
to Equation (68).

n will be set so that n = n0(si) on the boundaries, where arc-length si parameterises the inner
boundary if i = 1 and the outer if i = 2. n and |B| will be specified functions of (R,Z) that capture
features of the number density n distribution and magnetic field intensity distribution expected in a
tokamak, Ideally |B| would represent a solution of the Grad-Shafranov equation from Section 4.1.
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5 System 2-3: 1-D fluid solver with simplified physics but with UQ
and realistic boundary conditions

5.1 Plasma Equations

Starting from the two-fluid model of Braginskii [8], a set of equations resembling those of clas-
sical (compressible) hydrodynamics may be derived by summing Braginskii’s equations for num-
ber density, momentum and energy [14]. Using the standard notation of Section B, introducing
Td = Ti + Te, neglecting the stress tensor terms (implicitly setting δpi = 0), and assuming B is
independent of time, the resulting system is

∂

∂t
(
N

B
) +

∂

∂s∥
(
NU

B
) =

Sn

B
(72)

∂

∂t
(
miNU

B
) +

∂

∂s∥
(
miNU

2

B
) = − 1

B

∂

∂s∥
(pi + pe) +

Su

B
(73)

∂

∂t

(
3

2
(
NkTd
B

) +
1

2
(
miNU

2

B
)

)
+

∂

∂s∥

(
5

2
(
NUkTd
B

) +
1

2
(
miNU

3

B
)

)
= − 1

B

∂

∂s∥
(qi∥ + qe∥) +

(SE
i + SE

e )

miB
(74)

where s∥ is distance along the fieldline, and all variables retain their physical dimension. (Some
variables from [14] have been promoted to capitals to indicate that they retain their physical di-
mensions.) Ion mass is defined as mi = Amu where A is atomic mass of the ion and mu is the
atomic mass unit.

Note that in adding Eqs.(3) and (4) of [14], equipartition and collision terms cancel to give Equa-
tion (74). The perfect gas equation of state will be assumed, so that

pi + pe = NkT (75)

The thermal conduction fluxes are

qα∥ = −κα∥
∂kTα
∂s∥

, α = e, i (76)

where the κα∥ take Braginskii values, see Section 2, thus for usual situation in which the electron
conduction dominates

qi∥ + qe∥ = κe∥
∂kTe
∂s∥

(77)

and Te has be expressed in terms of Td, eg. Te = Td/2 or Te = (1− τ2)Td in terms of an arbitrary
0 < τ < 1 that determines the ion temperature. To give an easier test problem, the conduction
term may be accounted for by augmenting the advective energy flux, 5/2 → g.

The boundary conditions are that |U | = |Ms|CS at s = 0, 1 where the sound speed

CS =
√
kTd/mi (78)
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and |Ms| is the Mach number, since Ms will be allowed to take either sign. Normally |Ms| = 1 so
that M0 = −1 and M1=1 where the subscript corresponds to value of s. The combined energy flux
at each boundary has

|Q∥| =
1

2
CSN(δekTe + δikTi) ≈

1

2
miCSNδkTd (79)

if δ ≈ δe ≈ δi. For definiteness, δ = 1
2(δe + δi) will be assumed. Values of δα from the literature

imply δ = 4.25. The energy flux factor g is chosen such that the easier model has the same energy
flux.

For mathematical analysis, it is convenient to replace the source terms in Equations(72)– (74) with
equivalent fluxes, however this is unnecessary for computational purposes. The forms the sources
take are discussed below in Section 5.2.

5.2 Explicit Sources

The above work considers the case where the source terms are regarded as given, however
it is worth describing the form of the additional sources that may be at least locally important.
From ref [14], the plasma sources are given by (with the convention that suffix ‘n’ denotes neutral
species)

Sn = NnN⟨σv⟩ION −N2⟨σv⟩REC + Sn
⊥ (80)

Su

mi
= NnN⟨σv⟩IONUn −N2⟨σv⟩RECU +NnN(Un − U)⟨σv⟩CX (81)

SE = SE
i + SE

e (82)

= NnN⟨σv⟩ION (
3

2
kTn +

1

2
mnU

2
n − kIH) (83)

− N2⟨σv⟩REC(
3

2
kTi +

1

2
miU

2)

+ NnN⟨σv⟩CX

(
3

2
k(Tn − Ti) +

1

2
mn(U

2
n − U2)

)
− NnNkQH + SE

⊥i + SE
⊥e

Here suffix ⊥ denotes the effectively given source terms arising from cross-field contributions,
suffices ION , REC and CX denote respectively reaction rates ⟨σv⟩ for ionisation, recombination
and charge-exchange, IH is the Hydrogen reionisation potential, and QH is the cooling rate due
to excitation.

Since the sources appear in the analysis primarily as integrals starting at s = 0, study of Equa-
tions(80)– (82) concentrates on this region, where plasma velocity U < 0 and neutral velocity
Un > 0 with the two having approximately the same magnitude. There, Equation (80) has only
one negative term, due to recombination, but from the cross-section data in ref [14], this could
dominate only below 2eV. All terms in Equation (81) are positive near s = 0 as the two velocities
reinforce. Equation (82) contains two terms which are always negative and an ionisation term
which is also negative below IH/2 ≈ 7eV, thus for example, the cross-field source terms S⊥i,e

must be positive for SE > 0 in steady state.
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The sources of neutrals may be deduced from the ionisation and charge-exchange terms in Equa-
tions(80)– (82), viz.

Sn
n = −NnN⟨σv⟩ION + Sn

⊥n (84)
Su
n

mn
= −NnN⟨σv⟩IONUn −NnN(Un − U)⟨σv⟩CX + Su

⊥n (85)

SE
n = −NnN⟨σv⟩ION (

3

2
kTn +

1

2
mnU

2
n − kIH) (86)

− Nn⟨σv⟩CX

(
3

2
k(Tn − Ti) +

1

2
mn(U

2
n − U2)

)
(87)

+ SE
⊥n (88)

The S⊥n terms are hard to quantify, but if these are neglected, it is clear that Sn
n < 0 and Su

n < 0 is
the obverse of the positive plasma sources. Similarly it is likely that SE

n < 0 if SE > 0

The boundary conditions on the neutrals [14, Table 4] are (1) that the flux of neutrals is set by
recycling of the plasma, so

NnUn = −RpNU (89)

where Rp is the recycling coefficient. and (2) of close to sonic outflow

Un = M0

√
kTn
mn

(90)

where M0 is the signed Mach number for the neutrals, and Tn is the neutral temperature in the
volume, which assumed constant throughout a calculation.

5.2.1 Symmetries and Constraints

Solutions that could be used for testing purposes are described in the separate dedicated doc-
ument. Here it is briefly noted that symmetry could be used to test code validity. The model
supports a solution symmetric about the domain mid-point in density and temperature (antisym-
metric in flow velocity), provided any applied sources have the corresponding symmetries. There
are also point relations which must be satisfied at the midpoint.

In steady state, there is the physical, integrated constraint that sources must balance total fluxes
of plasma and neutral mass across the boundaries. Further, in absence of diffusive terms, if the
sources vanish at the boundaries then steady-state has the additional constraint of boundary con-
ditions of zero gradient (Neumann conditions). Care is required though, as this will not generally
be true since the more realistic representation of the sources in the coupled system typically leads
to non-zero values at the boundaries.
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6 System 2-4: Spatially 1-D plasma model incorporating velocity
space effects

The following simple model is after Taitano et al [15, 16]

∂fe
∂t

+ vex
∂fe
∂x

+
qe
me

E · ∂fe
∂v

= 0

∂fi
∂t

+ vix
∂fi
∂x

+
qi
mi

E · ∂fi
∂v

= 0 (91)

ϵ0
∂E

∂t
+
∑
α

qαnuα −
∑
α

qαnuα = 0

Equations 91 are the electron and ion Vlasov equations and Ampere’s equation respectively. The
quantitiesme, mi, fe, fi, ve, vi, qe, qi, E, ϵ0, and nuα are the electron and ion masses, electron and
ion distribution functions, electron and ion velocities, electron and ion charges, the electric field,
permeability constant of vacuum, and the momentum of species α = i, e, respectively. Note that
Equation (91)represents a generalisation of the system in ref [15], where for vector quantities, the
x-component is always implied, in the usual notation the original system is 1d1v rather than 1d3v
as above, where particles move according to

dx

dt
= vαx

dvα

dt
=

qα
mα

E (92)

(Motion in (y, z) is neglected, the 3-D electromagnetic version of Equation (92) appears in Sec-
tion 11).

The
∑

· term denotes for example a spatially averaged summed quantity and is included to en-
force Galilean invariance. The solutions fe and fi of the Vlasov equations are functions of space
variable x, velocity v, and time. Ampere’s equation is solved for the self-consistent electric field E,
which is a function of space variable x and time.

The boundary conditions used are periodicity in x, and zero at infinity in |v|. Initial conditions which
might be used for the distribution functions are from ref [15],

f0(x,v,u0, T0) =
n0(x)√
2πkT0/m

exp

(
−m(v − u0)

2

2kT0

)
(93)

n0(x) = n(t = 0, x) = 1 + αn cos(kwx)

where n0, u0 and T0 are the initial number density, initial fluid velocity and initial temperature
respectively. The parameter αn is the perturbation amplitude, kw is its wave vector, and m is the
species mass. It follows that the (scaled) momentum is given formally as

nuα(x) =

∫
vfα(x,v, t)dv (94)

where fα is the distribution function for species α at time t. (In practice the integral would be
replaced by a sum over particles.)
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Note that periodic boundary conditions are of limited value in practice, and attention should be
given to minimal modifications of the above problem where there is

1. a flux of momentum across the domain (inflow and outflow boundary conditions)

2. reflection of particles at the boundaries

3. a source of plasma within the domain, and outflow boundaries

4. and where the spatial dimension corresponds to arc length s along a fieldline (implies n
replaced by n/|B|, cf. Section 5.1).
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7 System 2-5: Spatially 1-D multispecies plasma model

7.1 Fluid model

For a multispecies plasma, there is a system of Boltzmann equations to be solved, one for each
species, each of form in 3 spatial dimensions

L7fα =
∑
β

Q(fα, fβ) + Sα (95)

where L7 is the 7-D Lie derivative (space, velocity-space and time make up the 3 + 3 + 1 = 7
dimensions, α, β are species labels and Q is the Boltzmann collision operator. The multispecies
equations are derived following Grad [17, § 6] by substituting in Equation (95)

fα = exp(−λHα)Fα(x,v, t) (96)

where the flow of the Lie derivative is given by the Hamiltonian Hα and Fα is a functional of
moments of fα, to include (dropping the suffix on f )

n =

∫
fdv, u0 =

∫
fvdv, T =

∫
fv2/2dv (97)

The resulting system is linearised and solved by iteration to give the multispecies plasma fluid
equations in Zhdanov [17, § 6]. There are believed to be typographical errors in Zhdanov, so
cross-checking is needed.

To see Grad’s approach applied to classical fluids see for example [18, § 8].

7.2 Coupling to particles

Other, less collisional species are to be treated as particles as in Section 6 and coupled via Sα.
Mathematical forms for Sα will be guided by the emerging results from particles’ method research.

