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Abstract
The report describes work for ExCALIBUR project NEPTUNE at Milestone 5.1. This report
collates technical material used to inform the preparation of the call for procurement of support
for Uncertainty Quantification (UQ). The work performed primarily consisted of collating material
produced internally by UKAEA and by external grantees at UCL, plus hands-on exploration of sam-
pling techniques, the construction of surrogates and the study of dimensionally reduced models.
In addition, information from Exeter contractors gathered at NEPTUNE workshops is included.
Besides paying for contractors, UKAEA is also sponsoring a PhD in UQ which is described in
order to avoid duplication. The report has been slightly delayed so that it could be updated with
material from a second NEPTUNE UQ workshop on 30 June, in order to facilitate assessment of
bids for grants for the NEPTUNE 2021 call.
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1 Introduction

This report collates technical material used to inform the preparation of the call for procurement of
support for Uncertainty Quantification (UQ). The work performed primarily consisted of collating
material produced internally [1, 2, 3, 4] and by external grantees at UCL [5, 6], plus hands-on
exploration of sampling techniques, the construction of surrogates and the study of dimensionally
reduced models. The production of this call reflects the importance attributed to UQ in project
NEPTUNE, so that the software produced should be capable of producing ‘actionable’ results,
that could form a significant input to multi-million pound procurements.

It seems worthwhile to start by recapitulating the project NEPTUNE requirements for UQ, insofar
as they are currently understood. In particular, to note a clear distinction between the experiments
that NEPTUNE code needs to model, and the outputs of the simulations themselves. Relevant
experiments are almost entirely medium-sized and large tokamaks, where it seems that even
the edge plasma has a temperature of around 10 eV (105 K). The presence of magnetic fields of
order 1− 10 T, and electric fields of around 104 Vm−1 implies a hostile environment, subject further
to large electromagnetic transients not just at start-up and ramp-down of a discharge, but also
caused by plasma instabilities such as ELMs and sawteeth. Most diagnostics struggle to achieve
absolute accuracies of 10 %, although they usually detect the direction of smaller changes reliably.
Many are “one-of-a-kind” so require careful interpretation, and all signals may have been subject
to filtering both at low and high frequencies, to remove ‘spikes’ and ‘drift’. In comparison, signals
from simulation are very ‘clean’, but the simulation may lack crucial realism, in that either important
physical processes are not treated or if included, that the spatio-temporal discretisation may not
be sufficiently fine to represent them accurately.

Turning to the expected usage of the NEPTUNE software, this covers both physics and engi-
neering. Both physicist and engineers are potentially interested in everything computed by the
software, which is of course likely to be an overwhelming amount of detail. A physicist is more
likely to begin by formulating simpler models and use the software to determine their appropriate-
ness and accuracy, an engineer probably more likely to use the output of simulation as a basis
for producing simplified models. An experimental physicist may be satisfied with qualitative accu-
racy, provided it is obtained rapidly enough to help formulate the next experimental ‘shot’ (eg. by
indicating that more or less gas input would be helpful), whereas a more theoretical counterpart
may want to quantify the difference between model predictions and experiment sufficiently well to
help produce a more refined model. An engineer seeking to design a reactor may be interested
only in a relatively small number of quantities of interest (QoI) but which need to be determined
more precisely, such as local maxima in time-averaged heat flux, whereas other engineers may
see edge code as forming a part of a digital twin, to be used to help control operation of an actual
tokamak device where accurate time-dependent modelling will also be critical. It is notable that
most of the preceding requirements involve extrapolation, from model to new features of an exist-
ing experiment or, in the design case, to more extreme values of geometrical size, magnetic field
etc. representing a fusion reactor relative to existing experiments such as JET.

For the above it is therefore as Smith [7] describes (see also the NEPTUNE report [4, §1]), im-
portant that UQ involves more than just clever sampling to identify parameter sensitivities, and
the standard definitions of ways of quantifying these such as Sobol indices [1]. In particular, the
production of surrogate models is within scope of UQ. It is worth saying that in one sense even
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the most complex partial differential equation (PDE) models of plasma are simply surrogates for
experimental ‘reality’. The most detailed and least controversial model of tokamak plasma con-
sists in treating it as of order 1020 or more particles evolving under the influence of external and
self-generated electromagnetic fields, but this is of course not tractable even at the Exascale [8],
without very selective sampling of the particles. Currently, particle models are seen as at best
struggling to capture edge plasma behaviour, with no certain likelihood of significant improvement,
and in any event there is a separate calls that could cover research into particle sampling. The
PDE models attempt to capture the key physics of the plasma particles, viz. their appearance, mo-
tion, interactions with other particles and eventual loss, as terms representing respectively source,
advection, diffusion and sinks in continuum models. Unfortunately, long mean free paths (mfps)
mean that at least in some regions it is necessary explicitly to represent phase-velocity depen-
dence of plasma density, and the resulting basic 6-D dependence of fields (5-D if gyro-averaged
models are used) stretches current and foreseen computing facilities. In any event, above applica-
tions eg. preliminary design studies and operational control, require models capable of evaluation
within seconds or less, ie. surrogates for the PDEs, expected to have lower spatial dimensionality
(2-D or 1-D) or even as systems of ordinary differential equations (ODEs).

