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The report describes work for ExCALIBUR project NEPTUNE at Milestone 2.4.2. Major scientific
codes, among which the output of NEPTUNE is intended to count, are subject to uncertainty from
two main sources: systematic error (e.g. in input parameters that are not known precisely) and
stochastic error (arising e.g. from the presence of deterministic chaos). The former gives rise
to what is termed epistemic uncertainty, while uncertainty due to the latter is termed aleatoric.
Forward uncertainty quantification (UQ) - well-established in the domain of engineering and an
emerging field in that of scientific computing - aims to capture the effect on model outputs of
epistemic and aleatoric uncertainty, providing valuable information as to the predictive power of
a computational model. The goals of this report are to write a concise set of recommendations
as to which particular UQ methodologies to develop for NEPTUNE and explicitly to describe the
architecture of UQ workflows for co-design purposes toward exascale.

UQ methods divide naturally into intrusive and non-intrusive types. Non-intrusive methods involve
no modification to the subject code, using only the outputs of the code; the workflow then involves
the specification of input distributions and a sampling strategy, running an ensemble of simula-
tions, then post-processing the outputs. By virtue of the principle of separation of concerns, this
approach is widely and readily applicable, in contrast to the ad hoc model rewrites needed for
intrusive UQ, which usually is taken to be not feasible for large scientific codes. Semi-intrusive
methods apply to coupled systems, where UQ for individual components is non-intrusive. A deci-
sion is taken in favour of non- and semi-intrusive methods for NEPTUNE.

The penalty for pursuing a non-intrusive approach is the need for a large ensemble of (potentially
extremely expensive) simulations; techniques for tackling this issue include advanced sampling
strategies and surrogate models. Pitfalls to be avoided in sampling are the curse of dimension-
ality (exponential scaling of the required number of samples with the input dimensionality of the
problem) and the slow convergence of ordinary Monte Carlo schemes; one answer to these is to
use adaptive stochastic / point collocation methods, where the aim is actively to determine those
directions in parameter space to which the quantity of interest is most sensitive. Other poten-
tial approaches include high-dimensional model representation, where the strategy is to expand
according to the order of interaction between input parameters, and active subspace methods,
where gradient information is used to project the input state to a lower dimension while capturing
as much as possible the behaviour of the full input space. Surrogate models find utility in ac-
celerating ensembles of simulations. They have a natural division into stochastic surrogates and
reduced surrogates: the former apply to simulations with a stochastic component, in which multi-
ple model states correspond to the same inputs, the latter to the case where the output space is



of much lower dimension than that of the model state, e.g. a quantity of interest may be a single
scalar (perhaps a global mean temperature). It is anticipated that surrogates will be used to re-
place the most expensive components of a coupled model (those typically representing physics at
the smallest scale) as part of a semi-intrusive UQ effort.

The report contains an overview of existing applications of UQ to plasma fusion codes; echoing
the status quo for general multi-physics workflows, rather little work has thus far been done on
the coupled, multi-scale fusion case. Specific problems have been treated, e.g. by applying the
COSSAN toolkit to the outputs of the SMARDDA software, and (non-intrusive) polynomial chaos
methods and advanced sampling have been applied.

A summary of existing tools showcases the VECMA toolkit, an open-source framework maintained
by the authors of the report, offering various capabilities for UQ and also for coordinating UQ
campaigns on modern HPC (the acronym stands for Verified Exascale Computing for Multi-scale
Applications). One key aim is the provision of stable interfaces and data formats; another is to
surpass existing frameworks in scope of applicability, ease of use, and in utility for managing large
job-count ensemble runs. A description of a promising application of the toolkit in an existing fusion
modelling system implemented by the Max Planck Institute for Plasma Physics is given. Attention
is drawn also to other existing UQ softwares, some of which are incorporated within VECMA, and
also frameworks for Gaussian process emulation.

During the course of the grant, three VECMA hackathons were organized with the objective of
training UKAEA and other NEPTUNE partners in adding UQ to existing codes using the VECMA
toolkit, thereby cultivating valuable expertise and harnessing the extensive capability and HPC
focus of the toolkit. Though the ultimate vision for NEPTUNE is UQ of a coupled multi-scale,
multi-physics application, this initial work has focussed on representative single-scale proxyapps,
namely the codes BOUT++ (plasma fluids using finite difference), Nektar++ (fluids, spectral/hp),
and EPOCH (particles, particle-in-cell). The section on EPOCH is accompanied by reference to
the authors’ work on molecular dynamics, in which one firm conclusion is the need for ensem-
ble averaging in particle-based simulations in order to counter the aleatoric uncertainty immanent
to these methods. In aggregate, the work done in the hackathons includes the construction of
non-intrusive surrogates using stochastic collocation, polynomial chaos expansion, Gaussian pro-
cesses, and artificial neural networks, with concomitant sensitivity analyses and the extraction of
lower-order statistical moments from these outputs. Feedback from hackathon participants has
also led to the augmentation of the toolkit with additional relevant features.

A list of specific NEPTUNE challenges is identified in the report and potential solutions are pro-
posed, including the replacement with surrogates of the expensive microscopic components in a
coupled model, gradient-free active subspace methods for reducing input space dimensionality,
and a steer in the direction of Gaussian processes for surrogates (all of these synergistic with
other NEPTUNE grants targetting reduced-order models). A strategy to allow the incorporation of
experimental data involves future overlap with the forthcoming RADDISH project (Real-time Ad-
vanced Data assimilation for Digital Simulation of Numerical Twins on HPC); brief mention is given
to ways of mitigating the problems associated with data assimilation in nonlinear, non-Gaussian
systems, and proposed new techniques include a particle filter and a geometrically-driven ensem-
ble Kalman filter.
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1 Introduction  

Uncertainty quantification, verification and validation processes are crucial in order to demonstrate the 
robustness of all forms of simulation. Code results can be "validated" by comparison with experiment in a 
number of ways, ranging from qualitative (subjective) measures to quantitative measures which apply a 
validation metric. Verification (confirmation that the mathematical model has been coded correctly) and 
validation of computer simulations have been discussed at length for fluid dynamics [1]. Applications to 
fusion have been made in a number of subsequent papers, including "Validation in fusion research: 
Towards guidelines and best practices" [2], "Verification and validation for magnetic fusion" [3] and 
"Validation metrics for turbulent plasma transport" [4]. 
 
Computer modelling is widely used in science and engineering to study systems of interest and to predict 
their behaviour. These systems are usually multi-scale or multi-physics in nature, as their accuracy and 
reliability depend on the correct representation of processes taking place on several length and time scales 
involving different physics [5–8]. The resulting code often simulates a collection of coupled models. 
Moreover, these systems can be stochastic, since there are always some unresolved scales whose effects 
are not taken into account due to lack of knowledge or limitations of computational power [6,9]. Additionally, 
measurements of model parameters, model validation, and initial and boundary conditions themselves can 
be rarely if ever achieved with perfect accuracy [10]. Therefore, the simulation model and its output results 
inevitably contain uncertainties, and one needs to estimate their magnitudes by applying a forward 
uncertainty quantification (UQ) method. 
 
UQ is familiar in engineering and applied mathematics communities but quite immature at lower length 
and time scales relevant of physics and chemistry, let alone in combinations which arise in multiscale 
applications. Handling a large multiscale/multiphysics problem is arguably among the most complex one 
can address. Collectively speaking, verification, validation and UQ for such systems is an active research 
topic and off-the-shelf solutions remain absent. 
 
It is standard practice in UQ to distinguish two sources of uncertainty – “epistemic” and “aleatoric”. The 
former addresses systematic errors (caused by parameter values, etc.), the latter random ones, which are 
linked to the use of random numbers generators and random seeds. Importance must be attached to 
intrinsic stochasticity coming from chaos. Turbulence is the primary source in fusion research, but it is also 
present in many particle-based methods (such as classical molecular dynamics). Our current 
investigations of binding affinity calculations using molecular dynamics show that aleatoric uncertainty can 
more than double the variability of predictions compared with studies performed without ensemble 
averaging. For epistemic UQ, information about the distribution of the uncertainty in the parameters must 
be specified, but such information is rather rarely known. In our own work, we have often had to assume 
uniform distributions across a fixed range (say up to 20% changes in the parameter of interest). 
 