25



8 System 2-6: Spatially 2-D plasma model incorporating velocity
space effects

With reference to the Hermes web-site [19], the following 2-D time dependent model of plasma
evolution may be derived, expressed using the agreed notation for plasma quantities, see Sec-
tion B, note in particular that plasma ‘vorticity’ has dimensions of charge density.

p =
∑
α

nαkTα (98)

ρm =
∑
α

Aαmunα (99)

cs =

√
p

ρm
(100)

ne = Σα ̸=eZαnα = Zini (101)
∂ne
∂t

= −∇ · (nevE×B) +∇ · 1

|qe|
jsh −

necs
L∥

+ Sn
e +∇ ·De∇⊥ne (102)

∂pe
∂t

= −∇ · (pevE×B)−
δepecs
L∥

+ Sp
e +Dfpe∇ · (κe⊥∇⊥kTe) (103)

∂pi
∂t

= −∇ · (pivE×B)−
δipics
L∥

+ Sp
i +Dfpi∇ · (κi⊥∇⊥kTi) (104)

(105)
∂ω

∂t
= −∇ · (ωvE×B) +∇ ·

[
(pe + pi)∇× b

B

]
+∇ · jsh +Dfvs∇ · ν∇⊥ω (106)

∇ ·
[

mi

Zi|qe|B2
∇⊥

(
nref |qe|Φ+

1

Zi
pi

)]
= ω (107)

∇ · jsh = −|qe|necs
L∥

|qe|Φ
kTref

(108)

vE×B =
B×∇Φ

B2
(109)

where it has been assumed that there is a single ion species i. (Cases with Zi ̸= 1 need checking,
so the ion species has to be assumed Hydrogenic Zi = 1 for now.) The sheath heat transmission
coefficients are from Stangeby [20, § 2.8] (who uses the notation ‘γα’)

δe = 6.5, δi = 2.0 (110)

Stangeby [20, § 2.1] defines cs =
√

k(Te+Ti)
mi

which agrees with Equation (100) to within or-
der me/(Aimu).

Notes

1. Although the system is described as 2-D, it is conventional to treat densities as measured
per cubic metre rather than per square metre, and consistently pressure as force per unit
area.
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2. The dissipative terms with coefficients ν, κe⊥ and κi⊥ (Braginskii functional forms to be used
from Section 2, enhanced if necessary by numerical multiplication factors Dfpe, Dfpi, Dfvs)
have been added so that Hermes-3 simulations may be compared minimising complications
due to sub-grid-scale effects.

3. Thanks to the use of equations for pressure instead of energy density (Eα = 3
2pα, α = e, i),

Braginskii values correspond to Dfpe = Dfpi =
2
3

4. Similarly the pressure sources are to be reduced Sp
α = 2

3Qα, α = e, i.

5. The same expressions may be taken for the source terms as those listed in System 2-3 in
Section 5

6. A potentially useful simplification for the pressure ‘dissipation’ replaces

Dfpe∇ · (κe⊥∇⊥kTe) → Dκ
fpe∇ · ∇⊥pe (111)

Dfpi∇ · (κi⊥∇⊥kTi) → Dκ
fpi∇ · ∇⊥pi) (112)

where Dκ
fpe and Dκ

fpi have dimensions of thermal diffusion. This replacement is inaccurate
but easier to implement.

8.1 Boundary conditions

Except for Φ (and consequently ω), all boundary conditions are Neuman with values specified
by the initial conditions. For Φ, zero-gradient is specified, except that Φ = 0 is set at the core
boundary (assumed to lie at small x) and also on the extreme radial boundary.

8.2 Dimensionless units

As explained in Section 1.3, NEPTUNE will not use dimensionless units because of the potential
for confusion. A prominent source of confusion is the introduction of purely numerical factors when
transforming, for which there is one permissible exception namely, as in the Hermes-3 model,
where the opportunity has been taken to introduce a factor Nref to reduce number densities to
more reasonable magnitudes. (It is suggested that in keeping with the application to the Exascale,
the pure number Nref = 1018.)

Unfortunately for the project, the Hermes-3 models are expressed in dimensionless variables, and
it is necessary to understand how this has been done. The key scalings are

1. time in units of 1/ωci,

2. length in units of cs,ref/ωci, where the speed satisfies kTref = mic
2
s,ref

3. electric potential in units of kTref/|qe|

4. magnetic field in units of B0 used to define ωci = Zi|qe|B0/mi (remembering Zi = 1 in the
model).
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5. ne, pi, pe, ω made dimensionless with respect to an additional factor of Nref× the expected
scalings of (ωci/cs,ref )

2, miω
2
ci, miω

2
ci and |qe| · (ωci/cs,ref )

2 respectively.

6. consequently dimensional source terms have to be scaled (divided) by NrefωciScale where
Scale is the appropriate factor for the equation from the preceding list.

In the Hermes-3 equations, variable ‘cs’ becomes the Mach number after scaling by Us, vari-
able ‘e’=-1, L∥ is in units of cs,ref/ωci. (Quoted variables indicate that they are not NEPTUNE
approved symbols.) The NEPTUNE website has a section on “Physical properties of the edge
plasma” which gives representative values for the units employed above.

8.3 Practical implementation

For practical purposes, it is easier to work with dimensional quantities, where a good source for
parameter values is the experimental data itself. It is necessary to begin with a checklist to ensure
that all necessary physical parameter values are specified, all fields initialised and their boundary
conditions set, see Section 8.3.1. Thereafter, based on knowledge of the likely physics behaviour,
numerical parameters are set, see Section 8.3.2 and Section 8.3.3.

8.3.1 Physics problem parameters

1. Take Zi = 1, Ai = 1 → mi = Aimu.

2. Further given nref or equivalently Nref/L
3
s, Tref or equivalently Ts, blob function FBlob(x, y)†

(a) Initialise ne, pe, pi:
(b) Te = Ti = Tref

(c) ne = nrefFBlob(x, y)

(d) ni = ne

(e) pe and pi follow as pα = nαkTα

(f) cs =
√
p/ρm

3. Further given specification for Φ = 0 and B**

(a) Initialise ω using Equation (107)

4. Further given L∥ and setting sources Sn,p
α = 0 completes specification of physics problem

†Blob function is Gaussian

FBlob(x, y) = 1.0 + ncon exp(−
(x− x0)

2 + (y − y0)
2

r20
) (113)

where ncon is the blob contrast, (x0, y0) is the initial position of the blob and r0 measures its radius
(strictly a Gaussain spreading).
**Specify only vacuum field, in z-direction, B = B0R0/(R0 + a+ x), noting that R0 is major radius
of tokamak
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Case Ai, Zi nref Tref BT , R0, a ncon, r0 L∥
·, · 1018m−3 eV T , m, m ·, mm m

Hermes-3 [19] 1, 1 1 5 ?, 0.56, 0.23 0.5, 50? 10, 50
C-MOD [21] 1, 1 100 47 5.2, 0.67, 0.22 0.6,1.3
NSTX [21] 1, 1 5.8 19 0.44, 0.854, 0.646 1.6,7

Table 1: Parameters that require setting to specify problem. Note plasma species has to be
assumed to be Hydrogen, ie. not D or T. Myra et al [21] give Zeff = 2.

8.3.2 Boundary conditions parameters

This problem, see Section 8.1, requires no extra parameters to specify boundary conditions.

8.3.3 Numerical problem parameters

Numerical solution requires specification of computational domain and its mesh, together with a
means of estimating timestep ∆t. Assume a uniform rectangular mesh of elements in the region
of Cartesian space [0, L0]× [0, L0] coordinates (x, y) with nodes uniformly spaced at separation h
in each coordinate direction. The blob should be initially positioned at the centre of the domain
in y, so y0 = L0/2 and x0 ≥ 3r0 in order that the density perturbation is negligible at x = 0.
Take L0 ≥ 6r0, suppose Nsamp ≥ 10 nodes per e-folding length r0, then there needs be at least
60 nodes in each direction. Timestep ∆t < h/Us, where Us is an estimated value of maximum flow
speed, if an explicit scheme is used.

The Hermes-3 website gives nref = 1018m−3, L∥ = 50m (or 10m), Tref = 5eV. A COMPASS-like
equilibrium is mentioned, but B0 is not given, nor is the blob size in physical units. There are
several works which quote relevant experimental parameters, see Table 1. Plots in Myra et al [21]
show blob motion of about 2.5 cm radially in 10 frames equating to 25µs elapsed, speed Us =
1000ms−1.

Values of anomalous diffusion are typically required in practical calculations [22], usually given
by taking fixed, uniform values for Dκ

fpα, Dfusν and De. To ensure smoothness of numerical
solution, diffusion should dominate over advection on the mesh scale h, implying mesh Peclet
number Peh = Ush/D ≤ 1 where D is a diffusion coefficient (see ref [23, § 2.2] for a more detailed
discussion, note this is a conservative estimate in a solenoidal flow), thus D ≥ Ush. Values of
anomalous diffusion quoted by Dudson et al [22] are Dκ

fpα = 0.2m2s−1, with a particle diffusivity
of De = 0.1m2s−1 [22], and no value is quoted for ν, These non-zero D values would seem
appropriate to an h smaller by a factor of order ten, if r0 = 7mm, than the value of r0/10 chosen
above, and indeed a smaller value of h would allow for better resolution of the smaller scales
which seemingly emerge as a blob evolves. (Note that Peh = 1 implies equality of the maximum
timesteps allowed for explicit treatment of respectively advective and diffusive terms.)
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8.4 Special treatment of sources

Initial conditions rely on simple analytic responses to source terms that may be either of vol-
ume form meaning imposed contributions such as Sn

e above (representing eg. gas-puffing), or
expressed as inflows, either from the hot central plasmas or due to recycling of plasma at the first
wall. By default the source terms will each have a Maxwellian distribution. The presence of large,
possibly dominant source terms implies a need to ramp up solutions. A two stage process is sug-
gested, whereby first an analytic approximation Sana to the expected source say Sn

α is specified,
so that for t < tR

Sn
α(t) ≈ Sn

num =
t

tR
Sana (114)

thereafter introduce a hand-off function wH(t− tR) falling linearly from 1 to 0 over a time tH so that

Sn
num = wHSana + (1− wH)Sn

α (115)

where mathematically
wH(t′) = 1− t′/tH , t′ = t− tR (116)

8.5 Kinetic effects

A particle (PIC) model, see Section 10 may be used to compute models to represent the sheath
instead of the terms in ∇ · jsh above.

As an alternative (or additional) means of including particle effects, the source terms Sn
e , Sp

α, α =
e, i may be calculated by Monte-Carlo techniques, see Section 12 for treatment of particle inter-
actions. (Necessary Monte-Carlo techniques for particle production and motion are described in
Section 11.)
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9 System 2-7: Interaction between models of different dimensional-
ity

This section defines the 2-D and 3-D equations for plasma transport supplied by Ben Dudson in
separate private communications. The models are expressed in the standard notation of Sec-
tion B.

9.1 2-D and 3-D Hasegawa-Wakatani equations

The Hasegawa-Wakatani equations are presented in dimensional units, following Dudson’s deriva-
tion [24], see Section 9.1.1 for 3-D model and Section 9.1.2 for the commoner 2-D model.

