
ExCALIBUR

Surface mesh generation

M2.1.2

The report describes work for ExCALIBUR project NEPTUNE at Milestone 2.1.2. It comprises
the document 2048465-TN-01[1] (16 pp) as of September 12, 2021.

Accurate surface meshing is required for NEPTUNE in order to represent faithfully the compli-
cated geometry of the first wall and various plasma-facing components inside a tokamak. Due to
the paradigm shift in favour of high-order representations for physical degrees of freedom (em-
bodied specifically in spectral / hp finite element methods), it is expected that a high-order repre-
sentation of the geometry also will be necessary in order to realize potential gains in numerical
accuracy and performance. In practice, this means meshing curved surfaces using curved / non-
planar facets. This report outlines the some of the relevant capabilities that exist within the mesh
generation software NekMesh (which is an integral part of the Nektar++ modern spectral / hp fi-
nite element framework[2]), as well as presenting some initial tests performed with the aims of
assessing current performance and highlighting potential pitfalls.

An opening section explains several meshing fundamentals in terms of the specific techniques
implemented within NekMesh. These include the required inputs to the software, which take the
form of a CAD representation and a specification of the required element density of the output
mesh (the latter, along with the number of intra-element degrees of freedom, specifies the level of
accuracy expected in the simulation, with more elements giving higher accuracy at the expense of
added computation time). The Nekmesh software uses a Delaunay triangulation library to create
a planar, linear mesh which is then used to mesh 2D surfaces embedded in 3D; an automatic
approach is used to increase element density in response to local curvature. Techniques for ”ele-
vating” a linear (i.e. straight-sided, planar-facetted) surface mesh to a high-order (i.e. curved) one
are presented, including a discussion of how to choose the positions of sub-element geometrical
nodes, and also mention of diagnostics for the quality of the resulting mesh. Of the latter, it is
anticipated that the agreement between the surface normals of the mesh and those of the original
CAD representation is to be an important figure of merit.

A subsequent section contains two specific examples of the construction of high-order surface
meshes using NekMesh and a scrutiny of these as regards mesh quality. Code extracts here
provide insight into the use and the structure of NekMesh (in particular, a particular strength
of the software - the preservation of the CAD information for quality assessment purposes - is
demonstrated). A mesh diagnostics module added to NekMesh specifically for the purposes of
this report is exhibited. It is emphasized that the optimization of the intra-element node locations
targets purely the geodesics of the underlying surface, and not the normals, further motivating
an examination of the accuracy of the latter. The examples include a sphere, where the CAD

representation is a sextet of NURBS surfaces; in this case, meshes of orders two (quadratic),
three, and four, using a range of element densities, show maximum surface deviations between
the mesh nodes and the CAD model to be near machine tolerance, while the maximum deflection
of the surface normal from the CAD is within the accuracy stipulated in NEPTUNE (< 0.1◦) for all
but the lowest-resolution meshes; also, increasing the order or element density gives monotonic
improvement in both figures of merit. A more complex exemplar geometry is a box-shaped frame
comprising twelve identical cylindrical members; here, the conclusions are broadly the same, save
for the fact that the surface normal comparison shows some large (90◦) discrepancies for the
higher-order cases (orders four and five). The authors give evidence that that these anomalies
occur at the jointings of the individual members in the structure. With the caveat of the discovery
of this issue, the findings support the overall conclusion that high-quality curved surface meshes
are achievable using NekMesh, for at least simple geometries.

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] D. Moxey, C. Cantwell, and S. Sherwin. Surface mesh generation. Technical Report 2048465-
TN-01-1, UKAEA Project Neptune, 2021.

[2] D. Moxey et al. Nektar++ website. https://www.nektar.info, 2020. Accessed: June 2020.

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0046

Issue: 1.00
Date: September 12, 2021

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Wayne Arter N/A September 12, 2021

Ed Threlfall N/A September 12, 2021

BD

Reviewed By: Rob Akers September 12, 2021

Advanced Computing
Dept. Manager

Approved By: Rob Akers September 12, 2021

Advanced Computing
Dept. Manager

https://www.nektar.info

Report 2048465-TN-01-1: Surface mesh generation

David Moxey, University of Exeter
Chris Cantwell & Spencer Sherwin, Imperial College London

12th May 2021

Contents

1 Executive summary 1
1.1 Changelog . 1

2 Introduction 2

3 High-order surface mesh generation 2
3.1 CAD representation . 2
3.2 Mesh sizing specification . 3
3.3 Surface mesh generation . 3

3.3.1 Curve discretisation . 4
3.3.2 Surface discretisation . 4
3.3.3 High-order surface mesh generation . 5

4 Test cases 7
4.1 Methodology and NekMesh code . 8
4.2 Spherical geometry . 11
4.3 Cuboid box section . 12

5 Conclusions and future directions 14

1 Executive summary

This report focuses on the initial phase of work undertaken by the University of Exeter and
Imperial College London to investigate challenges for generation of high-order meshes for the
NEPTUNE project. In this first report that comprises deliverable 1.3 of our workplan, we
assess surface mesh quality attained during the high-order mesh generation process, with a
particular focus on the maximum deflection angle of surface normal from the underlying CAD
representation.

