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The report describes work for ExCALIBUR project NEPTUNE at Milestone 2.5.2. This binds the
reports 2047352 2-TN-01[1] and 2047352 2-TN-02[2] as of August 27, 2021, which are presented
in composite form: sections 2 and 3 (pp.1-7 of total 20 pp) comprise the original 2047352 2-TN-01.

The aim of this report is to provide a preliminary description of potential reduction of size of in-
puts, size of design, and size of outputs, and associated computational benefits of reduced order
modelling for fusion codes, with a focus on relevant proxyapps. Due to time constraints, a single
proxyapp - describing anisotropic heat transport - is considered, though this is supported by toy
examples and further references from the oeuvre of the authors (who are world experts in the
field), including illustrative examples of coupled models.

The report stresses the need for reduced order models (hereafter ROMs) in situations mandating
large ensembles of expensive simulations (as are expected to arise in NEPTUNE for e.g. uncer-
tainty quantification or data assimilation aspects). A bird’s eye perspective on the subject area
is provided and justification is given for the decisions to focus primarily on non-intrusive ROMs -
meaning that there is no need to alter the subject simulation code; the ROM is then ‘data-driven’
in that it is constructed using solely the outputs of the subject - a decision entirely consistent with
the NEPTUNE separation of concerns ethos, and more specifically to use the family of Gaussian
process surrogates (hereafter GP-ROM). Some relevant aspects of the current state-of-the-art are
indicated, with reference to the authors’ recent works.

The report details a particular non-intrusive ROM as applied to the anisotropic diffusion problem
(viz. a two-dimensional diffusion equation in which the diffusivity is represented by a spatially-
varying anisotropic tensor). The numerical representation is via the finite-element package Firedrake,
giving a solution comprising 78961 degrees of freedom. This model space dimensionality is re-
duced to 25 using the technique of proper orthogonal decomposition (POD); the reduced system
is then used to fit a Gaussian process using a constant mean (trend function) and a Matérn ker-
nel for the prior covariance. The efficacy of the resulting model, in terms of predicted mean and
confidence interval, is shown to be reasonable by comparing some of the ROM outputs to the cor-
responding full numerical solutions. This section contains also a technical exposition of the offline
regression used to construct the Gaussian process, in which the main computational bottleneck -
a cubic scaling in the number of data samples - is emphasized.

A subsequent section provides a description of active learning (AL) for constructing a GP-ROM.
AL entails choosing the next sampling position dynamically based on the current ROM - various
algorithms can be used: the MacKay strategy (giving ALM) is to minimize the local maximum



posterior predictive variance, leading to the problem of over-sampling at boundaries, while the al-
ternate Cohn scheme (ALC) involves minimizing the same variance averaged over the domain (the
need for additional model evaluations during these steps is avoided by a property of Gaussians
under Bayesian combination). The AL schemes are applied to the anisotropic diffusion problem,
demonstrating that (1) the active learning saturates at large sample numbers giving there similar
performance to a static Latin hypercube design (LHD); and (2) the ALM performs worse than ALC
or a LHD at large sample number because of the boundary over-sampling problem. For realistic
fusion problems, the samples are likely to be sufficiently expensive that the saturated regime is
not encountered, hence AL is expected to be useful. The authors propose also a strategy for
identifying and excluding regions of flat response surface in the offline phase, in order to miti-
gate against the cubic scaling problem in fitting a GP-ROM with a large number of samples - this
involves a dense exploration of the response surface and then the selection from these outputs
of an appropriate set of initial data, followed by active learning using the data already generated
(thus giving a procedure that is explicitly parallelizable). This approach provides arguably some
protection against the problem of missing extreme outlying events - one must bear in mind that
the quality of the ROM is to a large extent dependent on the experimental design. As a caution,
however, it must be noted that, for the NEPTUNE use case, a dense sampling of the response
surface is likely to represent a very large computational challenge.

The report closes with a discussion of possible future directions in a section in which the recom-
mendations interspersed at appropriate locations serve in lieu of a formal concluding section. A
proposal to test some intrusive methods in order to mitigate the problem of excluding extreme
events when applying dimension reduction techniques (e.g. POD) is included; the output here
would be a physics-informed ROM (references in the context of machine learning are given).

A subsection presents deep GPs (meaning that the outputs of a GP are used sequentially as the
inputs to another GP) where the motivation is to construct ROMs for systems with regime change;
the deep GP is able to incorporate multiple kernels, as evidenced by the example of fitting a toy
dataset containing distinct quiescent and active regions.

A further subsection focuses on active subspace methods for reducing the input dimension (cf.
the POD in Section 3, which reduces the number of internal model states). A technique called
sufficient dimension reduction is briefly outlined (with further reference provided), giving a general
method for detecting the linear combinations of inputs to which a model is most sensitive.

A final subsection outlines, with the aid of a toy example, linked GPs, which differ from deep
GPs in that they model a system that can be explicitly decomposed into component parts, the
simpler components being more amenable to GP emulation than is the whole (the divide-and-
conquer principle applies). This gives also a semi-intrusive procedure for constructing a GP-ROM
for a coupled system. It is explained that there remain challenges associated to the dimension
reduction of the intermediate data in cases where the intermediate states have input dimension
much higher than that of the global input. It is clear that active sampling in the case of a linked
GP can mitigate the problem of under-exploration of the input parameter space of intermediate
components in a coupled model i.e. the fact that the space-filling property of a LHD is lost once
the inputs have been propagated through one or more component models (thus giving, amongst
other problems, the potential to miss extreme events).
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1 Disclaimer8