The purpose of the present report is to provide a short overview of approaches to uncertainty quantification 
including recommendations as to which are likely to be of most relevance to the Neptune project. This 
report draws heavily upon the experience gathered over recent years including the past three years 
running the VECMA project (www.vecma.eu). The goal of the project is to provide an open source toolkit 
(VECMAtk, www.vecma-toolkit.eu) containing a wide range of tools to facilitate the use of VVUQ 
techniques in multiscale, multi-physics applications [39]. Approaches are classified by degree of 
intrusiveness, and we focus on ones suited to enable separation of concerns, that is avoiding the 
development of methods on a per-application basis. The report then provides a review of existing toolkits 
enabling the execution of UQ workflows on high-performance computing infrastructures. 
 
 



	

2 Classification of methods by intrusiveness 

Usually a distinction is made between intrusive UQ methods, where one substitutes the original model with 
its stochastic representation, and non-intrusive methods, where the original model is used as a black-box 
[11,12]. Intrusive methods are efficient and relatively easy to apply to linear models, e.g. [13]. This, 
however, represents only a relatively small class of models. They can be applied to non-linear models as 
well, but the solution of the resulting equations may become very demanding. Non-intrusive methods can 
be applied to any type of non-linear model. However, if a single model run requires large execution times, 
these UQ methods may be ineffective, or even computationally intractable. 
 
Non-intrusive uncertainty propagation methods consider the entire system as one black box, see Figure 
1. The main advantage is that the (legacy) simulation code is left completely untouched, hence the name 
‘non-intrusive’. This allows users to quickly add a UQ component to their existing simulation framework. 
The one thing any application user must do is write an encoder/decoder to allow a code of interest to 
connect to EasyVVUQ. To facilitate this, several non-intrusive methods are considered in the VECMAtk 
[14] and more specifically in EasyVVUQ [15] (which will be described in section 5): quasi Monte Carlo 
(qMC), Polynomial Chaos (PC) and the stochastic collocation (SC) methods [16]. All these methods follow 
a similar pattern, namely: 

1. Specify the input distributions and draw samples (create a so-called “design-of-experiment”). 
2. Run the ensemble. 
3. Perform post-processing analysis. 

 

 
 
Figure 1: Schematic of non-intrusive uncertainty propagation through a multiscale system of coupled 
single-scale solvers, mapping input distributions to a distribution of any output Quantity of Interest (QoI). 
The propagation technique is agnostic with respect to the structure of the multiscale system and treats it 
as a black box. 
 
The stochastic Galerkin method [17, 18] is often labelled as intrusive, due to the fact that dedicated solvers 
have to be developed in order to tackle the stochastic problem at hand. The equations of the problem are 
rewritten directly with stochastic variables. The additional programming effort is usually regarded as a 
major disadvantage, especially in the case of complex computational models whose software and 
underlying solvers are difficult to be accessed, modified or otherwise manipulated. Therefore, and despite 
the fact that stochastic Galerkin methods have appealing properties for error analysis and estimation, 
collocation methods are generally preferred, as they allow for non-intrusive, black-box use of the original 
computational models. It must be noted that the separation into intrusive and non-intrusive methods is an 
ongoing topic of discussion, see e.g. [19]. 
 
An intermediate class of methods exist for codes which couple multiple models. Such methods are called 
semi-intrusive UQ algorithms [20]. These algorithms are intrusive only on the level of the multiscale model, 
that is, in the way the single scale components are coupled together. The single scale components 
themselves are, however, treated as black-boxes, see Figure 2. Semi-intrusive algorithms will be 
discussed in more detail in section 6. 
 



	

 
Figure 2: Intrusiveness of UQ methods. The different levels of intrusiveness are associated with the 
components of an application which need to be modified to quantify uncertainty. 
 

 
3 Enhanced sampling methods 

Most commonly, UQ studies rely on sampling methods. Monte Carlo (MC) sampling converges irrespective 
of the number of random variables (RVs) or the regularity of the given problem, albeit with a slow 
convergence rate in the mean-square-error sense. Improved cost-error ratios can be achieved with 
multilevel MC methods [21]. Spectral UQ approaches converge much faster, exponentially in the most 
favourable cases, for a small to moderate number of random inputs and smooth input-to-output map [22]. 
Typical methods of this type are stochastic collocation [16,23,24] or point collocation [25,26] methods. 
Comparisons between stochastic and point collocation methods, see e.g. [27], indicate that the former 
tends to provide superior accuracies and convergence rates for smooth quantities of interest (QoI). 
However, since these approaches differ significantly, a fair comparison between the two is still an open 
research topic, as also indicated in [26].  
A common bottleneck of all aforementioned methods is the so-called “curse of dimensionality” [28], i.e. 
convergence rates deteriorate, and computational costs increase with the number of considered input 
parameters, by definition, exponentially. As a possible remedy, state-of-the-art methods employ sparse, 
adaptively constructed polynomial approximations, see e.g. [29,30] for adaptive stochastic collocation 
methods and [25] for adaptive point collocation methods. While generally not free of the curse of 
dimensionality, adaptive methods exploit possible anisotropies among the input parameters regarding their 
impact upon the QoI. Assuming that such anisotropies exist, adaptivity may enable studies with a 
comparably large number of input parameters. More recently, tensor decompositions (see [31] and the 
references therein) have been used to exploit possible low-rank structures of parametric problems in order 
to tackle the curse of dimensionality. In several cases, again relying on high regularity, superior asymptotic 
convergence rates have been obtained compared to sparse grid methods [32]. However, comparisons 
between these methods remain an active field of research. In EasyVVUQ only adaptive stochastic 
collocation methods were considered and applied to the large-scale UQ of the CovidSim code [69]. In the 
search for an acceptable compromise between computational work and approximation accuracy, such 
approaches are receiving increasing attention in uncertainty quantification. Dimension-adaptive methods 
are based on nested univariate collocation points, e.g. Clenshaw-Curtis and Genz-Keister nodes are 
typical choices for uniform and normal input distributions, respectively. 
The aforementioned adaptive algorithms don’t break the curse of dimensionality, they postpone it. 
Although the sampling plan is iteratively refined in directions that are found to be more important than 
others, they ultimately still create a sampling plan in a high dimensional space. A class of methods that 
attempts to circumvent this are the so-called High-Dimensional Model Representation (HMDR) models 
[59]. Without going into detail, the basic idea is to write the model response as an expansion of component 
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functions of increasing dimension (akin to the ANOVA expansion). The assumption is then made that in 
most physical models, (very) high-order interaction effects between parameters are not important. This is 
not proven, but often observed in practice. One can then truncate the expansion at for instance second-
order interactions. Each remaining component function must now be approximated by, for instance, QMC 
or stochastic collocation, which can be readily performed since each function is at most two-dimensional. 
Thus, instead of trying to sample a single high-dimensional space as efficiently as possible, the problem 
is broken up into a series of low-dimensional subproblems. This could potentially be implemented in 
EasyVVUQ, since the machinery to approximate each component function is already in place. Note that 
instead of manually choosing the order at which to truncate the expansion, the order can also be found 
adaptively [60]. Although the number of component functions can be large, this algorithm does have a high 
degree of parallelism, as all component functions of a given order can be approximated in parallel. 
Thus far we have discussed adaptivity in the stochastic dimensions. Another type of adaptivity relates to 
locally refining the stochastic space (of a given dimension), in the case when the response in this space 
is not entirely regular. The stochastic collocation and polynomial chaos methods write the code output as 
an expansion over global polynomials. However, if say a discontinuity exists in the stochastic domain, an 
expansion over global polynomials can lead to the well-known Runge phenomenon. Various methods exist 
that instead use a (polynomial) basis with local support, e.g., Adaptive Sparse Grid methods [61] or the 
Simplex Stochastic Collocation method [62]. Adaptivity in this case means placing more samples in regions 
of the stochastic space where the solution is not regular. It is also possible to combine dimension adaptivity 
with local adaptivity, see e.g. [63]. 
Active subspace methods [64] are a more recent class of UQ methods that deal with high dimensional 
input spaces. These are not adaptive in nature, but instead use gradient information to find a matrix that 
projects the high-dimensional input vector to a low-dimensional `active subspace’, in which most of the 
variation takes place. Although certainly promising, the classical active subspace method requires the 
gradient of the output with respect to the inputs to be available, which will not always be the case. At the 
Turing Institute, work has been performed which combines active subspace ideas with Gaussian 
Processes, without the need for computing the gradients [65]. Finally, machine-learning methods for 
finding active subspaces have recently also been developed, for instance the “Deep active subspaces” 
[66] or “Deep UQ” frameworks [67]. These also work without the need for gradients. An early 
implementation is in development within the EasySurrogate module within the VECMA Toolkit. 
 

