
ExCALIBUR

Development Plan

D3.4

Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M3.4. This report surveys the textbook and standards literature re-
garding the documents that should be produced as part of a major software
development. The focus is on documents that should be produced before
development starts, and on living documents that may require amendment
as the development proceeds. The documents serve to define a software
development process that is provisional in that it awaits confirmation from
grantee reports. The key infrastructure for the next step of NEPTUNE is
expected to be web-based, and an investigation into the suitability of the
PANDOC and the LATEX2HTML tools for generating web-based material is
reported, with the latter to be preferred.

2

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0033

Issue: 1.10
Date: 25 October 2021

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Ed Threlfall N/A 25 October 2021

Wayne Arter N/A 25 October 2021
Joseph Parker N/A 25 October 2021
Will Saunders N/A 25 October 2021

BD

Reviewed By: Rob Akers 25 October 2021

Advanced Computing
Dept. Manager

Approved By: Rob Akers 25 October 2021

Advanced Computing
Dept. Manager

1

1 Introduction

Drawing on the lessons learnt from earlier NEPTUNE work, especially ref [1], not only will the
software will be opensource, but in the interests of encouraging as wide a possible range of de-
velopers, NEPTUNE will be treated as a community project with maximal transparency regarded
decision-making, resource allocation etc. Successful examples of such projects set out princi-
ples that community members are expected to adhere to, and guidelines for them to follow. This
amounts to significantly more detail both concerning the management of the development and the
production of the software, than appears in the NEPTUNE Science Plan and Charter [2, 3] and
the subsequent initial reports [4, 5].

The present report looks in detail at a number of sources recommending what documents are
required for the successful conduct of a software development project. Following from the re-
port [4], the first of these is the book chapter by Spencer Smith [6], as specifically directed to
scientific software. The conclusion of the report [1, § 3] draws attention to Sommerville [7] who
has relevant material dispersed throughout the book and Hewitt [8], although these are aimed at
a wider, more commercially-oriented range of developments. Focussing on science, specifically
space applications there is the European Space Agency (ESA) standards document [9] which in
a “lite” form has proved successful in two UKAEA developments this century, viz. FISPACT [10]
and SMARDDA [11].

None of these sources is entirely suitable for NEPTUNE. The proposed “faking” of documents by
Smith seems unsatisfactory. Hurried writing is suggested by the inconsistency between his state-
ments that no-one likes documenting software and his recommendations that more documents be
produced, a suggestion supported by the fact that the proposed division of material between vari-
ous documents seems unsatisfactory in some places, eg. where the functional and nonfunctional
requirements are combined together in one section of a document entitled the “Software Require-
ments Specification”. As a text-book, Sommerville offers a multitude of possibilities, but few are
relevant to open-source scientific software; therefore Hewitt scores by being more focussed and
by an emphasis on awareness of the surrounding business environment. The ESA approach does
not meet NEPTUNE needs in that it assumes a single expert customer for the project, and any-
way the full standard, intended for flight-critical software, is arguably too onerous, where the “lite”
version is more appropriate for a contractor with a single worker.

In addition to the points in the preceding paragraph, none of the sources fully addresses the
issue that scientist developers do not like producing documentation. Ideally, material should be
written up only once to be presented to developers and users of whatever level of competence
as appropriate. This is probably best addressed by producing documentation as web pages, as
indeed indicated by both Spencer Smith and Hewitt.

The main Section 2 provides a concordance of the documents from the texts [12, 6, 7] in Sec-
tion 2.1, then gives more details as to what information should be provided in each in Section 2.2.
It is followed by discussion of how best to format the documentation as a website in Section 2.3.

2

Figure 1: Documents according to ECSS-E-ST-40C [9], which is based on a customer-supplier re-
lationship. The two- and three-letter acronyms indicate document titles as explained in Section 2.2.