9.1.1 3-D Hasegawa-Wakatani

The 3-D Hasegawa-Wakatani equations are

∂ne
∂t

+
1

B
[Φ, ne] = −∇ ·

[
b ne0

meνei
(|qe|∂∥Φ− kTe

ne0
∂∥ne)

]
, (117)

∂ω

∂t
+

1

B
[Φ, ω] = −∇ ·

[
b ne0

meνei
(|qe|∂∥Φ− kTe

ne0
∂∥ne)

]
, (118)

where the standard notation is used, noting that ne0 is the constant background electron number
density. The time varying quantities are ne electron number density, ω vorticity and Φ electrostatic
potential, where the vorticity is defined as

ω =
ne0mi

Z|qe|B2
∇2

⊥Φ (119)

In Equation (119) the ⊥-subscript denotes the restriction of the Laplacian to the two-dimensional
subspace transverse to the magnetic field lines. The bracket [Φ, ω] is the Poisson bracket operator,
defined as

[Φ, ω] = b×∇Φ · ∇ω (120)
= ∂Φ

∂x
∂ω
∂y − ∂Φ

∂y
∂ω
∂x . (121)

where the second equality assumes straight magnetic fieldlines parallel to the z-axis, ie. b =
(0, 0, 1). (Note that ref [24] defines the bracket with an additional factor of 1/B on the right.)
Equations(117) and (118) are used to advance ne and ω = ω · ẑ in time, and the potential Φ is
obtained at each time by solving the Poisson equation Equation (119).

9.1.2 2-D Hasegawa-Wakatani

The reduction to 2-D is achieved by assuming that the fields depend on a single Fourier mode
with wavenumber k∥ = 2π/L∥ in the parallel (z) direction. (Note that ref [24] assumes that the
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field is directed in the y−direction.) Setting ∂∥ → ik∥ and introducing n as a perturbation on the
fixed background ne0, so that ne = n + ∂ne0/∂x, and further approximating ∂ne0/∂x = −ne0/L0,
the negative sign appearing because x is chosen so that, as is customary, the density decreases
with x. The resulting system is Equation (119) plus

∂ne
∂t

+
1

B
[Φ, ne] = − ne0

BL0
Φ+

ne0k
2
∥

meνei

(
|qe|Φ− kTe

ne0
ne

)
, (122)

∂ω

∂t
+

1

B
[Φ, ω] = +

ne0k
2
∥

meνei

(
|qe|Φ− kTe

ne0
ne

)
. (123)

9.2 3-D plasma transport equations

This system was supplied by Ben Dudson (private communication), and encompasses the LAPD
model, see Section 9.3 below. The equations for the electron species density ne, parallel velocity
ve∥ ≡ b · ve and pressure pe are:

∂ne
∂t

= −∇ ·
[(
bve∥ + vE×B + ve∇B

)
ne

]
(124)

∂

∂t

(
meneve∥

)
= −∇ ·

[(
bve∥ + vE×B + ve∇B

)
meneve∥

]
− b · ∇pe

+ qeneE∥ +meneνei
(
vi∥ − ve∥

)
(125)

pe = kTene (126)

The equations for the ion species density ni (assumed Hydrogenic so that Zi = 1), parallel velocity
vi∥ ≡ b · vi and pressure pi are:

ni = ne (127)
∂

∂t

(
minivi∥

)
= −∇ ·

[(
bvi∥ + vE×B + vi∇B

)
minivi∥

]
− b · ∇pi

+ qiniE∥ +meneνei
(
ve∥ − vi∥

)
(128)

pi = kTini (129)

where b = B/B is the unit vector in the direction of the magnetic field.

Both Te and Ti are assumed to be isothermal at specified temperatures. Electron force balance is
used to calculate the parallel electric field E∥ ≡ b · E and so transfer electron pressure pe forces
to the ions:

qeneE∥ = b · ∇pe +∇ ·
[
vdiffmeneve∥

]
(130)

where particle diffusion across the magnetic field is implemented as a cross-field ion drift velocity
vdiff with diffusion coefficient Di:

vdiff = −Di
1

ni
∇⊥ni (131)

where the gradient in the plane perpendicular to the magnetic field is ∇⊥ ≡ ∇− b(b · ∇).
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The drift contributions to the velocity fields are

ve∇B =
kTe
qe

∇× b

B
(132)

vE×B =
b×∇Φ

B
(133)

vi∇B =
kTi
qi

∇× b

B
(134)

where Φ is the electrostatic potential.

The definition of vorticity ω and the equation for its time advance are

ω = ∇ ·
[

mi

|qe|B2
∇⊥(nref |qe|Φ+ pi)

]
(135)

∂ω

∂t
= −∇ · (ωvE×B) +∇ ·

[
(pe + pi)∇× b

B

]
+ |qe|b · ∇

(
nivi∥ − neve∥

)
+Dfvs∇ · ν∇⊥ω (136)

The dissipative term with coefficient ν (Braginskii functional form to be used from Section 2), may
be enhanced if necessary by a numerical multiplication factor Dfvs, cf. Section 8.

The collision frequency of charged species α on charged species β is given by [25]:

να,β =
|qα||qβ|nβ log Λ (1 +mα/mβ)

3π3/2ϵ20m
2
α

(
v2α + v2β

)3/2
(137)

with v2α = 2kTα/mα.

The Coulomb logarithm is different for electron-electron, ion-ion and electron-ion species interac-
tions, and is calculated using the NRL formulary [7, 26, p. 34]. Converted to SI units with T in eV ,
the Coulomb logarithm for electron-ion species interaction is:

log Λe,i =


31− 0.5 lnne + lnTe if Ti

me
mi

< 10Z2
i < Te

30− 0.5 lnne − lnZi + 1.5 lnTe if Ti
me
mi

< Te < 10Z2
i

23− 0.5 lnni + 1.5 lnTi − ln
(
Z2
i Ai

)
if Te < Time/mi

(138)

9.3 LAPD Model

The system immediately above reduces to the LAPD model of refs [27, § 2.2] and [28, § 2.3.3]
when gradients of magnetic field are neglected. In addition the pressure contribution to Equa-
tion (136) is ignored. Although the LAPD is reasonably well approximated by an elongated circular
cylinder, if the central plasma region is omitted then the discussion below in Section 9.4 regarding
boundary conditions on the fields is applicable.
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9.4 Boundary conditions for 3-D plasma transport equations

The usual computational domain is an annulus consisting of a region of closed and open magnetic
flux surfaces, since the central, hot “core” of the plasma generally requires a different modelling
approach. Neumann boundary conditions, ie. of vanishing normal derivative, are the default on all
boundaries for all fields. However the exceptions to this rule are important. A boundary condition
must be imposed at that innermost closed flux surface where no boundary physically exists, and
the effects of the sheaths in front of solid wall surfaces must be accounted for.

Typically when the Dirichlet condition Φ = 0 is applied on radial boundaries, there is a problem
with local discontinuities, so a special relaxation procedure is adopted, see Dudson et al [29]. The
following description is taken from ref [29]:
“The boundary condition on the potential Φ is time-evolving, designed to relax towards a Neumann
condition, as follows. When inverting the Laplacian-type equation for Φ from the vorticity, the po-
tential is fixed at both core and wall boundaries. If a simple Dirichlet (fixed zero value) condition
is used then narrow boundary layers typically form close to the boundaries in which the imposed
boundary potential is matched to the plasma potential. These boundary layers can develop un-
physical instabilities. Instead, at every timestep the value of the boundary condition is adjusted
towards the value inside the domain with a characteristic timescale that is set by default to 1µs.
In this manner the electrostatic potential Φ evolves smoothly to solutions that can have different
potentials on core and wall boundaries.”

At (strictly just in front of) solid wall surfaces, sheath conditions following Stangeby as in Sec-
tion 5.1 are applied. For the present model, these amount to no electron outflow ve∥ = 0, and ion
outflow at magnitude |vi∥| = cs where the acoustic speed

cs =
√
k(Te + Ti)/mi (139)
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10 Systems 3: Kinetic models

The following generic transport equation [30, § 1] applies to all particle-based models for the time
evolution of the density distribution function f(x,v, t)

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= SC(f) =

(
∂f

∂t

)
C

+ Sexp(x,v, t) (140)

where a = d2x/dt2 is the acceleration experienced by a particle at position x with velocity v. This
represents scalar advection in a 6-D space with an explicit source Sexp(x,v, t) and a source due
to other inter-particle interactions that is conventionally written (∂f/∂t)C when it is localised and
usually depends linearly on f . Ultimately it will be necessary to solve a multi-species version of
Equation (140) complete with appropriate source terms to represent the physics thought critical
for modelling the tokamak edge.

Complete specification of the problem even for SC = 0 and a single species of particle requires a
force law such as that for particles of species α with charge qα and mass mα

F = mα
d2x

dt2
= qα(E+ v ×B) (141)

and equations for the evolution of the electromagnetic fields E(x, t) and B(x, t) such as Maxwell’s
equations, neglecting displacement current. Inevitably choice of SC is a function of lengthscale
and timescale. On fast timescales in a strong electromagnetic field, the effect of collisions can
be ignored (collective effects are felt through the electromagnetic field), when the Particle-in-Cell
or PIC approach [31] is effective. Note that strictly local particle-particle interactions should be
accounted for, but these are expected to have negligible effect in a plasma (although not in a
gravitating system).

For neutral particles, when often a = 0, interest attaches to SC which for 2-particle interactions is
often the Boltzmann operator for different species Q(fα, fβ) where α, β are species labels.

10.1 Particle-in-Cell (PIC)

Although PIC codes are conceptually simple to implement, in practice there is often a problem
with statistical effects, aka noise. Noise is generally found to be reduced when the scheme is mo-
mentum conserving, which is usually achieved [31, § 5-3-3] by use of (1) the same function in both
charge assigment and interpolation of force onto particles, and (2) space-centred approximations
to derivatives. In the NEPTUNE symbols, assignment of charge to nodes and force interpolation
to particles, share a weighting function W , such that

∆ρc(xm) =
qα
V e

W (xp − xm) (142)

F(xp) = = ΣmqαW (xp − xm)E(xm) (143)

where xp is the position of the particle, xm is the location of a finite element node. For consistency
with the Nektar++ basis

W (x) = ϕe,ξ(x) (144)
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The fundamental import of (2) is that

E(xm) = Σ′
mV

eG(xm,x
′
m)ρc(x

′
m) (145)

where G(xm,x
′
m) = −G(x′

m,xm). The antisymmetry of G then ensures vanishing of the particle
self-force and that the forces exerted by one particle on another are equal and opposite, since eg.

F(xp) = q2αΣmΣ′
mW (xp − xm)V eG(xm,x

′
m)W (xp − x′

m) (146)

Only the electrostatic field E is shown in Equation (142) but the above analysis holds more gener-
ally for the Lorentz force.

11 System 3-1: 2-D particle-based model of neutral gas and impuri-
ties with critical physics

The neutrals are represented as super-particles that travel ballistically after introduction and are
lost when they strike the first wall. In this context, neutral particle may include photons. Super-
particles have label p, weight wp and sample the point (xp,vp) in 6-D position and velocity space.
At introduction, all particle quantities are defined by sampling from specified probability distribu-
tions.