4 Surrogate modelling methods 

The construction and use of surrogate models (also referred to as metamodels or emulators) is a central 
computational strategy in UQ [11]. A surrogate model is trained or fitted to the output of a limited number 
of evaluations of an expensive computational model. Once trained, the surrogate can replace the 
expensive model and thereby enable tasks that require many model evaluations, e.g. detailed assessment 
of forward uncertainty propagation, or Bayesian model calibration. 
 
Techniques to construct surrogates that are well-established in the UQ domain include Non-Intrusive 
Spectral Projection (based on Polynomial Chaos Expansion), interpolating polynomials resulting from 
stochastic collocation, and Gaussian Process regression (also known as “kriging”). They are not 
specifically aimed at the multi-model setting, however. A step forward was the semi-intrusive approach 
(detailed in section 6) where it was shown that these existing techniques can be successfully used as 
elements in a multi-model UQ framework. 
 
Below we give an overview of newly developed, advanced techniques to obtain a surrogate model 𝜇" from 
an original model 𝜇. Specifically, we discuss: 

1. Stochastic surrogates 
2. Reduced surrogates  



	

4.1 Data driven stochastic surrogates 
When given parametric states can correspond to multiple 𝜇 model states methods, stochastic surrogate 
modelling (or stochastic parameterization) of the model are necessary to account for the uncertainty in 
the 𝜇 state. In the VECMA project, methods have been developed that resample 𝜇 data coming from a 
reference simulation, conditioned on given parametric states. In our case of multi scale modelling, µ is 
often a quantity derived from the expensive micro model, for which we wish to make a surrogate. 
Furthermore, et 𝑋 be some collection of parametric. This could include the QoI 𝑄, although not 
necessarily. In general, our surrogate µ"  takes the form of a conditional probability density function, i.e. 
 

𝜇"!"# 	∼ 	 𝜇!"#	|	𝑋'! , 𝑋'!$#, 𝑋'!$%, …	 , 𝜇"! , 𝜇"!$#, 𝜇"!$%, … (1) 
 
Here, the index j corresponds to a given time 𝑡!. Thus, in addition to a stochastic nature, we also have the 
option of embedding memory into the surrogate by conditioning on multiple time steps into the past. This 
is especially relevant when there is no clear time scale separation between the submodels. In essence, 
by conditioning as 𝜇!"#	|	𝑋'! , 𝑋'!$#, 𝑋'!$%, …	 , 𝜇"! , 𝜇"!$#, 𝜇"!$%, …  we identify a subset of candidate 𝜇!"# 
reference samples, from which we randomly sample one value (i.e. 𝜇"!"#) to be used as the prediction for 
the next time step 𝑡!"#. 
 
Eq. (1) describes a class of different models. Within VECMA, we have implemented a model based on the 
so-called “binning” concept from [33]; see [34]. Here, the space of conditioning variables is discretized into 
a set of non-overlapping bins, where each bin contains a given number of reference samples from µ. This 
is a direct way to identify the required subset of reference samples, since the conditioning variables will lie 
inside a single bin at every time step. The results of the implementation were positive [34]. Notwithstanding 
this, a downside of the approach is that it is subject to the curse of dimensionality, since the number of 
bins grows exponentially with the number of time-lagged conditioning variables. 
 
To circumvent this problem, we have developed a conditional resampling model based on probabilistic 
classification via machine learning [35]. Now, instead of binning the conditioning variables, the output (i.e. 
the reference 𝜇 samples) is placed into 𝐾 non-overlapping bins. The advantage is that this avoids the 
curse of dimensionality, since we do not include any memory in the output, i.e. the number of bins remains 
equal to 𝐾. A neural network is used to learn a discrete probability mass function (PMF) over the 𝐾 output 
bins, conditional on the time-lagged macroscopic input features. At any timestep, they can sample a bin 
index from this PMF, and subsequently resample 𝜇 reference data from the designated bin, see Figure 3. 
 
They applied these stochastic surrogates to problems in the context of climate modelling. As mentioned 
earlier, the goal here is to obtain a surrogate such that the overall, time-averaged statistics of the 
macroscopic solver are accurately captured. The results obtained to date are positive, when applied to a 
simplified atmospheric model [35] and to a more complex two-dimensional ocean circulation model [34]. 
Furthermore, the neural network approach has been extended to include a kernel-mixture network [36], 
enabling construction of a continuous Probability Density Function (PDF) instead of the discrete PMF used 
until now. 
 



	

 
Figure 3: Schematic representation of the neural network used for resampling-based stochastic surrogate 
modelling, as proposed in [35]. 

4.2 Data-driven reduced surrogates 
Multiscale models often have a high dimensional state space. As a consequence, the target of a surrogate 
model, for instance a subgrid-scale term in a turbulence simulation, also has a high number of degrees of 
freedom. That said, despite this high dimension, the QoI could just be a function that takes the high 
dimensional code output, and produces a single scalar. For instance, in a climate context, it is not 
uncommon that the QoIs are global, spatially integrated, quantities. Within VECMA, we have developed 
so-called reduced surrogate models that exploit such a massive difference in size between the model state 
and the QoIs. 
 
A model state has fixed parametric dimension. Hence, a surrogate model must have the same dimension 
as the original model. However, the unclosed component the surrogate models can be controlled. The 
unclosed component is the only part which must be learned from data, as the closed component is fully 
determined from known variables. In the VECMA project, a procedure has been developed where the 
unclosed component of the surrogate model is of the same size as a set of a priori defined integrated QoIs. 
This can be viewed as a pre-processing procedure which generates new training data that is reduced in 
size by several orders of magnitude compared to the original surrogate model 𝜇. For instance, if we have 
a 2D model with 64 points in each spatial direction, and our QoIs are 4 scalar time series (computed from 
the high-dimensional model state), we can reduce the training data size of each snap shot in time from 642 
to 4, without any significant loss of accuracy in our QoIs during the training phase. Effectively, instead of 
creating a surrogate for a high-dimensional dynamic field, we only need to create a surrogate for a small 
number of scalar time series, as far as accuracy in our pre-defined set of QoIs is concerned. The 
methodology is described in [37,38]. Briefly, the surrogate model is given by the following expansion: 
 

𝜇"(𝑥, 𝑦, 𝑡) =2 τ&(𝑡)𝑃&(𝑥, 𝑦, 𝑡)
'

&(#

 

 
Here, τ&(𝑡) are the generated new training data for which a surrogate must be learned, and the 𝑃&(𝑥, 𝑦, 𝑡) 
are dynamic fields which are completely made up of known, (macroscopic) variables. Hence, the 𝑃& do not 
need to be learned from data, and can be computed without reference to the expensive micro model. In 
principle, any type of surrogate can be trained on the generated τ time series data.  
 
Thus far, we have only tested this method on two-dimensional problems. The reduction in training data 
size for three-dimensional problems will even be greater (e.g. 643 to 4 in our example). However, our 
current focus lies on training surrogates on the generated reduced training data, and solving the equations 
with a trained reduced (microscopic) surrogate in place. This is a challenging problem, as a surrogate (in 
general) is trained offline to fit the training data. It is not directly trained to perform well in an online coupled 
modelling environment, in which there is a two-way interaction between the surrogate and the 



	

(macroscopic) governing equations. This does not have to be a problem (see e.g. [35]), although we (and 
others) have also observed that this can yield incorrect results. To circumvent this, we are currently 
investigating the effectiveness of a second, online training phase, see the work of [68] for the general 
methodology. 

