
ExCALIBUR

Identification of suitable preconditioner techniques

M2.7.2

The report describes work for ExCALIBUR project NEPTUNE at Milestone 2.7.2. This binds
the following reports 2047353-TN-01[1], 2047353-TN-02[2], 2047353-TN-03[3] and 2047353-TN-
04[4] as of August 27, 2021.

In scientific computing the discrete solution of a system of Partial Differential Equations (PDEs) is
often given by the solution ~x of the equation

A~x = ~b (1)

where the matrix A is the representation of the differential operators in the chosen discretisation
and ~b is a known vector for the given problem. For very small system sizes, where the size of A
is small, the system of equations described by Equation (1) can be solved using direct methods
which explicitly form A−1, typically using Gaussian elimination where the cost scales as O(Size)3.
However for larger system sizes direct methods become computationally infeasible and iterative
methods, that form a sequence of increasingly better solutions {~xi}Ni=1, are employed as an alter-
native approach.

As discussed in this report, the number of iterations N required to reach a solution ~xN such that
|A~xN −~b| < τ , for an appropriate norm and tolerance τ is dependent on the matrix A. The aim of
preconditioning is to apply left and/or right matrices, or equivalently operators, PL and PR to form
the system

PLAPR~y = PL
~b, where ~x = PR~y (2)

the solution of which is also a solution to the system described in Equation (1). An iterative solver
applied to Equation (2) produces the sequence of iterations {~x′i}NP

i=1 where |A~x′NP
− ~b| < τ as

required. The aim is to find matrices PL and/or PR such that the computation of the sequence
{~x′i}NP

i=1 is computationally cheaper than the computation of the original sequence {~xi}Ni=1, typi-
cally because Np � N . Typically the construction and application of the matrices PL and or PR

is significant and the performance improvement is realised with a reduction in the number of iter-
ations. Ideally Np � N . As demonstrated by the results in this report, successful preconditioning
techniques can vastly reduce the computational cost of solving Equation (1).

A preconditioner is regarded as successful if it decreases the computational cost of computing
a desired solution. In some cases the cost reduction is very significant and the preconditioner
enables the computation of a simulation which otherwise would be computationally prohibitive.
In all cases, where a successful preconditioner is applied, the overall computational efficiency
of the simulation is improved. Hence successful preconditioning techniques are of importance

to the NEPTUNE project as more efficient use of computational resource directly improves the
simulation and modelling capability of the project.

Unfortunately the design and construction of a preconditioner for a given system is highly non-
obvious and needs to be considered on a per-problem basis. This report presents an overview
of different existing classes of preconditioners and gives insight into the trade-off between the
computational cost of assembling and applying a preconditioner and the potential effectiveness.
Some of these preconditioners cannot be applied in a matrix-free manner as they require the
matrix A to be explicitly constructed. However, other preconditioners are operator-based and only
require access to elements of the matrix or the ability to compute a matrix-vector product, and so
are amenable to a matrix-free implementation.

This report investigates elliptic and hyperbolic problems using the BOUT++ software [5] which
uses finite differences as a spatial discretisation and Nektar++ [6] which applies a spectral/hp
finite element method. The report investigates the Markov Chain Monte Carlo Matrix Inversion
(MCMCMI) preconditioner, a sparse approximate inverse approximation approach, applied to a
non-linear diffusion test case in BOUT++. Using Nektar++ the MCMCMI preconditioner is also
applied to Advection-Diffusion-Reaction and Helmholtz systems. The MCMCMI preconditioner is
used in conjunction with the Generalized Minimal Residual Method (GMRES) and Biconjugate
Gradient Stabilized Method (BiCGSTAB) iterative solvers. This section also investigates the appli-
cation of a selection of operator-based preconditioners to a 1D continuum model of plasma flow
implemented in BOUT++ under the name SD1D [7].

In the final section this report investigates the application of implicit-factorisation constraint precon-
ditioners to non-symmetric problems. The report first extends existing theorems from the symmet-
ric case to cover the non-symmetric case, and gives an example of how an implicit-factorisation
constraint preconditioner is constructed. As a numerical test a selection of proposed precondition-
ers are applied to the Hasegawa-Wakatani problem in combination with a GMRES linear solver.
In these numerical experiments the constraint preconditioners demonstrate a several orders of
magnitude reduction in the number of linear solve iterations in comparison to a block diagonal
preconditioner.

2

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] S. Thorne. Priority Equations and Test Cases. Technical Report 2047353-TN-01, UKAEA
Project Neptune, 2021.

[2] V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Linear systems of equations and precon-
ditioners relating to the NEPTUNE Programme: A brief overview. Technical Report 2047353-
TN-02, UKAEA Project Neptune, 2021.

[3] M. Abalenkovs, V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Implicit-factorization
preconditioners for NEPTUNE Programme. Technical Report 2047353-TN-03, UKAEA Project
Neptune, 2021.

[4] M. Abalenkovs, V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Implicit-factorization pre-
conditioners for non-symmetric problems. Technical Report 2047353-TN-04, UKAEA Project
Neptune, 2021.

[5] B.D. Dudson, P.A. Hill, D. Dickinson, J.T. Parker, A. Allen, G. Breyiannia, J. Brown, L. Easy,
S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph, M. Kim, M. Leconte, J. Leddy,
M. Liten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani, T. Rhee, J. Sauppe,
K. Savage, H. Seto, D. Schwrer, B. Shanahan, M. Thomas, S. Tiwari, M. Umansky, N. Walkden,
L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang, A. Bokshi, H. Muhammed, M. Estarellas, and
F. Riva. Bout++ v4.3.1. https://doi.org/10.5281/zenodo.3727089, March 2020.

[6] D. Moxey et al. Nektar++ website. https://www.nektar.info, 2020. Accessed: June 2020.

[7] One-dimensional plasma-neutral simulation for SOL and divertor studies. https://github.

com/boutproject/SD1D, 2021. Accessed: August 2021.

3

https://doi.org/10.5281/zenodo.3727089
https://www.nektar.info
https://github.com/boutproject/SD1D
https://github.com/boutproject/SD1D

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0045

Issue: 1.00
Date: August 27, 2021

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Will Saunders N/A August 27, 2021

Wayne Arter N/A August 27, 2021

BD

Reviewed By: Rob Akers August 27, 2021

Advanced Computing
Dept. Manager

Approved By: Rob Akers August 27, 2021

Advanced Computing
Dept. Manager

4

NEPTUNE: 2047353-TN-01

Priority Equations and Test Cases:

Preconditioning Milestones M1.1 and M2.1

Sue Thorne

Version 1: January 2021; Version 2: 22 February 2021

1 Introduction

Within the NEPTUNE Programme, there are a wide variety of interesting prob-
lems [1] but, due to the length of the Preconditioning project, it is important
that we prioritise a small number of equations and test cases.

2 Elliptic Problems

For elliptic problems, System 2-2 from [1] is our priority, which consists of a
2-D elliptic solver in complex geometry. BOUT++ [2] already has some test
cases and Nektar++ [4] also has some suitable cases. BOUT++ has finite
difference examples whilst Nektar++ uses finite and spectral/hp elements for its
discretizations. There is a solver in BOUT++ that sets up a matrix problem and
calls PETSc [5], and another implementation of the same problem which calls
HYPRE [6]. Since BOUT++ uses finite differences and not finite or spectral
elements, there are plans within the NEPTUNE Programme to implement the
Nektar++ version over the next 6 months or so.

3 Hyperbolic Problems

For hyperbolic problems, System 2-3 from [1] is our priority case. There is
already a BOUT++ test case called SD1D [3] that models the dynamics along
the magnetic field, uses finite differences and is a matrix-free implementation
that uses SUNDIALS [7]. A version of this test problem is going to be formed
using Nektar++ during the next few months.

For the dynamics across the magnetic field, there are 2D problems like
Hasegawa-Wakatani, which are a similar to incompressible fluid dynamics (and
are a simplified version of the equations shown in Ben Dudson’s talk at the

1

NEPTUNE Kick-Off Meeting):

∂n

∂t
= − [φ, n] + α (φ− n)− κ∂φ

∂z
+Dn∇2

⊥n, (1)

∂ω

∂t
= − [ω, n] + α (ω − n) +Dω∇2

⊥ω, (2)

∇2φ = ω (3)

where the equations are solved for the plasma density n and vorticity ω =
b0 · ∇ × v, where v is the E ×B drift velocity velocity in a constant magnetic
field and b0 is the unit vector in the direction of the equilibrium magnetic field.
The Poison bracket is represented by [·, ·].

For simplicity, if the backward Euler method is used to discretise the time
derivative and we assume that n, ω and φ are discretized using the same dis-
cretization basis, then we obtain the following discretized, non-linear equations:

0 = M
(
ni − ni−1

)
+ ∆t

(
diag(Lxφ

i)Lzn
i − diag(Lzφ

i)Lxn
i (4)

−αM
(
φi − ni

)
− κLzφ−DnKn

i
)
,

0 = M
(
ωi − ωi−1)+ ∆t

(
diag(Lxφ

i)Lzω
i − diag(Lzφ

i)Lxω
i (5)

−αM
(
φi − ni

)
−DωKω

i
)
,

0 = Kφi −Mω, (6)

where M is the mass matrix associated with the discretization basis, Lx and Lz

are matrices that contain the discretized forms of ∂
∂x and ∂

∂z , respectively, K
is the discretized Laplacian matrix and diag(x) denotes a diagonal matrix with
the (p, p) entry equal to x(p).

The Jacobian of equations (4)-(6) with respect to the unknowns n, ω and φ
can be expressed in the following block matrix format: A 0 E

B C G
0 −M K

 , (7)

where

A = M + ∆t
(
diag(Lxφ

i)Lz − diag(Lzφ
i)Lx + αM −DnK

)
, (8)

B = α∆tM, (9)

C = M + ∆t
(
diag(Lxφ

i)Lz − diag(Lzφ
i)Lx −DωK

)
, (10)

E = ∆t
(
diag(Lzn

i)Lx − diag(Lxn
i)Lz − αM − κLz

)
, (11)

G = ∆t
(
diag(Lzω

i)Lx − diag(Lxω
i)Lz

)
. (12)

If K, Lx, Lz and M are all sparse, then the Jacobian will be sparse.
Alternatively, we can remove φi from (4) and (5) by substituting in φi =

K−1ωi from (6). The Jacobian for the reduced equations is[
P R
Q S

]
, (13)

2

where

P = M + ∆
(
diag(LxK

−1Mωi)Lz − diag(LzK
−1Mωi)Lx + αM −DnK

)
,

Q = α∆tM,

R = ∆t
(
diag(Lzn

i)LxK
−1M − diag(Lxn

i)LzK
−1M − αMK−1M

−κLzK
−1M

)
,

S = M + ∆t
(
diag(LxK

−1Mωi)Lz + diag(Lzω
i)LxK

−1M − αMK−1M

−DωK) .

Note that the inverse of the elliptic matrix K is normally a dense matrix, par-
ticularly for the finite and spectral element discretizations of interest to this
project. Hence, for the discretizations of interest, the Jacobian of the reduced
system is not sparse. Therefore, one of the questions is whether to (a) use the
reduced system but have a dense Jacobian, or (b) treat the elliptic problem as a
constraint but have a sparse, larger and more ill-conditioned Jacobian. Option
(a) is normally done but experiments have also been done in BOUT++ (b) in
order to use PETSc’s matrix coloring to extract an approximate matrix for pre-
conditioning from our matrix-free code. Nektar++ also has an implementation
of the Hasegawa-Wakatani problem.

4 General Comments

When possible, Nektar++ examples should have higher priority than BOUT++
due to the expectation that finite element and spectral discretizations will be
the method of choice for future simulations. In addition, we should expect
adaptive hp-refinement to be used. Nektar++ is moving towards matrix-free
implementations. For Nektar++, we need to keep in contact with David Moxey.

5 Acknowledgements

I would like to thank Ben Dudson for his help in prioritising the equations and
test cases.

References

[1] W. Arter. Equations for NEPTUNE Proxyapps, 2020.

[2] B. Dudson et al. BOUT++ v4.3.2, March 2020.

[3] B. Dudson et al. Sd1d: One-dimensional plasma-neutral simulation for sol
and divertor studies. https://github.com/boutproject/SD1D, 2020.

[4] D. Moxey et al. Nektar++ website. https://www.nektar.info, 2020.

3

https://github.com/boutproject/SD1D
https://www.nektar.info

[5] Satish Balay et al. PETSc Web page. https://www.mcs.anl.gov/petsc,
2019.