2 Task Work

2.1 Concordance

The ECSS-E-ST-40C document or ESA standard for short is shown schematically in Figure 1. As
the report’s first author has developed software using a ‘lite’ version of this standard [13], it is taken
as the reference point. The documents and sections of documents from the other texts [8, 6, 7]
are are thus grouped according to the ESA documents, as shown in Figure 2. The other major
reference consulted for design of scientific software, namely Rouson et al [14], mainly promotes
use of software patterns, albeit illustrated by UML diagrams as advocated by refs [8, 7].

The ESA standard [9] is central because of personal experience that it works, at least in the “lite”
version, seemingly for the reasons that it encourages conversation between the supplier/paymaster
and the developer. These interactions lead to documentation that sets out an agreed scope for
the software before each stage of development, thus avoiding the project ‘creep’ and on-the-fly re-
design that may fatally slow code production. The Design Justification File (DJF, see Section 2.2.5)

3

Figure 2: Concordance of documents needed during software development, grouped according
to ECSS-E-ST-40C [9] - or labelled ‘(N)’, texts as follows: Hewitt “Semantic Software Design” [8],
(Spencer) Smith “A Rational Document Driven Design Process for Scientific Software” [6], and
Sommerville “Software Engineering” [7].

4

Figure 3: The Design Thinking process, Figure 4-1 from Hewitt [8]. Progression is from left to
right: forming insights and generating ideas are both part of the problem and the opportunity.

produced in the process is unique to the ESA documents. Not only does it prevent untimely cus-
tomer ‘what-if’s by setting out and analysing options to a specified time-table, but constitutes a
useful fall-back should the agreed options turn out to be unworkable when external circumstances
change unexpectedly.

Hewitt [8] has a good deal of discussion of philosophy which is interesting, amidst what personal
experience indicates should be a very successful methodology for producing software in a com-
mercial environment, an approach which is set out both succinctly and comprehensively. His
“Design thinking” method should be equally useful for encouraging scientific as well as commer-
cial creativity. This is illustrated in Figure 3, although more than one excursion to the tip of the
“Λ” might be expected in a research context. It has to be accompanied by a careful recording of
both the good and the bad ideas which emerge. Hewitt [8] is also very strong on identifying and
managing stakeholders beyond the immediate ambit of the software project. He is understandably
less succinct here, letting it emerge that the average manager is to be treated as someone with
a short attention span, principally focussed on advancing his/her own career (which might include
promoting a rival project), is technically ignorant and likely to demand a PowerPoint justifying any
aspect of the project at a moment’s notice. However, in any context, collaborators will appreciate
short, to-the-point communications which are clearly presented and well argued. Hewitt notably
also insists on having two reasons for every design decision, and producing documentation from
which it is easy to generate presentations of 5-15 slides. For commercial reasons, there is also de-
tailed consideration as to how to manage data and exploit Machine Learning (ML) tools, and how
to ensure reliability of both the software and the hardware that it uses, all of which are germane to
the Exascale.

Spencer Smith [6] naturally highlights what documents are needed in the development of scientific
software. Smith provides reminders of the need to include details such as choice of physical units,
and to plan validation and verification (V & V) of results. Last in the list of sources, Sommerville [7]
is comprehensive and can be used as the authority on software terminology in what is still a rapidly
expanding subject that can give rise to overlapping and even conflicting definitions.

5

2.2 Detailed Information

In this section, the documents labelled “N” are introductions upon the ESA standard for use in a
community project. Citations in the present section to Hewitt refer specifically to ref [12, § 5], to
Smith imply ref [6, § 2.2] and to Sommerville imply ref [7, § 4] unless stated otherwise.

2.2.1 Program Name PN (N)

Choice of name for the software is recognised as important, but this section should mainly aim
to give the reader enough information about the purpose of the software that he/she can decide
whether they want to look further. Hewitt also requires the equivalent of the approval box for a
report, giving names of authors, collaborators and reviewers. At this point, Hewitt further intro-
duces the RFC2119 subset of the Internet Engineering Task Force (IETF) keyword [15] for use
throughout the document. This usage implies specific meanings for “MUST”, “MUST NOT”, “RE-
QUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” when the words are capitalised. (It will not be adopted herein.)
Think preface to a textbook, plus document approval box.