Unfortunately for application to NEPTUNE, most surrogates have been designed for use as in-
terpolants. Nonetheless, interpolation is likely to be important at least within the software, eg. to
connect different models, and the book by de Boor [9] has interesting material relating to the use of
splines in this context. In particular, de Boor lists theorems relating to the optimality of spline poly-
nomial interpolation, so that there might be wonder that any other form of interpolation is required.
In fact, spline optimality is found only in the energy or least-squares norm, so there is anyway the
possibility of fitting the data with polynomial functions that have under- and over-shooting oscil-
lations between sample points (called nodes in spline jargon). Moreover, de Boor illustrates the
potential for dramatic failings using what he refers to as the Titanium heat data set [9, Fig. XIII.1].
The data is a set of some 50 apparently regularly spaced samples of a function which is practically
flat except for one distinct ‘hump’, rising to four times the value of the ‘plateau’ over c. 15 % of the
range. Since the interpolation is by a piecewise (5th order polynomial) the undershoot by greater
than the maximum ‘hump’ value is in many respects more impressive than that exhibited in Boyd’s
book [10, Fig. 4.3] as part of his demonstration of the Runge phenomenon, ie. that polynomial
interpolation at evenly spaced points may diverge. In both books, the problem is identified as due
to poor choice of sample points. de Boor [9, Fig. XIV.5] shows improved fitting if the number of
samples in the plateau region of the Ti heat data is reduced, whereas Boyd points out that optimal
N th order polynomial interpolation is achieved using sample points that are the roots of the Cheby-
chev polynomial of degree (N + 1), that cluster as close together as 1/N2 near the end-points of
the sample region. In any event, for many interpolation purposes, it seems that polynomial spline
fitting with an order of three or so, is adequate provided the nodes are chosen suitably. The cost
scales as the operation count of a banded-diagonal matrix solver, so O(N) where N is the number
of points to be interpolated per dimension. There are however strong proponents for the use of ra-
tional polynomial interpolation [11] and in particular radial basis function [12]. Wavelet bases [13]
also have their adherents, and special conditions such as periodicity or infinite domain mean that
respectively Fourier series and the Hermite basis are to be preferred. The Hermite basis is em-
ployed in the Polynomial Chaos Expansion (PCE), which is advocated by P. Coveney et al, see the
NEPTUNE report [5].

Accurate spline fitting requires a sufficient amount of data to enable best location of the nodes,
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which, since they generally aim to use as few nodes as possible, is commonly unavailable in
the output of highly expensive numerical calculations. This lack of data means also that inter-
polation using Neural Networks (NNs) is mostly unsuitable, and motivates the use of Gaussian
Processes (GPs) for interpolation despite their expense, that O(N3) of inverting a full matrix [2].
They come with the benefit of accompanying error bounds, and seem to be relatively stable when
used for extrapolation [14]. They may be very effective in combination with a special basis pro-
duced by Principal Component Analysis (PCA), aka Proper Orthogonal Decomposition or POD,
see the NEPTUNE report [6]. Moreover, S. Guillas [15] describes a number of techniques which
outperform PCA, in particular favouring a reproducing kernel approach to estimating derivatives
needed to optimise the basis. This is coupled with a sequential approach to selecting sample
points. Indeed, choosing sample points appropriately is still a major issue for GPs, which P. Chal-
lenor (private communication) has explored extensively and favours ‘Leave One Out’ (LOO).

Nonetheless, given the general need for extrapolation, it is desirable to incorporate as much phys-
ical knowledge as possible into the surrogate model. The hopes are that the parameters of the
surrogate are either invariant under the extrapolation, or that they have well-determined scaling
properties, and that all important physical processes have been identified. The parameters of the
surrogate may then be fitted using existing data from experiment and/or simulation as described
above. The surrogate may need to be space and/or time dependent as required by the user and
application. Of course, such surrogates can be very useful for interpolation also. Worthy of partic-
ular mention is Model Order Reduction [3], which for linear and some nonlinear problems, offers
reliable estimates of error in interpolating Quantities of Interest (QoI), hence likely to be particularly
useful for the design engineer.

The body of the current document consists of hands-on exploration of sampling techniques in
Section 2, the construction of surrogates by Gaussian Processes in Section 3 and of surrogates
consisting of dimensionally reduced models in Section 4. The implications for the call are sum-
marised in Section 5.
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2 BOUT++

BOUT++ [16, 17] is a framework for writing fluid and plasma simulations in curvilinear geometry.
It is designed primarily to target reduced plasma fluid models, but it can evolve any number of
partial differential equations, with equations appearing in a readable form via its domain specific
language. BOUT++ is being used in Project NEPTUNE as the framework in which to build the
fluid referent model proxyapp.

A team of BOUT++ developers attended the three VECMAtk hackathons in Spring 2021. The goal
of the hackathon work was to create the software framework to enable BOUT++ to use VECMAtk,
and to develop workflows for uncertainty quantification and the creation of surrogate models. In
this report we focus on the development of the software infrastructure and the workflows for un-
certainty quantification. The code produced at the hackathons is available in the repository [18].

2.1 Software Infrastructure

The VECMA toolkit wraps around user’s software, providing a library of python functions for non-
intrusive UQ. From VECMAtk’s perspective, BOUT++ is a black box code to which it must provide
input parameters and from which it must read output quantities of interest (QoIs). Therefore the
workflow is written in Python, and is driven by calls to VECMAtk functions. VECMAtk selects
the parameter values to be sampled, collects the QoI values, and calculates and plots statistical
quantities such as Sobol indices and confidence intervals. The only necessary interaction between
VECMA and BOUT++ is for VECMA to communicate input parameters to BOUT++ and to read
back output values. This is achieved by providing an encoder, a routine that is capable of writing
BOUT++ input files, and a decoder, a routine to parse BOUT++ output files. Both are actually
classes providing additional functions, such as routines to check that BOUT++ simulations have
finished. Examples of decoders and encoders used for BOUT++ are given in Appendices A and B
respectively.