[6] Lawrence Livermore National Laboratory. HYPRE: Scalable Linear
Solvers and Multigrid Methods. https://computing.llnl.gov/projects/
hypre-scalable-linear-solvers-multigrid-methods/software.

[7] Lawrence Livermore National Laboratory. SUNDIALS: SUite of Nonlinear
and DIfferential/ALgebraic Equation Solvers. https://computing.llnl.

gov/projects/sundials.

4

https://www.mcs.anl.gov/petsc
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials

NEPTUNE Technical Report 2047353-TN-02
Deliverables 1.1, 2.1 and 3.1

Linear systems of equations and preconditioners
relating to the NEPTUNE Programme

A brief overview

Authors: V. Alexandrov, A. Lebedev, E. Sahin, S. Thorne

April 22, 2021

Contents

1 Landscape of Preconditioners 4
1.1 Motivational Theory . 4
1.2 Preconditioner Classes . 6

1.2.1 Scalings . 6
1.2.1.1 Point-Jacobi . 6
1.2.1.2 Norm-based scaling . 6

1.2.2 Incomplete Factorizations . 7
1.2.2.1 D-ILU . 7
1.2.2.2 ILU - Incomplete LU Decomposition 7
1.2.2.3 IC - Incomplete Cholesky Decomposition 7
1.2.2.4 Additive Factorization - Splitting 8

1.2.2.4.1 Jacobi . 8
1.2.2.4.2 (Symmetric) Gauss-Seidel 8
1.2.2.4.3 (Symmetric) SOR . 8

1.2.3 Approximate Inverses . 8
1.2.3.1 SPAI - SParse Approximate Inverse 9
1.2.3.2 FSAI - Factorized Sparse Approximate Inverse 9
1.2.3.3 AINV - Approximate INVerse 9
1.2.3.4 MCMCMI - Markov Chain Monte Carlo Matrix Inversion . . . 9

1.2.4 Multigrid Methods . 9
1.2.4.1 lAIR . 9

1.2.5 Stochastic Methods . 10
1.2.5.1 SP -Stochastic Projection . 10
1.2.5.2 MCMCMI - Markov Chain Monte Carlo Matrix Inversion . . . 10

1.3 Further Remarks . 11
1.3.1 On Parallelism . 11

1.3.1.1 Domain decomposition . 11
1.3.2 On Matrices . 11

1.4 Summary of Preconditioners . 11

2 Application Cases 14
2.1 Introduction . 14
2.2 Elliptic Problems . 14
2.3 Hyperbolic Problems . 14
2.4 Comments . 16

3 Implementations 17
3.1 Introduction . 17
3.2 Elliptic Problems . 17
3.3 Hyperbolic Problems . 17

2

3

3.4 Other libraries of interest to the NEPTUNE Programme 18
Bibliography . 19

Chapter 1

Landscape of Preconditioners

1.1 Motivational Theory
Intermediate- and large-scale linear systems

A~x = ~b (1.1)
are most commonly solved using iterative methods such as
• (symmetric) successive over-relaxation ((S)SOR),

• Jacobi over-relaxation (JOR),

• conjugate gradient (CG),

• biconjugate gradient stabilized (BiCGstab),

• conjugate gradient squared (CGS),

• minimal residual method (MINRES),

• generalized minimal residual method (GMRES),

• quasi-minimal residual (QMR) and

• transpose-free QMR (TFQMR),
see [1], [8], [12], [24] or any university-level introduction to numerical mathematics, such as [30].
These methods do not compute the inverse system matrix A−1 or factors of A but approximate
the solution via an iterative method of the form

~xk = ~xk−1 + ~sk . (1.2)
Their convergence rates are typically bounded from above by expressions involving the condition
number of the system matrix A, which is given here for the 2-norm:

κ2(A) = ‖A‖2‖A−1‖2 ≡
maxλi∈σ(A) |λi|
minλj∈σ(A) |λj|

, (1.3)

where σ(A) denotes the spectrum of A. In general, the larger the value of the condition number,
the slower the rate of convergence but other characteristics such as the eigenvalues being highly
clustered into a few groups can significantly reduce the number of iterations required to achieve
the desired level of accuracy. The above immediately shows that matrices which are almost
singular, i.e., for which an eigenvalue λk exists s.t. |λk| ≈ 0 the condition number becomes
very large, are likely to have slow convergence. For example, this occurs when a finite-element
discretization of a PDE is performed with very high spatial resolution or with almost degenerate
finite elements.

4

Ta
bl

e
1.

1:
Su

m
m

ar
y

of
ite

ra
tiv

e
m

et
ho

ds
w

ith
th

ei
rp

ro
pe

rt
ie

sa
nd

an
y

pr
ec

on
di

tio
ne

rr
eq

ui
re

m
en

ts
.H

er
e

“s
.p

.d
.”

de
no

te
sa

sy
m

m
et

ric
po

sit
iv

e
de

fin
ite

m
at

rix
. It

er
at

iv
e

M
et

ho
d

Sy
m

m
et

ric
A

N
on

-s
ym

m
et

ric
A

O
th

er
re

qu
ire

m
en

ts
on

A
Pr

ec
on

di
tio

ne
r

re
qu

ire
m

en
ts

SO
R

Ye
s

Ye
s

di
ag

(A
)

no
n-

sin
gu

la
r

N
/A

SS
O

R
Ye

s
N

o
di

ag
(A

)
no

n-
sin

gu
la

r
N

/A
JO

R
Ye

s
Ye

s
di

ag
(A

)
no

n-
sin

gu
la

r
N

/A
C

G
Ye

s
N

o
po

sit
iv

e
de

fin
ite

s.p
.d

.
Bi

C
G

ST
A

B
Ye

s
Ye

s
N

on
e

N
on

e
C

G
S

Ye
s

Ye
s

N
on

e
N

on
e

M
IN

R
ES

Ye
s

N
o

N
on

e
s.p

.d
.

G
M

R
ES

Ye
s

Ye
s

N
on

e
N

on
e

Q
M

R
Ye

s
Ye

s
N

on
e

N
on

e
T

FQ
M

R
Ye

s
Ye

s
N

on
e

N
on

e

6 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

To speed-up the iteration, one can use left and/or right preconditioners PL and PR, respec-
tively, and solve the equivalent system

PLAPR~y = PL~b where x = PRỹ, (1.4)

and choose preconditioners for which PLAPR has lower condition number than A or clusters
the eigenvalues into a few groups such that the number of iterations is significantly reduced,
and for which calculating the action of PL and PR multiplied by a vector is relatively cheap to
initialise and then compute. For simplicity within this report, we will assume that one of PL
or PR is the identity matrix and we will refer to the other preconditioner as P.

When considering a preconditioner for a given problem it is beneficial to keep in mind what
category of PDE has given rise to the linear system at hand as well as the structure properties
of the system matrix A. The latter are especially important if methods relying on the symmetry
and positive definiteness of the system matrix A are employed (e.g., CG iteration). In such
a case, usage of a preconditioner that is not symmetric and positive definite may slow the
convergence of the iterative method or result in the method breaking down. We provide a
summary of the different methods mentioned in Table 1.1.

1.2 Preconditioner Classes

1.2.1 Scalings
A simple way to reduce the condition number of a matrix is to scale its rows/columns to be
of approximately equal magnitude w.r.t. a given norm [24],[1]. Generally, the effectiveness of
scaling preconditioners can be neglected when comparing them to the other classes listed below.
They should, nevertheless, not be neglected, given that they are extremely cheap to compute
and can be beneficial in cases where the computation of the matrix-vector product is highly
susceptible to round-off errors (i.e., when using mixed precision computations).

1.2.1.1 Point-Jacobi

The simplest preconditioner is the so-called point-Jacobi preconditioner [30], [17], [8]. It is
defined as

P := diag(A)−1 . (1.5)

Due to its simplicity the preconditioner can be directly computed and applied to the iterations
of the chosen method. A further benefit of the simplicity is the trivial parallelizability (there
are no data-dependencies). The simplicity comes at the cost of effectiveness, this preconditioner
will generally only slightly reduce the number of iterations required to achieve convergence.

1.2.1.2 Norm-based scaling

If one chooses

P = diag
({ 1

dii

}n
i=1

)
:= diag

({
1
‖~ai‖m

}n
i=1

)
(1.6)

where ~ai can be either the i-th row of the matrix A or its i-th column and ‖ · ‖m is the m
norm of a vector, then the preconditioner can be trivially inverted for a direct application to
the iteration vector. Such preconditioners are generally referred to as row-/column-scalings.
Formally it can be proven that

κ∞(P̃A) ≤ κ∞(PA) (1.7)

1.2. PRECONDITIONER CLASSES 7

for any scaling P if P̃ is computed using the 1 norm (‖~a‖1 = ∑
j |aj|) in (1.6), i.e., the precon-

ditioner is an optimal scaling.

1.2.2 Incomplete Factorizations
Factorization methods that decompose a matrix into a product of matrices, i.e., A = LU , can
be used as a basis to derive preconditioners. Note that the factors of the matrix will generally
become dense, even if A is sparse. This is generally avoided by performing the factorization only
for a pre-defined number of non-zero elements. Such a factorization is generally incomplete,
hence the name of this preconditioner class. One strategy is to preserve the non-zero pattern
of the matrix A, which results in zero-fill preconditioners.

Due to the sequential nature of the underlying factorization, these methods generally require
a preliminary graph partitioning (element reordering) to be parallelized. The scalability of
such methods is thus limited by the number of (strongly) connected components of the graph
obtained if the matrix is interpreted as an adjacency matrix of a graph.

1.2.2.1 D-ILU

The second on the triviality scale is the D-ILU preconditioner [11]. It is based on the decom-
position of the matrix A similar to the Jacobi iteration:

P := (D + LA)D−1(D + UA) , (1.8)

where D is now not simply the diagonal of A but determined according to a different scheme
and UA, LA are the strict upper/lower triangular parts of the matrix A.

1.2.2.2 ILU - Incomplete LU Decomposition

A solution of LUx = b, where L,U are obtained by LU-decomposition (Gaussian elimination)
of A is equivalent to x = A−1b. Here, L is a lower triangular matrix and U is an upper
triangular matrix. As such one obvious choice for a preconditioner is the LU-decomposition of
A. However, a full LU-decomposition may change a sparse matrix A into a dense one so we
could, instead, only perform a step of the LU decomposition if and only if ai,j 6= 0. This yields
the so-called zero-fill incomplete LU factorization - in short: ILU(0).

ILU(k) denotes an ILU preconditioner with a user-defined fill-in level k ≥ 0. Higher k
correspond generally to a better approximation of the LU decomposition but result in a much
denser preconditioner. As a rule k > 3 is seldom used [11].

ILUT(ρ,τ) is a threshold variant of ILU, in which entries are removed from the precondi-
tioner if their magnitude falls under the threshold τ or the fraction ρ of additional values per
row is exceeded.

1.2.2.3 IC - Incomplete Cholesky Decomposition

Applying the same methodology to the Cholesky decomposition for symmetric positive definite
matrices, the IC(k) (incomplete Cholesky decomposition with fill-level k) factorization is ob-
tained. Similar to the common Cholesky decomposition [1], it requires ∼ 1

2 as many operations
to compute, as ILU and the resulting decomposition is symmetric, positive definite, making it a
prime candidate for an incomplete factorization preconditioner for symmetric (positive definite)
matrices and methods which rely on the symmetry of the linear operator (e.g. CG). The same
caveats regarding fill-in as for ILU(k) apply.

8 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

1.2.2.4 Additive Factorization - Splitting

Methods which rely on a splitting of the matrix A into A = L+D+R which are, by themselves,
not modified are designated ”splitting methods” and can roughly be assigned to the class
of factorization methods. In the following, we assume that D is defined as for the Jacobi
preconditioner, L is the strict lower triangular part of A and R is the strict upper triangular
part of A.

While we provide the preconditioner matrices below these are generally never computed and
an application of any splitting preconditioner corresponds to the execution of one iteration step
of the corresponding iterative solver method.

1.2.2.4.1 Jacobi This preconditioner, which is also considered in Section 1.5, can be con-
sidered a splitting or scaling preconditioner, since it corresponds to the preconditioner matrix
P = D−1.