1.1 Changelog

• 12/5/21: Initial version.

1

2 Introduction

Although the use of high-order finite element methods, such as the spectral/hp element method [1],
have continued to gain popularity in recent years owing to their favourable numerical and com-
putational efficiency properties, it is well known that a significant challenge in the deployment
of such methods in broader industrial and scientific environments is handling the complex ge-
ometries that are typically required within these settings: in other words, in order to run a
high-order simulation, one first requires a high-order mesh. Such meshes must not only ac-
curately represent the geometry of interest, by curving straight-sided elements to align them
with the underlying boundary, but also consider physics-specific challenges, such as the use of
boundary layers in fluid dynamics to resolve high-shear regions.

Within NEPTUNE, it is clear that a key challenge to overcome is not only the development
of solvers to accurately simulate challenging equations of state, but also to handle challenging
geometries which further must accommodate features such as magnetic field lines that impinge
on surfaces at shallow angles of attack of order 2◦. From this perspective, it is not only necessary
to ensure accruate surface alignment, but also to investigate the accuracy of face-interior surface
normals from high-order surface meshes.

In this report, we will investigate the quality of surface mesh generation from the open-source
high-order mesh generator NekMesh, which is a pre-processing tool based on the spectral/hp
element framework Nektar++ [2, 3]. In particular, we will focus on assessment from the per-
spective of two metrics: the deflection of surface normals from the ‘exact’ normals as specified
by the underlying CAD surface; and the maximum distance of the mesh from the CAD surface
evaluated at each solution point. In this manner, we can identify areas for potential improve-
ment with regards to these metrics, which are discussed in section 5.

The rest of this report is structured as follows. A brief introduction and overview of the a
posteriori high-order surface mesh generation process is discussed in section 3. In section 4,
we consider two simple example geometries to assess surface mesh quality for known-good
geometries. Finally, section 5 draws some brief conclusions and areas for future work.

3 High-order surface mesh generation

In this section, we briefly outline the various technologies and algorithms used to generate a
high-order mesh within NekMesh. Starting with a CAD representation of the geometry, we
outline how a linear surface mesh is first constructed from a mesh sizing distribution, and then
how additional degrees of freedom are introduced so as to elevate the mesh to higher orders. A
complete description, as this pertains to NekMesh, can be found in reference [4].

3.1 CAD representation

Typically the geometry of interest is modelled using a computer-aided design (CAD) system
and represented by a BRep (boundary representation). A BRep is a top-down definition of the
computational domain, where it is viewed as a volume of three-dimensional space interior to a
boundary that can be interpreted as a closed shell or curved polyhedron. Its faces are regions
defined on surfaces interior to curved polygons also lying on those surfaces. These polygons
are composed by a set of edges, which in turn are segments of a curve, which themselves are
bounded by points. The points are represented by their 3D Cartesian coordinates. Curves and
surfaces are usually defined in CAD systems through a parametric representation in the form
of non-uniform rational B-splines (NURBS). These representations provide a mapping between

2

parametric coordinates in a lower dimensional space to the 3D space, so that for example a
curve is represented as a map between a parametric coordinate t ∈ [tmin, tmax] and its Cartesian
coordinate c(t), or a surface between (u, v) ∈ [umin, umax]× [vmin, vmax] and coordinate r(u, v).

The handling and computational implementation of such representations is highly complex in
practice, and one of the main challenges for mesh generation is ensuring a watertight BRep that
is suitable for meshing. Due to this complexity, the starting point for NekMesh is the assumption
of such a watertight BRep; furthermore, access to points, curves, surfaces and their various
properties (such as calculating derivatives, normals or projections) is accessed via a suitable
external CAD engine. Although several commercial CAD engines are available, in order to
broaden access to high-order mesh generation routines, NekMesh utilises the open-source CAD
framework OpenCASCADE [5]. In this report we limit ourselves to the use of OpenCASCADE;
however, it is notable that NekMesh accesses CAD engines through a lightweight wrapper, which
means that other engines can be incorporated in an API-independent manner.

3.2 Mesh sizing specification

Before any mesh construction can commence, a prerequisite is to specify a mesh sizing distribu-
tion that indicates the desired density of elements within the curves and surfaces of the BRep.
In NekMesh, the goal is to do this in a manner that is as automatic as possible; i.e. using
as few parameters as possible. We therefore adopt a curvature-based refinement approach, in
which the underlying assumption is that regions of higher curvature generally require a smaller
element size in order to resolve them. We briefly outline this approach here, but further details
can be found in [6].