This framework structure makes it very easy to reuse the same workflow with different codes.
BOUT++ could be replaced by any other code that produces the same QoIs from the same pa-
rameters simply by replacing the BOUT++ encoder/decoder with corresponding functions for that
other code.

This pattern also makes it easy to use synthetic data instead of an actual code execution. Instead
of calling the encoder/decoder, one simply calls a function to return the QoIs as a function of
parameters. This is particularly useful in developing the workflow, such as testing the sampling
routines or plotting functions, as executing BOUT++ is by far the most significant runtime cost in
the workflow.

The encoders/decoders also provide the method for changing the QoIs for different physical cases.
For example in our work with temperature T (x, y, z, t) as the QoI, each of the different cases – fixed
point over time T (0, 0, 0, t), spatial range at the final time T (x, 0, 0, tend), or logarithm of temperature
log[T (x, 0, 0, tend)] – were each achieved by implementing a separate decoder.1

1A similar approach allowed us to work around a bug in the chaospy sampling routine (a library dependence of
VECMAtk). The chaospy log-uniform probability distribution was broken, but the uniform distribution was functional.
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Figure 1: Mean and confidence intervals (left) and Sobol indices (right) plotted against x array
index for quantity of interest T .

2.2 Uncertainty Quantification

The first workflow considered introduced UQ into BOUT++ simulations. Instead of performing a
single simulation to obtain a single result, the VECMAtk UQ framework performs an ensemble
of simulations, varying chosen input parameters in a specified range. From this, VECMAtk fits
a surrogate model: it finds the QoIs as a function of the input parameters. With this model it
calculates statistics, such as the mean value of a QoI and corresponding confidence intervals,
and the Sobol indices, which give a way of quantifying how much uncertainty in the QoIs is due
the variation of each parameter.

One-dimensional heat conduction was used as an initial test problem,

∂T

∂t
= χ

∂2T

∂x2
, (1)

where T is the temperature on the spatial domain x ∈ [0, 1] with boundary conditions T (0, t) =
T (1, t) = 0 and initial condition T (x, 0) = T0 exp[−(x − 0.5)2/0.04]. Here, the thermal conductivity
χ and the initial amplitude T0 are uncertain parameters.

2.2.1 Polynomial chaos expansion

As a first example, we implemented a workflow for 1D heat conduction (1) varying χ ∈ (0.2, 4) and
T0 ∈ (0.5, 1.5) using polynomial chaos sampling. The resulting statistics and Sobol indices for T
at the final time T = 10 is shown in Figure 1. The left figure shows the mean final temperature
and its confidence intervals . The right figure shows the first Sobol indices, which describe how
much of the uncertainty is due to each parameter. For example, at the centre of the domain, about

Therefore, in order to obtain a log-uniform distribution, we provided an encoder that wrote input parameter p to the
BOUT++ input file as variable=10**p instead of variable=p.
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65% of the uncertainty is due to varying χ (independently of T0), about 30% is due to varying T0

(independently of χ), and the remaining 5% is due to varying both in a coupled fashion.

The statistics are qualitatively converged using only a 3rd-order polynomial chaos expansion which
requires (3 + 1)2 = 16 code evaluations in two dimensions. However the confidence intervals
encompass negative values of temperature near the boundary, even though the temperature is
non-negative and all simulation data provided is also non-negative.

One approach fixing this is to use log(T ) as the QoI. The logarithm is a bijective map between
the positive-valued temperature T ∈ (0,∞) and the real value log(T ) ∈ (−∞,∞). Therefore
this allows the same analysis routines to be performed on log(T ) without concern about sign.
The resulting confidence intervals now only allow positive temperatures. Moreover the Sobol
indices are qualitatively the same, indicating that the transformed model ascribes uncertainty to
the various parameters in a similar fashion.

However, considering higher-order polynomial chaos it becomes apparent that the negative values
are an artefact of the data analysis routine. Near T = 0, the temperature is a steeply-varying
function of the input parameters, and low-order polynomial fitting is simply inaccurate, predicting
negative values. Increasing the order of the polynomial fit (by increasing the order of PCE and
providing more simulation data) leads to this problem’s no longer being observed.

2.2.2 Adaptive stochastic collocation

Using higher-order polynomial chaos is reasonable when varying a small number of parameters,
but varying more parameters is beset by the “curse of dimensionality”: the number of sam-
ples needed for nth-order PC with d parameters is (n + 1)d. Therefore, we also implemented
EasyVVUQ’s sampling with adaptive stochastic collocation (ASC), which is based on the algo-
rithm by Gerstner and Griebel [19]

In ASC, the grid of sampling points for each parameter is adaptively refined, beginning from a grid
with only one sampling point for each parameter. Estimates are made for the reduction in the error
that would result from adding one more sampling point in each parameter; the refinement is made
to the parameter which would reduce the error the most. As a result, computing resources are
directed where they are most effective, yielding results that are comparable with high-order PCE
but which require many fewer code evaluations.

Implementing a new sampling algorithm (from a VECMA user’s perspective) is a simple matter of
changing the class on which sampling routines are called. However, adaptive stochastic colloca-
tion allows additional functionality which we may incorporate in our workflow. In particular, ASC
uses a Clenshaw–Curtis collocation grid which has a nested quadrature grid (unlike in Gaussian
quadrature, the grid for (n + 1)th order accuracy contains all the points for nth order accuracy).
This means we may increase the order of accuracy by adding one new code evaluation, rather
than (n + 1) as would be required in PC. This allows us to use an iterative approach, continuing
to refine the order in each parameters dimension until some convergence criteria is met. In our
workflow, we used relative changes in the Sobol indices from one iteration to the next, but this
criterion is not ideal as it is noisy and non-monotonic.