1.2.2.4.2 (Symmetric) Gauss-Seidel The preconditioner matrix of the simple Gauss-
Seidel preconditioner is

P = (D + L)−1 . (1.9)

For the symmetric form, the preconditioner matrix is

P = (D +R)−1D(D + L)−1 . (1.10)

1.2.2.4.3 (Symmetric) SOR This preconditioner is equivalent to the Successive Overre-
laxation (SOR) method, resulting in the preconditioner matrix

P = ω(D + ωL)−1 . (1.11)

Here ω is a parameter supplied by the user with ω ∈ (0, 2). Its symmetrised counterpart is
given by

P = ω(2− ω)(D + ωR)−1D(D + ωL)−1 . (1.12)

The (s)SOR preconditioners correspond to shortened (ω < 1) or prolonged (ω > 1) Gauss-Seidel
steps and, as such, can be attempted once it has been established that the (s)GS preconditioners
do not result in the desired reduction of step number. Since an iterative solution is, simply
put, an update of the proposed solution ~xk at step k by a correction - the residual ~rk - one
may introduce an importance weighting of the correction ω: ~xk+1 = ~xk + ω~rk. Dependent
upon the problem and the current approximation ~xk a larger or smaller correction to ~xk can be
performed.

1.2.3 Approximate Inverses
Instead of computing an approximate factorization of the sparse matrix A sequentially, one
may directly approximate its inverse by minimizing

‖I −BA‖2 (1.13)

w.r.t. B in one go. This class of preconditioners generally yields better to parallelisation
attempts, at the cost of higher memory complexity, since (1.13) essentially factorizes into
independent least-squares approximations. Note that while for the true inverse holds A−1A =
I = AA−1 this does not hold for approximate inverses, i.e. a right-inverse obtained using
‖I − AB‖2 will generally differ from a left inverse, obtained from ‖I −BA‖2.

1.2. PRECONDITIONER CLASSES 9

1.2.3.1 SPAI - SParse Approximate Inverse

The method enlarges the non-zero pattern of the approximant B dynamically until the mini-
mization problem is solved to within a provided tolerance. Minimisation of the residual results
in the method providing robust preconditioners at the cost of being time-consuming. This
approach does not guarantee that the approximate inverse B of a symmetric matrix will be
symmetric.

1.2.3.2 FSAI - Factorized Sparse Approximate Inverse

This variant of SPAI does not approximate B = A−1 directly but rather the Cholesky factors
of B, i.e., L in A−1 ≈ LtL. Usage of Cholesky factors imposes the same restrictions on the
matrix A as the (incomplete) Cholesky decomposition 1.2.2.3 - A has to be symmetric positive
definite. If A is s.p.d., then FSAI is well-defined, the converse - in general - does not hold.

1.2.3.3 AINV - Approximate INVerse

Similar to FSAI this method approximates the inverses of triangular factors which, if fully
computed, transform the matrix A into a diagonal matrix: L−1AU−1 = D.

1.2.3.4 MCMCMI - Markov Chain Monte Carlo Matrix Inversion

This method computes a sparse approximate inverse approximation via a random walk on
the graph defined by interpreting A as an adjacency matrix. We discuss this further in Sec-
tion 1.2.5.2.

1.2.4 Multigrid Methods
Similar to the splitting preconditioners, multigrid preconditioners originate from multigrid so-
lution methods. The latter are intended to accelerate the convergence of, e.g., Gauss-Seidel
iterations for large systems by essentially coarsening the solution vector ~x (e.g., by selecting
only every second element), computing a solution with ~x as the right-hand side vector ~b of a
smaller linear system and finally interpolating the coarse solution onto the original solution and
updating the original ~x [31].

Originally, the methods were conceived for the solution of elliptic PDE where highly oscilla-
tory components of the residual solution can be damped by solving computing a solution on a
coarser mesh and updating the solution on the finer mesh. Algebraic multigrid methods (AMG)
abstract the geometric picture of a mesh away and attempt to replicate the procedure given only
the system matrix A. Multigrid methods vary by the choice of the coarsening and interpolation
operators as well as of the coarsening/refinement cycles. These methods are very well suited for
linear systems resulting from the discretization of elliptic PDE. They are especially suited for
approaches where iterative mesh refinement is utilised. Furthermore, these methods scale well,
provided the utilised solver is well-parallelised. In the case of a strongly heterogeneous system
(i.e., multiscale system) or of strongly irregular meshes (e.g., mesh refinement at a sharp tip)
these methods are known to fail.

1.2.4.1 lAIR

Classical AMG method variants are available for both symmetric and nonsymmetric problems
although the former are more widely known and used. The lAIR preconditioner is a variation on
classical AMG for nonsymmetric matrices [22]. The method is based on a local approximation
to an ideal restriction operator, which is coupled with F-relaxation. For a given mesh with

10 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

vertex set V, the set V is partitioned into F-points and C-points, where C-points represent
vertices on the coarse grid. The matrix A can then be symbolically ordered into the following
block form:

A =
(
Aff Afc
Acf Acc

)
,

where Aff corresponds to the F-points. F-relaxation improves the solution at the F-points and
this accuracy is then distributed at the C-points via the coarse-grid correction (ideal restriction):

R =
(
−AcfA−1

ff I
)
.

It has been shown to be a robust solver for various discretizations of the advection-diffusion-
reaction equation in regimes ranging from purely advective to purely diffusive and including
time-dependent and steady-state problems.

1.2.5 Stochastic Methods
The methods presented above are deterministic and generally touch each value of the matrix
at least once during the computation. Stochastic methods aim to reduce computational costs
by utilising only the “important subset” of the matrix/vector entries.

A fairly accurate interpretation of stochastic methods would be as “measurement”, where
a systematic error (equivalent to the tolerances for deterministic methods) is to be balanced
with a stochastic measurement error. Usage of stochastic methods for the computation of
preconditioners uses the fact that a preconditioner does not have to be excellent to be usable,
but instead has to be effective and quick to compute.

1.2.5.1 SP -Stochastic Projection

The basic idea is fairly simple and the implementation follows roughly equation (2.13) of [34].
The main idea is to project the solution vector successively and orthogonally onto arbitrarily
chosen subspaces of the row-space of the matrix until the accumulated effect leads the iteration
into the subspace of the true solution. An obvious extension to block-projections has been
mentioned in [34] with the iteration step given as follows:

~xk+1 = ~xk + Ati
(
AiA

t
i

)−1 (~bi − Ai~xk) . (1.14)

Here Ai is a randomly selected block of rows of the matrix and ~bi the corresponding subset of
entries of the right-hand-side vector of

A~x = ~b . (1.15)

The intuitive simplicity of this approach is paid for by its performance. Furthermore, the
computation of a matrix inverse in each step is required. Depending on the block size of the
computation of said inverse, or a solution of a dense system, may incur a significant cost.

1.2.5.2 MCMCMI - Markov Chain Monte Carlo Matrix Inversion

This method computes a sparse approximate inverse by performing a random walk on the graph
defined by interpreting the matrix A as an adjacency matrix. The entries of the inverse are
computed by utilising the Neumann series:

A−1 =
∞∑
i=0

(I − A)i . (1.16)

1.3. FURTHER REMARKS 11

This requires ρ(A) < 1 in general, but by proper scaling can be used even when this condition is
not fulfilled. The benefit of this method is that it does not require the matrix A to be explicitly
known and the computational cost of computing either one row of the inverse or one element
of the solution vector scales as O(NT), where N is the number of Markov chains and T the
mean length of a chain.

1.3 Further Remarks

1.3.1 On Parallelism
As has been remarked above, many of the factorization methods require a prior graph-partitioning
to restructure the system matrix - ideally in a block-diagonal form. The Gauss-Seidel precon-
ditioning iteration, for instance, carries an explicit data dependency. This can be circumvented
by usage of so-called wave-front parallelization [13] but is, as a rule, not part of the solver
implementation.

Approximate inverses are generally much more amenable to parallelization due to the afore-
mentioned independence of the least-squares problems that need to be solved. Stochastic
methods such as MCMCMI fall into the same category.

1.3.1.1 Domain decomposition

The decomposition of the computational simulation domain with a local ordering of the nodes
of the mesh improves the feasibility of factorization methods by reducing the effects of data
dependencies and concentrating matrix entries relevant for the local physical domain on the
local computational domain. This in turn simplifies the partitioning of the system matrix into
block-diagonal form (with or without overlap). An additive Schwarz preconditioner performs a
factorization on the (overlapping) blocks in parallel, with an additive averaging on the overlaps.

1.3.2 On Matrices
Most of the aforementioned methods can be used matrix-free, since they generally only require
the ability to determine the elements of the matrix and compute a matrix-vector product.
Incomplete factorizations with fill-in (ILU(k), IC(k)) are less amenable to usage with matrix-
free methods due to the need to compute the fill indices of the matrix elements and to create
a factorization with a non-zero pattern larger than the original system matrix.

Scalings and approximate inverses are more amenable to use with matrix-free methods due
to the only requirement being the computation of the matrix elements.

1.4 Summary of Preconditioners
In Table 1.2, we summarise the preconditioners as well as their prerequisites and limitations.
We distinguish between regular (i.e., non-singular, invertible) matrices and general matrices.
The latter do not have to be square, in which case one computes an approximate pseudo-inverse,
rather than an approximate true inverse.

The column ”CG usable” indicates whether a preconditioner computed with a given method
is usable with an iterative solver which requires a symmetric, positive matrix (represented by the
CG iteration), i.e., whether the method produces a symmetric, positive definite preconditioner.
This information is intended as a rough guide only, since asymmetric preconditioners (e.g., as
computed by SPAI or MCMCMI) may still work as intended.

12 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

Constraints on the system matrix given in the second column stem, in part, from theoretical
considerations. Methods such as IC, (s)SOR, FSAI may still compute a valid preconditioner
if the system matrix is indefinite but the theory guarantees that, with exact arithmetic, these
methods will not fail if the matrix is symmetric and positive definite.

Ta
bl

e
1.

2:
Su

m
m

ar
y

of
pr

ec
on

di
tio

ne
rs

an
d

th
ei

ra
pp

lic
at

io
n

sc
en

ar
io

s.
H

er
e

“s
.p

.d
.”

de
no

te
sa

sy
m

m
et

ric
po

sit
iv

e
de

fin
ite

m
at

rix
,“

re
gu

la
r”

an
in

ve
rt

ib
le

m
at

rix
,“

ge
ne

ra
l”

a
ge

ne
ra

l(
no

n-
sq

ua
re

)
m

at
rix

an
d

“d
.d

.”
a

do
m

in
an

t
di

ag
on

al
.

“G
P”

ab
br

ev
ia

te
s

“g
ra

ph
pa

rt
iti

on
in

g”
an

d
“W

P”
“w

av
ef

ro
nt

pa
ra

lle
liz

at
io

n”
[1

3]
.

Pr
ec

on
di

tio
ne

r
Sy

st
em

m
at

rix
PD

E
ty

pe
M

at
rix

-fr
ee

A
re

qu
ire

d
ex

pl
ic

itl
y

pa
ra

lle
liz

ab
le

C
G

us
ab

le
Ja

co
bi

0
/∈

di
ag

(A
),

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

Ye
s

Ye
s

Sc
al

in
g

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

Ye
s

Ye
s

D
-IL

U
0
/∈

di
ag

(A
),

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

vi
a

G
P

Ye
s

IL
U

(k
≥

0)
/I

LU
T

(ρ
,τ

)
re

gu
la

r
ge

ne
ra

l
N

o
Ye

s
vi

a
G

P
N

o
IC

(k
≥

0)
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

N
o

Ye
s

vi
a

G
P

Ye
s

(s
)G

S
re

gu
la

r,
d.

d.
ge

ne
ra

l
Ye

s
N

o
vi

a
W

P
sG

S
on

ly
(s

)S
O

R
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

Ye
s

N
o

vi
a

W
P

sS
O

R
on

ly
SP

A
I

ge
ne

ra
l

ge
ne

ra
l

N
o

N
o

Ye
s

N
o

FS
A

I
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

N
o

N
o

Ye
s

Ye
s

A
IN

V
re

gu
la

r
ge

ne
ra

l
N

o
N

o
lim

ite
d

N
o

A
M

G
re

gu
la

r
el

lip
tic

,h
yp

er
bo

lic
,p

ar
ab

ol
ic

Ye
s

N
o

Ye
s

Ye
s

lA
IR

re
gu

la
r

el
lip

tic
,p

ar
ab

ol
ic

Ye
s

N
o

un
de

te
rm

in
ed

-
SP

ge
ne

ra
l

ge
ne

ra
l

Ye
s

N
o

Ye
s

N
o

M
C

M
C

M
I

ge
ne

ra
l

ge
ne

ra
l

N
o

N
o

Ye
s

N
o

Chapter 2

Application Cases

2.1 Introduction
Due to the limited duration of the NEPTUNE Preconditioning Project, the variety of problems
and test cases available within the NEPTUNE programme [2] has to be reduced to a manageable
level. In the following we present the equations and test cases that will be considered within
the given project.