We are very grateful to Dr Patrick Farrell for the provision of the proxyApp modelling the9

anisotropic heat transport problem. It is the only fusion model we could access over the short10

period of the funded project (4 January 2021 - 31 July 2021). We discussed with the NEPTUNE11

team (Benjamin Dudson and Patrick Farrell) the possibility of using another model to couple12

two models in a one-way coupling for UQ using ROM: the anisotropic heat transport model13

and the isotropic heat conduction to the solid wall. But the wall boundary proxyApp is not yet14

available. As a result, we could not examine in practice the possibility of implementing ROM15

for UQ in the context of nuclear fusion modelling where models are coupled. We nevertheless16

provided some examples of UQ coupling at the end of this report from the paper Ming and17

Guillas (2021) and discussed future directions below.18

2 Introduction19

Many modern physical computer models involve solving PDEs with numerical solvers, such as20

finite element methods (FEM), which can be computationally expensive due to21

• ever more complex and larger-scale models;22

• high-dimensional input and output;23

• large demands on computational resources.24

These create challenges to efficient uncertainty quantification of computer models, such as the25

fusion models, as we often need to run the models many times for tasks such as sensitivity26

analysis, uncertainty propagation and model calibration. To tackle these challenges, reduced27

order models (ROM) are needed to28

• serve as low-dimensional replacements with comparable accuracy;29

• reduce evaluation time of original solvers;30

• save storage, e.g., for high-dimensional output.31
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Traditional reduced order models, also known as intrusive reduced order models, often are32

constructed using reduced basis methods (Quarteroni et al., 2015), among which the Proper33

Orthogonal Decomposition (POD) is perhaps the most popular technique. The intrusive reduced34

order models for original high-fidelity models with high-dimensional output are typically built35

using a two-phase procedure called offline-online decomposition:36

• offline phase: high-fidelity solutions/outputs are obtained and reduced basis is calculated;37

• online phase: the original problems are projected onto the reduced space for efficient38

computation of solutions at new inputs.39

However, the online phase of the intrusive reduced order modelling is challenging in practice40

because:41

• expertise and domain knowledge are required to project the equations and physics of the42

original high-fidelity problems to constructed reduced space;43

• dimensionality reduction techniques are largely constrained by the problem formulation;44

• uncertainty is not incorporated.45

For these reasons, in this report we focus on non-intrusive reduced order models for problems46

with high dimensional outputs, utilising the family of Gaussian process (GP) surrogates (also47

known as emulators). GP emulators have been successfully implemented for dimension reduction48

of either outputs or inputs. For instance:49

• Guillas et al. (2018) used Functional Principal Components Analysis (FPCA) as an equiv-50

alent approach to POD for time series outputs of tsunami waves, and Chang et al. (2019)51

used Spherical Harmonics and Gaussian Markov Random Fields for optimal reduction of52

surfaces outputs.53

• For inputs, Liu and Guillas (2017) employed a kernel-based approach to extract the few54

input field directions of most influence for the outputs in order to build GPs with few55

input dimensions (orders of magnitude gain in dimension).56

The report is organised as follows. In Section 3, a non-intrusive ROM with GP surrogates57

and POD is described and applied in a anisotropic heat transport problem. We then propose58

and discuss an active learning procedure to construct the introduced non-intrusive ROM with59

an illustrative example in Section 4. Future directions are discussed in Section 5.60

3 Non-intrusive ROM with Gaussian Process Surrogates61

The non-intrusive reduced order modelling is a data-driven approach that uses a statistical62

surrogate model to mimic the functional relations between the model input and constructed63

reduced output space in the online phase of the offline-online decomposition. The utilisation of64

statistical surrogates alleviates the difficulties involved in reformulating the original high-fidelity65

problems under the intrusive reduced order modelling. In particular, with GP surrogates we66
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are able to quantify uncertainty of the high-dimensional outputs predicted at unobserved input67

positions.68

Let X ∈ RN×D contain N sets of D dimensional input of a computer model, which produces69

N corresponding sets of K dimensional output Y ∈ RN×K accordingly. Then, one can mimic70

the functional relationships between the input X and each output dimension Yk ∈ RN×1 by a71

GP surrogate GPk independently for k = 1, . . . ,K without considering the dependence between72

output dimensions (Gu and Berger, 2016). Ignoring the potential cross-dependence does not73

pose a serious issue unless we are interested in the joint distribution of the output, and it can be74

shown (Kyzyurova, 2017) that the independently constructed GP surrogates correspond to the75

marginal GPs of a joint GP surrogate under certain dependence structures. The GP surrogate76

GPk is formally defined as a multivariate normal distribution with respect to Yk:77

Yk ∼ N (µk(X), σ2kRk(X)),78

in which the i-th element of µk(X) ∈ RN×1 is often specified by a trend function fk(Xi) with79

Xi ∈ R1×D being the i-th row of X, and the ij-th element of Rk(X) ∈ RN×N is given by80

ck(Xi,Xj), where ck is a given kernel function. The trend function fk can be formulated as a81

linear combination of a set of basis functions of Xi and we assume a constant trend function82

fk(Xi) = bk in this report.83

There are various choices for ck (see Rasmussen and Williams (2006)). In this report, we use84

the separable kernel function:85

ck(Xi, Xj) =
D∏
d=1

ck,d(Xid, Xjd),86

where ck,d is a one-dimensional kernel function. A typical choice for ck,d in computer model87

emulation is the squared exponential (SExp) kernel:88

ck,d(Xid, Xjd) = exp

{
−

(Xid −Xjd)
2

γ2k,d

}
,89

where γk,d > 0 is the range parameter. However, the SExp kernel has been criticised for its90

over-smoothness (Stein, 1999) for physical problems as well as its associated ill-conditioned91

problems (Dalbey, 2013; Gu et al., 2018b). Another popular kernel choice is the Matérn ker-92

nel (Rasmussen and Williams, 2006):93

ck,d(Xid, Xjd) = exp

(
−
√

2p+ 1 rij,d
γk,d

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2rij,d

√
2p+ 1

γk,d

)p−i
,94

where rij,d = Xid − Xjd. The Matérn kernel is known to be less prone to ill-conditioning95

issues and provides a reasonably adequate smoothness to the GP surrogates. In particular, the96