Finally, as a proof of concept we implemented uncertainty quantification for a two-dimensional
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simulation of plasma filament propagation,

∂n

∂t
= −{φ, n}+ 2

ρs
Rc

∂n

∂z
+Dn∇2n, (2a)

∂Ω

∂t
= −{φ,Ω}+ 2

ρs
Rc

∂n

∂z
+
DΩ

n
∇2Ω, (2b)

∇2φ = Ω, (2c)

in a two-dimensional box (x, z) with Dirichlet boundary conditions in x and periodic boundary
conditions in z. In (2), n is plasma density, Ω is vorticity, φ is electrostatic potential, t is time, ρs is
the Bohm gyroradius, Rc is the radius of curvatuve, Dn and DΩ are dissipation parameters, and
{A,B} = (∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x) is a Poisson bracket. We use the two-dimensional
Laplacian ∇2 ≡ ∂2/∂x2 + ∂2/∂z2. Between each timestep, the vorticity equation (2c) must be
solved for φ so its value can be used in (2a) and (2b) to advance n and Ω. We use φ at the current
timestep as an initial guess for the iterative method (and φ = 0 as the guess for the first time step).

Four input parameters were varied, the constant coefficients ρs, Rc, Dn and DΩ. While still rea-
sonably small, individual simulations require around 10 minutes on 16 cores on the University of
York’s cluster. Third order PCE required 1296 simulations, while comparable results using ASC
only required 256 simulations.
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3 Nektar++

Nektar++ [20, 21] is a framework for solving partial differential equations (PDEs) using the spectral
/ hp-element method. The software contains several different solvers targeting canonical problems
in fluid mechanics. It is possible to extend the framework by adding new domain-specific solvers;
this currently involves low-level coding as there is no DSL. Nektar++ is being used in Project
NEPTUNE as the framework for the higher-order solution of fluid equations and currently is being
extended to handle plasma fluids. Data is extracted from Nektar++ simulations by means of filters
and written to text-based output files.

A small team from UKAEA attended the three VECMAtk hackathons in Spring 2021. The goal of
the hackathon work was to create the software framework to enable Nektar++ to use VECMAtk,
and to develop workflows for uncertainty quantification and the creation of surrogate models.

3.1 Software Infrastructure

The VECMA toolkit wraps around an individual Nektar++ solver to provide non-intrusive UQ (only
non-coupled workflows are considered here). The toolkit interacts with Nektar++ via the inputs
and outputs of the latter, through respectively an encoder and a decoder ; these objects can be
interchanged to enable different workflows (for example, the relevant quantities of interest (QoIs)
are parsed in the decoder).

3.2 Uncertainty Quantification

The initial test problem used the incompressible Navier-Stokes solver of Nektar++ to simulate
classical convection: a two-dimensional fluid-filled slot with vertical walls maintained at different
temperatures; starting with an initial uniform temperature gradient from the hot side to the cold
side, the system is time-evolved until a steady state is reached. Warmer fluid is subject to an
upward buoyancy force, leading to a steady convective cell solution with fluid travelling up the hot
side and down the cold one.

In dimensionless form, the equations for fluid velocity u, temperature T and pressure p are

1

Pr

(
∂u

∂t
+ u · ∇u

)
= −∇p+Ra T ŷ +∇2u (3)(

∂T

∂t
+ u · ∇T

)
= ∇2T (4)

∇ · u = 0. (5)

Here, the Rayleigh number Ra and the Prandtl number Pr are the governing parameters and are
taken to be subject to uncertainty.
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Figure 2: Steady-state colour map of dimensionless temperature for Ra = 104, Pr = 1.0. The left side is
maintained at a temperature one unit higher than the right and a convective cell carries fluid in a clockwise
circulation.

The Nektar++ simulations were designed so as to run quickly on a single desktop computer. Com-
putational parameters governing accuracy were chosen to give plausible results without detailed
analysis of convergence.

3.2.1 Polynomial chaos expansion

A square slot was used as a first example; the results follow closely the original investigation in
[22]. An example temperature profile over the full domain can be see in Figure 2.

The QoI was the temperature profile T (x) evaluated half-way up the slot, parsed via the decoder
SlicedHisDecoder from data extracted using the Nektar++ HistoryPoints filter to record field
values at chosen sample points. Note that the sample points cannot lie on the vertical boundaries,
as the Dirichlet boundary condition enforces constant temperature values there, which causes the
analysis to fail (a singular matrix error is reported by VECMA). Pr was taken to be in the range
1 − 10 (values typical for the gases and liquids commonly investigated in the literature), with a
uniform distribution. Ra was taken to be in the range 1.0× 104 − 3.2× 104 (values consistent with
a laminar convective steady state), with a log-uniform distribution.

The polynomial chaos expansion (PCE) produces a fit to the sampled QoI data using a sum over
orthogonal polynomials in the input variables, where the orthogonality is defined using the input
probability distributions as the measure and the fit is performed by either spectral projection or
linear regression. The polynomial chaos analysis of EasyVVUQ provides the mean, variance, and
standard deviation of the outputs and also the minimum, maximum, median and the 1st, 10th, 90th,
and 99th percentiles (a useful supported stats() routine lists the available statistics). Some of
these quantities are shown in Figure 3, which was generated using a fifth-order PCE. Also shown
are the first Sobol indices, which show correctly that the uncertainty in the output is dominated by
the sensitivity to Ra in this case; in the regime in question, the effect of varying Pr is small.
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Figure 3: Mean and confidence intervals (left) and first Sobol indices (right) as a function of po-
sition for the central temperature profile T (x) fitted by a polynomial chaos expansion. Note that
the uncertainty tends to zero in regions where the temperature is either fixed (end points) or is
constrained by symmetry (centre).