The radius of curvature, R, at a point on the surface is the radius of a circle that has “optimal”
osculating contact with the surface. A measure of how well a mesh of size δ represents the
surface will be given by the ratio ε = c/R, where c is the maximum distance between the mesh
element and the surface. If we approximate the surface by its osculating circle we can relate
the mesh sizing, the radius of curvature, and the ratio ε through

δ = 2R
√
ε(2− ε), (1)

where now ε can be interpreted as a user-defined parameter that controls the mesh resolution
with respect to surface curvature. For instance, decreasing ε will increase the number of elements
specified for a given curvature. In practice, the radius of curvature is calculated as R =
min

{
k1

−1, k2
−1
}

where k1 and k2 are the principal curvatures obtained from the metric and
curvature tensors (or first and second fundamental forms) of the parametric form of the CAD
surfaces. This leads to an isotropic mesh specification since the directionality of the curvature
is not considered, but extension to anisotropic meshes is possible.

Since the radius of curvature has the range R ∈ [0,∞), where R = ∞ corresponds to a flat
surface, we must set bounds on δ, so that δ ∈ [δmin, δmax]. The parameter δmin limits the density
of elements in regions of high curvature, while δmax is the global maximum element size. The
three constants δmin, δmax and ε represent the only user-specified parameters required for the
automatic mesh specification process. To specify a spatial distribution of mesh sizing, the
three-dimensional domain is spatially subdivided and smoothed from the BRep through the
use of an octree structure.

3.3 Surface mesh generation

The surface mesh is generated via a bottom-up approach, wherein mesh vertices are fixed to
the vertices of the CAD (0D); curves are then meshed in their 1D parameter space using the

3

bounding vertices; and the the 2D parameter spaces of the surfaces are then meshed, using the
curve meshes as boundaries. Should a volume mesh be desired, the resulting interior volume is
constructed using the surface mesh as its exterior constraint.

So far, none of the techniques discussed above are related to high-order meshes in particular:
indeed bottom-up mesh generation is typically adopted in standard linear mesh generation
frameworks. However, when elevating a linear to high-order mesh, maintaining the connection
between mesh vertices and their corresponding parametric coordinates within CAD vertices,
curves and surfaces is critical in ensuring that optimal node locations can be found for the
new degrees of freedom needed to construct high-order elements. A key motivation for the
development of NekMesh is that when using external open-source or commerical linear mesh
generation technology, such a connection is typically lost in the resultant surface mesh. Use of
this bottom-up approach therefore ensures that the CAD information associated with all the
vertices, edges and faces in the surface mesh is kept and can be utilised easily in the high-order
stages of the meshing pipeline.

In the remainder of this section we discuss the (linear) discretisation of curves and surfaces,
and then outline the high-order mesh generation process.

3.3.1 Curve discretisation

The discretisation of a CAD curves c(t) into linear segments approximately compliant with
the spacing specified by the mesh control system is achieved through a distribution function.
If the mesh spacing at a point c(t) is δ, then the number of subdivisions generated in a small
interval of length ds in its neighbourhood, so δ is approximately constant, is ds/δ. Further, if
ds corresponds to the arc length of the curve, the total number of subdivisions for an interval
tmin ≤ t ≤ tk will be

I(tk) =

∫ tk

tmin

1

δ(t)

∥∥∥∥dcdt
∥∥∥∥ dt (2)

The positions tk; k = 1, . . . , Ne − 1 of the internal nodes to be created are the solutions of the
equation

φ(tk) = Ne
I(tk)

I(tmax)
= k ; k = 1, . . . , Ne − 1 (3)

where φ(t) is the distribution function and Ne denotes the number of sides generated on the
curve. Its value is chosen to be the nearest integer value to I(tmax). The solution of equation (3)
requires first to approximate the distribution of δ(t) in equation (2) by sampling the mesh
spacing along the curve. The samples are chosen to be equally spaced along the curve at a
distance smaller than δmin. The integral is then evaluated using a suitable quadrature and the
solution to equation (3) is obtained via Newton iteration. More details of the method are given
in reference [7].

3.3.2 Surface discretisation

Meshing the surfaces in the bottom-up meshing process requires the meshing of a 2D domain,
the parametric space of the surface, which is bound by the mesh vertices and edges as defined
by the curve discretisations. NekMesh utilises an adapted version of the code Triangle, a
2D Delaunay mesh generation library [8], to deal with the specific aspects of surface mesh
generation. The reason for choosing the Delaunay method is that it guarantees a unique
triangulation for a given set of points, provided the circumcircle passing through the three
vertices of any triangle in the mesh does not contain another point in the mesh, with the co-
circular case requiring special handling to account for floating-point arithmetic. Further, the

4

implementation via robust geometric predicates [9] of the circumcircle test, the incremental
point insertion and boundary sides recovery algorithms in Triangle ensures that the mesh is
valid at each stage of the generation process.