2.2.2 Business Design BD (N)

This section should aim to make it clear to the reader why it woud be good to allocate funding for
the software development. From Hewitt’s list:

• Capabilities - what new benefits arise

• Strategic fit - to UKAEA mission

• Business drivers - why are we doing this?

• Assumptions - regarding available funding

• Constraints - laws and regulations, mention software licensing

• Risks - if resources not available

• Impacts - new processes, training needed

• Stakeholders - who will win or lose by good or bad outcome

Think introductory chapter of a textbook.

2.2.3 Requirements Baseline RB

The ESA standard RB expresses the customer’s requirements, including interface. Sommerville
devotes an entire chapter to requirements engineering, in contrast to Hewitt who instead recom-
mends ‘observation’ of those working with the software intended for replacement, and the produc-
tion of use cases to a detailed template, as follows:

6

• Overview

• Actors

• Relationship to other use cases

• Flow including input to output

• Special requirements

The collection of the above use cases then defines the so-called functional requirements, other
requirements are referred to as non-functional. In the scientific case, Spencer Smith requires
specification of the experiment and the assumptions to be used in modelling it. It is clear since
(design) engineers talk of workflows, that Hewitt’s approach has much to be recommended for a
mixed engineering/scientific application.
This describes the use cases for the software.

2.2.4 Technical Specification TS

The ESA standard TS is the supplier’s response to the RB, so provides probably the least useful
ESA document description for a community process. Material ought nonetheless to be presented
which encompasses the content of the ESA ICD or Interface Control Document. Other material
that would also not be included elsewhere concerns the higher level aspects of Hewitt’s Applica-
tion Design and Smith’s Software Requirements Specification [6, § 2.2.3]. Hewitt would include
prescription of software standards such as C++17, and guidelines/conventions such as indicated
for Object Fortran in ref [16]. Smith would specify what the software needs to compute to compare
with experiment. The need for the code to have good in-line documentation capable of formatting
by say DOXYGEN [17] will be described here. This outlines inputs and outputs of the software, plus
set outs principles for code-writing.

2.2.5 Design Justification File DJF

The ESA standard DJF is generated and reviewed at all stages of the development and review
processes. It contains the documents that describe the trade-offs, design choice justifications,
verification plan, validation plan, validation testing specification, test procedures, test results, eval-
uations and any other documentation called for to justify the design of the supplier’s product.
This describes why the equations, methods and algorithms were chosen, and the testing regime.

2.2.6 Design Definition File DDF

The ESA standard DDF is a supplier-generated file that documents the result of the design engi-
neering processes. The DDF is the primary input to the CDR review process and it contains all
the documents called for by the design engineering requirements.
This describes the equations, methods and algorithms to be used in software.

7

2.2.7 Management File MGT

The ESA standard MGT is a supplier generated file that describes the management features of
the software project (for instance, organisational breakdown and responsibilities, work activities
breakdown, selected life cycle, deliveries, milestones and risks). It also describes governance -
eg. PRINCE2 [18].
This collates the project plans of all participants.

2.2.8 Maintenance File MF

The MF is a maintainer generated file that describes the planning and status of the maintenance,
migration and retirement activities.
This is basically unnecessary given one of the common repository-based projects.

2.2.9 Operational Documentation OP

In the ESA standard OP, the user’s experience of the software feeds back into the instructions as
to how to use the software.
This includes the user manual, the developer manual and describes output of test cases.

2.2.10 Reference Material REF (N)

In a web-based system, this material can be presented stand-alone to avoid duplication throughout
many different documents. It should provide an ontology for the project, by which it is meant a
glossary of terminology used, meanings of acronyms and an index of mathematical notation.

2.2.11 Index IND (N)

The construction of an index is recommended by Sommerville, and although an alphabetic index
is made redundant by web search engines, it might be helpful to have an index of diagrams and
figures.

2.3 Production of .html

It has become recently very popular to construct web-based code documentation using ‘Read the
Docs’ [19], which is open-source software that indeed produces a very attractive website, see
eg. the plasmapy [20] website. The problem is the need to use reStructuredText or Markdown
formats to input to ‘Read the Docs’. For many people, both formats represent yet more markup
languages to learn, and although many know Markdown, it has many slightly incompatible variants.
Similar criticism applies to the use of DOXYGEN for producing documentation other than in-line at
a relatively low level.