3.2.2 Stochastic collocation

Stochastic collocation (SC) creates a representation of the QoIs that is exact at the sample points;
the solution is a linear combination of sample-point values multiplying Lagrange polynomials at
those points. The stochastic collocation analysis of EasyVVUQ provides the mean, variance and
standard deviation of the outputs. The set of available statistics is smaller than for the PCE, but the
method is more efficient (as explained earlier in this report). The decoder used in the preceding
section is switchable between PCE and SC.

3.3 Surrogate models

Note that, although it concerns surrogate models, the work in this subsection used EasyVVUQ
and not EasySurrogate.

3.3.1 Polynomial chaos expansion and stochastic collocation

Either of the orthogonal polynomial fit constructed in the polynomial chaos expansion or the La-
grange polynomial fit constructed in the stochastic collocation method can serve as a computationally-
inexpensive surrogate for the full model. As an example, PCE and SC surrogates for the Nusselt
number Nu as a function of Ra and Pr were constructed. Nu is the dimensionless heat flux
across the cavity, normalized to the Ra = 0 no-convection solution, calculated as

Nu =

∫ H
0 ∂xT (x0, y) + ∂xT (x1, y)dy∫ H

0 ∂xT (x0, y) + ∂xT (x1, y)dy|Ra=0

. (6)
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Figure 4: Polynomial chaos and stochastic collocation surrogates for Nusselt number as a function of
Rayleigh number, for Prandtl number 1.0.

where ∂x denotes partial derivative with respect to coordinate x.

The Nusselt number was extracted using a customized filter in Nektar++ and the output file was
parsed by a decoder (HeatFluxDecoder) using a simple text processing routine. An illustration of
the SC and PCE fits (both using fifth-order polynomial expansions) for the simple case of Nusselt
number as a function of the Rayleigh number (Pr = 1) is shown in Figure 4. The Nusselt number
is seen to follow a typical power-law curve.

3.3.2 Gaussian process surrogate

A different set-up, though again using the Nektar++ incompressible Navier-Stokes solver, was
used as an initial exploration of the Gaussian process surrogate capability in EasyVVUQ; this was
a slot 10 units high and 1 wide, operating at larger Rayleigh numbers where the flow exhibits a
boundary-layer instability with waves moving up the hot wall and down the cold one (illustrated
in Figure 5). This gave interesting time series for the maximum temperature near the affected
parts of the walls (the lower part of the cold wall was used) and the position of the hottest point.
These QoIs are of interest in fusion applications as they characterize the hot spots on the wall
of a reactor containing hot plasma. The time series were extracted over a chosen time window
using a customized filter in Nektar++; the simulation runs were performed once and the decoder
(HotSpotDecoder) was given the ability to read stored simulation data in order to avoid repeating
calculations. In view of the weak dependence on the parameter Pr, only the parameter Ra was
varied in this activity (values in the range 105 − 107 were used). A kernel with zero mean and a
Matérn covariance with parameters ν = 3/2 and scale 107 were used.

This investigation was an attempt at finding a surrogate for computations that are more demanding
than the laminar convection ones in the preceding section and also concerned a system that
exhibits deterministic chaos. The time series data used to train the Gaussian process is shown in
Figure 5. Note that for Ra sufficiently large for the instability to form, temperature maxima enter
from the top of the monitored section and proceed downwards until usurped by the next wave. For
smaller values of Ra, the system is quiescent and the time series eventually become constant.
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Figure 5: Boundary-layer instability at the cold wall for Ra = 2.3× 108 (top). The maximum temperature on
this part of the wall and also the position of the hottest point are shown as time series (respectively left and
right below).
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Figure 6: Output of the Gaussian process surrogates for the maximum temperature and the posi-
tion of the hottest point evaluated at positions away from the sample parameter values.

Some sample evaluations of the Gaussian process surrogate away from the sample points can be
seen in Figure 6. It can be seen that the surrogate correctly reproduces the more active nature of
the time series for larger values of Ra.
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4 Dimensionally reduced models

4.1 Boltzmann Equation

One suggestive example of the production of a surrogate is the reduction of the Boltzmann equa-
tion to the equations of fluid dynamics. The model is a combination of Lie derivative and solenoidal
constraints

∂f

∂t
+ ux

∂f

∂x
+ uy

∂f

∂y
= S (7)

∂ux
∂x

+
∂uy
∂y

= 0 (8)

where f(x, y, t) is the phase space density as a function of time t, ux is the flow in position
space x, and uy is the flow in velocity space y. Collision and other source terms are represented
as S(x, y, t). For simplicity, it is assumed that position and velocity space are each 1-D. In more
conventional notation where v is the velocity space coordinate and a the acceleration experienced
by a particle, then y ↔ v, ux = v and uy = a.

Integrating Equation (7) over velocity space, ie. forming
∫
·dy leads to

∂n

∂t
+

∂

∂x

∫
uxfdy −

∫
∂ux
∂x

fdy +
∂

∂y

∫
uyfdy −

∫
∂uy
∂y

fdy =

∫
Sdy (9)

upon using

ux
∂f

∂x
=
∂(uxf)

∂x
− f ∂ux

∂x
(10)

and introducing

n =

∫
fdy (11)

Using Equation (8) so that two terms cancel, Equation (9) becomes

∂n

∂t
+

∂

∂x

∫
uxfdy + [uyf ]±yb =

∫
Sdy (12)

If f and/or uy vanish(es) at the boundaries of the velocity domain y = ±yb, the third term is zero.
Suppose there is a mean flow, ie. that ux may be written

ux = U(x) + ũ(x, y) (13)

such that ∫
ũfdy = 0 (14)

and thus ∫
uxfdy = nU (15)

then substituting Equation (13) in the second term of Equation (12) results in

∂n

∂t
+
∂nU

∂x
= S0 (16)
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which is recognised as the fluid dynamical equation of mass conservation with source S0(x) =∫
Sdy − [uyf ]±yb .