Matérn-2.5 kernel, which is defined as the Matérn kernel with p = 2:97

ck,d(Xid, Xjd) =

(
1 +

√
5|Xid −Xjd|

γk,d
+

5(Xid −Xjd)
2

3γ2k,d

)
exp

{
−
√

5|Xid −Xjd|
γk,d

}
,98
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is the default kernel choice for many computer model emulation packages, such as DiceKriging (Rous-99

tant et al., 2012) and RobustGaSP (Gu et al., 2018a). Therefore, we employ the Matérn-2.5 kernel100

in this report.101

The posterior predictive distribution N (µ̂k(x
∗), σ̂2k(x

∗)) of GPk with respect to the output102

Y ∗k (x∗) at an unobserved input position x∗ is given in different analytical forms depending103

on how the model parameters bk, σ
2
k and {γk,d}d=1,...,D are estimated. Different maximum-104

likelihood-based estimation approaches and the corresponding expressions for µ̂k(x
∗) and σ̂2k(x

∗)105

are discussed in Roustant et al. (2012); Gu et al. (2018b).106

The main computational bottlenecks of the GP surrogate construction are the number of107

data points N and the dimension K of the output of a computer model. Since the inference108

of GP surrogates involve inversions of the correlation matrix Rk ∈ RN×N with computational109

complexity of O(N3), it soon becomes computationally prohibitive to build GP surrogates in110

practice when N is more than several thousands. In such a case, one may need sparse approx-111

imations (Liu et al., 2020) to the GP to reduce the computational complexity induced by the112

big data.113

In computer model experiments, one often does not have big data (i.e., realisations from114

the underlying computer model) due to the limited computational budget. However, if the115

input dimension D is large, then small data are insufficient to explore adequately the whole116

input domain and thus the resulting GP surrogates can be inaccurate. High input dimension117

also causes challenges to the model estimation because a large number of range parameters118

{γk,d}d=1,...,D need to be estimated for each output dimension. To alleviate this issue, one can119

reduce the input dimension D to P such that P � D by dimension reduction techniques such as120

POD, kernel dimension reduction (Liu and Guillas, 2017), and active subspace (Tripathy et al.,121

2016).122

A high output dimension K creates the issue that it can be computational burdensome to123

build K independent GP surrogates: without parallel implementation the training and validation124

of a huge amount of GP surrogates are practically infeasible. This report tackles the latter issue125

on high-dimensional outputs (e.g., a snapshot where each point on the snapshot represents a FE126

solution and contributes to the output dimensionality) produced by computer models. Perhaps127

the most straightforward approach to address the issue is to reduce the output dimension K to128

L such that L� K by POD.129

The POD of Y ∈ RN×K can be done with following steps:130

1. Compute the sample mean µY ∈ R1×K of Y and obtain the centred output matrix Yc =131

Y − µY;132

2. Implement the eigendecomposition of G = 1
NYcY

>
c such that G = VΛV>, where the133

columns of V ∈ RN×N contains the eigenvectors of G and the diagonal of Λ ∈ RN×N134

contains the corresponding eigenvalues (λ1, . . . , λN ) in descending order;135

3. Compute Ṽ = Y>c V ∈ RK×N , which contains the eigenvectors of sample covariance matrix136

C = 1
NY>c Yc;137

4. Choose L ≤ N and obtain the low dimensional output Ŷ = YcṼL ∈ RN×L, where138
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ṼL ∈ RK×L contains the first L eigenvectors included in Ṽ.139

One can also obtain Ṽ by performing the singular value decomposition (SVD) of Yc that is im-140

plemented, e.g., in the PCA function of Python package scikit-learn (Pedregosa et al., 2011).141

After obtaining the low dimensional data Ŷ, we then construct L independent GP surrogates142

of each of L dimensions of Ŷ. Let N (µ̂l(x
∗), σ̂2l (x

∗)) be the posterior predictive distribution143

of Ŷ ∗l (x∗), the l-th dimension of the low dimensional output, predicted at an unobserved input144

position x∗. Then the posterior predictive distribution of the corresponding high dimensional145

output Y∗(x∗) ∈ R1×K is given by146

N
(
µ̂(x∗)Ṽ>L + µY, ṼLΣ̂(x∗)Ṽ>L

)
,147

where µ̂(x∗) = (µ̂1(x
∗), . . . , µ̂L(x∗)) and Σ̂(x∗) = diag(σ̂21(x∗), . . . , σ̂2L(x∗)).148

Figure 1 demonstrates the procedure to build non-intrusive reduced order model with GP149

surrogates. In the offline phase, dimension-reduction techniques, e.g., POD, are applied to150

reduce the high-dimensional output to a low-dimensional space. Then in the online phase, GP151

surrogates are constructed independently on each reduced dimension. Using the constructed152

GP surrogate and reduced basis, one can obtain the predicted low-dimensional and in turn the153

high-dimensional output at new input positions with little computational efforts.154

SolverInput
High-dim
Output

GP
Surrogate

New Input
Low-dim
Output

Figure 1: The workflow to construct non-intrusive ROM with GP. The black arrows represent the
offline phase; the blue arrows represent the online phase; the red arrows represent the prediction
procedure using the constructed non-intrusive ROM with GP.