2.2 Elliptic Problems
For elliptic problems, System 2-2 from [2] is our priority, which consists of a 2-D elliptic solver
in complex geometry. BOUT++ [9] already has some test cases and Nektar++ [35] also has
some suitable cases. BOUT++ has finite difference examples whilst Nektar++ uses finite and
spectral/hp elements for its discretizations. There is a solver in BOUT++ that sets up a matrix
problem and calls PETSc [29], and another implementation of the same problem which calls
HYPRE [10]. Since BOUT++ uses finite differences and not finite, high order, elements, there
are plans within the NEPTUNE Programme to implement the Nektar++ version over the next
6 months or so.

2.3 Hyperbolic Problems
For hyperbolic problems, System 2-3 from [2] is our priority case. There is already a BOUT++
test case called SD1D [9] that models the dynamics along the magnetic field, utilises finite
differences and is a matrix-free implementation that uses SUNDIALS [40]. A version of this
test problem is going to be set up using Nektar++ during the next few months. For the
dynamics across the magnetic field, there are 2D problems like Hasegawa-Wakatani, which are
a similar to incompressible fluid dynamics:

∂n

∂t
= −{φ, n}+ α(φ− n)− κ∂φ

∂z
+Dn∇2

⊥n (2.1a)
∂ω

∂t
= −{ω, n}+ α(ω − n) +Dω∇2

⊥ω (2.1b)

∇2φ = ω . (2.1c)

Here n is the plasma number density, ω := ~b0 ·∇×~v is the vorticity with ~v being the ~E× ~B drift
velocity in a constant magnetic field and ~b0 is the unit vector in the direction of the equilibrium
magnetic field. The operator {·, ·} in (2.1) is the Poisson bracket.

14

2.3. HYPERBOLIC PROBLEMS 15

Let us assume for simplicity, that n, ω, φ are discretized using the same basis in space and
an implicit Euler method is used for the time evolution, then the following set of non-linear
equations is obtained from (2.1):

0 = M(~ni − ~ni−1) + ∆t
(
diag

(
Lx~φi

)
Lz~ni − diag

(
Lz~φi

)
Lx~ni

− αM
(
~φi − ~ni

)
− κLz~φi −DnK~ni

)
(2.2a)

0 = M (~ωi − ωi−1) + ∆t
(
diag

(
Lx~φi

)
Lz~ωi − diag

(
Lz~φi

)
Lx~ωi

− αM
(
~φi − ~ni

)
−DωK~ωi

)
(2.2b)

0 = K~φi −M~ωi , (2.2c)

where K,M are the stiffness and mass matrices respectively and Lx, Lz are transport matrices
and represent the discretized versions of ∂x, ∂z [6]. Note that the first two terms in the ∆t bracket
in the first two equations (the terms with two L operators) are straightforward discretizations
of the Poisson bracket {f, g} = ∂xf∂zg − ∂zf∂xg where the recasting of, e.g. Lz~φ, is necessary
to ensure that the result of diag

(
Lz~φi

)
Lx~ni is again a vector (a discretized function).

Since the equations are non-linear they have to be solved e.g. via Newton’s method, which
requires the Jacobian of the system. The latter has the following form:

J :=

A 0 E
B C G
0 −M K

 , (2.3)

where the constituent matrices are the following

A = M + ∆t
(
diag

(
Lx~φi

)
Lz − diag

(
Lz~φi

)
Lx + αM −DnK

)
(2.4a)

B = α∆tM (2.4b)
C = M + ∆t

(
diag

(
Lx~φi

)
Lz − diag

(
Lz~φi

)
Lx −DωK

)
(2.4c)

E = ∆t (diag (Lz~ni)Lx − diag(Lx~ni)Lz − αM − κLz) (2.4d)
G = ∆t (diag(Lz~ωi)Lx − diag(Lx~ωi)Lz) . (2.4e)

Alternatively the last equation of (2.2) can be used to eliminate ~φi by virtue of ~φi = K−1M~ωi.
The Jacobian of the reduced system is then of the form

J̃ :=
[
P R
Q S

]
, (2.5)

with the constituent matrices

P = M + ∆t
(
diag

(
LxK

−1M~ωi
)
Lz − diag

(
LzK

−1M~ωi
)
Lx + αM −DnK

)
(2.6a)

Q = α∆tM (2.6b)
R = ∆t

(
diag (Lz~ni)LxK−1M − diag(Lx~ni)LzK−1M − αMK−1M − κLzK−1M

)
(2.6c)

S = M + ∆t
(
diag

(
LxK

−1M~ωi
)
Lz + diag (Lz~ωi)LxK−1M − αMK−1M −DωK

)
(2.6d)

As mentioned above, even if the stiffness matrix K is sparse its inverse will generally be
dense. Hence, for the discretization methods of interest for the project, the Jacobian of the
reduced system J̃ will not be sparse. Therefore, one of the questions is whether to (a) use the

16 CHAPTER 2. APPLICATION CASES

reduced system but have a dense Jacobian, or (b) treat the elliptic problem as a constraint
but have a sparse, larger and more ill-conditioned Jacobian. Option (a) is normally done but
experiments have also been done in BOUT++ (b) in order to use PETSc’s matrix coloring to
extract an approximate matrix for pre- conditioning from our matrix-free code. Nektar++ also
has an implementation of the Hasegawa-Wakatani problem.

2.4 Comments
When possible, Nektar++ examples should have higher priority than BOUT++ due to the
expectation that finite element and spectral discretizations will be the method of choice for
future simulations. In addition, we should expect adaptive hp-refinement to be used. Nektar++
is moving towards matrix-free implementations. For Nektar++, we need to keep in contact with
David Moxey.

Chapter 3

Implementations

3.1 Introduction
For scientific computing, there are widely-used platforms such as (among others) PETSc/TAO
[29], Trilinos, BOUT++ [9], Nektar++[35] and SUNDIALS [40] available. According to the
prioritised equations in Chapters 2, there are several studies using these platforms accessible
in the literature.

3.2 Elliptic Problems
As indicated in Chapter 2, the Grad-Shafranov equations is used to generate spectrally accurate
magnetic fields to use in other proxyapps [2]. There are highly-scalable, multi-physics imple-
mentations for Grad-Shafranov using finite difference [20] [41] and finite element [28] methods
with PETSc as well as finite element methods [32] [5] with Trilinos. To solve another equation
of interest, the non-Boussinesq vorticity equation, [3] used preconditioned Conjugate Gradient
with a Block–Jacobi preconditioner from PETSc. In [18], an inexact Newton-Krylov approach
with PETSc was used to solve a similar problem. In addition, [4] uses a matrix-free method from
PETSc to solve a non-Boussinesq formulation of polythermal ice flow. In [33], similar problems
were solved with massive MPI parrallelism using Krylov methods with preconditioners (ILU(k)
and block Jacobi) from PETSc. As discussed in Chapter 2, there are implementations and
suitable cases available in BOUT++ [9] and Nektar++ [35]. There are also tools which use the
mixture of platforms such as libMesh [16] and CoolFluiD[19] framework specialised for plasma
and multi-physics simulations.

3.3 Hyperbolic Problems
As stated in Chapter 2, the hyperbolic case focuses on system 2-3 of [2], of which several related
implementations and test cases exist in BOUT++ and Nektar++.

In the literature, several studies exist in which highly parallelized solvers for a 2-fluid model
have been considered and implemented. In [23], the linearized two-fluid MHD equations were
solved using a matrix-free Newton-Krylov method of solution in XTOR-2F (PETSc) with MPI
parallelism. In [39], an MPI parallelized Vlasov Fokker-Planck (VFP) set of equations was
solved (IMPACT [15]) using BICGstab as solver with an ILU preconditioner provided by
PETSc. In [21], a system of multi-fluid equations was solved using GMRES with a parallel
Additive Schwarz preconditioner provided by PETSc. VFP-based equations are also solved by
a package introduced in [25] and based on PETSc with MPI parallelism. In addition, there is
a package [38] available within Trilinos.

17

18 CHAPTER 3. IMPLEMENTATIONS

3.4 Other libraries of interest to the NEPTUNE Pro-
gramme

Clearly, the preconditioners from PETSc and Trilinos are already highly-used and their applica-
bility for future exascale implementations will need exploring. However, our literature searches
also identified other interesting libraries libraries.

DUNE is an open-source high-performance iterative solver that has an implementation of
the GenEO preconditioner [36] for strongly anisotropic elliptic partial differential equations
implemented within dune-pdelab. This preconditioner has a MPI implementation: good weak
and strong scalability demonstrated on ARCHER. We note that there is a version of the GenEO
preconditioner is available in PETSc.

HYPRE [10] is a library of scalable linear solvers and multigrid methods from Lawrence
Livermore National Laboratory. MPI implementations are provided.

HSL MI20 is an implementation of an algebraic multigrid preconditioner for nonsymmetric
systems from the HSL library [14]. Unfortunately, parallelism is only provided through the use
of parallelized Level 3 BLAS subroutine calls and it is not suitable for matrix-free/operator
only provision of A.

MUMPS [26] is a Fortran 95 library that utilizes MPI and OpenMP to solve large sparse
systems via direct methods and would be a good option for comparing iterative methods with
direct methods. The library is developed within a consortium of people from CERFACS, ENS
Lyon, INPT(ENSEEIHT)-IRIT, Inria, Mumps Technologies and the University of Bordeaux.

PaStiX (Parallel Sparse matriX package) [27] is a scientific library that provides a high
performance parallel solver for very large sparse linear systems based on direct methods. The
library can also be used to form preconditioners. As well as using MPI and OpenMP, the most
recent versions of the library also support the use of GPUs.

The STRUMPACK [37] library provides linear algebra routines and linear system solvers for
sparse and for dense rank-structured linear systems. The library has Fortran and C interfaces
and can also be used to compute incomplete LU factorization-based preconditioners. Paral-
lization is provided via MPI and OpenMP but the preconditioner routines do not currently
support GPUs.

We also direct the reader to Jack Dongarra’s list of freely available software for linear algebra
[7], which provides a list of software and associated attributes, and is periodically updated.

Bibliography

[1] P. Arbenz, O. Chinellato, M. Gutknecht, and M. Sala. Software for Numerical Linear Algebra.
online, 2006.

[2] W. Arter and R. Akers. ExCALIBUR equations for NEPTUNE Proxyapps. techreport, UK
Atomic Energy Authority, 2020.

[3] B. Bigot, T. Bonometti, L. Lacaze, and O. Thual. A simple immersed-boundary method for
solid–fluid interaction in constant-and stratified-density flows. Computers & Fluids, 97:126–142,
2014.

[4] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith. Composable linear solvers
for multiphysics. In 2012 11th International Symposium on Parallel and Distributed Computing,
pages 55–62. IEEE, 2012.

[5] P. Daniel, A. Ern, I. Smears, and M. Vohraĺık. An adaptive hp-refinement strategy with com-
putable guaranteed bound on the error reduction factor. Computers & Mathematics with Appli-
cations, 76(5):967–983, 2018.

[6] P. Deuflhard and M. Weiser. Adaptive Numerical Solution of PDEs. deGruyter, 2013.

[7] J. Dongarra. Freely Available Software for Linear Algebra, 2018. URL
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

[8] J. Dongarra, R. Barett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 2014.

[9] B. Dudson, P. Hill, and J. Parker. BOUT++. online repository, 2020. URL
http://boutproject.github.io.

[10] R. Falgout, A. Barker, T. Kolev, R. Li, S. Osborn, D. Osei-Kuffuor, V. P. Magri, and
J. Schroeder. HYPRE: Scalable Linear Solvers and Multigrid Methods. online, 2017. URL
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods.

[11] M. Ferronato. Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century:
History, Current Developments, and Future Prospects. ISRN Applied Mathematics, 2012:49,
October 2012. doi: 10.5402/2012/127647.

[12] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU press, 2013.

[13] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and Engi-
neers. Chapman and Hall/CRC, 2011. Asian Reprint.

[14] HSL Development Team. The HSL Mathematical Software Library, 2015. URL
https://www.hsl.rl.ac.uk.

[15] R. Kingham and A. Bell. An implicit Vlasov–Fokker–Planck code to model non-local electron
transport in 2-D with magnetic fields. Journal of Computational Physics, 194(1):1–34, 2004.