11.1 Prerequisites

11.1.1 Parameters

It is necessary to have parameters describing initial and boundary conditions. There must be a
means of tying boundary conditions to specific parts of the surface and volume geometry. See
discussion of definitions of objects/classes for NEPTUNE in web pages.

11.1.2 Random number generator

It is generally important to test the properties of a random number generator to ensure there is
an absence of bias, typically by producing histograms of the output and comparing with expected
curves. If other routines are found to be unsuitable, a technique based on the ‘Mersenne Twister’
should give a satisfactory sequence of pseudo-random numbers.

For a range of applications where functions or distributions do not vary on very small scales, Quasi-
Monte Carlo sampling [32] may be preferable to Monte Carlo. Note that although the place-name
Monte-Carlo has a hyphen, the name of the mathematical technique does not by convention. For
parallel computation, it will generally be best to compute a block of numbers at a time.
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11.1.3 Sampling from a specified distribution

Generally Textbooks such as Kalos and Whitlock [33] (notable for its treatment of radiation trans-
port in § 6) explain how to generate samples of a given distribution f(x) from random numbers
uniformly sampled on the unit interval. Suppose that ξ is such a random number, then the corre-
sponding value of x is given by solution of

ξ = 1−
∫ x

0
f(x′)dx′ (147)

Equation (147) may be solved explicitly for x in many important cases

Gaussian distribution This may be sampled using the Box-Muller method [33, § 3.1]. Given two
random numbers ξ1 and ξ2 uniformly sampled on the unit interval, then two samples of a Gaussian
distribution f(x) ∝ exp(−x2/2) are given by√

[−2(ln(1− ξ1)] cos 2πξ2 (148)√
[−2(ln(1− ξ2)] cos 2πξ1 (149)

Knudsen cosine Sample by accept-reject from the Knudsen cosine distribution below Equa-
tion (150) to launch particle trajectories.

Let fmax and smax be the maximum of the distribution function in [0, 6vth,i,Kn) and the associ-
ated speed, respectively where vth,i,Kn =

√
2kTKn/mi). Then provide pairs of random numbers

Rf ∈ [0, fmax] and vR ∈ [0, 6vth,i,Kn] (and other components of velocity similarly sampled for the
tangential components (but with a negative velocity ranges)). Keep the particle with normal speed
vR if Rf < fn,Kn(vR).

11.2 Sources and sinks of neutrals

11.2.1 Knudsen distribution

As suggested in the TN-07 Neptune report by Parra, Barnes and Hardman [34] equations (5.9)-
(5.13), the source of neutrals emitted from a wall can be described by the Knudsen cosine distri-
bution

fn,Kn (v;n · v > 0) =
3

4π

(
mi

kTKn

)2 n · v
|v|

exp

(
− miv

2

2kTKn

)
(150)

where n is the normal to the wall, the Knudsen distribution is used for outgoing neutrals for which
n ·v > 0, and kTKn is a parameter that controls the temperature of the emitted neutral distribution.
The Knudsen cosine distribution appears with a factor of a particle flux in Equation (5.9) of [34],
so despite the ”f ” notation, it has different units to the other distributions f .
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11.2.2 Volumetric distribution

As a starting point, the source of neutrals should be fixed in time and given a prescribed spatial
distribution around the edge of the simulation domain. A point source, ie. delta function in space,
would be a valid representation of a ‘gas valve’. Volumetric sources consisting of eg. a Maxwellian
at a given temperature) could be considered for testing purposes.

11.2.3 Recycling

This cannot be properly treated without coupling to a plasma model, hence is treated in Sec-
tion 12.4.1.

11.2.4 Particle sink

An explicit volume pumping region, where neutrals are absorbed when they reach it. This might
be specified by a set of finite element identifiers e.

11.3 Boundary condition for neutral particles

The particle simulation domain need not coincide with the simulation domain, since there may be
finite elements where a species is treated as a fluid.

11.3.1 Perfect Absorption

Any particles that reach a domain boundary are deleted.

11.3.2 Reflection

These conditions are very useful for testing eg. energy conservation. Perfect specular reflection
might be needed to handle symmetry. Supposing the unit surface normal is n, if the incident
velocity is vp, then the reflected particle has velocity

vp = vp − 2(vp.n)n (151)

11.3.3 Periodic boundaries

These conditions are very useful for testing purposes, and required for full or repeat sections of
toroidal geometry. Particles simply leave one end of the domain and re-enter at the other. In the
case of a rectilinear grid, periodic boundary conditions are easily applied by taking the modulus of
the coordinate value with respect to the period length.
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Figure 3: Extract from publication indicated in the text.

11.3.4 Imperfect reflection

These conditions are probably most appropriate for photons. This may be achieved by arranging
that a fraction (1 − Rp) of incident particles are absorbed. If the particles are allowed different
weights, then simply reduce the weight wp of each reflected particle by the particle recycling
factor Rp and its energy consistent with recycling factor RE . Sputtering is the ejection of surface
atoms by impact of both energetic ions and neutrals. However, the rates of sputtering by energetic
neutrals are relatively low below 100eV [10, § 9.7] and may be neglected in an initial investigation.

12 System 3-3: Interaction with 2-D plasma model

12.1 Prerequisites

12.1.1 Cross-section data input

Cross-section data will be obtained from the ADAS library [35]. Cross-section data ⟨σv⟩ averaged
over a Maxwellian velocity distribution suitable for use by a fluid model of the plasma edge is shown
in Figure 3, from Havlickova et al. [14]. The dominant relevant reactions affecting both neutrals
and plasma in the graph are

Ionisation (ION) e− +H → H+ + e− + e− (152)
Charge-exchange (EXC) H +H+ → H+ +H (153)
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Figure 4: Configuration for ionisation. Neutrals, indicated by arrows, moving against a background
of thermal electrons shown as dots.

12.2 Physical Models

12.2.1 Introductory model

Perhaps the simplest model to consider is that for ionisation of neutrals by electron impact. A
simple model for ionisation can be written as:

∂fn
∂t

= . . .−RIONnifn (154)

∂ni
∂t

= . . .+RIONninn (155)

where RION (⟨σv⟩ION elsewhere) is a constant ionisation rate, fn is the distribution function for
the neutrals, ni and nn are the ion and neutral densities. The quasineutrality assumption implies
ne = ni. So the ‘source term’ in the plasma density equation is

SION (x) ≡ RIONninn = RIONni

∫
d3v fn(v) (156)

the integral in which converts, for number densities, into weighted counts of the number of particles
within a given spatial volume about point x.

The loss term in the neutral density equation is computed using Monte Carlo techniques, cf. Ver-
boncouer [36], configuration sketched in Figure 4. The probability of ionisation of a particle at
time tn travelling with velocity vp in the following interval of ∆t is

pp(tn) = 1− exp (−neσION |vp|∆t) (157)

where the cross-section for ionisation is σION . Provided the background density ne is approxi-
mately constant in space and time, and σION variation with energy E is assumed to be negligible,
taking for example

νσmax = max
x

{nt(x)}max
E

{σT (E)|v|} (158)
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then for every particle, provided all particles have the same weight (ie. identical superparticles),
approximately

pp = pT = 1− exp (−νσmaxt) (159)

and the number of neutrals that undergo ionisation in volume ∆V is pTnn∆V . Such particles
should be chosen at random from those in ∆V .

The Monte Carlo algorithm for selecting which neutrals turn into ions, is simple provided that
particles are distributed at random throughout ∆V , viz. to obtain a random number ξ from the
uniform distribution on the unit interval (ie. 0 < ξ < 1) for each particle in turn and if at the qth

ξ < pT then the qth particle is regarded as ionised at time tn. If particles are each allowed a
weight wp(t) which varies with time, then the weight of the neutral may simply be reduced to
account for the ionisation

wp(tn +∆t) = pp(tn)wp(tn) (160)

12.2.2 Detailed model

For sources in the fluid equations due to ionisation of neutrals by electrons, the formulae, cf.
Equations(84)– (86) ([14, Eqs.(34)-(36)]) are

Sn
e = NnN⟨σv⟩ION (161)

Sv
n

mn
= NnN⟨σv⟩IONvn (162)

Sp
e = −2

3
NnN⟨σv⟩IONkIH (163)

Sp
i =

2

3
NnN⟨σv⟩ION (

3

2
kTn +

1

2
mnv

2
n) (164)

Note that other effects due to charge-exchange and recombination may be deduced from the
equations in Section 5.2. Monte Carlo calculation may then proceed using a total cross-section
for all three interactions.

12.2.3 Simplified model

For an exploratory calculation with the Hermes-3 equations, the ionisation potential term is an
unwelcome complication and the momentum term is assumed not to contribute to the evolution of
the vorticity ω. Hence Equations(161)– (164) above become

Sn
e = NnN⟨σv⟩ION (165)

Sv
n = 0 (166)
Sp
e = 0 (167)

Sp
i =

2

3
NnN⟨σv⟩ION (

3

2
kTn +

1

2
mnv

2
n) (168)

Compared to the introductory model in Section 12.2.1, spatial variations in background density
and cross-section are handled by the null collision method, see Section 12.5.2.

41



Introducing the (super-)particles newly ionised in time interval ∆t, occupying positions xp with
label p and weight wp and interaction I:

Sn
e V

e∆t ≈ ΣpIwpδD(x− xp) (169)

Sp
i V

e∆t ≈ 2

3
mnΣpIwpδD(x− xp)

1

2
v2
n,pI (170)

where the contribution to the energy in a finite element e is a sum over all particle interactions I
that have occurred in e. These values are projected on the finite element basis as for charge
assignments (δD is the Dirac delta function) so that they give rise to source terms

Sn
e (x)V

e∆t = Σe,pwpϕe,ξ(xp)ϕe,ξ(x) (171)

Sp
i (x)V

e∆t ≈ 1

3
mnΣe,pwpv

2
n,pϕe,ξ(xp)ϕe,ξ(x) (172)

where ϕe,ξ is the expansion basis as a function of global position x, ie. ϕe,ξ(x) = ϕe (ξ(x)), and the
mass matrix has been lumped.

12.3 Initial conditions

These are defined separately for the fluid (‘continuum’) species and the particle species.

12.4 Boundary conditions

Only conditions coupling both particle and fluid species are to specified here, otherwise see sep-
arate treatments.

12.4.1 Recycling

Recycling of the plasma reaching the wall implies that the source of neutrals coming from the
target plates has a flux (and spatial profile) equal to the flux of ions reaching the target multiplied
by some recycling coefficient Rp (eg. a fraction like 0.99). Recycling is a complicated process [10,
§ 9.4] whereby the ions penetrate the solid lattice of the surface, lose significant energy before
neutralising and fractionRp reappears at the surface with a relatively low (below 5 eV ) temperature.

The flux of ionised plasma from the fluid code is nv, which translates into a total incident number
of particles n|v|∆t∆S, where ∆S is the area of surface impacted, which might be taken as the
area of a finite element surface. Thus there are Rpn|v|∆t∆S recycled particles to be represented
as superparticles. If the superparticles have fixed weight then it might be necessary to use Monte
Carlo to treat ‘fractional’ superparticles, but simple rounding to the nearest integer should meet
larger number cases. Otherwise, if there is a reference weight wp0 then a set of superparticles
should be launched each with a weight close to this value. It will be assumed that these ‘recycled’
neutrals are born with a Cosine-Knudsen distribution at a user-specified temperature TKn of a
few eV . (Momentum and energy fluxes given by the fluid code may in a simple approximation be
disregarded.)
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12.5 Calculating particle interactions

12.5.1 Classical scattering

For interactions in which there is significant momentum or energy transfer, it is necessary to do a
classical scattering problem to account for the interchange.