3.1 Example: 2-D model of anisotropic heat transport155

In this section, we explore the non-intrusive ROM with GP to mimic the FE solver to the 2-D156

problem “Open field lines with oscillating anisotropy directions” in Deluzet and Narski (2019).157

The problem has two key inputs m and α that control the anisotropy of the solution field, i.e.,158

the anisotropy direction is defined by159

b =
B

|B|
, B =

(
α(2y − 1) cos(mπx) + π

παm(y2 − y) sin(mπx)

)
,160

where m/2 is the number of oscillation periods in the computational domain and α is the161

amplitude. The output is a high-dimensional 2-D field defined on the square computational162

domain [0, 1]× [0, 1] and allows a closed form solution.163
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3.1.1 Experimental Setup164

To construct the reduced basis via the POD and the GP surrogate, N=40 samples are arranged165

in a Latin hypercube over m ∈ [0, 12] and α ∈ [0, 3] (see the left plot in Figure 2). We then run166

the FE solver (implemented in Firedrake (Rathgeber et al., 2016)) of the toy problem to obtain167

the corresponding 2-D outputs, each of which contains FE solutions on K = 78961 nodes. These168

40× 78961 high-dimensional outputs are then reduced to 40 low-dimensional outputs (40× 25)169

using POD by retaining the first 25 principal components out of the total 40 components, see170

the right plot in Figure 2, where the cumulative explained variance is defined as
∑L
i=1 λi∑N
i=1 λi

with L171

be the number of components.172

Figure 2: (Left): Training and designing points generated for the inputs m and α. The blue
points are design input locations generated from the Latin hypercube design and the red points
are testing input locations; (Right): cumulative explained variance given by the POD.

GP surrogates are then constructed independently for each of the 25 dimensions of the173

reduced order data. GP surrogates are trained with the Matérn-2.5 kernel using the RobustGaSP174

package in R.175

3.1.2 Experimental Results176

We test the constructed non-intrusive ROM at four testing input positions (m,α) = (6, 2),177

(10, 2), (1, 2) and (10, 0) (see the left plot of Figure 2). The FE solutions (from the Firedrake)178

and the predicted solutions from the built ROM are compared in Figure 3. The normalised (to179

the range of FE solutions) errors between the FE solutions and the predicted solutions from the180

built ROM are shown in Figure 4. The coverage of the ROM (i.e., the instances that the FE181

solutions fall within the predictive bounds of GP-based ROM) are also given in Figure 5.182

It can been seen from these results that the constructed ROM with GP could predict well183

the FE solutions of the anisotropic problem at input locations that are not realised. Among184

the four testing positions, the final case with m = 10 and α = 0 presents the largest normalised185

errors up to 13%. This is not a surprising result because m has no effect on the FE solution of186

the problem when α = 0. However, this information is not fully captured in the training data187

and thus not gained by the non-intrusive ROM with GP, which is pure data-driven method that188

only understands the functional relation between m, α and the solution field from the training189

set. As a result, we could observe 5 blurred oscillation periods in the predicted solutions from190
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Figure 3: Comparisons of FE solutions to the predicted solutions given by the constructed GP-
based ROM. The first row gives the FE solutions. The second row gives the predicted solutions
from the GP-based ROM. The columns from left to right correspond to testing input positions
(m,α) = (6, 2), (10, 2), (1, 2) and (10, 0) respectively.

Figure 4: The normalised errors between FE solutions and the predicted solutions from the
ROM with GP surrogate. The plots from left to right correspond to testing input positions
(m,α) = (6, 2), (10, 2), (1, 2) and (10, 0) respectively.

ROM in Figure 3. However, the predictive interval (whose upper and lower bounds are given191

at two standard deviations 2σ̂ above and below the predictive mean µ̂) of the GP-based ROM192

covers the FE solutions sufficiently in this case, demonstrating that one can benefit from the193

predictive uncertainty embedded in the non-intrusive ROM coupled with GP emulation.194

4 Active learning for Non-intrusive ROM with Gaussian Pro-195

cess Surrogates196

4.1 Why Active Learning?197

Active learning, also known as sequential design, is a collection of approaches that adaptively198

enrich the training points for surrogate modelling of computer solvers. In comparison to one-199
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Figure 5: The coverage of constructed ROM with GP, giving the instances that FE solutions fall
within the predictive bounds provided by the ROM with GP. 1 indicates that the FE solution
is covered by the predictive interval (whose upper and lower bounds are given at two standard
deviations 2σ̂ above and below the predictive mean µ̂) and 0 indicates otherwise. The plots
from left to right correspond to testing input positions (m,α) = (6, 2), (10, 2), (1, 2) and (10, 0)
respectively.

shot designs, such as Latin-hypercube designs (LHD), the active learning is preferred in many200

cases:201

• One wants a proper utilisation of computational resources. Active learning allows one to202

choose computer model input locations adaptively, and therefore can monitor the quality203

of the resulting surrogate model while the active learning is in progress and determine204

whether to pause or continue the model evaluations;205

• More computer model evaluations are needed in the input region of interest. Unlike static206

space-filling designs, such as LHD, active learning, depending on the quality of the under-207

lying surrogate model (as we will discuss in Section 4.4), could direct the computer models208

to evaluate at input locations where the model response exhibits more variations and thus209

are more of interest;210

• There are existing computer model evaluations, but are potentially large in size and/or211

not produced with a careful design. It can be computationally inefficient to generate a212

new design, e.g., a static space-filling design, if one has an existing set of model evaluations213

because one could utilise the data available. However, it can be both numerically inefficient214

(e.g., the design formed by the existing data is poor) and computationally burdensome215

(e.g., the existing data is of large size) to use the whole existing model realisations for216

surrogate modelling. Thus, one can use active learning to choose training data adaptively217

from the existing model evaluations from a small design size while at the same time prevent218

from the numerical instabilities induced by poor designs;219

• There is a system of coupled computer models. It has been shown in Ming and Guillas220

(2021) that active learning is essential to construct Gaussian process (GP) based surrogate221

models in a computationally efficient and effective manner. Static designs of global inputs222

can produce poor designs, and thus numerical issues, to sub-models of a computer system,223
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and can also waste computational resources over input regions of sub-models that are not224

contributing to the global outputs (that correspond to the global input region of interest).225