8

MS WordTM is widely used by engineers to produce manuscripts for publication and has a built-in
capability to write .html, but is proprietary software and although widely available has the disad-
vantage that even the modern (and html-friendly) .docx format uses an extended character repre-
sentation which is unnecessary for technical work, and potentially hazardous in that non-printing
and/or non-standard characters may be inadvertently cut and pasted eg. into software documen-
tation, which expects only the restricted ASCII set. For the preceding reason, like most papers in
mathematics and physics, the bulk of the documentation for the ExCALIBUR project NEPTUNE
has been drafted using LATEX. There are at least two open source tools for producing .html from
LATEXsource, namely PANDOC and LATEX2HTML.

The PANDOC project [21] has in the last few years (Version 2.5 from 2018, or later) developed
to the point where it can turn relatively complex LATEX documents into .html for display using web
browsers, see Section 2.3.1 below. PANDOC also tightly defines (see Annex A, Section A) a variant
of Markdown that it would be good to employ as a standard, since PANDOC can then use files
conforming to this standard to produce output in many different formats. Unfortunately, the PANDOC

development seems to have stalled in respect of LATEX to .html conversion, whereas LATEX2HTML
has had all the necessary features for many years.

LATEX2HTML [22] is packaged and freely available for both linux and MacOS. The main ob-
jection is that the default style of web-page now looks very dated. However the investigations
in Section 2.3.2 indicate that this is a purely cosmetic objection, and should a ‘smarter’ appear-
ance be thought desirable, easily met by employing experienced web developers such as those
who produced the excalibur.ac.uk website. Moreover, it is outweighed by the ease with which
webpages may be produced from the existing NEPTUNE report base.

2.3.1 PANDOC

As with many open source projects, a certain amount of experimentation is needed to locate
suitable options for PANDOC, especially as it is under active development at the time of writing.
The following bash shell script produces readable .html from a report including all the \input files
with Version 2.5, current on Ubuntu as of March 2021:

pandoc $1.tex --metadata pagetitle=$1 --toc \

--number-sections \

--bibliography ../bib/exc.bib \

--bibliography ../bib/reac.bib \

-s --mathml --default-image-extension=png -o $1.html

The --verbose option is useful as otherwise only terse error messages appear. PANDOC is strict
in its interpretation of LATEX, so that eg. \mathbf and \texttt need to be used instead of \bf and
\tt, and extended character sets may cause PANDOC to fail. \rotatebox and \protect are not
recognised and should be stripped from the .tex file using sed before processing.

For the power shell with PANDOC Version 2.12 dated 2021, the following produces readable .html
from the report:

pandoc rp3.tex --metadata pagetitle=rp3 --toc ‘

--number-sections ‘

9

--bibliography ../bib/exc.bib ‘

--bibliography ../bib/reac.bib ‘

--bibliography ../bib/waynes.bib ‘

--bibliography ../bib/new.bib ‘

--bibliography ../bib/active.bib ‘

--bibliography ../bib/mc.bib ‘

-s --citeproc --mathml --default-image-extension=png -o rp3.html

However the --mathjax option needs to replace --mathml for mathematics to display correctly in
the Microsoft Edge browser.

Unfortunately there are still significant issues regarding the .html produced, eg. equations are not
numbered, and it is not easy to see how this and related omissions can be remedied without modi-
fication of the Haskell code underlying PANDOC. Nonetheless, the tool has demonstrated an ability
to format equations and produce bibliographies that suggests that it could become a powerful tool
in the production of documentation to underpin the NEPTUNE software development. Consid-
eration should be given to making resource available to ensure PANDOC provides all necessary
facilities in an easy-to-use wrapper. In the interim, however the preceding deficiencies indicate
that LATEX2HTML is to be preferred.