 

5 Semi-intrusive uncertainty quantification for multi-model applications  

The semi-intrusive methods for multiscale UQ are a family of algorithms which employ the structure of the 
multiscale and multi-physics codes in order to perform an efficient UQ, that is, estimating the uncertainties 
with comparable quality as the black box MC method, but with a substantially reduced execution time. 
According to the Multiscale Modelling and Simulation Framework [55], instead of considering the whole 
code as a black-box, the code can be seen as a collection of coupled single scale black-box sub-models. 
Thus, the semi-intrusiveness of the methods boils down to a limited inspection of the multi-model code, 
which is only up to the level of single scale components and their coupling. Below the main ideas behind 
the semi-intrusive UQ methods is described. 

5.1 Semi-intrusive Monte Carlo 

 
Figure 4: Semi-intrusive Monte Carlo method applied to a coupled-model application consisting of 
submodels 𝑀 and 𝜇. A smaller number of samples of the expensive submodel 𝜇 are simulated using 
advanced sampling. 
 
Semi-intrusive Monte Carlo (SIMC) is a Monte Carlo method with a reduced number of samples of the 
expensive component of the multiscale model, see Figure 4. The remaining samples are obtained by 
interpolation. Usually the interpolation method produces results which are not exact to the micro model 
response. Therefore, a statistical cross-validation is applied to test whether the interpolation does not lead 
to a large error in the estimates of uncertainty: the error is compared to the confidence interval of the 𝑁) 
MC estimate, and then, our algorithm accepts the SIMC results when the error is smaller than the 
confidence interval and the MC results. All details can be found in [20]. 
 

5.2 Metamodeling of expensive sub-model 
 

Surrogate modelling is a common approach to perform an efficient UQ for computationally intensive 
systems at a reduced amount of time [56,18]. The idea of these methods is to substitute the original system 



	

by its surrogate, much like the ones discussed in section 4, which produces a similar output, but their 
computational time is lower. In the semi-intrusive multiscale metamodeling method, these techniques are 
applied to a single scale component, which takes the largest portion of the computational time [22]. In this 
way, the error introduced by the approximation is expected to be small when estimating the uncertainties 
of the multiscale model. 
 
Figure 5 shows an example where the micro model is substituted by a surrogate. The rest of the multiscale 
model has the original form. However, since the micro model produces an approximate result, the output 
of the macro model is not the same as the original model. In this method, the error will always depend on 
the details of the model. It depends on the properties of the micro model, for example, smoothness, which 
determines how difficult it will be to approximate the original single scale model. Additionally, the error in 
the estimates of uncertainty also depends on how sensitive the result of the macro model is to the output 
of the micro model which is replaced by a surrogate. If, for instance, this sensitivity is low, it is reasonable 
to expect that the error introduced by the approximation is small. Of course, the error also depends on the 
method with which the surrogate is build. 
 

 
Figure 5: Semi-intrusive multiscale metamodeling uncertainty quantification. The expensive submodel 𝜇 
is replace by a cheaper surrogate model 𝜇" when computing ensembles of simulation of the complete 
application to perform UQ. 

 
 

6 Uncertainty quantification toolkit for high-performance computing  

Recent advances in the scale of computational resources available, and the algorithms designed to exploit 
them, mean that it is increasingly possible to conduct the additional sampling required by UQ even for 
highly complex calculations and workflows. EasyVVUQ is being developed as part of the VECMA project. 
The aim is to define stable interfaces and data formats that facilitate VVUQ in the widest range of 
applications. This would then provide the platform to support complex multi-solver workflows. Several 
software packages or libraries are already available for performing VVUQ (as shown in the next 
paragraph), but in many cases these rely on closed source components and none of them provide the 
separation of concerns needed to allow the analysis of both small local computations and highly compute 
intensive kernels (potentially using many thousands of cores and GPUs on HPC or cloud resources). 
Consequently, the design of EasyVVUQ is focused on making a wide range of VVUQ techniques available 
for scientists employing unmodified versions of existing applications. In particular, key considerations for 
us are the ability to support HPC codes, large job counts of the kind necessary for ensembles, as well as 
the robustness and restartability of workflows. 
 
Several other toolkits share a subset of the added values that VECMAtk provides. In the area of VVUQ, a 
well-known toolkit is Design Analysis for Optimization and Terascale Applications (DAKOTA, 



	

https://dakota.sandia.gov) [40], which provides a suite of algorithms for optimization, UQ, parameter 
studies, and model calibration. DAKOTA is a powerful tool but has a relatively steep learning curve due to 
the large number of tools available and offers no way to coordinate resources across concurrent runs [41]. 
Similarly, there are other toolkits that help with UQ directly, such as UQTK [42] and UQLab 
(https://www.uqlab.com) [43]. In the area of VVUQ using HPC, there are several other relevant tools. 
OpenTURNS [44] focuses on probabilistic modelling and uncertainty management, connects to HPC 
facilities, and provides calibration/Bayesian methods and a full set of interfaces to optimization solvers. 
Uranie leverages the ROOT framework (http://root.cern.ch) to support a wide range of UQ and sensitivity 
analyses (SA) activities using local and HPC resources. A key requirement for performing many types of 
UQ and SA is the ability to effectively run large ensembles of simulations runs. The “pilot job” mechanism 
allows a user to claim a large portion of a supercomputer into which a large and often complex set of 
individual jobs are submitted to form a workflow. In addition to QCG-PJ developed as part of the VECMAtk 
there are tools such as RADICAL-Cybertools [45] that can be used to initiate and manage large simulation 
ensembles on peta and emerging exascale supercomputers.  
 
In the area of surrogate modelling, GPM/SA [46] helps to create surrogate models, calibrates them to 
observations of the system, and give predictions of the expected system response. At the Turing Institute, 
a Python package for fitting Gaussian Process Emulators to computer simulation results call MOGP is 
being developed (https://github.com/alan-turing-institute/mogp-emulator). There is also a portfolio of 
available solutions for rapidly processing user-defined experiments consisting of large numbers of 
relatively small tasks. The examples are Swift/T [47] and Parsl [48], both of which support execution of 
data-driven workflows. Another range of relevant related tools include more statistically oriented 
approaches. For instance, Uncertainpy [49] is a UQ and SA library that supports qMC and polynomial 
chaos expansions (PCE) methods. PSUADE [50] is a toolbox for UQ, SA and model calibration in non-
intrusive ways [51], while DUE [52] assesses uncertain environmental variables, and generates 
realisations of uncertain data for use in uncertainty propagation analyses. PyMC3 [53] is a Python package 
for Bayesian statistical modelling and probabilistic machine learning which focuses on Markov Chain MC 
approaches and variational fitting. Similarly, SimLab (https://ec.europa.eu/jrc/en/samo/simlab) offers 
global UQ-SA based on non-intrusive MC methods. UQLab and SAFE [54] are MATLAB-based tools that 
provide support for UQ (using e.g. PCE) and SA (using e.g. Sobol’s method) respectively. 
 
It is worth mentioning that capabilities of Uncertainpy have been integrated in EasyVVUQ. Indeed, it is 
possible to integrate many kinds of capabilities within EasyVVUQ, as it is designed to host VVUQ arbitrary 
applications that may be of interest now or in the future. This should be particularly convenient if currently 
un-featured UQ techniques are to be considered such as multilevel MC, or the mentioned HDMR 
techniques. 

 
 

7 Review of UQ attempts on plasma fusion codes 

The application of UQ to fusion simulation codes has been described in several papers, including 
"Validation in fusion research: Towards guidelines and best practices"[70], "Verification and validation for 
magnetic fusion" [3] and "Validation metrics for turbulent plasma transport" [4]. 
 
Although the UQ field has undergone rapid development over the past few years, its applications to plasma 
physics mainly focus on the two limits of Vlasov [71-73] and MHD [74, 75] with standard stochastic settings. 
Apart from the work in fluid dynamics [76, 77], to the best of the authors' knowledge, only limited work has 
been conducted on the propagation of uncertainty in multi-scale plasma physics. 
 