4.2 Implementation226

Assume that we have data Dn = {Xn,Yn} that consists of input Xn ∈ Rn×D and the responding227

high-dimensional computer model output Yn ∈ Rn×K . Then, a generic active learning procedure228

that selects the next input position xn+1 to be evaluated by the computer model for refinement229

of GP based non-instrusive ROM (abbreviated as GP-ROM in the remainder of the report)230

introduced in Section 3 is given in Algorithm 1. Once xn+1 is determined, one can then obtain231

the augmented data Dn+1 = {Xn+1,Yn+1} by concatenating xn+1 and its corresponding high-232

dimensional output yn+1 to Dn and update GP-ROM {GP l} by re-invoking Algorithm 1.233

Algorithm 1 Active learning for GP-ROM

Input: (i) Dn = {Xn,Yn}; (ii) a candidate set C of input locations {xi}i=1,...,M .
Output: The next input position xn+1 to be evaluated by the computer model.
1: Compute the low-dimensional output Ŷn ∈ Rn×L of Yn and the corresponding eigenvalues
λl=1,...,L using POD;

2: Construct GP-ROM {GP l} using {Xn, Ŷn};
3: Calculate the criterion Il(x) at each input locations in C using GP l for all l;
4: Choose for the next input position xn+1 by solving

xn+1 = argmax
x∈C

L∑
l=1

wlIl(x) with wl =
λl∑n
i=1 λi

We present two candidates for the criterion Il(x) based on the Active Learning MacKay

(ALM) (MacKay, 1992) and the Active Learning Cohn (ALC) (Cohn, 1996) respectively for the

selection of xn+1. ALM aims to find the next input location that corresponds to the maximum

predictive variance exhibited by the GP-ROM. Thus, Il(x) is defined by

Il(x) = σ̂2l (x),

where σ̂2l (x) is the posterior predictive variance of GP l evaluated at x. However, ALM has a

well-know issue that it selects excessive input locations around boundaries of the input region

because of the lack of data beyond boundaries. To alleviate this issue, ALC aims to select the

input position such that the integrated predictive variance of GP-ROM over the input region is

minimised after augmenting xn+1 to Xn. Formally, Il(x) under ALC is defined by

Il(x) = −
∫
x∗∈X

σ̂2l

(
x∗|[X>n ,x>]>

)
dx∗.

where σ̂2l
(
x∗|[X>n ,x>]>

)
is interpreted as the posterior predictive variance of GP l evaluated at234

x∗ given the input data Xn being augmented by xn. It is worth noting that the computation of235

σ̂2l
(
x∗|[X>n ,x>]>

)
does not require evaluations of the associated computer model at xn because236

the predictive variance of GP does not depend on the output data. In practice, the integral237

involved in ALC can be approximated by the Monte Carlo integration over a reference set X238
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(that can be the same as the candidate set C) generated by the LHD. To implement a full active239

learning procedure, one often starts with a small data set that is generated by a static design,240

such as LHD, and then execute T iterations of Algorithm 1 to enrich the initial data set with T241

additional realisations from the computer model.242

4.3 Active learning for the GP-ROM emulation of the 2-D anisotropic heat243

transport model244

In this section, we demonstrate how efficiency gains can be made using active learning for the245

GP-ROM of the FE solver to the 2-D problem described in Section 3.1246

4.3.1 Experimental Setup247

To initiate the active learning to build GP-ROM, N=20 initial training data points, whose input

locations are generated via the LHD over m ∈ [0, 12] and α ∈ [0, 3] with the corresponding

2-D output (that contains K = 78961 solution nodes) determined by running the FE solver

(implemented in Firedrake (Rathgeber et al., 2016)). We then iterate Algorithm 1 for both

ALM and ALC 80 times to augment additional 80 training data points to the initial data set.

At each iteration of the active learning, we choose the number of components L (in Line 1 of

Algorithm 1) to be retained from POD based on the following criteria:

L = argmin
L∗∈{1,...,n}

∣∣∣∣∣
∑L∗

i=1 λi∑n
i=1 λi

− 0.9998

∣∣∣∣∣ ,
where λ1 > λ2 > · · · > λn. To take into account the effects of initial data set on the active

learning, we repeat both ALM- and ALC-based active learning 10 times. For the comparison

between ALM and ALC, we generate 2500 testing data points over m ∈ [0, 12] and α ∈ [0, 3] and

compute the Normalised Root Mean Squared Error (NRMSE) at each active learning iteration

by

NRMSE =
1

2500

2500∑
i=1

√
1
K (z̃i − zi)(z̃i − zi)>

max(zi)−min(zi)
× 100%,

where z̃i ∈ R1×K and zi ∈ R1×K are 2-D FE solution fields generated by the GP-ROM and248

Firedrake at the i-th testing input location, respectively.249

In terms of implementation, we construct GP-ROM and compute corresponding ALM and250

ALC criterions at each iteration of the active learning using the laGP package in R.251

4.3.2 Experimental Results252

Figure 6 presents the NRMSEs of GP-ROMs built with ALM- and ALC-based active learning253

over 80 iterations, in comparison to those constructed with the static LHD at various design254

sizes. It can be observed that for design size less than 50, GP-ROMs trained using the active255

learning, regardless of ALM or ALC, provide higher accuracy than those trained using the static256

LHD. However, as the design sizes increases, the accuracy of GP-ROMs built by the active257

learning and LHD are comparable. This is because with a large design size, the input domain is258
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densely space-filled by the LHD and thus the NRMSE of the corresponding GP-ROM converges259

to that of the GP-ROM trained with the active learning.260

Figure 6: Comparison of NRMSEs of GP-ROM constructed using the ALM-based active learn-
ing, the ALC-based active learning, and the static LHD.