2.3.2 LATEX2HTML

The package is simple to use, in that the following script will produce readable webpages in a
separate Linux directory, provided that rp1.pdf has already been produced correctly in the original
directory. (The proviso ensures that .aux and .bbl files have been produced for the document.)

latex2html -t "ExCALIBUR project NEPTUNE" -mkdir -dir web -prefix rp1 rp1

The key options are -dir to set the name of the directory in which to produce .html and supporting
graphics and other files, and -prefix to distinguish these files from others produced for different
documents. Option -mkdir saves a separate mkdir command, and option -t plays a minor role
describing the linkage of the top level .html file contents to lower levels. Another useful option is
-split, which specifies the level of LATEX subdivision at which separate files are produced, thus
-split +1 causes each full section to occupy a separate .html file. (The default is to divide the
document among many small files corresponding to each subdivision of the text, down at least to
paragraph.) There is a working facility to link to other local files as described by Swan [23].

The vintage of the software is very noticeable. It was originally developed in the 1990s (see
ref [24]) by N. Drakos, who no longer seems to be active. There are several attempts at docu-
mentation available from around the turn of the century on the web [24, 23, 25], none of which
appears to be entirely reliable. Recently, other authors have taken the package forward, but their
documentation seems incomplete [22]. Another point also noticed is that with the above script,
LATEX2HTML produces a file index.html identical to rp1.html.

The main restrictions discovered in an exploratory investigation like that conducted for PANDOC,
are that

• in figures, although according to Swan [23], \rotatebox should work, it does not.

10

• only a restricted set of packages, mostly those current at the turn of the century, is recog-
nised, see list in Annex B (Section B).

• for TEXusers, there are problems with the use of \def.

The output in file WARNINGS typically notes an absence of recognition of the helvet and fancyhdr

packages. This does not cause problems, apparently since neither package invokes special com-
mands, and although for other unrecognised packages of course error messages might be ex-
pecte.d .from missing specials, the software commonly produces useful .html output. None of the
restrictions above is expected to be very serious, since figures may be easily rotated, and LATEX
has generally been very stable since the turn of the century.

11

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] W. Arter, E. Threlfall, J. Parker, and S. Pamela. Report on user frameworks for tokamak
multiphysics. Technical Report CD/EXCALIBUR-FMS/0022-M3.1.2, UKAEA, 2020.

[2] W. Arter, L. Anton, D. Samaddar, and R. Akers. ExCALIBUR Fusion Mod-
elling System Science Plan. Technical Report CD/EXCALIBUR-FMS/0001, UKAEA,
2019. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/
research/spf/ukaea-excalibur-fms-scienceplan.pdf.

[3] W. Arter. EXCALIBUR NEPTUNE Charter. Technical Report CD/EXCALIBUR-FMS/0020,
UKAEA, 2020.

[4] L. Anton. NEPTUNE: Report on system requirements. Technical Report CD/EXCALIBUR-
FMS/0014-1.00-M3.1.1, UKAEA, 2020.

[5] L. Anton. NEPTUNE: Background information and user requirements for design patterns.
Technical Report CD/EXCALIBUR-FMS/0015-1.00-M3.3.1, UKAEA, 2020.

[6] W.S. Smith. A Rational Document Driven Design Process for Scientific Software. In J.C.
Carver, N.P. Chue Hong, and G.K. Thiruvathukal, editors, Software Engineering for Science,
pages 27–52. Chapman and Hall/CRC, 2017.

[7] I. Sommerville. Software Engineering, Tenth Edition. Pearson Education Limited, Harlow,
2016.

[8] E. Hewitt. Semantic Software Design: A New Theory and Practical Guide for Modern Archi-
tects. O’Reilly Media, 2019.

[9] J. Drabbe. ECSS-E-ST-40C - Software (6 March 2009). Technical report, ESA, 2009. https:
//ecss.nl/standard/ecss-e-st-40c-software-general-requirements/.

[10] J.-Ch. Sublet, J.W. Eastwood, J.G. Morgan, M.R. Gilbert, M. Fleming, and W. Arter. FISPACT-
II: An Advanced Simulation System for Activation, Transmutation and Material Modelling.
Nuclear Data Sheets, 139:77–137, 2017. http://dx.doi.org/10.1016/j.nds.2017.01.