Recently, the plasma community has recognized the importance of UQ in the validation and prediction of 
magnetically confined plasma turbulence [4]. Within the computational power afforded by current 
supercomputers at the time, the plasma community has explored the inclusion of UQ in the analysis of 



	

reduced models, such as trapped-gyro-Landau-fluid (TGLF) equations, while UQ analysis in compute-
intensive nonlinear simulations, e.g., gyrokinetic simulations, remains a challenging task. There is some 
previous literature concerning the inclusion of UQ in reduced model assessments and in the fitting of 
experimental measurements which includes but is not limited to [78, 79]. 
 
In more recent work, Calleja et al. [80] address a very concrete scenario: the analysis of first wall 
installations on the DEMO installation. An initial Monte Carlo study of the first wall is performed to develop 
understanding of the complex effects of tile misalignment. The Matlab toolkit COSSAN is used to perform 
the SA of the SMARRDA plasma modelling and simulation code. Another concrete application of UQ to 
DEMO by Lux et al [81] uses the PROCESS fusion power plant systems code. A multi-parameter Monte-
Carlo method together with single parameter studies are performed to investigate individual impacts of 
performance parameters (net electric output and pulse length) on the fusion gain. Lakhlili et al. [82] 
performed the first UQ attempt on a multi-model (multiscale) fusion workflow, coupling a transport model 
of plasma profiles, a turbulence model of fluxes and an equilibrium model of plasma geometries. The UQ 
was performed using non-intrusive the polynomial chaos expansion. 
 
Other advanced sampling techniques have been applied directly to plasma fusion simulations. Sensitivity-
driven adaptive sparse stochastic approximations in plasma microinstability analysis was performed by 
Farcas et al [83]. They leveraged Sobol decompositions and introduced a sensitivity scoring system to 
drive the adaptive process. Their second test case was a real-world example stemming from a particular 
validation study for the ASDEX Upgrade experiment. They carried out a two-step analysis, initially 
considering three uncertain inputs characterizing the ions and electrons, and then 12 stochastic 
parameters associated with the particle species and the magnetic geometry. The results showed that the 
proposed approach has an accuracy comparable to the standard adaptive approach at significantly 
reduced computational cost; for example, for the 12D scenario, up to 13.3 fewer Gene evaluations.  
 
Xiao et al. [84] introduced a stochastic kinetic scheme for multi-scale plasma transport with uncertainty 
quantification. They focused on the emergence, propagation and evolution of randomness from gyrations 
of charged particles in magnetohydrodynamic simulations. Solving Maxwell's equations with the wave-
propagation method, the evolutions of ions, electrons and the electromagnetic field are coupled throughout 
the simulation. They combined the advantages of SG and SC methods with the construction principle of 
kinetic schemes, and obtained an efficient and accurate scheme for a cross-scale BGK-Maxwell system 
with uncertainties. Randomly initial inputs of both flow and electromagnetic fields are considered. Finally, 
point collocation methods have been used by Vaezi et al. [85] on simulations from a validation study of 
drift-wave turbulence in the CSDX linear plasma device experiment using BOUT++ [86]. 
 
 

8 Conclusions  

 
We have introduced three types of UQ approaches according to their intrusiveness with respect to the 
simulated application. At the single-model level, we discussed non-intrusive and intrusive methods. When 
considering applications coupling multiple models, we presented semi-intrusive methods which enable to 
save significant computational timing while avoiding interfering with the models equations. Non-intrusive 
and semi-intrusive methods appear to be interesting candidate keeping in mind that the Neptune projects 
seeks to promote the separation of concerns. While intrusive methods could circumvent the so-called 
curse of dimensionality, they would entail to implement UQ on a per-application basis. We have focused 
on two specific types of non-intrusive UQ methods: enhanced sampling and surrogate modelling.  
 
Both techniques are already available from Neptune partners, that is UCL and the Turing Institute with 
tools such as EasyVVUQ, EasySurrogate and MOGP Emulator. We introduced these tools as part of a 



	

larger review of (VV)UQ toolkits available which implement such methods and render these available for 
widespread use on high-performance computing infrastructures. 
 
This report lays the foundations of methods that will be further investigated and tested during the duration 
of this 6-month project. Following the first meetings on the theme of UQ which were held mid-January 
(workshop and hackathon), enhanced sampling techniques as well as actionability of EasyVVUQ 
workflows has been tested by a subset of Neptune application partners. On the basis of their experience 
as well as expectations from the whole project’s community, we will attempt to conclude on a precise list 
of methods and toolkits to integrate UQ at the heart of the future Neptune code. 
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Executive summary: 
 

Following our initial report on existing uncertainty quantification methods suited for 
single-scale fusion models and generic multiscale workflows, the present document 
reports on the process of their implementation and application to the building blocks of 
the future NEPTUNE fusion multiscale model. The extensive collaboration with the EU-
funded VECMA project enabled rapid prototyping of non-intrusive uncertainty 
quantification all individual single-scale model applications involved in the NEPTUNE 
project (BOUT++, Nektar++, Particle-in-Cell method). The report details the 
collaboration process via multiple hackathons and the benefits drawn from the mutual 
feedback between VECMA and NEPTUNE developers. Drawing from collaboration with 
model-order reduction experts from the NEPTUNE consortium, further 
recommendations and associated prospective developments toward accelerated 
uncertainty quantification based on surrogate models are finally provided. These 
advanced methods will be key to quantifying uncertainties in the final multiscale coupled-
codes model. 
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1 Introduction  

It is widely recognised that uncertainty quantification (UQ) is essential for any model simulation to be 
actionable, i.e., to have genuine predictive value for decision-making purposes. Ensemble-based 
methods lie at the heart of techniques enabling the evaluation of the uncertainty associated with 
imperfectly known model parameters. For low dimensional toy models, many of these methods work very 
well, but when it comes to realistic, larger-scale problems, they are subject to the curse of dimensionality, 
which implies that the required number of model evaluations scale exponentially with the number of 
uncertain parameters. As a result, UQ can be intrinsically computationally very expensive in the case of 
high-dimensional input spaces. Nevertheless, it is often possible to accelerate UQ and reduce the 
computational cost in comparison to brute force (Quasi) Monte Carlo methods which exhibit slow 
convergence. Their efficiency depends on the model equations, the simulation workflow, and the number 
of parameters in play. 
 
We investigate the structure of the several single-scale codes which will constitute the future NEPTUNE 
multiscale code and provide recommendations for integrating VVUQ. In the NEPTUNE project, the 
models and equations are already specified. We perform a shortlisting of suitable UQ methods for the 
NEPTUNE code in the present project. We are familiar with such codes both from personal experience 
with chaotic systems [1] and our longstanding collaboration with MPG-IPP. During the first attempt to 
perform UQ on NEPTUNE single-scale models (BOUT++, Nektar++ and EPOCH), we gained further 
expertise with these models. The major development needed was to produce efficient surrogate 
modelling methods. In particular, the BOUT++ application team faced limitations due to sampling point 
selection with already available stochastic collocation and polynomial chaos expansion surrogate 
models. Similar limitations were faced by the Nektar++ application team, in the case of chaotic time series 
surrogate modelling. 
 
The project drew substantially on the VECMA project, led by the PI (PVC), which has been developing 
tools for the VECMA toolkit and provides training to enable new users to perform the rapid implementation 
of VVUQ prototypes as well as robust solutions. Details about resources offered by and interactions with 
the VECMA project are introduced in the second section. Expertise, software and support from VECMA 
have been key for testing and implementation of UQ throughout the course of this seven-month project. 
With such time constraints, we have chosen to train NEPTUNE application teams to implement and 
prototype their own code UQ. We summarise findings from the NEPTUNE application teams (BOUT++, 
Nektar++ and EPOCH) in the third section. The teams constitute a testing panel of the methods available 
in the VECMA toolkit. Based on their feedback from applying the VECMA toolkit to their single-scale 
codes, we provide final recommendations for pursuing the development of UQ software for the future 
multiscale fusion code. 
 
Meanwhile, in conjunction with the model-order reduction (MOR) team, prospective theory and algorithms 
from parametric UQ and surrogate modelling are investigated, among which are active subspaces and 
advanced Gaussian process (GP) methods. We also discuss prospective methods to enhance coupling 
between single-scale models. These methods are introduced in the fourth and last section of this report.  