The main drawback of the Delaunay approach for the purposes of surface mesh generation is
that it tends to create a high quality, isotropic triangulation in the 2D space. Therefore the
3D mesh will inherit the distortion of the parameter space and elements defined in the 2D
parameter space may become stretched and distorted in 3D space. This effect depends on how
the surface is parameterised; approaches to mitigate this can be found in [4].

The method used for generating meshes on individual surfaces throughout this work proceeds
as follows. Beginning with the discretisation of the CAD curves which represent the boundary
of the surface, a set of mesh nodes and edges are determined. Triangle is used to obtain an
initial triangulation of these boundary points in the parameter space. New mesh points are
then determined by looking over the triangles of the mesh in 3D space. If any side of the
triangle is greater in length than

√
2δ(x), where x is taken to be the midpoint of the side, a

new point is defined at the centre of the triangle. The set of points, interior and boundary, are
then re-meshed. The process is repeated until all the sides in the triangulation conform to the
mesh spacing specification. In order to enhance the quality of the resultant mesh, various local
refinement strategies are employed: notably, the use of edge swapping dependent on optimal
valance and minimum angle, and mesh smoothing, which modifies the positions of the interior
nodes without changing the connectivity of the grid.

3.3.3 High-order surface mesh generation

A high-order element Ωe of a surface triangulation of order P is represented through a polyno-
mial mapping χe : Ω̂→ Ωe, where Ω̂ = {(ξ1, ξ2) | ξ1, ξ2 ∈ [−1, 1], ξ1 + ξ2 ≤ 0} is a reference sim-
plex and ξ = (ξ1, ξ2) denotes a coordinate in Ω̂. Furthermore, this mapping is typically written
using collocated Lagrange interpolants `n(ξ) that depend on a choice of N = (P + 1)(P + 2)/2
cubature points {ξn | ξn ∈ Ω̂, 1 ≤ n ≤ N}, such as the α-optimised points of Hesthaven or a
distribution of Fekete points, both discussed in [10]. In this manner, world-space coordinates
x may be written through the expansion

x = χe(ξ) =
N∑

n=1

xn`n(ξ).

The challenge therefore is to determine a set of spatial coordinates xn which correspond to
each cubature point ξn, so that ‘high quality’ surface meshes are defined, using a definition
of quality that aligns with the problem of interest. It is well known that inaccuracies in the
representation of the geometric boundary have a significant impact on the flow solution in
high-order simulations. These inaccuracies include highly distorted surface elements, mesh
nodes being a significant distance from the true CAD surface, and under-representation of the
geometric curvature due to using an insufficiently polynomial order with too large a element.
In the problems of interest to NEPTUNE, we may also add to this list that surface normals
that result from the high-order element, i.e.

n(ξ) =

∂χe

∂ξ1
× ∂χe

∂ξ2∥∥∥∥∂χe

∂ξ1
× ∂χe

∂ξ2

∥∥∥∥ (4)

should be closer than 0.1◦ to those normals observed using the CAD engine.

5

If the vertex locations of the linear surface mesh are taken to be fixed, producing a high-
order surface can be accomplished simply by using an affine mapping of the triangle in the 2D
parameter plane to the reference triangle of a high-order element. This can then be used to
locate the new high-order nodes in the parameter space, which are then projected into 3D using
the CAD engine. However, this means that the high-order triangles will inherit the distortion of
the CAD surface, lowering the quality of the mesh and in some cases causing invalid elements.

Curve discretization. The rest of this section presents a method to take the high-order
surface mesh made using the affine mapping approach and optimise the location of the high-
order nodes to reduce CAD induced distortion. This is done by modelling the mesh entities as
spring networks and minimising the spring energy, in a similar approach to the work of [11].
This is expressed mathematically as finding

min
xn

f = min
∑
s

‖x1 − x2‖2

ws

, (5)

which states that f , the spring energy, is the sum over all the springs in the system, where x1

and x2 are the 3D locations of the nodes at the ends of the springs and ws is the inverse of
the spring stiffness, which is calculated as a function of the nodal distribution being targeted.
Because the linear mesh vertices are held fixed during this procedure, the problem can be
reduced to an entity-by-entity approach. First optimising mesh edges that lie on curves; then
edges that lie on surfaces; and finally interior triangle faces that lie on CAD surfaces. In the
first case (edges on CAD curves), the problem is a 1D optimisation of spring system in the
curve’s parameter space t.

f =
P∑
i=1

‖c(ti+1)− c(ti)‖2

wi

, (6)

Where i is one of the P + 1 nodes along the high-order edge. Here, P is the polynomial order
of the mesh being created and wi = zi+1 − zi, where zi is the i-th entry in the distribution of
nodal points in the where −1 ≤ z ≤ 1. The initial values of t are obtained from the linear 1D
mapping

ti = t1

(
1− zi

2

)
+ tP+1

(
1 + zi

2

)
i = 1, ..., P + 1. (7)

where t1 and tP+1 are the parametric coordinates of the end nodes of the edge, which are the
vertices in the linear mesh and are considered to be fixed.