002, website: https://fispact.ukaea.uk/.

[11] W. Arter, E. Surrey, and D.B. King. The SMARDDA Approach to Ray-Tracing and Particle
Tracking. IEEE Transactions on Plasma Science, 43(9):3323–3331, 2015. http://dx.doi.

org/10.1109/TPS.2015.2458897.

[12] E. Hewitt. Semantic Software Design: A New Theory and Practical Guide for Modern Archi-
tects. O’Reilly Media, 2019.

12

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
http://dx.doi.org/10.1016/j.nds.2017.01.002
http://dx.doi.org/10.1016/j.nds.2017.01.002
https://fispact.ukaea.uk/
http://dx.doi.org/10.1109/TPS.2015.2458897
http://dx.doi.org/10.1109/TPS.2015.2458897

[13] W. Arter. A Rough Guilde to Software Development, July 31, 2007. Unpublished note.

[14] D. Rouson, J. Xia, and X. Xu. Scientific software design: the object-oriented way. Cambridge
University Press, 2011.

[15] Keywords for documentation. https://www.ietf.org/rfc/rfc2119.txt, 2021. Accessed:
March 2021.

[16] W. Arter, J. Parker, and E. Threlfall. Module Guide. Technical Report CD/EXCALIBUR-
FMS/0032-D3.3, UKAEA, 2021.

[17] D. van Heesch. doxygen Manual for version 1.9.1. Technical report, www.doxygen.org, 2021.

[18] Axelos Staff et al. Managing Successful Projects with PRINCE2, 6th Edition. ALEXOS, 2017.

[19] Create, host, and browse documentation. https://readthedocs.org, 2021. Accessed:
March 2021.

[20] Open source Python ecosystem for plasma research and education. https://www.

plasmapy.org, 2020. Accessed: August 2020.

[21] a universal document converter. https://pandoc.org, 2021. Accessed: March 2021.

[22] A utility that converts LaTeX documents to web pages in HTML. https://www.latex2html.
org, on github as https://www.github.com/latex2html/latex2html/, 2021. Accessed:
October 2021.

[23] H.W. Swan. The LaTeX2HTML translator: An Overview. https://www.ntg.nl/cgi-bin/22.
pdf, 1996. Accessed: October 2021.

[24] N. Drakos and R. Moore. The LaTeX2HTML Translator. https://mirrors.up.pt/pub/CTAN/
obsolete/support/latex2html/manual.pdf, 1999. Accessed: October 2021.

[25] A. Bridle. LaTeX2HTML Authors’ Guide. Technical Report Online, NRAO, 2001. Accessed:
October 2021.

A Annex A: Recommended Markdown Dialect

The following is an edited version of the Pandoc Cheatsheet by David Sanson, dated 31 January
2011. He remarks that it is incomplete and possibly incorrect, and is intended only for quick
reference purposes.

Backslash Escapes

Except inside a code block or inline code, any punctuation or space character

preceded by a backslash will be treated literally, even if it would normally indicate

formatting.

Title Block

% title

13

https://www.ietf.org/rfc/rfc2119.txt
https://readthedocs.org
https://www.plasmapy.org
https://www.plasmapy.org
https://pandoc.org
https://www.latex2html.org
https://www.latex2html.org
https://www.github.com/latex2html/latex2html/
https://www.ntg.nl/cgi-bin/22.pdf
https://www.ntg.nl/cgi-bin/22.pdf
https://mirrors.up.pt/pub/CTAN/obsolete/support/latex2html/manual.pdf
https://mirrors.up.pt/pub/CTAN/obsolete/support/latex2html/manual.pdf

% author(s) (separated by semicolons)

% date

Inline TeX and HTML

* TeX commands are passed through to Markdown, LaTeX and ConTeXt output;

otherwise they are deleted.

* HTML is passed through untouched but

* Markdown inside HTML blocks is parsed as markdown.