For inelastic collisions between two particle of mass mp and velocity vp, p = 1, 2, momentum and
energy conservation give

m1v1 +m2v2 = m1v
+
1 +m2v

+
2 (173)

m1v
2
1 +m2v

2
2 = m1v

+2
1 +m2v

+2
2 (174)

where the velocities v+
1 and v+

2 at the new time are found from the observation that momentum
conservation is satisfied if v+

1 = v1−p/m1, v+
2 = v2−p/m2 for any p. Substituting in the energy

conservation equation, it follows that p = 2µm(v1 − v2) where reduced mass

µm =
m1m2

m1 +m2
(175)

so that

v+
1 = v1 − 2

m2

m1 +m2
(v1 − v2) (176)

v+
2 = v2 + 2

m1

m1 +m2
(v1 − v2) (177)

12.5.2 Simplified models

The PIC-MCC software [36] accounts for spatial variations in background density and cross-
section by the null collision method, also known as ‘delta-tracking’. This method amounts to a
correction to the introductory model, relying on the maximum property of the rate νσmax, whereby
the number of collisions is reduced according to the local value of neσION in the volume ∆V (which
volume might well correspond to that of finite element e). The local value gives a more accurate
estimate for pq. A second random number ξ2 is drawn from the uniform distribution and the neutral
remains unchanged if ξ2 < pT − pq.

12.5.3 Preferred approach

The “Direct Sampling” approach of Brown and Martin [37] involves the most arithmetic per particle
of the techniques considered, but should generally provide increased accuracy which since the
arithmetic cost is likely dominated by data movement, comes essentially “free of charge”. Note
that the sampling techniques needed to treat all 3 interactions mentioned above are common to
all, although additional modelling is needed to handle momentum and energy transfer in some
interactions. Comparisons of “Direct Sampling” and the algorithm used in PIC-MCC are made in
refs [38, 39].
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Figure 5: Conceptual configuration. A particle, indicated by the straight line, moves against a
background thermal (‘fluid’) species shown as dots. In the refinement by De Esch, interactions
take place at uniformly spaced intervals along the track, also indicated by dots

As illustrated in Figure 5, let τ(s) be the optical depth traversed by a article traveling a distance s
through a medium with arbitrarily specified macroscopic cross-section σ(s):

τ(s) =

∫
0

s

σ(s′)ds′ (178)

We assume only that σ is finite and σ(s) ≥ 0. Note that

dτ

ds
= σ(s) (179)

To explicitly allow for the case of no collision in a finite distance of travel, we define PNC , the
probability of no collisions, as

PNC = exp (−τ(∞)) (180)

Then the probability density function (pdf) for a collision occurring after a particle has traveled a
distance s through the medium is given by [40, § 7]

p(s) = PNCδ(s− s∞) +
dτ

ds
exp (−τ(s)) (181)

where dτ
ds is the interaction probability per unit distance travelled, s∞ is the distance to the boundary

of the computational domain and exp (−τ(s)) is the probability of traversing distance s without
collision. Equation (181) explicitly allows for cases where τ(∞) is finite, hence there is a possibility
of traveling an infinite distance without colliding.

Unbiased random sampling of the Monte Carlo path requires solving the following for s, distance
along the path, namely

ξ =

∫
0

s

p(s′)ds′ (182)

where ξ is sampled from a uniform random variable on [0, 1). In the spirit of De Esch, values
of ξ = j/Nξ, j = 1, . . . Nξ − 1 should be used, and the charged particle weights (effectively the
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number of physical particles each represents) be reduced by Nξ. Values of Nξ ≈ 10 − 100 are
suggested.

In the first step of the sampling, discrete sampling is used to select a collision with probability
(1 − PNC) or an infinite flight with probability PNC . That is, if ξ > PNC , then there is a collision.
The second step is to sample s from from the pdf given by:

g(s′) =
1

G

dτ

ds′
exp (−τ(s′)) (183)

where
G = (1− PNC) (184)

Using Equation (183), note that ∫
0

s

g(s′)ds′ =
1

G

∫
0

τ(s)

exp (−τ)dτ (185)

Using Equations(182) and (183), we can sample τs = τ(s) by solving

ξ =
1

G

∫
0

τs

exp−τdτ (186)

This is equivalent to sampling from a truncated exponential pdf, which has the solution

τs − ln(1−Gξ) (187)

Pathlength s then follows from Equation (178), viz.

τs =

∫
0

s

σ(s′)ds′ (188)

When σ(s′) has a simple functional form, Equation (188) can often be solved analytically for s.
In many cases which arise in practice, the solution may involve a transcendental equation or
other form not amenable to analytic solution. Equation (188), however, can be readily solved
numerically for s using Newton iteration with f =

∫
0
s
σ(s′)ds′ − s, starting with an initial estimate

s0 = τs/σ(0) [37]. Because df/ds ≤ 0, f is monotone and there can be at most one root. For
cases where σ(s′) ≥ 0, the Newton iteration is guaranteed to converge. However, if σ(s′) is zero
or very small over a portion of the path, df/ds may be 0, leading to numerical difficulties and
nonconvergence. This potential problem is remedied easily by combining Newton with a bisection
search method, such that bisection is used if df/ds is very small or zero. Using this approach,
Brown and Martin found that only 1− 5 iterations are typically needed to converge s to within part
in 106. even for extreme variations in σ(s′).

A final practical point concerns the relation of path length s to physical coordinates. If the particle
starts at x0 and travels in a direction given by vp parallel to unit vector d then the particle path is
given by

x = x0 + sd (189)

so inverting
s = |x− x0|/|d| (190)

so it is helpful if d is a unit vector.
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13 Summary

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged. Valu-
able input from Ben Dudson is also acknowledged. Stuart Henderson provided helpful advice
concerning plasma radiation.

References

[1] Proxy Applications. https://proxyapps.exascaleproject.org, 2020. Online; accessed
May 2020.

[2] W. Arter, L. Anton, D. Samaddar, and R. Akers. ExCALIBUR Fusion Modelling
System Science Plan. Technical Report CD/EXCALIBUR-FMS/0001, UKAEA, 11
2019. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/
research/spf/ukaea-excalibur-fms-scienceplan.pdf.

[3] E.C. Howell and C.R. Sovinec. Solving the Grad–Shafranov equation with spectral ele-
ments. Computer Physics Communications, 185(5):1415–1421, 2014. http://dx.doi.org/
10.1016/j.cpc.2014.02.008.

[4] J.P. Gunn, T. Hirai, Y. Corre, F. Escourbiac, A. Grosjean, and R.A. Pitts. A study of planar
toroidal–poloidal beveling of monoblocks on the ITER divertor outer vertical target. Nuclear
Fusion, 59(12):126043, 2019.

[5] R. Dejarnac, J.P. Gunn, P. Vondracek, M. Komm, R. Panek, and R.A. Pitts. Physics of toroidal
gap heat loading on castellated plasma-facing components. Nuclear Materials and Energy,
19:19–27, 2019.

[6] Code generation QPROG style, example of Braginskii plasma transport coefficients. https:
//github.com/wayne-arter/smardda-misc, 2017. Accessed: December 2020.

[7] J.D. Huba. NRL Plasma Formulary. Technical Report NRL/PU/6790–07-500, Naval Research
Laboratory, Washington, 2007. Online version dated 2009 at https://apps.dtic.mil/dtic/
tr/fulltext/u2/a499299.pdf.

[8] S.I. Braginskii. Transport Processes in a Plasma. In M.A.Leontovich, editor, Reviews of
Plasma Physics Vol.1, pages 205–311. Consultants Bureau, New York, 1965.

[9] J.P. Goedbloed and S. Poedts. Principles of magnetohydrodynamics: with applications to
laboratory and astrophysical plasmas. Cambridge University Press, 2004.

[10] J.A. Wesson. Tokamaks, 3rd Edition. Clarendon Press, Oxford, 2003.

[11] P.H. Roberts. An Introduction to Magnetohydrodynamics. Longmans, London, 1967.

46

https://proxyapps.exascaleproject.org
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
http://dx.doi.org/10.1016/j.cpc.2014.02.008
http://dx.doi.org/10.1016/j.cpc.2014.02.008
https://github.com/wayne-arter/smardda-misc
https://github.com/wayne-arter/smardda-misc
https://apps.dtic.mil/dtic/tr/fulltext/u2/a499299.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a499299.pdf


[12] W. Arter et al. Equations for EXCALIBUR/NEPTUNE Proxyapps. Techni-
cal Report CD/EXCALIBUR-FMS/0021-1.31-M1.2.1, UKAEA, 10 2023. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf.

[13] L.C. Appel, I. Lupelli, and JET Contributors. Equilibrium reconstruction in an iron core toka-
mak using a deterministic magnetisation model. Computer Physics Communications, 223:1–
17, 2018.
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A Annex A: Atomic and Molecular Effects

Often the radiation emitted and absorbed by atoms in different ionisation states must be accounted
for. There is a compact introduction in Golub and Pasachoff [41, § 3.3.1]. This explains how in
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principle, given a “particular mixture of elements at a specified temperature . . . the number of
atoms per unit volume of the gas which are in a particular ionisation state may be calculated
. . . then for that atom which emission lines are emitted” and so on for all other constituents of the
mixture. (Temperature refers to a black-body radiation field in which the atoms are assumed to sit.)
“The sum total of all these bound-bound emissions, plus the bound-free and free-free emissions”
is the spectrum, where it is explained that ‘bound’ and ‘free’ describe the state of the electron
involved in the formation of the line with respect to the atom. But “in practice, carrying out this
calculation is . . . enormously complicated”.

The complication follows from the range of competing mechanisms even within atoms of one ele-
ment, namely the bound-bound mechanisms of decay and excitation described in ref [41, § 3.2.1],
and bound-free of recombination and photo-emission, because of the different possible degrees of
ionisation as atomic number A increases and because the proportion of atoms in each ionisation
state depends on the proportions in the others.

Ambartsumyan [42, § 5] explains at greater length the calculation in thermal equilibrium of the
proportion of different ions for each element [42, § 5.2], then the bound-free / free-bound coeffi-
cients (§ 5.3—§ 5.5) and free-free (§ 5.6). In [42, § 24.1–24.2] there is a discussion of metastable
states, which in the astrophysical context are crucial for the formation of forbidden lines in nebu-
lae, but may also be important in the context of fusion because these metastable atomic states
can survive for many seconds at low densities of matter and of radiation. By metastable state is
meant that no transition to it from lower energy levels of the electrons is possible except for the
so-called ‘forbidden’, less probable electric quadrupole interactions from the quantum-mechanical
matrix elements.