Surface discretization. Performing the optimisation of the edges which lie on the CAD
surfaces follows a similar procedure but is formulated in the 2D parameter plane, i.e

f =
P∑
i=1

‖r(ui+1, vi+1)− r(ui, vi)‖2

wi

. (8)

This procedure reduces the distortion found in the high-order edges by minimising the length of
the edge; that is, the optimised high-order edge will lie approximately on the geodesic between
the two end points on the surface.

The procedure for optimising the location of face interior nodes requires a slightly alternative
approach. The system is considered as a set of freely movable nodes, consisting of those nodes

6

Figure 1: Distribution of spring-node system for face-interior nodes within a high-order P = 4
Fekete distribution.

lying on the interior of the triangle, and a set of fixed nodes which lie on the edges. Each of the
free nodes is connected to a system of six surrounding nodes by springs, and this is the system
which is minimised. In a triangle of order P , there are (P − 2)(P − 1)/2 interior nodes. The
function f is

f =

(P−2)(P−1)/2∑
i=1

6∑
s

‖r(ui, vi)− r(us, vs)‖2

ws

, (9)

where ws is calculated as the distance between the two nodes in a reference equilateral triangle,
shown in figure 1 along with the connectivity of the springs. The choice of a six spring system
means that the method is applicable to any point distribution at any order. For example, figure
1 shows a P = 4 triangle with a Gauss-Lobatto-Legendre distribution along the edges and a
triangular Fekete distribution for the face interior points.

The optimisation of the energy itself must be performed numerically. A number of optimisation
algorithms are suitable, since the function readily admits analytic derivatives. However, since
each CAD entity is typically defined using a bounded parametric space, this imposes some
limits in terms of constrained optimisation. In practice therefore, we have found that a bounded
version of the BFGS algorithm [12] is well-suited to this problem and produces optimal locations
after only a few iterations.

4 Test cases

Since surface normal representation is a key quality, a notable omission in the high-order gen-
eration process above is that the functional f defined in equation (5), which is used to optimise
for node locations, is designed to only target geodesics of the underlying surface: no particular
emphasis is given in the optimisation to other metrics, such as normal deflection. Therefore
there remains a question of whether this approach is well-suited for the specific NEPTUNE
applications.

In this section, we attempt to investigate this through the use of two simple geometries. The
first is a straightforward sphere, for which we would expect excellent agreement with the exact

7

and CAD normals. The second geometry is a more complex box section, which comprises several
cylindrical sections arranged in a cuboid structure with weldments at each corner. This provides
a more challenging test, although still being relatively simple. Moreover, each case contains
only curved surfaces, since preliminary investigation showed that planar surfaces clearly present
far less of a challenge from this perspective. Each problem is then be examined at a variety
of mesh densities and polynomial orders. However, before presenting the results, we first take
the opportunity to discuss the implementation of a new module within NekMesh undertaken
during this work package to calculate the desired metrics.

4.1 Methodology and NekMesh code

In NekMesh, we adopt a ‘pipeline’ framework, whereby either CAD or the resulting linear/high-
order meshes are translated through a series of modules. Each module has a specific purpose:
be that to input (e.g. read an existing mesh, generate a surface mesh from CAD, etc); process
a mesh (e.g. elevate a linear mesh to high order) or to write the mesh to a number of known
formats. Programattically, a module is represented as an abstract base class Module, and the
Mesh object is passed to a virtual Process function that allows the module to run its task.
For this deliverable a new CADMetrics module was designed to compute the desired metrics by
evaluating surface normals of high-order elements and comparing their deflection to those given
by the CAD engine. As a secondary assessment, we also consider the maximum displacement
from the CAD surface.

The first task is to determine the order of the incoming mesh, and from this obtain the distri-
bution of cubature points ξn within the reference element Ω̂.

Process function inside CADMetrics module.

// Assume all elements have homogeneous order and are triangles embedded in
// 3D space.
auto elmt0 = m_mesh->m_element[2][0];
int order = elmt0->GetEdge(0)->m_edgeNodes.size() + 1;
int npts = (order + 1) * (order + 2) / 2;

// Get points type (e.g. Fekete, electrostatic)
LibUtilities::PointsType pt = elmt0->GetCurveType();

// Get the points themselves from the points manager.
LibUtilities::PointsSharedPtr pts = LibUtilities::PointsManager()[

LibUtilities::PointsKey(order + 1, pt)];

// Get positions of cubature points in standard element.
Array<OneD, NekDouble> r(npts), s(npts);
pts->GetPoints(r, s);

Ultimately, we will require the computation of the surface normal: this necessitates the compu-
tation of the derivatives of the mapping χe for each element Ωe. This can be achieved through
the computation of the derivative matrices D0 and D1, which when multiplied by the coordi-
nate vector {xn}Nn=1 will yield partial derivatives with respect to ξ1 and ξ2, accordingly. Given
the locations of the nodal points, we can use the broader Nektar++ library to construct a
NodalUtilTriangle object, which computes these matrices for us.