We also observe from Figure 6 that for design size larger than 60 GP-ROMs constructed by261

LHD perform better (in terms of overall lower NRMSE) than those built by ALM-based active262

learning. This observation can be explained by the fact that ALM-based active learning has263

the tendency to choose excessive input locations around boundaries of the input domain (see264

Figure 7(a)) and thus could fail to achieve a satisfactory design, in which input locations are265

preferred to be scattered within the input domain of interest (see Figure 7(b)).266

(a) ALM (b) ALC

Figure 7: Designs produced by a random trial (out of 10 repeated trials) of ALM- and ALC-based
active learning.

4.4 Discussion267

In this section, we introduce a simple and effective procedure to implement the active learning268

for GP-ROM construction. Although the active learning may eventually produce a space-filling269

design, it gives the computer model experimenters more controls over their computational re-270
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sources. One may criticise that active learning is not computationally efficient in the sense that271

it directs model runs sequentially and thus can be time-consuming in comparison to static one-272

shot designs in which model runs can be done in parallel. This statement is sensible when one273

posses sufficient computational power (for parallel computing) and active learning also produces274

a space-filling design. However, in real-world data these conditions may not be fulfilled. Our275

computational resources may not permit us to obtain model realisations that cover adequately276

the input region of interest (for an accurate surrogate model) and a space-filling design may277

not capture sufficiently (without tremendous computational efforts) the input regions where the278

model response exhibits abrupt changes, even if we have an advanced surrogate model (that is279

suitable for both stationary and non-stationary data). On the contrary, active learning has the280

ability to focus on input regions where the corresponding output surfaces show more variations,281

given that the underlying surrogate model provides a satisfactory uncertainty quantification (e.g.,282

highlighting the regions with higher predictive standard deviations). A fact often forgotten in283

computer model experiments is that design and surrogate modelling are not two separate tasks.284

Good designs produce good surrogates with less numerical issues and more reliable uncertainty285

quantification, which in turn induces designs that better represent the functional behaviours of286

computer models under the consideration. These are the reasons why active learning could be287

preferred to static space-filling designs, which could cause the surrogate modelling challenging288

(e.g., a large number of realisations that are needed to capture well the computer model can289

cause the GP-ROM computationally prohibitive) and do not utilise the uncertainties quantified290

by surrogate models for design improvement.291

It is worth noting that active learning does not guarantee the locations of (possibly very292

small but important) input regions of a computer model that correspond to abrupt changes293

to the model responses. The design produced by the active learning depends on the quality294

of the underlying surrogate model, which in turn depends on the information contained in295

the training data (assuming that the surrogate represents the training data adequately and296

produces sensible uncertainty quantification). Therefore, whether active learning could find297

input regions that has very localised and important features depends on if the information of298

the regions exists in the training data. For this reason, it is vital to have a good initial design299

that incorporates such information for the active learning. However, in practice this can be300

difficult to achieve, particularly for high-dimensional cases, even we have some prior knowledge301

that such non-stationary features exist in the computer model, and as a consequence we may302

obtain a surrogate that completely ignores these regions with significant computational costs303

being wasted. To alleviate this issue, one could simply evaluate the computer model with a high-304

resolution design using the parallel computing. In this way, the local behaviours of a computer305

model can be captured within a reasonable amount of time. Nevertheless, it is not advisable to306

use all model evaluations for surrogate modelling, especially for GP-based surrogates because the307

large amount of data can cause GP surrogates computationally prohibitive and some evaluations308

(e.g., that form a flat response surface) are redundant for surrogate improvement. As a result,309

we propose the following hybrid static-active learning procedure to address the scenario in which310

we aim to construct efficiently (in terms of computation and time) a surrogate model that could311

mimic the underlying computer model with localised behaviours:312
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1. Generate a data set by evaluating the computer model over a dense space-filling design in313

parallel;314

2. Choose a subset of the produced data set as the initial design for the active learning;315

3. Implement the active learning that adaptively refines the design and the surrogate model,316

e.g., GP-ROM, by selecting data points from the data set produced in Step 1.317

There are several benefits provided by the above procedure. Firstly, the high-resolution design318

provides some guarantees that our data contain information of localised behaviours embedded in319

the underlying computer model. In addition, unlike typical active learning that evaluates models320

sequentially, active learning in Step 3 uses the data set already generated with a parallelisable321

strategy and thus could save a considerate amount of time (especially when computer models322

are very expensive to run). Furthermore, with active learning one is able to pick (potentially323

a small amount of) data points (from the generated data set) that contribute most to the324

surrogate quality, instead of naively pouring the whole data set into the surrogate construction325

(causing computational difficulties). Perhaps the most decisive and challenging step of the326

above procedure is Step 2 because, as discussed, one expects to incorporate some information of327

localised behaviours of a computer model into the initial design such that the resulting surrogate328

is less likely to overlook these features. How to integrate experts’ knowledge about the localised329

features into the initial design is worth exploring in the future, but the procedure above indicates330

a potentially brutal but simply implementation for Step 2: choose multiple random subsets of the331

data set, then proceed to Step 3 for multiple surrogate constructions, and choose the surrogate332

that gives the best predictive accuracy (e.g., lowest overall predictive error against the generated333

data set). This implementation is computationally efficient because active learnings in Step 3334

initiated by different random designs can be executed in parallel and do not involve computer335

model evaluations.336

5 Future Directions337

We demonstrate in this report that a GP-ROM could be used to replace computationally expen-338

sive computer solvers for problems with high-dimensional output, in one of the building blocks of339

nuclear fusion modelling. However, dimension reduction techniques such as POD lose informa-340

tion when the original data are projected onto a lower dimensional space, and thus some extreme341

but important events could be masked in the low dimensional data, a scenario called masking342

effect. As a result, if the surrogate is built on the low dimensional data one may not be able to343

recover these outlying events using the constructed non-intrusive ROM. Therefore, other dimen-344

sion reduction methods that may be more resistant to the masking effect could be examined.345