To obtain the momentum conservation equation from Equation (7), form
∫
·uxdy and rearrange

f -derivative terms, leading to

∂nU

∂t
+

∂

∂x

∫
u2
xfdy −

∫
∂u2

x

∂x
fdy +

∂

∂y

∫
uxuyfdy −

∫
∂(uxuy)

∂y
fdy =

∫
Suxdy (17)

Using
∂(uxuy)

∂y
= ux

∂uy
∂y

+
∂ux
∂y

uy = −ux
∂ux
∂x

+
∂ux
∂y

uy (18)

(the second manipulation using Equation (8)), Equation (17) gives

∂nU

∂t
+

∂

∂x

∫
u2
xfdy −

∫
ux
∂ux
∂x

fdy + [uxuyf ]±yb −
∫
uy
∂ux
∂y

fdy =

∫
Suxdy (19)

Writing ux = U(x, t) + ũ, the second term expands to

∂

∂x
(U2

∫
fdy) + 2

∂

∂x
(U

∫
ũfdy) +

∂

∂x

∫
ũ2fdy (20)

which since
∫
ũfdy = 0, reduces to

∂(nU2)

∂x
+

∂

∂x

∫
ũ2fdy (21)

The third term in Equation (19) is zero provided

∂ux
∂x

= 0 (22)

Indeed if ux = y, then upon introducing

p =

∫
ũ2fdy (23)

and
G =

∫
uyfdy =

∫
afdy (24)

there results the fluid dynamical equation of momentum conservation with momentum source
S1(x) =

∫
Suxdy − [uxuyf ]±yb , namely:

∂nU

∂t
+
∂nU2

∂x
= −∂p

∂x
+G+ S1 (25)

It may be helpful to note that the third term in Equation (19) expands to

− (nU
∂U

∂x
+ U

∫
∂ũ

∂x
fdy +

∫
ũ
∂ũ

∂x
fdy) (26)

where Equation (14) has been used to zero one term.
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4.2 Lie Derivative Surrogate

In the absence of sources Equation (7) may be written for a flow u in any number of dimensions
as

∂f

∂t
+ u.∇f = 0 (27)

To proceed to derive a widely used class of surrogate for models involving Lie derivatives, it is
helpful to run over a small amount of mathematics. The streamlines of a vector field such as u by
definition satisfy

dx

ds
= u(x) (28)

where x(s) is the streamline parameterised by s, and where often s is chosen to be arc-length
along the curve. Hence substituting Equation (28) in u.∇f gives the Lie derivative as df/ds which
illustrates its coordinate independence, since s is an almost arbitrary label. Further, substituting
Equation (28) in Equation (27) gives

∂f

∂t
+
∂f

∂s
= 0 (29)

where now f(s, t). Equation (29) is well-known to have the exact solution f = F (t− s) for arbitrary
scalar functions of a single variable F . In realistic applications, S 6= 0, but the property that f
is a function only of arclength (and time) survives, so that the physics of sources and sinks may
be dealt with by a surrogate which has only one space dimension supposing the streamlines
are known. Moreover, in the plasma context, the main flow may often be directed along lines of
magnetic field B, so that exactly the same statements could be made replacing streamline with
fieldline.

Now, Equation (25) can be expressed in Lie derivative form by eliminating ∂n
∂t using Equation (16),

and division by n, giving

∂U

∂t
+ U

∂U

∂x
= − 1

n

(
∂p

∂x
+G+ S1 − US0

)
(30)

Thus provided u is expressed in Cartesians, each component separately obeys an equation of the
form Equation (27) and similar remarks apply. There is also [23] a (pseudo-)vector Lie formulation
for B and the vorticity ∇× u which can lead to similar simplifications and potential surrogates.

4.3 Surrogates for advection

Equations(7) and (8) combine to give an equation identical to that for mass conservation in 2-D,
namely

∂f

∂t
+
∂(uxf)

∂x
+
∂(uyf)

∂y
= S (31)

where now f(x, y, t) is the fluid density as a function of time t, and ux and uy are components of
the flow u. Source terms may still be represented as S(x, y, t), collision terms may be represented
as a further contribution to S(x, y, t), of form

Sd =
∂

∂x

(
κxx

∂f

∂x
+ κxy

∂f

∂y

)
+

∂

∂y

(
κyx

∂f

∂x
+ κyy

∂f

∂y

)
(32)
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The above 2-D expressions should be sufficient for understanding how to deal with many situations
involving advection, diffusion and sources, which are more generally formulated as

∂f

∂t
+∇ · (uf − κ∇f) = S (33)

for tensor diffusion coefficient κ.