8

Calculating derivative matrices.

// Build derivative matrices from Vandermonde matrix using
// the NodalUtilTriangle class.
std::unique_ptr<LibUtilities::NodalUtilTriangle> triutil =

std::make_unique<LibUtilities::NodalUtilTriangle>(order, r, s);

// Compute derivative matrices for each coordinate direction.
auto D0 = triutil->GetDerivMatrix(0);
auto D1 = triutil->GetDerivMatrix(1);

Then we simply loop over each element and call a utility member function, ElementStats,
which will compute the desired statistics for this element.

Computing elemental statistics.

// Loop over all 2D surface elements, compute normal deflection at each
// quadrature point and surface distance at each point, then place into
// angs and dists vectors accordingly.
std::vector<NekDouble> angs, dists;
int cnt = 0;
for (auto &elmt : m_mesh->m_element[2])
{

ElementStats(elmt, D0, D1, angs, dists);
++cnt;

}

Inside ElementStats, we first obtain the list of coordinates {xn}Nn=1 that has been generated
by the surface meshing process outlined in section 3.3.2, and then multiply by the derivative
matrices to obtain the desired vectors for the normal calculation.

Compute derivatives.

// Get a vector of element coordinates.
std::vector<NodeSharedPtr> nodes;
elmt->GetCurvedNodes(nodes);
int npts = nodes.size();

// Construct coordinate vectors from this list.
NekVector<NekDouble> xc(npts), yc(npts), zc(npts);
for (int i = 0; i < npts; ++i)
{

xc[i] = nodes[i]->m_x;
yc[i] = nodes[i]->m_y;
zc[i] = nodes[i]->m_z;

}

// Compute derivatives.
NekVector<NekDouble> xd0 = (*D0) * xc, xd1 = (*D1) * xc;
NekVector<NekDouble> yd0 = (*D0) * yc, yd1 = (*D1) * yc;

9

NekVector<NekDouble> zd0 = (*D0) * zc, zd1 = (*D1) * zc;

Looping over each point, we then compute the surface normal as given in equation (4).

Computing surface normals.

// Compute surface normal from curl at each point.
NekDouble N0 = yd0[i] * zd1[i] - zd0[i] * yd1[i];
NekDouble N1 = zd0[i] * xd1[i] - xd0[i] * zd1[i];
NekDouble N2 = xd0[i] * yd1[i] - yd0[i] * xd1[i];
NekDouble norm_abs = sqrt(N0 * N0 + N1 * N1 + N2 * N2);
N0 /= norm_abs;
N1 /= norm_abs;
N2 /= norm_abs;

Finally, we can then loop over each CAD surface that a node is attached to, and query the
CAD surface at the parametric coordinates stored for that node. We note that a node might
well be attached to a number of surfaces if it happens to be on a curve that connects surfaces,
or indeed a vertex that connects multiple curves; we therefore assume the evaluation that gives
us the lowest value of the normal deflection is the ‘best’, although in theory for smooth surfaces
these differences should be minimal.

Querying the CAD engine and computing desired metrics.

std::vector<NekDouble> tmpangs, tmpdists;
for (auto &surfpair : nodes[i]->CADSurfList)
{

// CAD surface object.
CADEngine::CADSurf surf = surfpair.second.first.lock();

// Location of (u, v) within parametric space.
auto uv = surfpair.second.second;

// Calculate CAD normal and position.
auto cadN = surf->N(uv), cadP = surf->P(uv);

if (ang != ang)
{

// Occasionally CAD engine fails to evaluate normal...
continue;

}

// Calculate distance.
tmpdists.push_back(

sqrt(
(cadP[0] - xc[i]) * (cadP[0] - xc[i]) +
(cadP[1] - yc[i]) * (cadP[1] - yc[i]) +
(cadP[2] - zc[i]) * (cadP[2] - zc[i])
));

10

// Calculate normal deflection angle.
NekDouble ang = std::acos(

N0 * cadN[0] + N1 * cadN[1] + N2 * cadN[2]);

std::vector<NekDouble> tmpangs2 = {
std::abs(ang), std::abs(M_PI-ang), std::abs(ang-M_PI)

};

// Check also pi - angle, in case normal is reversed in orientation.
tmpangs.push_back(*std::min_element(tmpangs2.begin(), tmpangs2.end()));

}

// Store lowest answers.
dists.push_back(*std::min_element(tmpdists.begin(), tmpdists.end()));
angs.push_back(*std::min_element(tmpangs.begin(), tmpangs.end()));

The module concludes by simply printing out the surface area and the desired statistics.

Compute and print desired statistics.