19

20 BIBLIOGRAPHY

[16] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: a C++ library for parallel
adaptive mesh refinement/coarsening simulations. Engineering with Computers, 22(3-4):237–254,
2006.

[17] D. Kressner. Lecture notes for the course on Numerical Methods held by Daniel Kressner in the
spring semester 2010 at the ETH Zurich. (Numerische Methoden Vorlesungsskript zur Veranstal-
tung Numerische Methoden gehalten von Daniel Kressner im FS 2010 an der ETH Zürich). ETH
Zürich, May 2010.

[18] M. Kumar and G. Natarajan. Unified solver for thermobuoyant flows on unstructured meshes.
In Fluid Mechanics and Fluid Power–Contemporary Research, pages 569–580. Springer, 2017.

[19] A. Lani, T. Quintino, D. Kimpe, H. Deconinck, S. Vandewalle, and S. Poedts. The COOLFluiD
framework: design solutions for high performance object oriented scientific computing software.
In International Conference on Computational Science, pages 279–286. Springer, 2005.

[20] S. Liu, Q. Tang, and X.-Z. Tang. A parallel cut-cell algorithm for the free-boundary Grad-
Shafranov problem. arXiv preprint arXiv:2012.06015, 2020.

[21] Y. G. Maneva, A. A. Laguna, A. Lani, and S. Poedts. Multi-fluid modeling of magnetosonic wave
propagation in the solar chromosphere: effects of impact ionization and radiative recombination.
The Astrophysical Journal, 836(2):197, 2017.

[22] T. Manteuffel, J. Ruge, and B. Southworth. Nonsymmetric algebraic multigrid based on local
approximate ideal restriction (lair). SIAM Journal on Scientific Computing, 6(40):4105–4130,
2018.

[23] A. Marx and H. Lütjens. Hybrid parallelization of the XTOR-2F code for the simulation of
two-fluid MHD instabilities in tokamaks. Computer Physics Communications, 212:90–99, 2017.

[24] A. Meister. Numerics of systems of linear equations (Numerik Linearer Gleichungssysteme).
Springer Spektrum, 5 edition, 2014. doi: 10.1007/978-3-658-07200-1. With MATLAB exercises.

[25] S. Mijin, A. Antony, F. Militello, and R. J. Kingham. SOL-KiT—Fully implicit code for kinetic
simulation of parallel electron transport in the tokamak Scrape-Off Layer. Computer Physics
Communications, 258:107600, 2021.

[26] MUMPS Development Team. MUMPS: MUltifrontal Massively Parallel sparse direct Solver,
2020. URL http://mumps.enseeiht.fr/index.php?page=home.

[27] PaStiX Development Team. PaStiX: Parallel Sparse matriX package, 2019. URL
http://pastix.gforge.inria.fr/files/README-txt.html.

[28] Z. Peng, Q. Tang, and X.-Z. Tang. An Adaptive Discontinuous Petrov–Galerkin Method for the
Grad–Shafranov Equation. SIAM Journal on Scientific Computing, 42(5):B1227–B1249, 2020.

[29] PETSc Development Team. PETSc Web page, 2019. URL https://www.mcs.anl.gov/petsc.

[30] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2002.

[31] R. Rabenseifner, A. Meister, et al. Iterative Solvers and Parallelization - Course material for
HLRS Course 2016-ITER-S, 2016.

[32] N. V. Roberts, D. Ridzal, P. B. Bochev, and L. Demkowicz. A toolbox for a class of discontinuous
Petrov-Galerkin methods using Trilinos. Technical Report SAND2011-6678, Sandia National
Laboratories, 2011.

[33] A. L. Rossa and A. L. Coutinho. Parallel adaptive simulation of gravity currents on the lock-
exchange problem. Computers & Fluids, 88:782–794, 2013.

BIBLIOGRAPHY 21

[34] K. Sabelfeld and N. Loshchina. Stochastic iterative projection methods for large linear systems.
Monte Carlo Methods and Applications, 2010. doi: 10.1515/mcma.2010.020.

[35] S. Sherwin, M. Kirby, C. Cantwell, and D. Moxey. Nektar++. online, 2021. URL
https://www.nektar.info.

[36] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numerische
Mathematik, 1(126):741–770, 2014.

[37] STRUMPACK Development Team. STRUMPACK - STRUctured Matrix PACKage, 2021. URL
https://portal.nersc.gov/project/sparse/strumpack/v5.0.0/index.html.

[38] Trilinos Project Team. Stokhos Package for Intrusive Stochastic Galerkin Methods, 2021. URL
https://trilinos.github.io/stokhos.html.

[39] B. Williams and R. Kingham. Hybrid simulations of fast electron propagation including magne-
tized transport and non-local effects in the background plasma. Plasma Physics and Controlled
Fusion, 55(12):124009, 2013.

[40] C. S. Woodward, D. R. Reynolds, A. C. Hindmarsh, D. J. Gardner, and C. J. Balos. SUN-
DIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers. online, 2021. URL
https://computing.llnl.gov/projects/sundials.

[41] P. Zhu, C. Sovinec, C. Hegna, A. Bhattacharjee, and K. Germaschewski. Nonlinear ballooning
instability in the near-Earth magnetotail: Growth, structure, and possible role in substorms.
Journal of Geophysical Research: Space Physics, 112(A6), 2007.

Implicit-factorization preconditioners for

NEPTUNE Programme

Technical Report 2047353-TN-03

Maksims Abaļenkovs∗ Vassil Alexandrov∗ Anton Lebedev∗ Emre Sahin∗

Sue Thorne∗∗

July 2021

1 Introduction

In simulations relating to plasma physics, and more generally, the dominate component in terms of
simulation time is normally the time to solve the underlying linear systems

Ax = b.

In this report, we will assume that A ∈ Rn×n is non-singular, the right-hand side b ∈ Rn is provided
and we wish to compute an (approximate) solution x ∈ Rn. These systems are usually solved via an
iterative method such a Krylov subspace method. Typically, the nature of these systems mean that a
large number of iterations are required to reach the desired level of accuracy. To reduce the number of
iterations, we aim to choose a preconditioner P ∈ Rn×n such that applying the iterative method to the
equivalent system

P−1Ax = P−1b

results in a reduction in the number of iterations and the time to set-up P and to solve with P during
each iterations is such that there is an overall reduction in solution time. Note, in the above, we have
described left preconditioning. For right preconditioning, one is solving the equivalent system

AP−1y = b, x = P−1y.

It is also possible to use a combination of left and right preconditioners together:

P−11 AP−12 y = P−11 b, x = P−12 y.

2 Software for Plasma Physics Modelling: Overview

In the following, we describe our use of BOUT++ and Nektar++, which have been identified by UKAEA
to be the modelling packages of interest for the NEPTUNE Project. As part of the descriptions, we include
how preconditioners are currently incorporated into these libraries.

∗The authors are with the Hartree Centre, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick, Daresbury,
Warrington, WA4 4AD, UK. Email contact: maksims.abalenkovs@stfc.ac.uk

∗∗Sue Thorne is with the STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK. Email
contact: sue.thorne@stfc.ac.uk

1

mailto:maksims.abalenkovs@stfc.ac.uk
mailto:sue.thorne@stfc.ac.uk

2.1 BOUT++

BOUT++ [5] is very much designed for matrix-free calculations, which use external packages PETSc or
SUNDIALS to solve the more complex problems. In themselves, these external packages use matrix-free
implementations by default. This means that custom preconditioners either need to be developed in
a matrix-free, operator-based manner and provided via BOUT++ or, for preconditioners that can act in
a matrix-free manner, but require access to the action of the linear system being solved, it would need
implementing within the under-lying library.

As part of this project, we used a nonlinear diffusion test case that simulates the effects of heat
conduction in a plasma. This test case is provided as part of BOUT++. At the moment, BOUT++
relies on the PETSc package for the preconditioning work within this test case. There are multiple ways
to execute the heat conduction example. In the simplest possible form the code is launched with

./diffusion-nl

IMEX-BDF2 multistep scheme is launched with

./diffusion-nl solver:type=imexbdf2

Preconditioning is enabled with the following flag

./diffusion-nl solver:use_precon=true

Finally, the Jacobian colouring with the IMEX-BDF2 is enabled with

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false

The end command used in the experiments is

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false solver:use_precon=true

Extracting and saving the system matrix was done via PETSc routines. In order to save the matrix
imex-bdf2.cxx source code file was modified. The precon routine was supplemented with the following
commands (Figure 1):

1: PetscViewer viewer;
2: PetscViewerASCIIOpen(MPI COMM WORLD, "A.mtx", &viewer);
3: PetscViewerPushFormat(viewer, PETSC VIEWER ASCII MATRIXMARKET);
4: MatView(Jmf, viewer);

Figure 1: C++ source code for system matrix extraction

In this report, we also consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid
in one dimension (along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear
diffusion example, this test case provides a preconditioner as part of the model in an operator-based
manner.

2.2 Nektar++

Nektar++ [2, 6] is designed to provide discretisation and solution of partial differential equations using
the spectral/hp element method.

Nektar++ accepts *.xml or similar formats as inputs, where the input file provides finite-element
mesh and the specifications to solve the specific PDE problem. The specification of the mesh format
within Nektar++ is hierarchically defined as: 1D edges as connection of vertices, 2D faces as bounding
edges and 3D elements as bounding faces. Nektar++’s MultiRegions library derives mapping from these
meshes and uses these mappings for different Galerkin projection methods to assembly a global linear
system. Afterwards, constructed global linear system may be solved by using direct Cholesky factorisation
or iterative preconditioned conjugate gradient. Nektar++ provides range selection of the preconditioners
such as classical Jacobi preconditioner, coarse-space preconditioner, block preconditioner and low-energy
preconditioner. It is also providing interface to use PETSc for additional solvers. Nektar++ evaluates
L2 and Linf errors against the provided exact solution.

2

Due to the structure of the MCMCMI algorithm, it is not feasible to adapt it as a preconditioner
module for the Nektar++ in the timeline of the project according to the steps described in [2]. Therefore,
Nektar++ is edited accordingly to extract full system matrices as Matrix Market format *.mtx to use it
separately in the MCMCMI algorithm.

Nektar++ provides Advection-Diffusion-Reaction solver to solve partial differential equations of the
form (1) in either discontinuous or continuous projections of the solution field [6].

α
∂u

∂t
+ λu+ v∇u+ ε∇ · (D∇u) = f (1)

However, it is not possible to construct linear systems for the discontinuous Galerkin. Hence, application
cases with continuous Galerkin were chosen from ’Nektar++/Solvers/ADRSolver/Tests’ accordingly to
the prioritised equations as described in [1].

2.3 Testing Environment

Numerical experiments were run on the SKL (Skylake) nodes of the Scafell Pike system which consists
of nodes fitted with 2x XEON gold E5-6142 v5 processors resulting in 32 cores per node and, due to
HyperThreading, 64 threads per node.

3 Numerical Results for Sparse Approximate Inverse Precondi-
tioners

MCMCMI experiments were performed on four system matrices extracted from the BOUT++ software.
These matrices were created for one and the same one-dimensional “Non-linear diffusion” test problem
called diffusion-nl. The main BOUT++ source code was modified to enforce PETSc, powering the
solution of diffusion-nl problem, to output system matrices into the Matrix Market *.mtx format.
Matrix orders of the extracted BOUT++ system matrices were n = 128, 512, 2048, 8192. The ever-
increasing system matrices were obtained by increasing the resolution over the y axis. Unfortunately, it
was not possible to extend the problem even further since PETSc started to crash for ny > 8192.

 10

 100

 1000

 10000

 100000

128 512 2048 8192

It
e

ra
ti
o

n
s

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 2: Matrix order vs GMRES and BiCGStab iteration steps, BOUT++.

In Figure 2, we compare the matrix order vs GMRES and BiCGStab iteration steps for the BOUT++
examples. In the case of GMRES method and small matrices (n = 128, 512), the MCMCMI preconditioner
P decreases the number of iterations required for the linear system solution by 18% and 72% respectively.
In GMRES method applied to larger matrix orders (n = 2048, 8192) MCMCMI preconditioner shows
a dramatic improvement of 94%. On the other hand, using the BiCGStab solver, MCMCMI-based
preconditioner provides performance comparable with the reference solution for small matrices (n =

3

128, 512). For larger system matrices (n = 2048, 8192) MCMCMI preconditioner reduces the number of
iterations by 26% and 27% respectively.