The above outlines the main physics issues. From O’Mullane’s slides at the 2008 Summer
School [43], the main difference between astrophysics and fusion application seems to be that
in the plasma context, if it is used, Saha’s ionisation formula needs modification by the Saha-
Boltzmann deviation factors bn or ‘b-factors’ ref [43, slide 21]. The Zeeman effect is also neglected,
although this might be expected to be important, as from its use in sunspot observation [44, § 5.2]
spectral line splitting by wavelengths of 0.1nm is expected.

The key observation is from O’Mullane [43] that in tokamak modelling, there are two distinct uses
for atomic data - (1) to calculate source (loss) terms for species time evolution equations, and (2)
to compute synthetic spectra, ie. intensity as a function of frequency. The latter (2) is by far the
more involved but it is only critical for diagnosticians working with particular apparatus. Indeed,
Golub and Pasachoff [41, § 3.3.2] go on to argue that for an optically thin plasma, the radiation (in
W/m3) could be expressible as simply as

ER = nenpP (T ) (191)

where np accounts for the number density of the plasma ions and P (T ) is the emitted power
integrated over all wavelengths for a plasma with a specified mix of elements. The separate
functions used to compute P (T ) depend mainly on electron temperature with a weak dependence
on density. The form of P (T ) as a result of the integration over spectrum always seems to be
smooth. It would seem to be a prime candidate for precomputation as a function of the fractions of
the major plasma species, and could be approximated very efficiently because of the smoothness.

O’Mullane [43] give a more detailed result, namely that there is a source/sink term for electron
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energy of form

SE = −ER = ne

∑
s

Z=Z0(s)∑
Z=0

PZnZ − IZ
(
SZ→ZpnZ + αZp→ZnZp

) (192)

where Z is charge state, the suffix s on the density has been dropped, Zm = Z − 1, Zp = Z + 1,
and where Z0(s) is the number of charge states of species s included in the model. It may be
inferred that

SZm→Z or SZ→Zp = ionisation coefficient (193)
αZ→Zm or αZp→Z = partial dielectronic recombination rate coefficient (194)

PZ = radiated power per atom of nZ (195)
IZ = power per atom released in dielectronic recombination (196)

where the coefficients, as elsewhere in this section, are expected to be obtained from the Atomic
Data and Analysis Structure ADAS database [35, 45]. The data requirements for this look relatively
modest, assuming the coefficients for each species and charge state are smooth functions of
temperature only. Thus if sayNT ≈ 20 samples specify these functions and Zsum =

∑
s Z0(s), then

the total number of coefficients required could be estimated as Zsum× 3×NT ≈ 20× 3× 10 = 600
where if the number of different elements present Ns = 10, and if the average number of charge
states N̄Z = 2, then Zsum = NsN̄Z ≈ 20. In another case of interest, a calculation might include
only two or three extra species if one were Tungsten (W), so Ns = 4 but then NZ = 22 for W alone
if Te > 40eV [46].

The number densities nZ for each charge state may be straightforwardly calculated by solving
a transport equation for each isotope ns and using the Saha-Boltzmann formula modified with
b-factors to determine the distribution of charge states. (Further, for heavier elements a mean
atomic mass may be used to avoid separate treatment of isotopic species.) Much more serious
implications for computation [43], arise in the time evolution equations if each charge state is
treated separately. This may be necessary in a strong electric field because each different ion
feels a different electromagnetic force. An ion of species s with charge state Z will acquire a
source

SZ
s = SZm→Znen

Zm −
(
αZ→Zm + SZ→Zp

)
nen

Z + αZp→Znen
Zp (197)

where again the suffix s on the density has been dropped. Thus the demands on atomic data are
not very different from those for the energy equation, but since the total cost of these additional
computations with Z0(s) extra species will scale at least as fast as Zsum =

∑
s Z0(s) (inter-species

coupling may add considerably to the computational expense), rendering negligible the cost of
inputting a few thousand coefficients from disc. In practice a useful surrogate is produced by
replacing separate ionisation states by ‘superstages’ (slide 17 of ref [47]), where one superstage
corresponds to one electron shell of the atom. However, even the smaller number of 7 superstages
required for W might double or treble the length of a typical computation.

The above is typically as much detail as is sensible to consider under heading (1). If detailed
diagnostics under (2) are required, the generalised collisional-radiative (GCR) model [48] gives
an idea of the computational demands. GCR modelling requires each metastable state to be
considered separately, since each has a separate finite lifetime. It helps that the transport of each
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atom in the state is presumably the same, but even so there is a need to solve a rate equation for
metastable state density at sample points throughout the computational domain The source terms
are complicated, namely for the metastable state labelled ρ

SZ
ρ /ne =

∑
σ

XZ→Z
σ→ρ nσ −

∑
σ

XZ→Z
ρ→σ nρ (198)

+
∑
µ

SZm→Z
µ→ρ nZm

µ −
∑
ν

SZ→Zp
ρ→ν nρ (199)

+
∑
ν

α
Zp→Z
ν→ρ n

Zp
ν −

∑
µ

αZ→Zm
ρ→µ nρ (200)

+
∑
σ

QZ→Z
σ→ρ nσ −

∑
σ

QZ→Z
ρ→σ nρ (201)

where the superfix Z as well as the suffix s on the density has been dropped and the new symbols
are

XZ→Z
σ→ρ = generalised collisional-radiative (GCR) excitation coefficient (202)

QZ→Z
σ→ρ = parent-metastable cross-coupling coefficient (203)

Note that the expressions in both ref [48, eq. (9)] and ref [43, slide 41] appear to contain typos, and
that the meanings of X and Q have swapped. Each of the new terms contains approximately 8MZ

coefficients where MZ is the number of metastable states for species s (which includes the ground
state). It may be inferred from refs [43, 47] that the number of metastable states for a given
ionisation Z is relatively small (slide 9 of ref [47] indicates that all ionisation states for Oxygen
have MZ ≤ 4; slide 19 suggests MZ ≤ 6 for W when Te < 100eV). The coefficients X ,S,Q in
Equation (198) are functions of electron density as well as temperature so may require at least 100
sample points to specify, hence the total data can be estimated as Zsum×MZ×8MZ×100. However
FISPACT-II [49] experience with rate equations indicates the cost of these additional computations
with MZ metastables far exceeds the cost of inputting of order ten or so thousand coefficients from
disc.

Where the demands of data might become important is in the translation of the nZσ into spectral
lines. First the regular excited states, because they equilibrate on the usual atomic timescales
which are negligible compared to plasma timescales, are calculated using a purely algebraic rela-
tion [48, eq. (5)],

nZi /ne =
∑
σ

XFiσn
Z
σ +

∑
µ

IFiµn
Zm
µ +

∑
ν

RFiνn
Zp
ν (204)

where X,I,RFiσ are the coefficients of excitation, ionisation and recombination for the transition
from metastable state σ to regular excited state i, each is a function of ne and Te with correspond-
ing storage requirement of order 100. Equation (204) requires Zsum ×MS ×MZ F coefficients
where MS is the number of states, which is potentially infinite, and indeed in practice could be
as large as ≈ 500, necessitating the use of ‘bundling’ of the higher energy states to reduce the
number to manageable proportions, say 10 [48]. Next, as explained in the opening paragraph,
to each state there corresponds a description of its spectrum, which may contain many separate
lines, each described by its wavelength, relative amplitude and a profile shape which may require
several further parameters to describe. Mitigating the demand for coefficient data, is the fact that
the diagnostics need only be computed intermittently.
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To treat atomic physics UQ in a later stage of NEPTUNE, a Monte-Carlo calculation might be
considered, involving all the different interactions between all the metastable states where the
Maxwellian assumption is relaxed, posing a multiscale multiphysics problem. However, the validity
of this approach requires further consideration as Henderson et al [50] also indicates that even as
recently as 2017, errors of 30 % were present in important coefficients, although the discrepancies
have now been reduced to approximately 5% [51].

B Annex B: Index of Mathematics

Table 2: TABLE OF MATHEMATICAL SYMBOLS If no units
are given, then quantity is dimensionless, or if the units are
given as ?, then the dimensions depend on context. Gener-
ally, the usage of symbols tries to follow that from the Plasma
Formulary [7], in SI units, with temperatures specified as kT
which returns J . The Formulary also give the fundamental
dimensions of the SI units, which should enable checking of
dimensional consistency of equations, eg. magnetic field in-
duction is in Tesla (T ) whence the fundamental dimension
expression gives T = kgs−1C−1. Note that the symbols are
sorted by font as well as alphabet, so that boldface sym-
bols appear immediately after ‘b’ (backslashes ignored). The
main source for the symbols is the Equations document [12],
also included are those listed as used in the text by Karni-
adakis and Sherwin [52], prefaced by (K+S), plus symbols
used in the report [53].

Symbol Description Units
a minor radius of the torus (horizontal) m
aij coefficient of matrix A
A atomic mass of ion
Ai atomic mass of ion
Aα atomic mass of ion species α
[a, b] arbitrary finite interval
α as suffix is species label or index
αn perturbation amplitude
αZp→Z partial dielectronic recombination rate coefficient m3s−1

αZ→Zm partial dielectronic recombination rate coefficient m3s−1

b minor radius of the torus (vertical) m
B0 used to make B dimensionless T
Bs characteristic magnetic field used to make B dimensionless T
N̄Z average number of charge states
B = |B| amplitude of the imposed magnetic field T
BT amplitude of the imposed toroidal magnetic field T
β as suffix is species label
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β (Glossary) Ratio of plasma pressure to pressure in mag-
netic field

a = d2x/dt2 acceleration experienced by a particle m2s−1

A(x, t) magnetic vector potential Tm
B(x, t) magnetic field T
b unit vector giving the direction of the magnetic field
E(x, t) electric field V m−1

Es characteristic electric field used to make E dimensionless V m−1

E+ modified electric field m−2

F force vector N
u∧ pseudo / thermal velocity component in flux surface normal

to field direction
ms−1

v generic velocity ms−1

vα velocity of species α ms−1

v∥ fluid velocity directed along fieldline ms−1

v⊥ fluid velocity component normal to flux surface ms−1

v∧ fluid velocity component in flux surface normal to field di-
rection

ms−1

v0 initial fluid velocity ms−1

vcx ‘charge exchange’ perpendicular fluid velocity component ms−1

vE×B ‘E cross B’ perpendicular fluid velocity component ms−1

ve velocity of the electrons ms−1

vi velocity of the ion species ms−1

ve∇B ‘grad B’ perpendicular fluid velocity component for electrons ms−1

vi∇B ‘grad B’ perpendicular fluid velocity component for ions ms−1

vdiff ‘diffusive’ perpendicular fluid velocity component ms−1

x =
(x1, x2, . . . , xd)

is a d-dimensional vector

x position m
bn ‘b-factors’ ref [43, slide 21]
ξ(θ) multi-dimensional random variable with a specific probabil-

ity distribution as a function of the random parameter 0 ≤
θ ≤ 1

B (K+S) Basis matrix
Dξ (K+S) Elemental derivative matrix with respect to ξ
f e (K+S) Force vector of the eth element
H (K+S) Helmholtz matrix (= ATHeA))
He (K+S) Elemental Helmholtz matrix
L (K+S) Laplacian matrix (= ATLeA))
Λ(u) (K+S) Diagonal matrix of u(ξi, ξ2) evaluated at quadrature

points
Le (K+S) Elemental Laplacian matrix
M (K+S) Mass matrix (= ATM eA)
AT (K+S) Matrix global assembly
M e (K+S) Elemental mass matrix
n (K+S) Unit outward normal
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ω (K+S and plasma models) Vorticity s−1 or Cm−3

ue (K+S) Vector containing function evaluated at quadrature
points

W (K+S) Diagonal weight / Jacobian matrix
ξ(θ) multi-dimensional random variable with a specific probabil-

ity distribution as a function of the random parameter 0 ≤
θ ≤ 1

Bp amplitude of the poloidal magnetic field T
C0 =

√
KMAT0 used to make velocities dimensionless ms−1

∩ (Sets) Set intersection
χ (K+S) Space of trial solutions
χδ (K+S) Finite-dimensional space of trial solutions
χi(ξ) (FE Basis) Local Cartesian to global coordinate mapping
cp specific heat at constant pressure Jkg−1K−1

cs =
√

kTi+ZikTe
mi

approx. plasma acoustic speed ms−1

cs =
√

p
ρm

plasma acoustic speed ms−1

cse =
√

kTe
me

acoustic speed of electrons ms−1

csi =
√

kTi
mi

acoustic speed of ions ms−1

CS sound speed coefficient in radiation equation ms−1

∪ (Sets) Set union
C(xi, xj) covariance of random variables xi, xj
d number of dimensions over which the integral is performed
δpi stress tensor Nm−2