In addition, although GP-ROM requires no domain knowledge and access to the source code of346

original problems, it ignores the physics implied by the underlying problem and thus may be347

inaccurate comparing to the its intrusive counter-party. Therefore, it would be worth exploring348

the trade-off between the speed and accuracy of intrusive and non-intrusive MOR, especially349

in context of UQ. It would also be interesting to find a middle ground where one could exploit350

the benefits (e.g., accuracy, speed and uncertainty) of both intrusive and non-intrusive ROM,351

13



producing a physics-informed non-intrusive ROM. Some relevant literature on physics-informed352

machine learning (say using a boundary condition or other approaches) include Vernon et al.353

(2019); Kashinath et al. (2021); Watson-Parris (2021).354

Recommendation: Investigate how to apply physics-informed GP-ROM in key nuclear fusion355

models. Examine how to build new types of GP-ROM for the case of particle-based models (PIC)356

whose outputs need to be understood as a continuum.357

5.1 Deep GP for Non-intrusive ROM358

In this report we explored how to construct GP-ROM using active learning. Active learning359

is particularly useful when the underlying computer model exhibits non-stationary features360

as it has the ability to produce a non-uniform design that appreciates the non-stationarity.361

However, the success of the active learning relies on the quality of uncertainty quantified by362

the surrogate model. Since conventional GP surrogates assume stationarity, more advanced363

non-stationary GP models, such as deep Gaussian processes (Damianou and Lawrence, 2013),364

would be good candidates for non-intrusive ROM of fusion models that exhibits non-stationarity.365

Deep Gaussian processes (DGPs) are feed-forward compositions of conventional stationary GPs366

with flexible model expressiveness, particularly for non-stationary data. However, training and367

prediction of DGP based emulators are challenging due to the non-linearity induced by the kernel368

functions involved in GPs. Various inference methods thus are introduced to tackle this issue.369

Variational inferences, such as Doubly Stochastic Variational Inference (DSVI) (Salimbeni and370

Deisenroth, 2017), is computationally thrifty but is not accurate because simplified assumptions371

over the latent variables in DGP hierarchy are assumed. On the contrary, the fully-Bayesian372

approach introduced by Sauer et al. (2020) gives a comprehensive uncertainty quantification373

of DGPs, but at the expense of computation. The stochastic imputation approach recently374

proposed by Ming et al. (2021) is a DGP inference method that enjoys both computational375

speed and the predictive accuracy, and could be a competitive and potential candidate for DGP376

emulations of non-stationary fusion models. It is implemented in the dgpsi package1.377

Figure 8 showcases the ALM-based active learning using a two-layered DGP surrogate (i.e.,378

composition of two stationary GPs) trained with the stochastic imputation in comparison to that379

using a stationary GP. It can be observed that DGP surrogate outperforms the GP surrogate in380

both mean predictions and uncertainty quantification. In addition, with DGP the active learning381

could produce a non-uniform design that appreciates the non-stationarity of the underlying data.382

While the active learning essentially produces a quite space-filling design under GP, it assigns383

three time more number of design points to the rough (and more interesting) regime over [0, 0.5]384

than the flat regime over (0.5, 1] under DGP. Although this is a simple 1-D example, it gives385

motivations why DGP surrogate should be seriously considered if the reduced-order output of a386

fusion model is non-stationary and the active learning is employed.387

Recommendation: Investigate how to reduce dimensionality of outputs for key nuclear fusion388

models whose behaviour may present sharp transitions or various regimes, such as turbulence389

models. The key question is then how to understand and represent the continuum of outputs390

1https://github.com/mingdeyu/DGP
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(a) GP (b) DGP

Figure 8: ALM-based active learning using GP and DGP emulations. Solid line represents
the underlying true function; Dashed line is the mean prediction; Shaded area represents 95%
predictive interval; Dots (6 in total) are initial training points and triangles (14 in total) are
training points enriched by the active learning procedure using GP and DGP surrogates. The
vertical dashed line indicates a visual split of the underlying true function into a rough regime
over [0, 0.5] and a flat regime over (0.5, 1].

features across regimes. Indeed these features shown in 3 can vary across regimes and must391

be made consistent by some form of joint augmentation possibly at a small cost but with large392

benefits for emulation.393

5.2 Active subspace for efficient dimension reduction of inputs394

The efficiency of reducing dimensions in the inputs was demonstrated in Liu and Guillas (2017).395

Gains of orders of magnitude can be achieved. For instance, the application to a surface of396

inputs (a mesh of 3200 elements) enabled a reduction from dimension 3200 to 5 with fast and397

accurate emulation. Only about 100 simulations were needed to come up with 5 key dimensions398

as a recombination of the original 3200 dimensions. A summary of the method is presented399

below. It is implemented in the Alan Turing Institute Package Multi-Output Gaussian Process400

Emulator (MOGP)2. The context is:401

• Simulator input X (high dimension Rp) and output Y = f(X) (one dimension R1)402

• GP emulation: fit an GP and predict f(xnew) using a sample of simulations f(X1), ..., f(Xn)403

• Find a reduced space (known as sufficient dimension reduction SDR) R(X) ∈ Rd, d < p,404

such that there is (nearly) no loss of information in predicting Y by providing R(X) instead405

of X406

• To achieve SDR, employ the gradient-based Kernel Dimension Reduction (gKDR) ap-

proach (Fukumizu and Leng, 2014):

R(X) = BTX, BTB = Id, d < p.