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

10.0000000

100.0000000

128 512 2048 8192

L
1
 n

o
rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 3: Matrix order vs L1 norm values in GMRES and BiCGStab, BOUT++.

We compare the L1 norm values for our approximate solutions from GMRES and BiCGStab for the
BOUT++ test problems in Figure 3. The highest values of L1 norm are provided by the preconditioned
linear system solve in the GMRES method. L1 norm values for non-preconditioned solutions in GMRES
and BiCGStab are comparable. Finally, the smallest values of L1 norm are obtained by the preconditioned
solution with the BiCGStab. One exception is the L1 norm values for the smallest test matrix (n = 128).

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

128 512 2048 8192

L
2
 n

o
rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 4: Matrix order vs L2 norm values in GMRES and BiCGStab, BOUT++.

In Figure 4, we compare the L2 norm values for our approximate solutions from GMRES and
BiCGStab for the BOUT++ test problems. The L2 norm values follow the same tendency as the L1

norms described above (See Fig. 3 for details). The highest values are produced by the preconditioned
solution with the GMRES method and the lowest—by the preconditioned solution with the BiCGStab
algorithm. The L∞ norm values are compared in Figure 5. L∞ norms exhibit behaviour similar to the
L1 and L2 norms. Overall, the L∞ norms are the smallest amongst all norms. With rare exceptions
the preconditioned system solutions resulted in the highest (GMRES) and the lowest (BiCGStab) norm
values. We note that a left preconditioner is being used within the GMRES method and, hence, at each

4

iteration k, the preconditioned residual

||P−1 (b−Axk) ||2

is minimimised, where xk is a member of the Krylov subspace defined by

span
{
P−1r0, P

−1AP−1r0, . . . ,
(
P−1A

)k
P−1r0

}
with r0 = b−Ax0. Now,

||P−1 (b−Axk) ||2
||P−1||2

≤ ||b−Axk||2 ≤ ||P ||2||P−1 (b−Axk) ||2

and, hence, left preconditioned GMRES is not minimising the L2 norm of the residual and the values
of ||P ||2 and ||P−1||2 are likely to be such that whilst ||P−1 (b−Axk) ||2 can be small, the value of
||b − Axk||2 can be large. There is no minimisation property for the iterations of BiCGStab but these
results lead to the question: would right preconditioned GMRES lead to similar results to BiCGStab?
In the future, we would like to investigate this with larger problem sizes.

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

128 512 2048 8192

L
∞

 n
o

rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 5: Matrix order vs L∞ norm values in GMRES and BiCGStab, BOUT++.

In Table 1, we provide the details for the matrices that were extracted from Nektar++. We compare
the number of GMRES and BiCGSTAB steps in Figure 6. Since the iterations are higher than non-
preconditioned GMRES method, the preconditioner failed for the GMRES method for all except the
Helmholtz problems. However, the preconditioner is successful for the BICGSTAB method. Higher L2

and L∞ values also supports the failure of the preconditioner for the GMRES method, likewise success
for the BICGSTAB method as shown in the Figures 7 and 8.

In the future, we would like to investigate the use of the MCMCMI preconditioner with test problems
that arise from anisotropic problems to see if the performance is markedly different.

5

Matrix name Label n Mode — Order Int timestep

Helmholtz H 1312 2D modal
Steady Adv-Diff SAD 2281 2D modal
Unsteady Adv-Diff 1 UAD1 225 Order 1 001
Unsteady Adv-Diff 2 UAD2 225 Order 1 0001
Unsteady Adv-Diff 3 UAD3 225 Order 2 001
Unsteady Adv-Diff 4 UAD4 225 Order 2 0001

Table 1: Nektar++ matrices used in MCMCMI preconditioner experiments.

 100

 1000

 10000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

It
e

ra
ti
o

n
s

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 6: Matrix order vs GMRES and BiCGStab iteration steps, Nektar++.

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

L
2
 n

o
rm

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 7: Matrix order vs L2 norm values in GMRES and BiCGStab, Nektar++.

6

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

L
∞

 n
o

rm

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 8: Matrix order vs L∞ norm values in GMRES and BiCGStab, Nektar++.

7

4 Numerical results for operator-based preconditioners

Here, we focus on operator-based preconditioners. An understanding of the underlying mathematical
operators and the numerical properties of discretised version can provide great insight into choice of
preconditioner. For example, a standard finite-element discretisation of the Laplacian operator will, in
general, have condition number that is inversely proportion to h2 for 2D problems and h3 for 3D, where
h is the mesh size. Thus, halving h will increase the condition number of factors of 4 or 8, respectively.
This can cause a dramatic increase in iterations if no preconditioner, or an ineffective preconditioner, is
used.

Suppose we have a problem that couples together 3 different variables, then the matrix A will naturally
split into a block 3× 3 format:

A =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 (2)

For such problems, it will be natural to use a block-diagonal preconditioner of the form:

P =

 P1,1 0 0
0 P2,2 0
0 0 P3,3

 , (3)

where the dimension of each block directly tallies with the dimension of the associated block in (2).
Alternatively, P could be block upper or lower triangular, or take a constraint preconditioner format:

P =

 P1,1 P1,2 A1,3

P2,1 P2,2 A2,3

A3,1 A3,2 A3,3

 .
For symmetric A, Wathen [8] provides a good overview of block preconditioners and we note that fac-
torizations of constraint preconditioners can be generated implicitly [3]. Constraint preconditioners have
been extended for non-symmetric problems in [7] and, due to time restrictions, are not considered for the
test case considered in this report.

Here, we consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid in one
dimension (along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear diffusion
example, this test case provides a preconditioner as part of the model in an operator-based manner. SD1D
has a number of different cases. For Case-03, the equations for the plasma density n, pressure p and
momentum minV||i are evolved:

∂n

∂t
= −∇ ·

(
bV||n

)
+ Sn − S (4)

∂

∂t

(
3

2
p

)
= −∇ · q + V||∂||p+ Sp − E −R (5)

∂

∂t

(
minV||

)
= −∇ ·

(
minV||bV||

)
− ∂||p− F (6)

j|| = 0

Ti = Te =
1

2

p

en

q =
5

2
pbV|| − κ||e∂||Te

Which has a conserved energy: ∫
V

[
1

2
minV

2
||i +

3

2
p

]
dV

The heat conduction coefficient κ||e is a nonlinear function of temperature Te:

κ||e = κ0T
5/2
e

8

where κ0 is a constant. See [4] for further details. Operators are:

∂||f = b · ∇f ∇||f = ∇ · (bf) (7)

This nonlinear problem is solved by using CVODE from the SUNDIALS library [9], which uses a Newton
method. At the heart of the simulation, a large number of systems of the form (2) are solved, where
A = I−γJ and J are Jacobian matrices for a computed value of γ : for clarity, we will assume that J has
the same block structure as A and J1,j are derived via (4), J2,j are derived via (5), J3,j are derived via
(6), Jj,1 are formed by taking the derivative with respect to n, Jj,2 are formed by taking the derivative
with respect to p and Jj,3 are formed by taking the derivative with respect to minV||. We note that J2,1
and J2,2 contain terms that including ∂2||.

The preconditioner provided within SD1D takes the following block-diagonal, operator form:

P0 =

 I 0 0
0 I − γ 2

3∂
2
|| 0

0 0 I

 . (8)

We note that 5 shows that ∂2|| is applied to 1
2Te and not p, and hence, we propose the following block-

diagonal, operator-form preconditioner:

P1 =

 I 0 0
0 (I − γ 1

3n∂
2
||)n 0

0 0 I

 . (9)

We note that application of the preconditioner P1 will be more expensive than P0. Finally, for Case-03,
we also try a block lower triangular preconditioner that additionally incorporates the ∂|| from (6):

P2 =

 I 0 0
0 (I − γ 1

3n∂
2
||)n 0

0 −γ∂|| I

 . (10)

Case-04 from SD1D additionally couples the above plasma equations to a similar set of equations for
the neutral gas density, pressure, and parallel momentum. A fixed particle and power source is used
here, and a 20% recycling fraction. Exchange of particles, momentum and energy between neutrals and
plasma occurs through ionisation, recombination and charge exchange. If we sub-divide A according to
the variables that are being evolved, we now have a block 6× 6 structure. The provided preconditioner
P0 is now

P0 =

I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γ 2

3∂
2
||

0 0 0 0 0 I

 . (11)

Using the properties of the neutral, we instead propose

P1 =

I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 0 I

 , (12)

where Dn is a diffusion term. As for case-03, we also propose a block lower-triangular preconditioner
that incorporates the ∂|| from (6) and the ∂|| from the corresponding equation for neutral momentum:

P2 =

I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 −γ∂|| I

 . (13)

9

Finally, we consider a preconditioner that is identical to P2 but the ∂|| relating to the neutral momentum
equation is dropped:

P3 =

I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 0 I

 . (14)

In Figure 9, we compare the number of times the time derivatives (right-hand sides) were computed for
Case-03 and Case-04 for the different preconditioners. We also compare what happens if no preconditioner
is used for the smaller problems. The smaller matrix orders are from the default problem set-up (i.e., 200
mesh points for each variable). For Case-03, we also compare the preconditioners for the discretization
with 1000 mesh points per variable and, for Case-04, 400 mesh points per variable. If we consider the
smaller version of Case-03, all of the preconditioners reduce the number of right-hand side evaluations
by roughly a factor of 36 with P2 producing the lowest number of evaluations; for the larger problem,
we observe that P2 also has the lowest number of evaluations with an 18% reduction compared to P0.
In Figure 10, we compare the wall clock time to run the simulations. Just one MPI process was used
with one OpenMP thread because of the relatively small problem sizes. For the larger version of Case-
03, we see a 10% improvement, with respect to wall-clock time, when using the block lower-triangular
preconditioner compared to the original preconditioner. These savings are relatively modest because the
density n remains close to uniform throughout the simulation.

For Case-04, we observe that all of the preconditioners substantially decrease the number of evaluations
and the wall clock time compared to using no preconditioner. For both problem sizes, compared to the
original preconditioner, preconditioners P1, P2 and P3 are reducing the number of evaluations and wall
clock time by a third. Thus, for the expert user, it is possible to incorporate more sophisticated operator-
based preconditioners within BOUT++.

10000

100000

1x106

1x107

600 (3) 3000 (3) 1200 (4) 2400 (4)

T
o

ta
l R

H
S

 e
v
a

lu
a

tio
n

s

Matrix order (case)

A
P0· A
P1· A
P2· A
P3· A

Figure 9: Total number of right-hand side evaluations performed during the whole simulation
for Case-03 and Case-04 with different preconditioners. For Case-03, results for the default
discretization with 200 mesh points per variable (matrix order 600) and a larger problem size with
1000 mesh points per variable (matrix order 3000) are provided. For Case-04, results for the default
discretization with 200 mesh points per variable (matrix order 600) and a larger problem size with 1000
mesh points per variable (matrix order 3000) are provided.

10

10

100

1000

10000

600 (3) 3000 (3) 1200 (4) 2400 (4)

W
a

ll
cl

o
c
k

tim
e

,
s

Matrix order (case)

A
P0· A
P1· A
P2· A
P3· A

Figure 10: Total wall clock time (seconds) for the whole simulation for Case-03 and Case-04
with different preconditioners. For Case-03, results for the default discretization with 200 mesh
points per variable (matrix order 600) and a larger problem size with 1000 mesh points per variable
(matrix order 3000) are provided. For Case-04, results for the default discretization with 200 mesh points
per variable (matrix order 600) and a larger problem size with 1000 mesh points per variable (matrix
order 3000) are provided.

5 Proposed roadmap for including new preconditioners within
BOUT++ and Nektar++

Prior to including custom new preconditioners into BOUT++ and Nektar++ [2] it would be the best to
have the exact testing scenarios of interest to UKAEA ready. Once the testing scenarios are available and
working at scale close to the real problems UKAEA want to solve, it would be the right time to investigate
preconditioner deployment. Ideally the new preconditioners need to be reformulated in a matrix-free
manner. Once these formulations are available they could be integrated into PETSc, SUNDIALS and
other solver packages powering BOUT++ and Nektar++. This way it would bring more benefit to
the user community. The user base of PETSc and SUNDIALS is likely to be much larger than that
of BOUT++ and Nektar++. This would also ensure that only minimal changes would be required to
BOUT++ and Nektar++ in order to leverage computational advantages of new preconditioners.

In summary the following steps are required for a successful deployment of new preconditioners into
BOUT++ and Nektar++:

1. Design testing scenarios in native BOUT++ and Nektar++. These scenarios should reflect real-
world problems UKAEA solves at the moment. Pay attention to scale at which simulations should
be performed.