δ Kronecker delta
δD Dirac delta function
δe energy flux factor at boundary of the electrons
δ = 1

2(δe + δi) energy flux factor at boundary of ‘mean’ species
δi energy flux factor at boundary of the ion species
δα (Glossary) Magnetisation parameter, species α gyroradius

normalised to L
δ(x) Dirac delta function of continuous real variable x
D spatial dimensionality of problem
DA diffusion coefficient for plasma charges in a background of

neutrals
m2s−1

De diffusion coefficient for electrons, eg. in a background of
neutrals

m2s−1

Dfvα scale dissipation in equation for evolution of species veloc-
ity vα

Dn neutral diffusion coefficient m2s−1

Dfpα scale dissipation in equation for evolution of species pres-
sure/energy pα

Di diffusion coefficient for ions, eg. in a background of neutrals m2s−1

|e| absolute value of the charge on the electron C
e (K+S) Finite element number 1 ≤ e ≤ Nel
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eijk weighted integral of triple products of Ψi of the ion species
∅ (Sets) Empty set
ϵ0 permittivity of free space Fm−1

ϵr = ts/t0 scale factor for transient term
η1, η2, η3 (FE Basis) Local collapsed Cartesian coordinates
ηB plasma resistivity after Braginskii Ωm
ηd = ηB/µ0 plasma resistivity, as diffusivity m2s−1

ηen contribution to plasma resistivity, as diffusivity, from
electron-neutral interactions

m2s−1

ηen∥ contribution to plasma parallel resistivity, as diffusivity, from
electron-neutral interactions

m2s−1

ηin contribution to plasma resistivity, as diffusivity, from ion-
neutral interactions

m2s−1

ηin∥ contribution to plasma parallel resistivity, as diffusivity, from
ion-neutral interactions

m2s−1

f0 constant in the expansion of f (x1, . . . , xd)
f0 initial distribution function of the electrons m−6s3

fα distribution function of species α m−6s3

fe distribution function of the electrons m−6s3

fi distribution function of the ion species m−6s3

fij(xi, xj) coefficient in the expansion of f (x1, . . . , xd)
fce =

ωce
2π electron cyclotron frequency s−1

fci =
ωci
2π ion cyclotron frequency s−1

fpe =
ωpe

2π electron plasma frequency s−1

fpi =
ωpi

2π ion plasma frequency s−1

fi(xi) coefficient in the expansion of f (x1, . . . , xd)
f (x1, . . . , xd) joint probability distribution
fE flux term (fieldline integrated source) for plasma energy
F E flux term (fieldline integrated source divided by field) for

plasma energy
m−1s−2C

fn flux term (fieldline integrated source) for plasma number
density

Fn flux term (fieldline integrated source divided by field) for
plasma number density

m−3C

fu flux term (fieldline integrated source) for plasma momentum
F u flux term (fieldline integrated source divided by field) for

plasma momentum
m−2s−1C

f(x,v, t) generic distribution function m−6s3

fn,Kn(v) Knudsen distribution function m−4s4

Γ(x) gamma function of continuous variable x
g(hj) activation function (of input hj) of a neuron in a neural net-

work
G Green’s function
Hα Hamiltonian for species α
ûe (K+S) Vector of expansion coefficients
v̂g (K+S) Global list of coefficients
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v̂g (K+S) List of all elemental coefficients (= ve)
h mesh or inter-node spacing m
hj real-number input to a neuron in a neural network
hp(ξ) (FE Basis) One-dimensional Lagrange polynomial of order

p
i as suffix denotes ions
i as suffix denotes regular excited state
i as suffix generic label
I as suffix labels Monte-Carlo interactions
Iϕ ϕ− or toroidal component of plasma current A
IH Hydrogen reionisation potential as defined in ref [14] eV
i, j, k (K+S) General summation indices
IFiσ coefficient of ionisation for the transition from metastable

state σ to regular excited state i
∈ (Sets) Is a member of; belongs to
I(ψ) = BT /R function giving the toroidal field as a function of ψ Tm−1

IZ power per atom released in dielectronic recombination W
j as suffix is generic label
jext(R,Z) electric current density induced in plasma by external coils Am−2

jϕ ϕ− or toroidal component of plasma current density Am−2

j∥ component of plasma current density parallel to fieldline Am−2

jsh sheath plasma current density Am−2

k as suffix is generic label
k chosen to scale so that kT0, kTd is an energy ?
κα thermal diffusivity of species α m2s−1

κe∥ parallel thermal diffusivity of electrons m2s−1

κe⊥ perpendicular thermal diffusivity of electrons m2s−1

κi∥ parallel thermal diffusivity of ions m2s−1

κi⊥ perpendicular thermal diffusivity of ions m2s−1

κ = kc/ρmcp thermal diffusivity tensor of solid m2s−1

kB Boltzmann’s constant JK−1

kc thermal conductivity tensor Jm−1s−1K−1

Kcx (ni, Ti) reaction rate of charge exchange reactions m3s−1

Ki ionization reaction rate m3s−1

KMA chosen as kB/mi or |e|/mi so that
√
KMTd is an ion speed ?

KM chosen as kB/mu or |e|/mu so that
√
KMTd/A is an ion

speed
?

Kr recombination reaction rate m3s−1

kT0 T0 in energy units J
kTd Td in energy units J
Kv(x) modified Bessel function of the second kind, order v
kw wavenumber vector m−1

λ arbitrary quantity ?
λ Coulomb logarithm
λ (K+S) Helmholtz equation constant
Λ Coulomb logarithm
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λq e-folding length of midplane profile of power loss when an
exponential is fitted

m

Λb sheath potential drop normalized to Te eV
λD (Glossary) Debye lengthscale above which local electro-

static fluctuations due to presence of discrete charged par-
ticles are negligible

m

λmfp,α (Glossary) Mean free path of particle species α m
⟨σv⟩CX reaction rate for charge exchange m3s−1

⟨σv⟩ION reaction rate for ionisation m3s−1

⟨σv⟩REC reaction rate for recombination m3s−1

⟨σv⟩ generic reaction rate m3s−1

L0 typical lengthscale m

LNm
i (ξ) (FE Basis) Two-dimensional Lagrange polynomial through

Nm nodes ξi
Ls typical lengthscale along fieldline m
L∥ connection length of typical fieldline m

m species particle mass kg
M0 Mach number at s = 0 boundary
M1 Mach number at s = 1 boundary
mα mass of species α kg
E expectation
Ek ̸=i,l ̸=j expectation computed by integrating over all the xk except

for xi and xj
Exk ̸=i

expectation computed by integrating over all the xk except
for xi

L(u) (K+S) Linear operator in u
P (K+S) Projection operator
Pδ (K+S) Discrete projection operator
v (K+S) Velocity [u, v, w]T

Eα energy of species α Jm−3

Ee energy of the electrons Jm−3

Ei energy of the ion species Jm−3

ER total plasma radiation Wm−3

F generic coefficient of excitation, ionisation or recombination m3s−1

Fα functional of moments of species α m−6s3

I (K+S) Interpolation operator
Iδ (K+S) Discrete interpolation operator
K∥ parallel thermal conductivity of plasma m−1s−1

K thermal conductivity of plasma m−1s−1

K⊥ thermal conductivity of plasma perpendicular to field and
flux surface

m−1s−1

K∧ thermal conductivity of plasma perpendicular to field in flux
surface

m−1s−1

L7 7-D Lie derivative (space, velocity-space and time make up
the 3 + 3 + 1 = 7 dimensions)

s−1

PP (Ω) (K+S) Polynomial space of order P over Ω
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Q coefficient in radiation equation m3s−1

QZ→Z
σ→ρ parent-metastable cross-coupling coefficient m3s−1

S coefficient in radiation equation m3s−1

SZm→Z ionisation coefficient m3s−1

SZ→Zp ionisation coefficient m3s−1

T generic tensor ?
V (K+S) Space of test functions
Vδ (K+S) Finite-dimensional space of test functions
X coefficient in radiation equation m3s−1

XZ→Z
σ→ρ generalised collisional-radiative (GCR) excitation coeffi-

cient
m3s−1

R Real numbers
Var(f) variance of the distribution of f computed by integrating

over all variables xi
Var[Q] variance in random variable Q
me mass of electron kg
mi mass of ion species particle mi = Amu kg
mn neutral species particle mass kg
mp mass of proton kg
mu atomic mass unit 1.6605× 10−27 kg
Ms Mach number, allowed to take either sign
MS number of energy states of an atom
µ, ν (K+S) Dynamic, kinematic viscosities
µcx = ωc/νcx measures strength of magnetization with respect to charge

exchange reaction
µm reduced mass of two particles kg
MZ number of metastable states for species α (which includes

the ground state)
n number density m−3

nref reference number density of the plasma ions m−3

Nref normalising or reference number density 1018

N number density, may be scaled by Nref = 1018 m−3

n0 initial number density m−3

∇· (K+S) Divergence
∇× (K+S) Curl
∇2 (K+S) Laplacian
Nb (K+S) Number of global boundary degrees of freedom
nB = N/B number density divided by field strength m−3T−1

ND Number of degrees of freedom per dimension, D =
1, 2, . . . 6

Ndof (K+S) Number of global degrees of freedom
ncon blob contrast factor
ne number density of the electrons m−3

Nel (K+S) Number of finite elements
Neof (K+S) Total number of elemental degrees of freedom

Neof ≃ NelNm
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ni number density of the plasma ions m−3

nj(x, t) member of the set of deterministic coefficients of the “ran-
dom trial basis”

Nm (K+S) Number of elemental degrees of freedom
nn neutral density m−3

/∈ (Sets) Is not a member of; does not belong to
̸⊂ (Sets) Is not a subset of
np number density of the plasma ions m−3

NQ (K+S) Total number of quadrature points NQ = Q1Q2Q3

ns number density of isotope s m−3

Ns number density of isotope s m−3

NT number of samples in temperature used to define typically
a crossection in the ADAS database [35, 45]