2https://github.com/alan-turing-institute/mogp-emulator
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Estimate B from simulation samples (X1, Y1), ..., (Xn, Yn). Note that no strong assumption407

are made on the variables (type, distribution, dimension).408

The specific technical steps in gKDR involve two Reproducing kernel Hilbert spaces (RKHS):409

• Prepare kernels kX and kY , with the associated (RKHS) HX and HY410

• The quantities of interest are the gradients ∂E[g(Y )|X]
∂X for any g ∈ HY as their evaluation411

is the ingredient for the identification of the reduced subspace, by looking at the most412

influential directions.413

• Estimate (see Fukumizu and Leng (2014) for details)

M̂n =
1

n

n∑
i=1

∇kX(Xi)
T (GX + nεnI)−1GY (GX + nεnI)−1∇kX(Xi)

where GX and GY are the Gram matrices (kX (Xi, Xj)) and (kY(Yi, Yj)), and ∇kX(x) =414

(∂kX (X1, x)/∂x, ..., ∂kX (Xn, x)/∂x)T ∈ Rn×m for any x ∈ Rm.415

• Eigen-decompose M̂n into M̂n = Q̂Λ̂Q̂T and partition

Λ̂ =

[
Λ̂1

Λ̂2

]
, Q̂ = [B̂ Ĉ],

where Λ̂1 = diag(λ̂1, ..., λ̂d) consisting of the first d largest eigenvalues, to ultimately416

provide the dimension reduction.417

The emulation with dimension reduction can be carried out and its loss quantified (Liu and418

Guillas, 2017):419

• f(X) ≈ f̂(B̂TX)420 ∥∥∥f − f̂∥∥∥
L2

=421

Op

 4

λd − λd+1
n
−min{ 1

3
, 2β+1
4β+4

}
(

d∑
i=1

ciλ̂
2
i

) 1
2

+

(
m∑

i=d+1

ciλ̂
2
i

) 1
2

422

• Build emulator f̃ ≈ f̂ on low dimensional space B̂TX423

• Approximation procedure:

f(X) ≈ f̂(B̂TX) ≈ f̃(B̂TX)

The choice of remained dimension d and hyperparameters is performance based (e.g. in the424

quality of the predictions in a leave-one-out strategy) and can result in very large gains (Liu425

and Guillas, 2017).426

Recommendation: Investigate how to reduce dimensionality of inputs of key nuclear fusion427

models such as the magnetic field modelled input of the anisotropic heat transfer model.428
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5.3 Linked GP for Non-intrusive ROM429

Since fusion models are often multi-disciplinary and multi-physics, the recent advances on linked430

Gaussian process surrogates (Ming and Guillas, 2021) must be considered. The linked GP is431

implemented in the dgpsi package3. As an illustration, consider a toy system that consists432

of two feed-forward connected computer models shown in Figure 9. By directly applying con-433

ventional GP emulation, one fails to capture the local feature (over [−1, 1]) of the underlying434

system with ten system runs, see Figure 10(d). However, if the linked GP is employed to the435

system by constructing GP surrogates on sub-models individually with active learning (see Fig-436

ure 10(a) and 10(b)), one could capture the local feature of the overall system sufficiently (see437

Figure 10(c)). This is because the local feature of the entire system over [−1, 1] is created by the438

composition of simpler individual sub-models, and thus constructing system surrogate on the439

basis of elementary emulators could achieve better emulation performance. Besides, using the440

active learning one could optimise the designs for individual sub-models, and thus obtain better441

corresponding GP surrogates, which in turn produce system surrogate with higher accuracy.442

f1x f2 yw

Layer 1 Layer 2

Figure 9: An illustrative example of a system of two computer models f1 and f2. Note this
is only for illustration. Linked GP in Ming and Guillas (2021) can work on any feed-forward
computer systems.

(a) GP of f1 (b) GP of f2 (c) Linked GP of f2 ◦ f1 (d) GP of f2 ◦ f1

Figure 10: Linked GP (in (c)) and linked GP (in (d)) emulators of a feed-forward system (f2◦f1)
of two computer models f1 and f2 connected as shown in Figure 9. The filled circles in (d) are
training points for conventional GP, while in (a) and (b) the filled circles represent the initial
design of the active learning to build GP surrogates of individual computer models f1 and f2
for linked GP in (c); the filled triangles in (a) and (b) are training points created by the active
learning; the solid line is the underlying true function; the dashed line is the mean prediction;
the shaded area represents 95% prediction interval.

The toy example motivates further explorations of linked GP in constructing non-intrusive443

ROM for fusion systems by linking non-intrusive ROM of individual sub-models. For example,444

to construct the ROM of the two-layered system in Figure 9, one could first build GP-based445

non-intrusive ROM (as demonstrated above) for all individual sub-models (f1 and f2) and then446

3https://github.com/mingdeyu/DGP
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construct the non-intrusive ROM of the whole system by linking the non-intrusive ROM of f1447

to that of f2 through the reduced space w analytically. One key benefit of this approach for448

system-wise reduced order modelling is that one only needs to do dimensionality reduction to449

the outputs of sub-models. Whereas, to build intrusive ROM, one has to make extra challenging450

efforts to reformulate the original high-fidelity model f2 under reduced input w and output y.451

Implementing the active learning for linked GP surrogates for systems of computer models452

with high-dimensional outputs is also challenging. In comparison to the static design (in which453

the training input data of one sub-model matches the training output data produced by the454

feeding sub-models), the active learning (e.g., the adaptive design introduced in Ming and Guillas455

(2021)) could lose the input/output data matching, and thus further explorations are required456

to examine how to conduct dimension reductions for the internal sub-model input/output so457

that all information contained in the training data of linked sub-models are utilised.458

Recommendation: Investigate how to jointly reduce dimensionality of outputs that are inputs459

of key nuclear fusion models, such as the heat from the anisotropic heat transfer model propa-460

gated to the wall heat transfer model. Emulation with high-dimensional outputs (GP-ROM) of461

the first simluator and active subspace for dimension reduction of the subsequent inputs of the462

following simulator should be used in synergy. To establish such a combined strategy will require463

examining carefully how to weigh variations in outputs of the first model and the influence of464

inputs for the second. The sampling approach of 4 needs to be tailored to this new context as465

well. It is necessary to carry out such combination of methods and strategies due to the very466

high dimensions, heavy data transfers, and extremely costly simulations.467
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