2. Identify (matrix-free) methods and underlying solver packages (PVODE, CVODE, PETSc, SUN-
DIALS) that BOUT++ and Nektar++ employ to solve those problems.

3. Reformulate MCMCMI-based preconditioner in the operator (matrix-free) form.

4. Implement MCMCMI preconditioner in operator form and test it thoroughly.

5. Integrate operator-based MCMCMI preconditioner into solver packages identified in Step 2.

6. Solve testing scenarios identified in Step 1 using standard (native) BOUT++ and Nektar++ meth-
ods as well as new MCMCMI preconditioners.

7. Compare computational performance of native vs MCMCMI-based preconditioners.

11

6 Conclusion

Including MCMCMI-based preconditioners into either BOUT++ or Nektar++ simulation software is
difficult at the moment. First, the MCMCMI code needs to be reformulated in the matrix-free man-
ner. Then it can be integrated into solver packages (PETSc, SUNDIALS) powering solving abilities of
BOUT++ and Nektar++. Reformulation and implementation of MCMCMI in the operator form will
take 3–6 months. Integration of operator-based MCMCMI into PETSc and SUNDIALS will take another
3–6 months. Therefore, to obtain preliminary results of MCMCMI performance over the test problems
the STFC team decided to extract the system matrices from the relevant BOUT++ and Nektar++ testing
scenarios. In the process the team discovered the (i) it was not possible to extract the matrices for some
scenarios due to their inherent matrix-free nature, (ii) some testing scenarios of interest to UKAEA are
not available yet in either BOUT++ or Nektar++. These need to be designed and developed further.

Acknowledgements

The team would like to thank Dr. Benjamin Dudson from the University of York and Dr. Chris Cantwell
from the Imperial College London for their time, help and guidance in technical aspects of BOUT++
and Nektar++ functionality.

References

[1] V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Linear systems of equations and preconditioners
relating to the NEPTUNE Programme: a brief overview. Technical Report 2047353-TN-02, UKAEA,
2021.

[2] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. D. Grazia, S. Yakovlev,
J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,
R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer
physics communications, 192:205–219, 2015.

[3] H. S. Dollar, N. I. Gould, W. H. Schilders, and A. J. Wathen. Implicit-factorization preconditioning
and iterative solvers for regularized saddle-point systems. SIAM Journal on Matrix Analysis and
Applications, 28(1):170–189, 2006.

[4] B. Dudson. SD1D. online repository, 2016. URL https://github.com/boutproject/SD1D.

[5] B. Dudson, P. Hill, and J. Parker. BOUT++. online repository, 2020. URL http://boutproject.

github.io.

[6] S. Sherwin, M. Kirby, C. Cantwell, and D. Moxey. Nektar++. online, 2021. URL https://www.

nektar.info.

[7] S. Thorne. Implicit-factorization preconditioners for non-symmetric problems. Technical Report
2047353-TN-04, UKAEA, 2021.

[8] A. Wathen. Preconditioning. Acta Numerica, 24:329 – 376, 2015.

[9] C. S. Woodward, D. R. Reynolds, A. C. Hindmarsh, D. J. Gardner, and C. J. Balos. SUNDIALS: SUite
of Nonlinear and DIfferential/ALgebraic Equation Solvers. online, 2021. URL https://computing.

llnl.gov/projects/sundials.

12

https://github.com/boutproject/SD1D
http://boutproject.github.io
http://boutproject.github.io
https://www.nektar.info
https://www.nektar.info
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials

Implicit-factorization preconditioners for non-symmetric
problems

Technical Report 2047353-TN-04

Maksims Abal,enkovs* Vassil Alexandrov* Anton Lebedev* Emre Sahin*

Sue Thorne**

July 2021

1 Introduction

In this report, we extend the class of constraint preconditioners from symmetric problems to non-symmetric
problems. We consider the theoretical properties and demonstrate their effectiveness on a set of test problems
inspired by the Hasegawa-Wakatani problem.

2 Constraint-style preconditioners

Let us assume that

A =
(

H C
B −D

)
, (1)

where H ∈ Rn×n , B ,C T ∈ Rm×n and D ∈ Rm×m subject to m ≤ n. We always assume that A is non-singular. We
consider the use of a preconditioner of the form

P =
(

G C
B −D

)
, (2)

where G ∈Rn×n .

2.1 Constraint-style preconditioners: symmetric case

The case when D = 0, B =C T and H = H T was analysed by Keller, Gould and Wathen [6]:

Theorem 2.1. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B 0

)
,

where H ∈ Rn×n is symmetric and B ∈ Rm×n is of full rank. Assume Z is an n × (n −m) basis for the nullspace of
B. Preconditioning A by a matrix of the form

P =
(

G B T

B 0

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n is as above, implies that the matrix P −1A has

*The authors are with the Hartree Centre, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick, Daresbury, Warrington, WA4 4AD,
UK.

**Sue Thorne is with the Hartree Centre, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK. Email contact:
sue.thorne@stfc.ac.uk

1

mailto:sue.thorne@stfc.ac.uk

1. an eigenvalue at 1 with multiplicity 2m;

2. n −m eigenvalues λ which are defined by the generalized eigenvalue problem

Z T H Z xz =λZ T G Z xz . (3)

This accounts for all of the eigenvalues.
Assume, in addition, that Z T G Z is positive definite. Then P −1A has the following m + i + j linearly inde-

pendent eigenvectors:

1. m eigenvectors of the form
[
0T , yT

]T
corresponding to the eigenvalue 1 of P −1A ;

2. i (0 ≤ i ≤ n) eigenvectors of the form
[
wT , yT

]T
corresponding to the eigenvalue 1 of P −1A , where the

components w arise from the generalized eigenvalue problem H w =Gw ;

3. j
(
0 ≤ j ≤ n −m

)
eigenvectors of the form

[
xT

z ,0T , yT
]T

corresponding to the eigenvalues of P −1A note
equal to 1, where the components xz arise from the generalized eigenvalue problem Z T H Z xz =λZ T G Z xz

with λ 6= 1.

The case when when B =C T , H = H T and D symmetric and positive definite has been analysed by a num-
ber of different authors [2, 3, 4] and can be summarised in the following theorems:

Theorem 2.2. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B −D

)
,

where H ∈Rn×n is symmetric, B ∈Rm×n is of full rank and D ∈Rm×m is symmetric and positive definite. Precon-
ditioning A by a matrix of the form

P =
(

G B T

B −D

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity m;

2. n eigenvalues λ which are defined by the generalized eigenvalue problem(
H +B T D−1B

)
x =λ(

G +B T D−1B
)

x. (4)

This accounts for all of the eigenvalues.

Dollar et al. [4] have extended Theorem 2.2 to the case when D is symmetric and positive semi-definite:

Theorem 2.3. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B −D

)
,

where H ∈Rn×n is symmetric, B ∈Rm×n is of full rank and D ∈Rm×m is symmetric and positive semi-definite with
rank l , where 0 < l < m. Assume that D is factored as D = ESE T , where E ∈ Rm×l and S ∈ Rl×l is nonsingular,
F ∈ Rm×(m−l) is a vasis for the nullspace of E T and

[
E F

]
is orthogonal. Let the columns of N ∈ Rn×(n−m+l)

span the nullspace of F T B. Preconditioning A by a matrix of the form

P =
(

G B T

B −D

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity 2m − l ;

2. n −m + l eigenvalues λ which are defined by the generalized eigenvalue problem

N T (
H +B T ES−1E T B

)
N z =λN T (

G +B T ES−1E T B
)

N z. (5)

This accounts for all of the eigenvalues.

2

2.2 Constraint-style preconditioners: nonsymmetric case

We will now extend Theorems 2.1 and 2.2 to the non-symmetric case.

2.3 D non-singular

Theorem 2.4. Let A ∈R(n+m)×(n+m), m ≤ n, be a matrix of the form

A =
(

H C
B −D

)
,

where H ∈ Rn×n , B ∈ Rm×n and C ∈ Rn×m are of full rank and D ∈ Rm×m is non-singular. Preconditioning A by
a matrix of the form

P =
(

G C
B −D

)
,

where G ∈Rn×n , and B ∈Rm×n , C ∈Rn×m and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity m;

2. n eigenvalues λ which are defined by the generalized eigenvalue problem(
H +C D−1B

)
x =λ(

G +C D−1B
)

x. (6)

This accounts for all of the eigenvalues.

Proof. The eigenvalues of P −1A may be derived by considering the generalized eigenvalue problem(
H C
B −D

)(
x
y

)
=λ

(
G C
B −D

)(
x
y

)
(7)

Premultiplying (7) by the non-singular matrix (
I C D−1

0 −D−1

)
gives the equivalent generalized eigenvalue problem(

H +C D−1B 0
−D−1B I

)(
x
y

)
=λ

(
G +C D−1B 0
−D−1B I

)(
x
y

)
Thus, there are m eigenvalues equal to 1 and the remaining n eigenvalues are defined by the generalized eigen-
value problem (

H +C D−1B
)

x =λ(
G +C D−1B

)
x. (8)

2.4 D = 0

Theorem 2.5. Let A ∈R(n+m)×(n+m), m ≤ n, be a matrix of the form

A =
(

H C
B 0

)
,

where H ∈ Rn×n , and B ∈ Rm×n and C ∈ Rn×m are of full rank. Let the columns of ZB ∈ Rn×(n−m) span the
nullspace of B and the columns of ZC ∈Rn×(n−m) span the nullspace of C T . Preconditioning A by a matrix of the
form

P =
(

G C
B 0

)
,

where G ∈Rn×n , and B ∈Rm×n , C ∈Rn×m are as above, implies that the matrix P −1A has

3

1. 2m eigenvalues of equal to 1;

2. the remaining n −m eigenvalues, λ, are defined by the generalized eigenvalue problem

Z T
C H ZB xz =λZ T

C G ZB xz . (9)

This accounts for all of the eigenvalues.

Proof. The eigenvalues of P −1A may be derived by considering the generalized eigenvalue problem(
H C
B 0

)(
x
y

)
=λ

(
G C
B 0

)(
x
y

)
, (10)

where λ ∈C, λ ∈Cn and λ ∈Cm . Let

B =UB
(
ΣB 0

)(Y T
B

Z T
B

)
, C T =UC

(
ΣC 0

)(Y T
C

Z T
C

)
be the singular-value decompositions of B and C with YB ,YC ∈ Rn×m . Note that ZB , ZC ∈ Rn×(n−m) span the
nullspace of B and C T , respectively.

If we substitute in x = YB xY +ZB xZ into (10) and premultiply the equation by the nonsingular matrix Y T
C 0

Z T
C 0
0 I

 ,

where YB and YC are n by m matrices whose columns span the range space of B T and C , respectively, then we
obtain Y T

C HYB Y T
C H ZB Y T

C C
Z T

C HYB Z T
C H ZB 0

BYB 0 0

 xY

xZ

y

=λ
 Y T

C GYB Y T
C G ZB Y T

C C
Z T

C GYB Z T
C G ZB 0

BYB 0 0

︸ ︷︷ ︸

P̃

 xY

xZ

y

 . (11)

If we pre-multiply (11) by P̃ −1, then we obtain an equivalent eigenvalue problem of the form I 0 0
Θ1 (Z T

C G XB)−1Z T
C H ZB 0

Θ2 Θ3 I

 xY

xZ

y

=λ
 xY

xZ

y

 , (12)

where the exact definition of Θ1, Θ2 and Θ3 are not important for the proof. Hence, P −1A has 2m eigenval-
ues equal to 1 and the remaining eigenvalues are defined by the eigenvalue problem generalized eigenvalue
problem (9).

We note that when A and P are no-longer symmetric, some of the non-unitary eigenvalues may be com-
plex.

3 Implicit-factorization constraint preconditioners

In [4], the authors derive a number of factorizations for generating symmetric constraint preconditioners. In
the following, we will assume that the rows and columns of H have been ordered in such a manner that we can
partition B ∈Rm×n , C ∈Rn×m , G ∈Rn×n and H ∈Rn×n as

B = (
B1 B2

)
, (13)

C =
(

C1

C2

)
, (14)

G =
(

G1,1 G1,2

G2,1 G2,2

)
, (15)

H =
(

G1,1 G1,2

G2,1 G2,2

)
, (16)

4

where B1 ∈ Rm×m and C1 ∈ Rm×m are non-singular, G1,1 ∈ Rm×m and H1,1 ∈ Rm×m . For coupled multi-physics
problems, this ordering is implicitly available through the nature of the problems. As in [4], we form factors of
the form

L =
 L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

 ,

N =
 N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

set some of the sub-blocks to zero whilst assuming other sub-blocks are invertible and relatively easy to solve
with, and the sub-blocks are such that the product LN R forms a non-symmetric constraint preconditioner of
the form

P =
(

G C
B −D

)
.