Analogous to Section 4.1, integrating Equation (31) over coordinate y, ie. forming
∫
·dy leads to

∂
∫
fdy

∂t
+

∂

∂x

∫
uxfdy + [uyf ]y=±yb =

∫
Sdy (34)

There is then a simplification to a 1-D surrogate upon supposing that as in Section 4.1 ux may be
written

ux = U(x) + ũ(x, y) (35)

and introducing as before

n =

∫
fdy (36)

to give without further approximation, the equation (cf. Equation (16)

∂n

∂t
+
∂nU

∂x
= S0 (37)

where S0 includes the difference in mass fluxes at the boundaries y = ±yb. However, if instead of
Equation (35) is assumed

ux = V (y) + ṽ(x, y) (38)

then it is necessary to assume a weak dependence of f on y to give an equivalent of Equation (37)
that is necessarily approximate as

∂n

∂t
+

1

2yb

∫
V dy · ∂n

∂x
= S0 (39)

The production of a so-called 0-D surrogate is achieved by further integrating over coordinate x,
ie. forming

∫
·dx of Equation (34):

d
∫ ∫

fdxdy

dt
+

[∫
uxfdy

]
x=±xb

+

[∫
uyfdx

]
y=±yb

=

∫ ∫
Sdxdy (40)

This is evidently an ODE for the total mass ntot(t) =
∫ ∫

fdxdy in terms of the total source Stot(t) =∫ ∫
Sdxdy provided the boundary fluxes are known. Note that diffusion may be explicitly included

in the above expressions Equations(34) and (40) on making the replacements

uxf −→ uxf − κxx
∂f

∂x
− κxy

∂f

∂y
(41)

uyf −→ uyf − κyx
∂f

∂x
− κyy

∂f

∂y
(42)

19



Again analogously to Section 4.1, form
∫
·ψdy for an arbitrary scalar ψ and rearrange f -derivative

terms, leading to

∂nΨ

∂t
+

∂

∂x

∫
uxψfdy −

∫
ux
∂ψ

∂x
fdy + [ψuyf ]±yb −

∫
uy
∂ψ

∂y
fdy =

∫
Sψdy (43)

where now also is introduced Ψ such that

ψ = Ψ(x) + ψ̃(x, y) (44)

and thus ∫
ψfdy = nΨ (45)

Further expanding ux and ψ in Equation (43), there results, using similar manipulations to Sec-
tion 4.1, but without assuming ux = y that

∂nΨ

∂t
+
∂nUΨ

∂x
= −

∂pψ
∂x

+Gψ + S1ψ (46)

where
pψ =

∫
ũψ̃fdy, S1ψ =

∫
Sψdy − [ψuyf ]±yb (47)

and exploiting Equation (26)

Gψ = nU
∂Ψ

∂x
+

∫
uy
∂ψ̃

∂y
fdy + U

∫
∂ψ̃

∂x
fdy +

∫
ũ
∂ψ̃

∂x
fdy (48)

As before, using the equation of mass conservation simplifies the dynamics, resulting in

n
∂Ψ

∂t
− U

∫
∂ψ̃

∂x
fdy = −

∂pψ
∂x

+Hψ + S1ψ −ΨS0 (49)

where

Hψ =

∫
uy
∂ψ̃

∂y
fdy +

∫
ũ
∂ψ̃

∂x
fdy (50)

As might be expected from Section 4.1, taking ψ = ux achieves only minor further simplification.
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5 Summary

ExCALIBUR project NEPTUNE work on UQ to-date (including two UQ workshops organised by
each of the two UCL grantees) has already helped established a significant number of points rel-
evant to the design of the NEPTUNE software. The points may be dealt with under the two main
headings of sampling and surrogate production, however there is a strong suggestion that sam-
pling and the production of a surrogate should operate sequentially, meaning that the surrogate
informs the choice of sample points, which in turn modifies the surrogate &c.

For sampling, there are recommendations from external NEPTUNE reports [5] that adaptive
stochastic collocation (ASC) is to be preferred, supported by the study in Section 2.2.2 above.
The ASC method is expected to be resilient in the face of the “curse of dimensionality”, although
not completely resistant [1]. It seems natural to accompany most sampling by polynomial interpo-
lation when the spectral/hp element approach is used to represent spatial dependences in terms
of pth order polynomials.

Section 3.3.1 above confirms that surrogates should incorporate “appropriate” physical knowl-
edge, such as the need for say Nusselt numbers not to be less than unity. Section 3 confirms
that turbulence, even when arising in the context of a 2-D fluid model, is hard. The work shows
that there remain questions concerning adequate numerical resolution, probably tied up with the
existence of relatively long timescale transients. In such circumstances, the additional expense of
GP is likely to be worthwhile, and to become even more so with the higher dimensional models.
Given the obvious need to couple models of different dimensionality, the linked GP approach to
producing surrogates described external NEPTUNE report [6] (see also ref [24]) appears worth
pursuing.

There is also a strong suggestion from the discussion [1] that active subspace methods be con-
sidered to help produce surrogates. Clearly UQ is an area where there is scope for the devel-
opment of significant new techniques, indicating that it is worth supporting a post-doc if only in
order to keep abreast of the latest research. Since, there is lacking a convincing demonstration
at scale of the proposed techniques, a new grant could usefully direct a post-doc to explore prac-
tical details of implementation. These could also include the use of PCA aka POD in application
to time-dependent problems, as described in the closing chapters of the book by Brunton and
Kutz [25, §11,12]. Probably there is no particular worry regarding PCA itself as it seems to be so
widely used. Application to time-dependent problems is already being pursued by a UKAEA spon-
sored research student at Leeds (Alasdair Roy). One technique for identifying parameters which
is known to scale because of its use in weather and climate studies is Data Assimilation (DA),
discussed briefly in internal project NEPTUNE report [3, §3], specifically by means of the En-
semble Kalman Filter (EnKF). EnKF does however rely on having good starting estimates for the
parameters, now discoverable by an optimisation front-end in the UKAEA sponsored EnKF-Python
software [26], and also at least crude estimates of the uncertainties in the parameters. A. Roy is
exploring the possibility of using algorithms for SINDy - Sparse Identification of Nonlinear Dynam-
ics [25, §7.3] - to help provide the information required by DA. (Exa)scalability will need ultimately
to be considered for use in NEPTUNE. There has also been consideration of the use of adjoints,
see discussion in NEPTUNE report [27, §2.4.1] of their usefulness and economy for design, and
discussion in NEPTUNE report [3, § 3.2] of their use in calculating functional derivatives. Again,
there is the issue of scalability to consider.
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However, so as not to be too prescriptive, there are other aspects of UQ that would withstand
further examination, such the utility of other sparse approximation techniques, eg. Proper gen-
eralized decomposition (PGD) described in ref [28] as example of use of tensor train ideas and
already mentioned in previous call documents, along with the Discrete Empirical Interpolation
Method (DEIM). In particular, a method would be useful for selecting automatically amongst the
various possible techniques, having regard to application and resources available.
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A Example BOUT++ decoder