Paragraphs and line breaks

* A paragraph is one or more lines of text separated by a blank line.

* A line that ends with two spaces, or a line that ends with an escaped new-line (a

backslash followed by a carriage return) indicates a manual line break.

Italics, bold, superscript, subscript, strikeout

Italics and **bold** are indicated with asterisks.

To ~~strikeout~~ text use double tildas.

Superscripts use carats, like so: 2^nd^.

Subscripts use single tildas, like so: H~2~O.

Spaces inside subscripts and superscripts must be escaped,

e.g., H~this\ is\ a\ long\ subscript~.

Inline TeX math and Inline Code

Inline TeX math goes inside dollar signs: $2 + 2$.

Inline code goes between backticks: ‘echo ’hello’‘.

Links and images

<http://example.com>

<foo@bar.com>

[inline link](http://example.com "Title")

![inline image](/path/to/image, "alt text")

[reference link][id]

[implicit reference link][]

![reference image][id2]

[id]: http://example.com "Title"

[implicit reference link]: http://example.com

[id2]: /path/to/image "alt text"

Footnotes

Inline notes are like this.^[Note that inline notes cannot contain multiple

paragraphs.] Reference notes are like this.[^id]

14

[^id]: Reference notes can contain multiple paragraphs.

Subsequent paragraphs must be indented.

Citations

Blah blah [see @doe99, pp. 33-35; also @smith04, ch. 1].

Blah blah [@doe99, pp. 33-35, 38-39 and *passim*].

Blah blah [@smith04; @doe99].

Smith says blah [-@smith04].

@smith04 says blah.

@smith04 [p. 33] says blah.

Headers

Header 1

========

Header 2

Header 1

Header 2

Closing #s are optional. Blank line required before and after each header.

Lists

Ordered lists

1. example

2. example

A) example

B) example

Unordered lists

Items may be marked by ’*’, ’+’, or ’-’.

+ example

- example

* example

Lists may be nested in the usual way:

+ example

+ example

+ example

Definition lists

Term 1

~ Definition 1

15

Term 2

~ Definition 2a

~ Definition 2b

Term 1

: Definition 1

Term 2

: Definition 2

Second paragraph of definition 2.

Blockquotes

> blockquote

>> nested blockquote

Blank lines required before and after blockquotes.

Tables

Right Left Center Default

------ ------ --------- -------

12 12 12 12

123 123 123 123

1 1 1 1

Table: Demonstration of simple table syntax.

(For more complex tables, see the pandoc documentation.)

Code Blocks

Begin with three or more tildes; end with at least as many tildes:

~~~~~~~

{code here}

~~~~~~~

Optionally, you can specify the language of the code block:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.haskell .numberLines}

qsort [] = []

qsort (x:xs) = qsort (filter (< x) xs) ++ [x] ++

qsort (filter (>= x) xs)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Horizontal Rules

3 or more dashes or asterisks on a line (space between okay)

* * *

- - - -

16

B Annex B: Styles recognised by LATEX2HTML

The packages supported may according to Swan’s description [23], be deduced from the names
of the .perl files in directory $LATEX2HTMLDIR/styles, where the variable is set on installation to a
directory name eg. $LATEX2HTMLDIR=/usr/share. Users requiring other packages are invited to
write the necessary .perl scripts after studying those provided. Note that the majority of packages
supported were extant around the turn of the century. For descriptions of the packages that remain
available, see https://ctan.org/pkg.

The following packages are supported and may be useful for scientific work in English.

abnt

alltt

amsart

amsbook

amsfonts

amsmath

amssymb

amstex

article

book

changebar

colordvi

color

enumerate

epsbox

epsfig

eurosym

floatfig

floatflt

fontenc

frames

getimagesize

graphics

graphicx

harvard

heqn

hthtml

htmllist

html

hyperref

inputenc

justify

17

https://ctan.org/pkg

latexsym

letter

longtable

lyx

makeidx

multicol

natbib

psfrag

report

seminar

SIunits

slides

supertabular

texdefs

texnames

textcomp

verbatimfiles

verbatim

webtex

wrapfig

xspace

18