// Compute total surface area
int nCadSurf = m_mesh->m_cad->GetNumSurf();
NekDouble totarea = 0.0;
for (int i = 0; i < nCadSurf; ++i)
{

totarea += m_mesh->m_cad->GetSurf(i+1)->Area();
}

m_log(INFO) << "Surface area: " << totarea << std::endl;

// Compute maximum and average normal angle deflection.
NekDouble avgang =

std::accumulate(angs.begin(), angs.end(), 0.0) / angs.size();

m_log(INFO) << "Max. angle : "
<< rad2deg(*std::max_element(angs.begin(), angs.end()))
<< std::endl;

m_log(INFO) << "Avg. angle : " << rad2deg(avgang) << std::endl;

// Compute maximum distance to CAD surface.
m_log(INFO) << "Max. dist. : "

<< *std::max_element(dists.begin(), dists.end()) << std::endl;

4.2 Spherical geometry

The first test case is a simple sphere of diameter 1 with corresponding surface area of π, shown
in figure 2. The CAD is comprised of six equally sized tensor-product patches of NURBS
surfaces. Each edge is a great circle of the sphere, and thus this yields an exact representation

11

(a) Sphere defined using 6 NURBS surfaces. (b) Resultant high-order mesh at P = 4.

Figure 2: Simple sphere surface in (a) BRep form, where dashed lines show surfaces and solid
lines show curves; (b) meshed form, after high-order mesh generation at polynomial order P = 4
with δ = 0.1.

of the sphere as well as removes effects of surface distortion owing to the use of e.g. degenerate
patches.

For this series of simulations, we prescribe δmin = δmax = ε =: δ with a fixed value of δ = 0.1,
0.05, 0.01 and 0.005, so that all meshes are uniform in element size. This yields mesh densities
of between 814 and 333,714 elements, or between 259 and 106,224 elements per surface area
unit. The resultant statistics for this case can be found in table 1. Broadly, this case is rather
as one would expect to see; in virtually all cases, the maximum normal deflection angle θmax

is well below the required 0.1◦ in virtually all cases, as is the average θavg; furthermore, as the
element or nodal point density is increased, either as the curvature bound δ is reduced or the
polynomial order increased, there is a broad reduction in all metrics, as expected. Uniformly
the surface distance is near machine tolerance.

4.3 Cuboid box section

In this section, we evaluate normals for a cuboid box section, the BRep of which can be
depicted visually in figure 3(a). This geometry contains more complexity, in that it comprises
12 cylindrical sections arranged in a cuboid section, which are connected with weldments at
each corner. Consequently the BRep contains 24 faces and 82 curves. As in the previous section,
we record the same statistics but now utilising a slightly different choice of δ to allow for the
increased level of curvature in this model; we select δ = 0.007, 0.003 and 0.0008 respectively.
A high-order mesh at P = 5 is visualised in figure 3(b).

The presented results shown in table 2 reveal much of the same trend as we see in the sphere
geometry, although broadly the maximum and average angles of deflection are larger. Very
curiously however, at P = 4 and P = 5, there is a large deflection noted at the finest resolution,
virtually at a right angle to the desired normal. Clearly the presence of such a normal in reality
would render the mesh virtually unusable. To investigate this further, the location of points

12

P δ θmax [◦] θavg [◦] dmax Nelmt

2 0.1 5.82 · 10−1 1.21 · 10−1 1.35 · 10−15 814
2 0.05 1.18 · 10−1 2.73 · 10−2 1.45 · 10−15 3,414
2 0.01 6.75 · 10−3 1.15 · 10−3 1.52 · 10−15 82,384
2 0.005 1.97 · 10−3 2.75 · 10−4 1.61 · 10−15 333,714

3 0.1 6.54 · 10−2 9.91 · 10−3 1.57 · 10−15 814
3 0.05 8.26 · 10−3 1.17 · 10−3 1.57 · 10−15 3,414
3 0.01 9.02 · 10−5 1.03 · 10−5 1.64 · 10−15 82,384
3 0.005 1.29 · 10−5 1.27 · 10−6 1.61 · 10−15 333,714

4 0.1 3.69 · 10−3 3.08 · 10−4 1.44 · 10−15 814
4 0.05 1.86 · 10−4 1.48 · 10−5 1.58 · 10−15 3,414
4 0.01 1.71 · 10−6 2.68 · 10−7 1.54 · 10−15 82,384
4 0.005 1.91 · 10−6 2.67 · 10−7 1.64 · 10−15 333,714

Table 1: Mesh generation statistics of maximum normal deflection angle θmax, average normal
deflection angle θavg, maximum surface distance dmax and number of elements Nelmt for the
sphere geometry, given an input polynomial order P and curvature bound δ.

(a) BRep of box section.
(b) Resultant high-order mesh at P = 4.

Figure 3: Box section surface in (a) BRep form, where dashed lines show surfaces and solid lines
show curves; (b) meshed form, after high-order mesh generation at polynomial order P = 5
with δ = 0.003.