 
 

  



 

 

2 Interacting with VECMA: hackathons and initial UQ use case applications  

2.1 The project and the toolkit 

 
The primary aim of the VECMA project is to enable a diverse set of multiscale, multiphysics applications 
to run on current multi-petascale computers and emerging exascale environments with high fidelity such 
that their output is actionable. The central deliverable is an open-source toolkit for multiscale VVUQ 
based on generic multiscale VV and UQ primitives, fully tested and evaluated in emerging exascale 
environments, actively promoted over the lifetime of this project, and made available in European HPC 
centres. 
 
The full VECMA toolkit (VECMAtk) therefore establishes a platform for VVUQ featuring various in-built 
interfaces with HPC machines. One already available tool for forward uncertainty propagation is 
EasyVVUQ, which currently contains the following sampling methods: 

- (Quasi) Monte-Carlo (QMC) methods, 
- Polynomial Chaos Expansion (PCE) and Stochastic Collocation (SC) methods, both with full-tensor 

grid and isotropic sparse grid constructions, 
- Dimension-adaptive Stochastic Collocation, 
- GP surrogates. 
 
QMC methods do not suffer from the curse of dimensionality but have a slow (at most linear) convergence 
rate. On the other hand, PC and SC exhibit exponential convergence, but only for a small number of 

inputs and smooth functions. Their cost typically scales as  with N being the number of code 
evaluations per input parameter, and d the number of parameters. In the case of isotropic sparse grids, 

the exponent d is applied to  [2] (in the error estimate), thereby postponing, yet not eliminating, the 
curse of dimensionality. Via dimension-adaptive SC, the cost can be reduced further by finding the 
`effective dimension’ in an iterative fashion. This is the subset of the stochastic input space responsible 
for most of the output variance. We have applied this to a well-known epidemiological model featuring 
more than 900 parameters [3]. By means of sensitivity analysis (SA) and adaptive sampling we have 
been able to find the parameters which dominate the variance in the code’s output data; in fact, over 60% 
of the variance in the model’s behaviour is attributable to a mere three parameters. A similar, but much 
more computationally demanding study on the impact of random number generators in molecular-
dynamics simulations was also recently reported by us [4].  
 
All methods can estimate the output uncertainty, as well as provide (global) sensitivity estimates on the 
input parameters. These methods were made fully available alongside training support to all NEPTUNE 
application teams. In turn, the toolkit has also been applied to simulations of BOUT++, Nektar++ and 
EPOCH during hackathons as we discuss in the next section. 
 

2.2 Expertise in fusion modelling 

Our expertise in generic UQ methods and software was supported by the expertise in plasma fusion 
modelling from colleagues at the Max Planck Institute for Plasma Physics (IPP) who have been working 
with us during the VECMA project. IPP is one of the largest fusion research centres in Europe, where 
the main goal is to investigate the physical basis of fusion reactions used as a new energy production 
source. The Institute coordinates leading expertise on both experimental and theoretical plasma physics 
and drives the development of some of the most advanced simulation codes in this field. IPP is also 
involved in the Integrated Modelling activities of EUROfusion, which develops a simulation platform 
composed of a generic set of tools for modelling an entire tokamak experiment. IPP has implemented a 
multiscale fusion model of interest to the current goals of NEPTUNE. In order to bridge the space and 
time scales, multi-scale simulations have been performed coupling a gyrofluid turbulence code, GEM [5], 



 

 

to a transport code that describes the evolution of the profiles [6], using the MUSCLE2 toolkit (see figure 
1). In the ComPat project (preceding VECMA), the gyrofluid description of the turbulence was replaced 
with a gyrokinetic description (5D, 3 of physical space and 2 of velocity space). Two different gyrokinetic 
codes are currently used: NEMORB and delta-FEFI. The particle-in-cell code ORB5 [7] is a global code 
for tokamak turbulence and is able to provide fully resolved electrostatic ITER simulations on present-
day supercomputers, using 8k cores at near-optimal efficiency. ORB5 has recently been upgraded to 
include self-consistent perpendicular magnetic field perturbations. This code, named NEMORB [8], 
supports multiple ion species and electromagnetic turbulence studies. When using kinetic electrons for 
electromagnetic effects, the simulations become much more challenging, as the particle count is a factor 
50 larger (400k cores, ~8TB), the time step size at least a factor 20 smaller, and the solver more 
expensive (two matrices to solve). The delta-FEFI code [9] is a turbulence simulation code solving the 
gyrokinetic equations on a grid of phase space. It is based on a fluxtube model that treats the intrinsic 
turbulence at one point on a larger profile. Obtaining the turbulence saturation in statistical saturation 
with delta-FEFI requires a 100-hour run, simulating 1 million steps on 10k cores, for one fluxtube 
instance.  

 

Figure 1: IPP multiscale fusion model. Schematic of the coupled models within the plasma fusion 
simulation workflow. 

In the VECMA project, the propagation of uncertainties has been included in this fusion simulation 
workflow (see figure 2) [10]. EasyVVUQ, QCG-PJ, and MUSCLE3 were used in conjunction to perform 
this task. The turbulence code was used to provide the transport coefficients, but the output from the 
turbulence code was inherently “noisy” and more effort is required to extract as much information as 
possible from this noisy signal, going beyond averaging to try to quantify the uncertainty interval. These 
uncertainty intervals in the transport coefficients were then propagated through the transport code to 
produce an uncertainty interval in the calculated profiles, which would then be used in the turbulence 
code to calculate new uncertainty intervals. We performed these calculations non-intrusively using the 
gyro-fluid code, but we also sought more intelligent approaches than launching thousands of gyrokinetic 
simulations. Other sources of uncertainties were also quantified and propagated: the transport code uses 



 

 

externally provided sources whose uncertainties also needed to be estimated and their effect taken into 
account. 

 

 
 
Figure 2: Electron Te (a) and ion Ti (b) temperature profiles measured from two production simulations 
(with different adaptive time step parameters: in thick yellow lines with filled-square markers and in thick 
blue lines with filled-circle markers), 2 UQ simulations (one with uncertainties coming from the electron 
heat source and Te boundary condition plotted in blue with asterisk markers; and the other with 
uncertainties coming from the ion heat source and Ti boundary condition plotted in gold with outlined-
square markers), and experiments (shot no. 36266 in purple lines with plus markers and no. 36297 in 
green lines with × markers). The temperatures are plotted against normalized toroidal flux coordinate 
‘rho_tor_norm’ (figure retrieved from [10]). 

 

2.3 Hackathons 

Hackathons constitute one of the ways of disseminating knowledge about methods and technology 
developed within the VECMA project. Here, hackathons were set up to enable prototyping of UQ for 
NEPTUNE applications, by application teams directly, with support from the toolkit developers. 
Hackathons enabled hands-on use of the existing toolkit but also consideration of the actual design of 
UQ campaigns and therefore discovery of the limitations of existing methods for specific applications. 
The presence of the developers also enabled live implementation of novel functionalities in the toolkit to 
support application teams’ requests. During the course of the hackathons, one request made by the 
Exeter team led to the addition of an R language API enabling DataFrame importation. 
 
We organised a series of three hackathons in the presence of VECMAtk developers, each lasting 2 to 3 
days. The NEPTUNE community represented an important part of the participants in the three 
hackathons. We saw 5 to 10 participants from the NEPTUNE project join the online hackathon meetings 
out of the 25 to 30 participants. We report the contributions of each application team (BOUT++, Nektar++, 
EPOCH) during the hackathons in the following section. 

  



 

 

3 Feedback from applications users UQ implementations 

Three application teams were able to perform non-intrusive UQ of their single-scale model simulations. 
All teams were able to apply SC and PCE to compute sensitivity and uncertainty associated with up to 
four parameters. There is a consensus on using non-intrusive surrogates in the long term which will need 
to be refined and improved to handle a larger number of input parameters. 

 
Below are reported the UQ attempts entirely and directly performed by the three applications teams. 