1 class BaseBOUTDecoder(BaseDecoder , decoder_name ="bout++-base "):

2 def __init_subclass__(cls):

3 super (). __init_subclass__(cls.__name__)

4
5 def __init__(self , target_filename=None):

6 """

7 Parameters

8 ==========

9 target_filename: str or None

10 Filename or glob to read in (default: "BOUT.dmp .*.nc")

11 """

12 self.target_filename = target_filename or "BOUT.dmp.*.nc"

13
14 @staticmethod

15 def _get_output_path(run_info=None , outfile=None):

16 """

17 Get the path the run directory , and optionally the file outfile

18 """

19 if run_info is None:

20 raise RuntimeError (" Passed ’None ’ to ’run_info ’")

21
22 run_path = run_info.get(" run_dir", "data")

23
24 if not os.path.isdir(run_path ):

25 raise RuntimeError(f"Run directory does not exist: {run_path }")

26
27 return os.path.join(run_path , outfile)

28
29 def sim_complete(self , run_info=None):

30 """ Return True if the simulation has finished """

31 settings_filename = self._get_output_path(run_info , "BOUT.settings ")

32
33 if not os.path.isfile(settings_filename ):

34 return False

35
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36 # Check for normal , clean finish

37 settings_file = BoutOptionsFile(settings_filename)

38
39 return "run:finished" in settings_file

40
41 def get_outputs(self , run_info ):

42 """ Read the BOUT++ outputs into an xarray dataframe """

43 data_files = self._get_output_path(run_info , self.target_filename)

44 return open_boutdataset(data_files , info=False)

45
46 def get_restart_dict(self):

47 """ Serialise the class to a dict of JSON serialisable variables """

48 # This is possibly too magic ... get the variable names from

49 # the __init__ method

50 init_vars = inspect.signature(self.__init__ ). parameters.keys()

51 # Assuming that the __init__ does ‘self.var = var ‘, we can

52 # just return a dict of everything

53 try:

54 return {var: getattr(self , var) for var in init_vars}

55 except AttributeError as e:

56 # Let ’s try to give a helpful error message if this does go wrong

57 match = re.search(r"no attribute ’(.*)’", str(e))

58 if match is None:

59 # Oops , something else

60 raise e

61 varname = match.group (1)

62 raise AttributeError(

63 f"’{varname}’ doesn ’t seem to be a member of this instance .\nDid you miss ’self.{ varname} = {varname}’ in ’__init__ ’?"

64 )

65
66 @staticmethod

67 def element_version ():

68 return "0.1.0"

69
70
71 class SimpleBOUTDecoder(BaseBOUTDecoder ):

72 """ Just collects individual variables at the last timestep """

73
74 def __init__(self , target_filename=None , variables=None):

75 """

76 Parameters

77 ==========

78 variables: iterable or None

79 Iterable of variables to collect from the output. If None , return everything

80 """

81 super (). __init__(target_filename=target_filename)

82
83 # TODO: check it’s an iterable or otherwise sensible type?

84 self.variables = variables

85
86 def parse_sim_output(self , run_info=None , *args , ** kwargs ):

87 df = self.get_outputs(run_info)
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88
89 return {

90 variable: flatten_dataframe_for_JSON(df[variable ][-1, ...])

91 for variable in self.variables

92 }

93
94 @staticmethod

95 def element_version ():

96 return "0.1.0"

B Example BOUT++ encoder

1 class BOUTEncoder(BaseEncoder , encoder_name ="bout ++"):

2 def __init__(self , template_input=None):

3 """ Read an existing BOUT.inp file to use as a template.

4 If no input is given , an empty set of options will be created

5 Example

6 -------

7 from boutvecma.encoder import BOUTEncoder

8 encoder = BOUTEncoder ("data/BOUT.inp")

9 """

10 if template_input:

11 self._options = BoutOptionsFile(template_input)

12 else:

13 self._options = BoutOptions ()

14
15 self.template_input = template_input

16
17 def encode(self , params=None , target_dir =""):

18 """ Create a BOUT.inp file in target_dir with modified parameters.

19 Sub -sections are specified using colons in the params keys

20 Example

21 -------

22 encoder.encode ({" section:key ":42}, target_dir ="data")

23 modifies key so that the file "data/BOUT.inp" contains

24 [section]

25 key = 42

26 """

27 if params:

28 options = deepcopy(self._options)

29
30 for key , value in params.items ():

31 options[key] = value

32 else:

33 options = self._options

34
35 # Note: Here options could be BoutOptions or BoutOptionsFile

36 # so can ’t just use options.write

37 with open(os.path.join(target_dir , "BOUT.inp"), "w") as f:

38 f.write(str(options ))
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39
40 def element_version(self):

41 return "0.1"

42
43 def get_restart_dict(self):

44 return {" template_input ": self.template_input}
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