ν plasma kinematic viscosity m2s−1

να kinematic viscosity of species α m2s−1

νcx = Kcxnn charge exchange ‘frequency’ s−1

νe0 electron kinematic viscosity caused by neutrals m2s−1

νe∥ parallel kinematic viscosity of electrons m2s−1

νe⊥ perpendicular kinematic viscosity of electrons m2s−1

νi∥ parallel kinematic viscosity of ions m2s−1

νi ion kinematic viscosity m2s−1

νi0 ion kinematic viscosity caused by neutrals m2s−1

νi⊥ perpendicular kinematic viscosity of ions m2s−1

ν∗α (Glossary) Normalised collision frequency for species α
ν∗c =

q4e
3m2

pϵ
2
0
L0n0/C

4
0

Collisionality parameter

να (Glossary) Collision frequency for species α s−1

ναn Collision frequency for species α with neutrals s−1

ναβ Collision frequency for species α with species β s−1

nZ number density for charge state Z m−3

NP number of particles in a calculation
NPα number of particles of species α in a calculation
NZ number of charge states for an ion species
nZi number density for charge state Z, excited state i m−3

nZσ number density for charge state Z, metastable state σ m−3

ωce = |e|B/me electron cyclotron angular frequency radianss−1

ωci = ZieB/mi ion cyclotron angular frequency radianss−1

ωpe =
√

nq2e
ϵ0me

plasma angular frequency for electrons radianss−1

ωpi = Zi

√
nq2e
ϵ0mi

plasma angular frequency for ions radianss−1

Ω (K+S) Solution domain
Ωe (K+S) Elemental region
p(A|B) conditional probability of event A given event B is known or

assumed to have occurred
pα pressure of species α Nm−2
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∥ Q ∥E the ‘energy’ norm
(∂f/∂t)C source in Boltzmann due to inter-particle interactions m−6s2

∂Ωe (K+S) Boundary of Ωe

∂Ω (K+S) Boundary of Ω
∂ΩD (K+S) Domain boundary with Dirichlet conditions
∂ΩN (K+S) Domain boundary with Neumann conditions
PC number of modes in basis for polynomial chaos
pe pressure of the electrons Nm−2

ϕ angle in toroidal direction radians c

Φ electr(ostat)ic potential V
ϕpq, ϕpqr (FE Basis) Expansion basis
ϕe,ξ (FE Basis) expansion basis as a function of global posi-

tion x
p (K+S) pressure Nm−2

p =
∑

α nαkTα plasma pressure Nm−2

p as suffix labels (super-)particles
pi pressure of the ion species Nm−2

Pi (FE Basis) Polynomial order in the ith direction
p(ψ) function giving the pressure as a function of ψ of the mag-

netic flux
Nm−2

p, q, r (K+S) General summation indices
Pr Prandtl number
PrM magnetic Prandtl number
ψ poloidal magnetic flux Tm2

ψa
p , ψ

b
pq, ψ

c
pqr (FE Basis) Modified principal functions

Ψi ith member of a set of basis functions, typically multi-
dimensional Hermite polynomials

P (T ) emitted power integrated over all wavelengths Wm3

p(x) probability distributions
P (x) Cumulant probability distribution
PZ radiated power per atom of nZ W
Q∥ combined energy flux at a boundary Jm−2s−1

qα charge on a particle of species α C
qe charge on an electron, negative by convention C
Q(fα, fβ) Boltzmann collision operator m−6s2

QH cooling rate due to excitation as defined in ref [14] Km−3s−1

qi charge on an ion C
q∥e electron energy flux along fieldline Jm−2s−1

q∥i ion energy flux along fieldline Jm−2s−1

qe electron energy flux Jm−2s−1

qi ion energy flux Jm−2s−1

Qi (FE Basis) Quadrature order in the ith direction
Qie collisional energy equipartition term kgm−1s−3

r order of higher order term
r0 radius used in initial condition, such as blob size m
R cylindrical coordinate m
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R0 major radius of torus m
Rp recycling coefficient for particles
RE recycling coefficient for particle energy
ρ as suffix is label of metastable state
ρ (K+S) Density
ρc =

∑
α Zα|e|nα charge density of the medium Cm−3

ρm =∑
αAαmunα

mass density of the medium kgm−3

ρtα (Glossary) Gyroradius or Larmor radius of orbit of charged
particle of species α about magnetic field direction

m

RFiσ coefficient of recombination for the transition from
metastable state σ to regular excited state i

s∥ arclength along fieldline m

s as suffix, isotope label (α preferred for species)
s parameterises distance along the fieldline 0 ≤ s ≤ 1
Sα source term in Boltzmann equation for species α m−6s2

SC total source term in Boltzmann equation m−6s2

Sana(x, t) explicit/analytic source term in fluid equation(s) m−3s−1 ?
Sn
ana(x, t) numerically convenient source term in fluid equation(s) m−3s−1 ?
Sexp(x,v, t) explicit source term in Boltzmann equation m−6s2

n neutral density
T neutral temperature
u neutral velocity
si arclength parameter for boundary (i = 1 inner, i = 2 outer)
sE source term in plasma energy equation
sEe energy density source term for electrons
sEi energy density source term for ions
sEn source term in neutral energy equation
sE⊥e energy cross-field source term for electrons
sE⊥i energy cross-field source term for ions
sE⊥n energy cross-field source term for neutrals
sn source term in plasma density equation
snn source term in neutral density equation
sne number density source term for electrons
sni number density source term for ions
su source term in plasma momentum equation
sun source term in neutral momentum equation
su⊥n momentum cross-field source term for neutrals
Si Sobol sensitivity index, gives a normalised measure of the

sensitivity of the distribution of f to the parameter xi
σ as suffix labels metastable state
σ reaction cross-section m2

σC reaction rate for charge exchange
σE cooling rate due to excitation
σE electrical conductivity Ω−1m−1

σI reaction rate for ionisation
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σ
i|0
s collision cross-section for ions with neutrals m2

σ
e|0
s collision cross-section for electrons with neutrals m2

Sij Sobol sensitivity index, gives a normalised measure of the
sensitivity of the distribution of f to the parameters xi and
xj

SE source term in plasma energy equation kgm−1s−3

SE
e energy density source term for electrons kgm−1s−3

SE
i energy density source term for ions kgm−1s−3

SE
n source term in neutral energy equation kgm−1s−3

SE
⊥e energy cross-field source term for electrons kgm−1s−3

SE
⊥i energy cross-field source term for ions kgm−1s−3

SE
⊥n energy cross-field source term for neutrals kgm−1s−3

Sn source term in plasma density equation m−3s−1

Sn
e number density source term for electrons m−3s−1

Sn
i number density source term for ions m−3s−1

Sn
n source term in neutral density equation m−3s−1

Sn
⊥n number density cross-field source term for neutrals m−3s−1

Sn
⊥ number density cross-field source term for plasma m−3s−1

S⊥n generic cross-field source term for neutrals m−3s−1

Su source term in plasma momentum equation kgm−2s−2

⊂ (Sets) Is a subset of
Su
n source term in neutral momentum equation kgm−2s−2

Su
⊥n momentum cross-field source term for neutrals kgm−2s−2

SZ
ρ particle source for ion of metastable state σ (species α) with

charge state Z
m−3s−1

SZ
α particle source for ion of species α with charge state Z m−3s−1

t time usually in seconds s
t′ offset time usually in seconds s
T plasma temperature eV
t0 characteristic evolutionary timescale usually in seconds s
ts characteristic timescale usually in seconds s
tH Numerical hand-off time interval usually in seconds s
tR Numerical ramp-up time interval usually in seconds s
T0 initial temperature (prefixed by k implies energy in SI) eV
TKn reference temperature of Knudsen distribution (prefixed by

k implies energy in SI)
eV

Tref reference temperature (prefixed by k implies energy in SI) eV
Ts characteristic temperature (Ts = (Ls/ts)

2/KM ) eV
Tα temperature of species α eV
τ optical depth m
τα collision or relaxation time of species α s
τe electron collision or relaxation time s
τi ion species collision or relaxation time s
τen electron-neutral collision time s
τin ion species-neutral collision time s
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τce = 1/fce electron cyclotron timescale s
τci = 1/fci ion cyclotron timescale s
τpe = 1/fpe plasma timescale for electrons s
τpi = 1/fpi plasma timescale for ions s
τEe loss time of energy density for electrons s
τEi loss time of energy density for ions s
τne loss time of number density for electrons s
τni loss time of number density for ions s
Td = Ti + Te combined temperature of the electrons and ions eV
Te electron temperature (prefixed by k implies energy in SI) eV
TH the Hydrogen reionisation potential
θ angular coordinate radians c

θ random parameter 0 ≤ θ ≤ 1
Ti ion temperature eV
ã scaled matrix coefficient
b̃ = B/B0 dimensionless magnetic field
ψ̃a
p , ψ̃

b
pq, ψ̃

c
pqr (FE Basis) Orthogonal principal functions

u generic first velocity component ms−1

U velocity component (flow) along fieldline ms−1

Uα velocity component (flow) along fieldline of species α ms−1

Ud = Ls/t0 speed measuring the importance of the transient term ms−1

Us = Ls/ts characteristic speed ms−1

UA Alfvén speed ms−1

f e (K+S) Concatenation of elemental vector f e

W e (K+S) Block-diagonal extension of matrix W e

uR = 1/R Radial component of Grad-Shafranov ‘flow’
v generic second velocity component ms−1

v∥ fluid velocity component along fieldline ms−1

V e spatial volume occupied by finite element e m3

Vi variance of the distribution of f as the parameter xi varies
Vij variance of the distribution of f as the parameters xi and xj

vary
w generic third velocity component ms−1

wjk weight in neural network indexed by neuron j and input k
wp weight of particle p
wα,ref normalising or reference weight of particle of species α
wref normalising or reference number for superparticles 1010

W weighting function for particle-in-cell
x Cartesian coordinate m
x0 coordinate value used in specifying initial condition, eg. blob

position
m

x1, x2, x3,x (FE Basis) Global Cartesian coordinates
xα collisionality factor of species α
xe = ωceτe collisionality factor of electrons
xi = ωciτi collisionality factor of ions
xi generic parameter or variable

64



ξ1, ξ2, ξ3, ξ (FE Basis) Local Cartesian coordinates
ξi random number within the unit interval [0, 1]
XFiσ coefficient of excitation for the transition from metastable

state σ to regular excited state i
y Cartesian coordinate m
y0 coordinate value used in specifying initial condition, eg. blob

position
m

z Cartesian coordinate m
z0 coordinate value used in specifying initial condition m
Z Cartesian coordinate m
Z charge state of the ion
Z cylindrical coordinate m
Z0(α) number of charge states of species α included in the model
Za Gaussian random process, index a
ζ magnetic Prandtl number as defined in Cambridge
ζ = −ϕ toroidal angle coordinate radians c

Zeff effective charge state of plasma ions
Zi charge state of ion
Zα charge state of ion species α
Zm = Z − 1 where Z is ion charge state
Zp = Z + 1 where Z is ion charge state
Zsum =∑

α Z0(α)
where Z0 is number of charge states of species α
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