13

P δ θmax [◦] θavg [◦] dmax Nelmt

2 0.007 5·101 1.79 · 100 1.46 · 10−16 1,676
2 0.003 3.03 · 100 8.76 · 10−2 1.46 · 10−16 10,696
2 0.0008 1.4 · 10−1 2.34 · 10−3 1.53 · 10−16 129,734

3 0.007 3.16 · 101 7.57 · 10−1 1.46 · 10−16 1,676
3 0.003 1.12 · 100 2.98 · 10−2 1.46 · 10−16 10,696
3 0.0008 4.34 · 10−2 7.55 · 10−4 1.72 · 10−16 129,734

4 0.007 2.12 · 101 9.98 · 10−2 1.46 · 10−16 1,676
4 0.003 1.32 · 10−1 4.33 · 10−4 1.53 · 10−16 10,696
4 0.0008 9·101 3.15 · 10−3 1.86 · 10−16 129,734

5 0.007 8.68 · 100 5.35 · 10−2 1.46 · 10−16 1,676
5 0.003 4.94 · 10−2 1.83 · 10−4 1.62 · 10−16 10,696
5 0.0008 9·101 3.84 · 10−3 1.87 · 10−16 129,734

Table 2: Mesh generation statistics of maximum normal deflection angle θmax, average normal
deflection angle θavg, maximum surface distance dmax and number of elements Nelmt for the box
geometry, given an input polynomial order P and curvature bound δ.

with a deflection angle above 1 radian is visualised in figure 4, where it is evident that these
occur on or very close to the weldment boundaries. It is therefore perhaps more probable in
this instance, since the high-order elements themselves seem well-aligned with the surface, that
the CAD engine itself is generating spurious normals close to the edge of the parametrisation.
Indeed on the whole, average deflections remain very small throughout. We do additionally
note that the mesh in this figure is not the finest level mesh, but is used purely for visualisation
purposes.

5 Conclusions and future directions

This report has outlined the methods and techniques used for high-order surface mesh gener-
ation within the NekMesh mesh generation package, with a particular focus on the maximum
deflection angle of surface normals from the CAD engine. Broadly, it has been found that
the existing methodology, at least for simple geometries, is capable of generating high quality
surface meshes. Due to time constraints in the initial phase of this project, it was not possible
to consider far more complex geometries due to time required for CAD cleanup and watertight
geometry testing; however this is a clear area for future study, and this work outlines at least
the potential for this methodology.

There are a clear number of routes for future work in this area. Firstly, the abnormalities
seen in the box geometry in the previous section should be validated using an alternative CAD
engine. NekMesh has a link to the commercial CAD engine CADfix, which could be used as
an alternative testbed for the geometry. Additionally, it is clear that if the requirement is to
guarantee surface normal representation below a user-supplied threshold, then a route towards
enabling this would be to incorporate additional terms into the minimisation process defined
in equation (5). Clearly a balance between surface geometry representation (i.e. the ability to
track geodesics) together with normal representation must be struck. However, the addition
of an extra term that gives high functional values to configurations having large deflections
from the CAD normal should lead to the desired effect. However we do note that in this case,
computing derivatives may be more challenging, in which case non-gradient based optimisation

14

Figure 4: Visualisation of location of high deflection points with reported normals above 1
radian.

techniques could be appropriate.

References

[1] George Karniadakis and Spencer Sherwin. Spectral/Hp Element Methods for Computa-
tional Fluid Dynamics. Oxford University Press, 2013.

[2] David Moxey, Chris D. Cantwell, Yan Bao, Andrea Cassinelli, Giacomo Castiglioni, Sehun
Chun, Emilia Juda, Ehsan Kazemi, Kilian Lackhove, Julian Marcon, Gianmarco Mengaldo,
Douglas Serson, Michael Turner, Hui Xu, Joaquim Peiró, Robert M. Kirby, and Spencer J.
Sherwin. Nektar++: Enhancing the capability and application of high-fidelity spectral/hp
element methods. Computer Physics Communications, 249:107110, April 2020.

[3] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia,
S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source
spectral/hp element framework. Computer Physics Communications, 192:205–219, 2015.

[4] Michael Turner. High-Order Mesh Generation for CFD Solvers. PhD Thesis, Imperial
College London, 2017.

[5] Open Cascade - software development company. https://www.opencascade.com/.

[6] M. Turner, D. Moxey, and J. Peiró. Automatic mesh sizing specification of complex three
dimensional domains using an octree structure. In 24th International Meshing Roundtable,
2015.

[7] J. Peiró. Surface grid generation. Handbook of grid generation, pages 19–1, 1999.

15

[8] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Workshop on Applied Computational Geometry, pages 203–222.
Springer, 1996.

[9] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18(3):305–363, 1997.

[10] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications. Springer Science & Business Media, 2007.

[11] S. J. Sherwin and J. Peiró. Mesh generation in curvilinear domains using high-order
elements. International Journal for Numerical Methods in Engineering, 53(1):207–223,
2002.

[12] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal on scientific computing,
16(5):1190–1208, 1995.

16