3.1 Nektar++ 

Investigations of Nektar++ consisted in implementing UQ of single-scale simulations of a heat transport 
model providing a relationship between the quantity of interest (QoI) and two dimensionless numbers. In 
this preliminary work PCE, SC, and GP were used to fit various QoIs using EasyVVUQ only (not 
EasySurrogate). 

 
The two input parameters, 𝑃𝑟 and 𝑅𝑎, were respectively the Prandtl number that is the ratio of kinematic 
viscosity to thermal diffusivity (fluid properties) and the Rayleigh number, that is the dimensionless 
temperature difference. 𝑅𝑎 was varied in the range [1.0x104, 3.2x104] with log-uniform distribution; 𝑃𝑟 
varied in the range [1,10] (typical values for experiments with air and water) with uniform distribution. 
 
For the steady-state problem, the Nektar++ team led by Ed Threlfall was able to perform SA and 
constructed PCE and SC surrogates, both using fifth-order polynomials during the hackathons (see figure 
3).  

 

 

  

Figure 3: UQ of the horizontal temperature profile halfway up the cavity (left), SA (first-order Sobol 
indices) of the two parameters (centre), PCE and SC surrogate models of the Nusselt number (right). 

Time-dependent simulations were also investigated using larger values of 𝑅𝑎. A GP surrogate model for 

time series was constructed using EasyVVUQ based on 12 samples varying only the parameter 𝑅𝑎. The 
surrogate model was in excellent agreement for quiescent cases (solution smooth) but issues were 
revealed in the case of higher Rayleigh numbers such as a persistent offset (see figure 4). More work is 
needed to design optimal surrogates for chaotic time series, in particular surrogates that predict the 
correct phase diagram of the many scaling regimes in convective turbulence. This may require better 
tuning of kernel parameters for the GP surrogate; such methods will be discussed in the next 



 

 

section.

Figure 4: Fitting of the maximum wall temperature evolution for different regimes using a GP surrogate 
(Matérn ν=1.5 in kernel, and 𝑅𝑎=105 or 𝑅𝑎=106.5). 

 

3.2 BOUT++ 
 
Investigations of BOUT++ consisted in implementing UQ of single-scale simulations of a heat conduction 
1D model and a plasma physics 2D model. In this preliminary work PCE, SC, and G were used to fit 
various QoIs using EasyVVUQ but also EasySurrogate in this case. The work was carried by a team 
constituted of Joseph Parker, Peter Hill, Ben Dudson and collaborators. 

The 1D model focuses on the evolution of the temperature field expressed as different QoIs: T(x, tend), 
T(x0, t) , log[T(x, tend)], varying the initial temperature and a single diffusivity parameter 𝝌 (see figure 3): 

 

Issues of negative values were reported but later were found to be an artefact of polynomial fitting to 
steep temperature gradients with respect to parameter variations near zero. The issue was fixed by using 
higher-order polynomial fitting in PCE and SC. Adaptive SC was also used to circumvent the curse of 
dimensionality anticipating performing UQ in high-dimension parametric spaces. 

 



 

 

 

Figure 5: UQ (top) and SA (bottom) of the temperature profile expressed either as T (left) or log(T) (right).  

A second campaign was then implemented to quantify uncertainty in the evolution of density 
perturbations in 2D plasma, varying four parameters: background density, temperature, and 2 dissipation 
parameters. Third-order PCE would have required 1296 cases, while SC only 256, the latter option was 
therefore retained. 

In later hackathons, a surrogate model was used to determine numerical parameters, and in particular 
numerical (non-physical) parameters for the design of optimal simulations. The simulated model 
consisted of the time advance of hyperbolic PDE with elliptic PDE solved every time step:  

 

These equations were solved using nested solvers, namely using CVODE for time and multigrid for 
spatial integrations [11]. 

The surrogate model was built and trained for the aforementioned model which featured a 7-dimensional 
parameter space and a non-smooth dependence of behaviour on parameters. The QoI in the surrogate 
model is the error at a given timestep, that is max(Ea , ɑEr) based on the absolute Ea, the relative Er error 
tolerances (Ea,  Er ∈ [10−15,1]) and ɑ a representative value of ||x||. The first step consisted of using PCE 
and adaptive SC to generate the surrogate models. Both methods achieved qualitatively similar results, 
but adaptive SC required many fewer code evaluations (130 vs 441). Both types of surrogates provided 
a qualitatively good model of errors at moderate order but over-fitted the noisier data at high order. One 



 

 

main issue was that the accuracy of the surrogate models stopped increasing even though more data 
was provided.  

 

Figure 6: CVODE - 2D scan with adaptive SC. Training data obtained using a 2D manual parameter 
sweep (left), error model prediction at partial convergence (middle), at full convergence (right) of adaptive 
SC algorithm.  

Two more advanced surrogate modelling methods were subsequently considered: Artificial Neural 
Network (ANN) with EasySurrogate, and GPs with the SKLearn library in EasyVVUQ; both capabilities 
were added to the VECMA Toolkit during the period of this project. ANNs were able to emulate the data 
correctly, at the cost of training on approximately 50% of the dataset. By contrast, GPs were able to 
emulate data using only 5% of the dataset, albeit the results were highly sensitive to the sampling points. 
Adaptive sampling of training data for GP surrogate models might reduce such sensitivity while 
preserving the need for the smaller parts of the dataset. This is an open question requiring further 
investigation. 

 

3.3 EPOCH 
 
Investigations led by Tom Goffrey and collaborators consisted in implementing a surrogate model for 
stimulated Raman scattering (SRS) in laser-plasma interactions. The surrogate was trained using data 
produced by the EPOCH code, a mini-app version of which is currently being used in the NEPTUNE 
project. The EPOCH model simulations are typical of particle-based simulations yielding chaotic systems. 
Simulations featured 5 to 10 parameters and PCE via EasyVVUQ was applied to build the surrogate 
models. Custom encoders and decoders were developed for the campaign and execution featuring the 
QCG-PJ was implemented. A proof of concept sensitivity analysis on the performance of simulated laser-
driven implosions was completed. Further conclusions regarding UQ of particle-based methods using 
EPOCH were not obtained due to time constraints during the course of the hackathons and the project.  
 
Nonetheless, in the meantime, we completed our investigations of standard classical molecular dynamics 
simulations, another exemplar particle-based simulation method [12]. Our work is the first and only fully 
detailed and thorough analysis of a particle-based code using modern UQ methods. Many-body particle-
based simulations are chaotic systems. We showed that the uncertainty arises from a combination of (i) 



 

 

the input parameters and (ii) the intrinsic stochasticity of the method controlled by the random seeds. We 
performed a sensitivity analysis, which revealed that, out of a total of 175 parameters, just six dominate 
the variance in the code output. The sensitivity analysis computed first and higher-order Sobol indices, 
which respectively highlight the individual and combined influence of the parameters. We showed that 
simulations of free energies dampen the input uncertainty, in the sense that the variation around the 
mean output free energy is less than the variation around the mean of the assumed input distributions if 
the output is ensemble-averaged over the random seeds. Without such ensemble averaging, the 
predicted free energy is five times more uncertain. The distribution of the predicted properties is thus 
strongly dependent upon the random seed. Owing to this substantial uncertainty, robust statistical 
measures of uncertainty in molecular dynamics simulation, and more widely we anticipate particle-based 
simulation methods, require the use of ensembles in all contexts. 

 

3.4 Limitations of parametric UQ 

The aforementioned variants of the SC/PCE methods all have underlying regularity assumptions and 
might not work well in cases of discontinuities or high gradients. The root cause of this is their use of 
global interpolation polynomials. Future work could focus on extending EasyVVUQ’s capabilities by 
implementing a state-of-the-art method with polynomial basis functions of local support, capable of 
detecting irregularities and local refinement [13], extending the applicability of EasyVVUQ to handle 
outputs with (local) discontinuities or sharp gradients. GPs are also capable of handling irregular outputs 
and have lower sampling costs (typically linear in the number of parameters) but the cost of the fitting is 
cubic in the number of code evaluations. This need will push for the development of high-dimensional 
surrogates in EasySurrogate as we discuss in the next section, to facilitate coupling of surrogates 
(MUSCLE3) and easy execution on HPC infrastructures (QCG-PJ). 