Without loss of generality, we fix L1,3, L2,2, L2,3, R2,2, R3,1 and R3,2 to be non-zero with L2,2 and R2,2 both non-
singular. We use a Matlab script (see Appendix A) to generate all 62 possible implicit-factorization constraint
preconditioners. We note that if B = C T , R3,1 = B1, R3,2 = B2, L1,3 = B T

1 and L2,3 = B T
2 , then we obtain the

families given in [4].
Some of the non-symmetric implicit factorizations are only suitable for the case D = 0, for example

L =
 L1,1 0 L1,3

L2,1 L2,2 L2,3

L3,1 0 0

 ,

N =
 0 0 N1,3

0 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 R1,3

0 R2,2 0
R3,1 R3,2 0

subject to

L3,1N1,3R3,1 = B1,

B1R−1
3,1R3,2 = B2,

L1,3N3,1R1,3 = C1,

L2,3L−1
1,3C1 = C2

produces

G1,1 = L1,1N1,3R3,1 +L1,3N3,3R3,1 +L1,3N3,1R1,1,

G1,2 = L1,1L−1
3,1B2 +L1,3N3,3R3,1B−1

1 B2 +C1R−1
1,3R1,2 +L1,3N3,2R2,2,

G2,1 = L2,1L−1
3,1B1 +L2,2N2,3R3,1 +C2C−1

1 L1,3N3,3R3,1 +C2R−1
1,3R1,1,

G2,2 = L2,2N2,2R2,2 +C2C−1
1 L1,3N3,2R2,2 +L2,1L−1

3,1B2 +C2C−1
1 L1,3N3,3R3,1B−1

1 B2

+L2,2N2,3R3,1B−1
1 B2.

5

There are also some that are only suitable for non-singular D, for example,

L =
 L1,1 0 L1,3

L2,1 L2,2 L2,3

L3,1 0 0

 ,

N =
 0 0 N1,3

0 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 0

0 R2,2 0
R3,1 R3,2 R3,3

subject to

L3,1N1,3R3,1 = B1,

B1R−1
3,1R3,2 = B2,

L3,1N1,3R33 = D,

−(
L1,1N1,3 +L1,3N3,3

)
R3,1 = C1D−1B1,

−(
L2,1N1,3 +L2,3N3,3 +L2,2N2,3

)
R3,1R3,1 = C1D−1B1

produces

G1,1 = −C1D−1B1 +L1,3N3,1R1,1,

G1,2 = −C1D−1B2 +
(
G1,1 +C1D−1B1

)
R−1

1,1R1,2 +L1,3N3,2R2,2,

G2,1 = −C2D−1B1 +L2,3N3,1R1,1,

G2,2 = L2,2N2,2R2,2 +L2,3N3,2R2,2 +C2C−1B2 +L2,3N3,1R1,2.

4 Numerical tests

We will consider a test problem inspired by the 2D problem known as the Hasegawa-Wakatani problem, which
is similar to incompressible fluid dynamics:

∂n

∂t
= −{φ,n}+α(φ−n)−κ∂φ

∂z
+Dn∇2

⊥n

∂ω

∂t
= −{ω,n}+α(ω−n)+Dω∇2

⊥ω

∇2φ = ω .

Here n is the plasma number density, ω := ~b0 · ∇×~v is the vorticity with ~v being the ~E × ~B drift velocity in
a constant magnetic field and ~b0 is the unit vector in the direction of the equilibrium magnetic field. The
operator {·, ·} is the Poisson bracket.

The discretized version of the problem is described in [1] but we will consider a split implicit-explicit
method where the Jacobian that needs solving at each Newton iteration is of the following form:

J =
 A 0 B

0 C E
−M K 0

 , (17)

where the constituent matrices are the following

A = M +∆t (−DωK) ,

B = α∆t M ,

C = ∆t (−αM) ,

E = M +∆t (αM −DnK) .

6

Here K and M are the stiffness and mass matrices, respectively. Note that we have permuted the rows and
columns so the matrix will not directly map to that given in [1]. We tried to use BOUT++[5] directly to solve
the Hasegawa-Wakatani problem and test our preconditioners but using PETSc with a constraint and precon-
ditioner resulted in runtime errors, which might be due to the manner that PETSc was installed on the Hartree
Centre’s Scafell Pike cluster. Instead, we took advantage of the situation and created mass and stiffness matri-
ces that use a finite-element discretization instead of finite difference. We used the same values of constants as
used within the BOUT++ implementation and set ∆t to be equal to the inverse of the number of rows in M .

We will compare the following preconditioning strategies:

• A block-diagonal preconditioner

PD =
 A 0 0

0 C 0
0 0 I

 ;

• A constraint preconditioner with G = I

P1 =
 I 0 B

0 I E
−M K 0

 ;

• A constraint preconditioner with G2,2 = I and the remainder of G zero:

P2 =
 0 0 B

0 I E
−M K 0

 ;

• A constraint preconditioner with G2,2 =C and the remainder of G zero:

P3 =
 0 0 B

0 C E
−M K 0

 ;

• An implicit-factorization constraint preconditioner with:

L =
 −I 0 I

−DωDn∆t
α K M−1K M−1 I 1

α∆t

(
(1+αγ)M −γDnK

)
M−1

I 0 0

 ,

N =
 0 0 −M

0 − 1
α∆t

(
(1+αγ)M −γDnK

)
M−1K Dω(1+α∆t)

α K
α∆t M K −γDωK

 ,

R =
 0 −Dω

α M−1K M−1K I
0 I 0
I −M−1K 0

 .

Note that, with the exception of preconditioner P1, we do not explicitly form the preconditioner and we in-
stead apply them by exploiting the block structures. In Tables 1 and 2, we report the number of iterations
to reduce the relative residual by a factor of 10−6 and the times for solving our test problems using Matlab’s
GMRES function with no restarting. Note that the preconditioners have not been optimized with respect to
time so these values are only indicative. Preconditioners P1 and P5 produce the best iteration counts but we
note that for larger problems, factoring P1 via a direct method will become extremely expensive. Addition-
ally, alternative choices for the blocks in the implicit factorization preconditioner may increase the number
of iterations but make the preconditioner much cheaper to apply. For example, solves with the mass matrix
can be well-approximated using the Chebyshev semi-iteration [7] and solves involving the stiffness matrix may
be approximated with a multigrid method: this was very successfully done within the symmetric constraint
preconditioner context for PDE-constrained problems [8].

In Tables 1 and 2, we report the number of iterations to reduce the relative residual by a factor of 10−6

and the times for solving our test problems using Matlab’s GMRES function with restarting set to 10. Here,
preconditioner P2 failed to converge but we see similar results to non-restarted GMRES for preconditioners P1

and P5. Note that by using the restarted version of GMRES, we were able to solve larger problems.

7

n m PD P1 P2 P3 P4

450 225 57 3 43 61 2
1922 961 103 2 86 122 2
7938 3969 192 2 172 239 2

Table 1: Number of preconditioned GMRES iterations to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 0.029 0.020 0.037 0.051 0.015
1922 961 0.21 0.077 0.17 0.31 0.27
7938 3969 2.18 0.37 0.37 3.97 8.63

Table 2: Time (in seconds) for preconditioned GMRES to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 404 3 - 15 2
1922 961 725 2 - 649 2
7938 3969 2078 2 - 2255 2

32258 16129 4514 2 - 7875 2

Table 3: Number of preconditioned GMRES(10) iterations to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 0.17 0.020 - 0.12 0.015
1922 961 1.19 0.083 - 1.58 0.27
7938 3969 20.3 0.37 - 33.4 8.70

32258 16129 214 1.83 - 622 324

Table 4: Time (in seconds) for preconditioned GMRES(10) to reduce the relative residual by a factor of 10−6.

5 Conclusions

We conclude by observing that our results demonstrate the effectiveness of using non-symmetric constraint
preconditioners. By careful selection of the constraint preconditioner, we have shown that they can be applied
in an operator-based manner either by using very simple choices of G or by using an implicit-factorization. The
next step will be to incorporate these preconditioners into BOUT++ and Nektar++ [9] to see how they perform
within a non-linear simulation.

References

[1] V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Linear systems of equations and preconditioners relating
to the NEPTUNE Programme: a brief overview. Technical Report 2047353-TN-02, UKAEA, 2021.

[2] O. Axelsson and M. Neytcheva. Preconditioning methods for linear systems arising in constrained opti-
mization problems. Numerical linear algebra with applications, 10(1-2):3–31, 2003.

[3] L. Bergamaschi, J. Gondzio, and G. Zilli. Preconditioning indefinite systems in interior point methods for
optimization. Computational Optimization and Applications, 28(2):149–171, 2004.

[4] H. S. Dollar, N. I. Gould, W. H. Schilders, and A. J. Wathen. Implicit-factorization preconditioning and
iterative solvers for regularized saddle-point systems. SIAM Journal on Matrix Analysis and Applications,
28(1):170–189, 2006.

[5] B. Dudson, P. Hill, and J. Parker. BOUT++. online repository, 2020. URL http://boutproject.github.io.

[6] C. Keller, N. Gould, and A. Wathen. Constraint preconditioning for indefinite linear systems. SIAM J. Matrix
Anal. Appl., 21:1300–1317, 2000.

8

http://boutproject.github.io

[7] T. Rees and A. J. Wathen. Optimal solvers for pde-constrained optimizationchebyshev semi-iteration in
preconditioning for problems including the mass matrix. Electronic Transactions on Numerical Analysis,
34, 2008.

[8] T. Rees, H. S. Dollar, and A. J. Wathen. Optimal solvers for pde-constrained optimization. SIAM Journal
on Scientific Computing, 32(1):271–298, 2010. doi: 10.1137/080727154. URL https://doi.org/10.1137/
080727154.

[9] S. Sherwin, M. Kirby, C. Cantwell, and D. Moxey. Nektar++. online, 2021. URL https://www.nektar.info.

9

https://doi.org/10.1137/080727154
https://doi.org/10.1137/080727154
https://www.nektar.info

Appendix A: Matlab Script

% Generates non-symmetric implicit-factorization constraint preconditioner
% families
format compact
Ll = [sym(’l11’),sym(’l12’), sym(’l13’),sym(’l21’),sym(’l22’),...

sym(’l23’),sym(’l31’),sym(’l32’),sym(’l33’)];
Rr = [sym(’r11’),sym(’r12’), sym(’r13’),sym(’r21’),sym(’r22’),...

sym(’r23’),sym(’r31’),sym(’r32’),sym(’r33’)]
Mm = [sym(’m11’),sym(’m12’), sym(’m13’),sym(’m21’),sym(’m22’),...

sym(’m23’),sym(’m31’),sym(’m32’),sym(’m33’)]
total = 0;

for i=1:5
for j=1:3

for k=1:5
L = [Ll(1:3);Ll(4:6);Ll(7:9)];
R = [Rr(1:3);Rr(4:6);Rr(7:9)];
M = [Mm(1:3);Mm(4:6);Mm(7:9)];
switch i

case 1
L(1,1:2)=0; L(2,1)=0;

case 2
L(1,1:2)=0; L(3,2)=0;

case 3
L(1,2)=0; L(3,1:2)=0;

case 4
L(2,1)=0; L(3,1:2)=0;

case 5
L(1,2)=0; L(3,2:3)=0;

end

switch j
case 1

M(3,2:3)=0; M(2,3)=0;
case 2

M(1,1:2)=0; M(2,1)=0;
case 3

M(1,2)=0; M(2,1)=0; M(2,3)=0; M(3,2)=0;
end

switch k
case 1

R(1:2,1)=0; R(1,2)=0;
case 2

R(1:2,1)=0; R(2,3)=0;
case 3

R(2,1)=0; R(2:3,3)=0;
case 4

R(2,1)=0; R(1:2,3)=0;
case 5

R(1,2)=0; R(1:2,3)=0;
end
p = 1;
F = L*M*R;
if ((F(1,3)==0) | (F(2,3)==0) | (F(3,1)==0) | (F(3,2)==0))

10

p=0;
end

if (p==1)
total = total+1;

% [i,j,k]
factor = total
struct=[L,M,R]
F

end
end

end
end
total

11