  



 

 

4 Methodological recommendations 

In order to pursue this initial UQ effort in the NEPTUNE project, key challenges remain to be addressed:  
- Feedback across models at different scales, 
- High-dimensional parameter spaces, 
- Possible abrupt changes in physical regimes leading to biased training or even unadapted surrogate 

model methods, 
- Complexities of stochastic outputs in particle-based simulations, 
- Real-time updating of the parameterisations when observations become available or when additional 

training is required. 
These challenges could be tackled by investigating the methods described below during the subsequent 
phases of the NEPTUNE project. Non-intrusive UQ is not treated in this section as it has already been 
largely discussed in the first report 2047352 1-TN-01. 
 
In a multiscale model, the equations describing the small scales tend to be the most uncertain and 
represent the largest drain on computational resources. The large-scale models, on the other hand, are 
often better known and are comparatively cheap. In this context, it might make sense to keep the large-
scale models intact, and only replace the models that represent the small scales with cheap 
approximations. Gaussian processes and neural networks are key tools to build such models. In turn, 
such coupled physical–surrogate model systems can be simulated many times at far lower computational 
costs, making them suited for UQ. That said, depending on the structure of the multiscale model, such a 
semi-intrusive system can contain feedback between the surrogate and the (large-scale) physical model, 
which might push the surrogate away from the regime on which it was trained. Dealing with such kinds 
of feedback should be the target of future work. One option would be to train the surrogate to output 
physics consistent with the coupled environment, rather than training it `offline’ to only represent (small-
scale) data.  
 
Active subspace methods attempt to circumvent the curse of dimensionality by dimension reduction of 

the input space. Specifically, the input vector 𝑥 ∈  ℝ𝐷  is projected to a lower-dimensional “active” 

subspace 𝑦 ∈  ℝ𝑑 , via a tall-and-skinny matrix W1  ∈  ℝD×d  of orthogonal basis vectors. The active 

subspace is thus given by 𝑦 =  𝑊1
𝑇𝑥 ∈  ℝ𝑑, and the idea is to create a surrogate model in the lower-

dimensional space, rather than in the original (high-dimensional) input space. The key to this method is 
finding the matrix W1, which identifies the directions in the input space along which the model varies the 
most. The original active-subspace method [14] builds this matrix from the orthogonal eigenvectors of 
the symmetric gradient matrix. This requires the gradient of the code output with respect to the inputs to 
be available, which might be difficult in practice. For this reason, a very promising alternative is the use 
of active-subspace variants which do not require gradient information, in particular those based on GPs 
[15] and neural networks [16].  
 
One key ingredient is to use Gaussian Processes (GPs) as surrogates for (alternatively “emulators”) of 
the computer models. These are comparable to Polynomial Chaos (PC) approaches in terms of accuracy 
[4]. GPs can be readily parallelised for large input/output spaces, as we are doing in the recently released 
Alan Turing Institute Package for fitting Gaussian Process Emulators to multiple output computer 
simulation results. It is named the Multi-Output Gaussian Process Emulator (MOGP) and relies on 
Research Software Engineering to manage, organise, and accelerate/parallelise some computations. 
The Turing platform MOGP and its (relatively) few existing tools for ROM can interoperate with other UQ 
platforms such as the now mainstream EasyVVUQ: both are Python libraries with similar philosophy but 
complement each other in terms of workflows (which are actually much more elaborate in EasyVVUQ), 
sampling (more elaborate in MOGP), surrogates (PC and GP for EasyVVUQ, advanced GP for MOGP) 
which are now well understood and interchangeable in workflows.  
 

In parameter estimation problems for chaotic dynamical systems, data may only be available in time-
averaged form; or it may be desirable to study time-averaged quantities to reduce difficulties arising from 



 

 

the complex objective functions, with multiple local minima, which arise from trying to match trajectories. 
Indeed, the idea fits the more general framework of “feature-based data assimilation” which, in turn, is 
closely related to the idea of extracting sufficient statistics from the raw data. Many parameter estimation 
problems arising in applications can be cast in the framework of Bayesian inversion. This allows not only 
for an estimate of the parameters, but also for the quantification of uncertainties in the estimates. Data 
Assimilation (DA) approaches have the potential to greatly enhance UQ methods and algorithms when 
data will feed the models in real-time, as done in so-called digital twins’ technology. This should help in 
the context of active or online training of surrogates, incorporating data when necessary. When 
observations or additional data become available, the UQ approach of Bayesian calibration against 
observations can be employed. This approach needs work in the context of nuclear fusion due to both 
the high dimensionality of the problem and the requirement for speed. When observations become 
available for updates in real-time (even with proxies for simple experiments) it may be possible to carry 
out DA. 

 
Real-time requires extremely highly optimised and robust techniques and software, which will be a 
serious undertaking within future activities in the NEPTUNE project. Particle filters (PFs) [17,18] offer an 
ensemble-based approach to sequential state inference that provides consistent estimates for non-
Gaussian distributions. The simplest variant, the bootstrap PF, alternates propagating the ensemble 
members forward in time under the model dynamics with resampling according to weights calculated 
from the likelihood of the particles given the observed data. While PFs offer asymptotically consistent 
inference for general state space models, in practice they typically suffer from weight-degeneracy in high-
dimensional systems: after propagation only a single particle has non-negligible weight. For even simple 
linear-Gaussian models, PFs have been shown to require an ensemble size which scales exponentially 
with the number of observations to avoid degeneracy [19,20,21]. For large state dimensions, even 
inference in linear-Gaussian models using the Kalman filter (KF) is computationally infeasible due to the 
high processing and memory costs of operations involving the full covariance matrix of the state 
distribution. This motivated the development of ensemble Kalman filter (EnKF) methods [22] which use 
an ensemble of particles to represent the state distribution rather than the full mean and covariance 
statistics. As the ensemble sizes used are typically much smaller than the state dimension the 
computational savings can be considerable. Although EnKF methods are only rigorously valid in an 
infinite ensemble limit for linear-Gaussian models [23], they have been empirically found to perform well 
in models with weakly non-linear state update and observation operators, even when using relatively 
small ensembles of size much less than the state dimension [24]; the performance of the EnKF in non-
asymptotic regimes has been theoretically investigated in several recent works [25,26]. 
 
The RADDISH project (Real-time Advanced Data Assimilation for Digital Simulation of Numerical Twins 
on HPC) led by Serge Guillas offers new techniques and tools (https://github.com/Team-RADDISH) to 
overcome the serious issues which will arise, confronting EnKF due to nonlinearities and non-normal 
statistics through:  
 
- a particle filter method, powerful yet general; 
- a geometrically-driven and enhanced EnKF when parameters need to be estimated as well as state 

space updated.   
  



 

 

5 Conclusions  

Our original shortlist of suitable UQ methods has now been made available within the VECMA toolkit for 
implementation and testing by the NEPTUNE application teams. Prototype UQ campaigns on NEPTUNE 
single-scale models (BOUT++, Nektar++ and EPOCH) were performed during three hackathons which we 
organised during the course of the project. Such extensive testing helped to generate specific knowledge 
on the single-scale models as well as the efficiency of the UQ methods. We noted the limitations of current 
non-intrusive methods (PCE, SC) to handle high-dimension parametric spaces. We also reached the limits 
of PCE and SC to build surrogate models, in terms of accuracy and training data required. 
 
Recommendations for major developments needed in the future include: 
 

- dimension reduction methods based on active subspaces, 
- production of efficient surrogate modelling methods 
- online learning methodology such as DA. 

 
Indeed, the BOUT++ application team faced limitations due to sampling point selection within the 
stochastic collocation and polynomial chaos expansion surrogate models that were available. Similar 
limitations were faced by the Nektar++ application team in the case of chaotic time series surrogate 
modelling. 
 
Advanced surrogate modelling techniques will be key as they lessen the computational and mathematical 
complexity of challenging codes and their UQ. For instance, inputs can be reduced to a smaller set, either 
by ruling out parameters or in terms of dimensionality [27,28]. Similarly, outputs can be shrunk to a more 
manageable representation in terms of basis expansions of either time series of outputs or spatial 
representations.  
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