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Abstract
This report describes work for ExCALIBUR project NEPTUNE at Milestone 2.2.2. It includes
preliminary evaluations of the Nektar++-based NEPTUNE proxyapps Nektar-Diffusion (intended
to simulate diffusion problems involving anisotropic and spatially-varying diffusivity tensors) and
Nektar-Driftwave (intended to solve the Hasegawa-Wakatani equations); these assessments are
intended as quality checks, rather than guarantees of accuracy. An additional section contains a
discussion of Soldrake, a one-dimensional continuum model of the scrape-off layer implemented
in the Firedrake software and using the Irksome library for time-evolution.
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1 Introduction

The NEPTUNE project aims to leverage high-order techniques in challenging plasma edge appli-
cations, ultimately targetting forthcoming exascale hardware. These methods offer, in ideal cases,
exponential convergence for polynomial increases in compute time, and are architecturally suited
to modern heterogeneous computing methods. This report concerns high-order finite element
implementations of some of the NEPTUNE equations, specifically, those representing continuum
equilibrium (i.e. non-kinetic) fluids.

The modern open-source C++ spectral/hp element framework Nektar++ offers a flexible and pow-
erful framework for the development of new solvers [1]. Nektar++ is thus the basis for two of the
NEPTUNE proxyapps: Nektar-Diffusion [2] and Nektar-Driftwave [3], which simulate respectively
diffusion with a spatially-varying anisotropic diffusivity tensor and the Hasegawa-Wakatani system
for modelling turbulent drift-wave dynamics. In this report, these proxyapps are subjected to some
initial testing and a brief examination of coding standards with the aim of verifying a minimal quality
standard.

Another open-source finite-element framework is Firedrake [4], which provides also a UFL-based
domain-specific language that allows the user the facility to implement equations (which must
be expressed in weak form) that are then solved by the underlying codebase using automatic
code generation of C code and the potential for multiple backends. This software forms the basis
for the Soldrake implementation of a one-dimensional continuum model of the scrape-off layer.
These investigations use also the complementary time-stepping extension Irksome [5] to examine
the dynamics of electron and ion density, velocity, and temperature along a magnetic field line
bounded on both ends by a divertor.
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2 Performance of Nektar-Diffusion proxyapp

2.1 Theory

The theory of classical transport in a magnetized plasma leads to two transport coefficients gov-
erning heat transfer in the directions parallel with and perpendicular to the applied magnetic field
[6]. The quantities
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are converted into diffusivities by multiplying by a factor of 2
3ne

where ne is the density of electrons.
Then the equation to be solved by the proxyapp is

∂u

∂t
= ∇ · (D ∇u) . (2)

The components of the diffusivity tensor D are rotated to allow arbitrary alignment between the
magnetic axis and the coordinate frame used by the code (and the boundaries). This tensor is
a second-rank contravariant object (note ∇ is covariant; note also that in the Cartesian frames
used the covariant / contravariant distinction does not matter anyway) and so the transformation
law between frames of reference (which are, in practice, rotations) is, with the usual Einstein
summation convention,

Di′j′ =
∂xi

′

∂xi
∂xj

′

∂xj
Dij . (3)

Note that in three dimensions, there are two independent directions perpendicular to the mag-
netic axis and in this subspace the components of D take the form of a general two-dimensional
isotropic tensor viz. a linear combination of g⊥ab and ε⊥ab, respectively the metric and alternating
tensor in the two-dimensional perpendicular space.

2.2 Code structure and style

The proxyapp takes the κ‖ and κ⊥ as inputs via the Nektar++ xml session file, as well as an
angle to specify the magnetic axis (whose use is illustrated in 2.3). The κ coefficients are, in
the examples provided, calculated, using the Braginskii formulae 1, from physical constants and
parameters provided in the session file. These are converted to diffusivities, as shown above, and
used as inputs to an existing part of the Nektar++ code.

There are three main components (C++ translation units) to the proxyapp, handling the steady-
state, time-varying, and spatially-varying magnetic fields cases (additionally, the spatially-varying
diffusivity tensor has been added to the main Nektar++ code base as part of this work). The style
of the new code is consistent with the broader Nektar++ style i.e. good-standard modern C++.
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There is not a great deal of novel code in the proxyapp, since the main work is done by the
underlying Nektar++ code base. This has the benefit of using established, tested code. The
modular nature of the framework means that it is straightforward to alter other aspects of the
problem, for example changing the computational mesh in order to study the numerical effects of
misalignment between the mesh and the magnetic axis. This dependency also means that the
HPC viability and performance (also performance portability) of the proxyapp are determined by
that of Nektar++ and will benefit from other work in this direction e.g. the forthcoming matrix-
free accelerated kernels and the preconditioning aspect of NEPTUNE. In the meantime, existing
examinations of the performance of the framework are expected to be relevant [7].

Three example cases are provided by the authors of the proxyapp; these are studied below. One
point is that all examples have κ⊥ strictly zero (actually not a bad first approximation to the trans-
port properties of a well-magnetized plasma, but it does mean that there is functionality that is not
tested by the examples). This omission is addressed by further testing in this report (see 2.7, 2.8).

2.3 Examples I: steady-state

The steady-state solver finds solutions to (potentially anisotropic) Laplace equations.

In this example, a steady state is found; the field is sourced on the boundary, the left-hand-side
having a Dirichlet condition corresponding to a peaked one-dimensional density profile, with all
other boundaries using a zero Neumann condition. The value of κ⊥ is set to zero. The example
uses a mesh of 25,600 2D squares with global element order p = 3 (which controls the number of
intra-element degrees of freedom) and it executes in c.20s on a single modern desktop PC.

Examples with tilt angles of zero and two degrees are included (the two-degree is shown in fig.1).
Rotating the angle has the effect of changing the magnetic axis: a positive rotation angle has
the effect of aiming the beam in a downward tilt. Since the domains are currently featureless,
any effects of varying the magnetic axis are due to interaction with the boundary conditions. This
means that the zero-degree case is near-analytic (the boundary profile is simply extruded along
the magnetic axis, subject to minor corrections from the Neumann constraints at the top and
bottom walls) whereas the inclined case is not, due to its non-normal boundary incidence.

It may be noted that the zero-Neumann boundary condition used where the diffusing field encoun-
ters the boundary does not correspond to an outflow boundary condition, i.e. there will be some
reflection of the field at this location (see fig.2).

It is noted that the overall scalar magnitude governing the diffusion tensor does not affect the
steady state, so the magnitude of κ‖ is irrelevant in this example.

2.4 Examples II: time-evolving state

This example begins with an empty cavity with the same boundary conditions as used in the
previous example; the Dirichlet source term on the left-hand-side boundary means that the field
diffuses into the cavity with time, eventually tending to the steady state found in 2.3.
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Figure 1: Output of the anisotropic solver (κ⊥ = 0) for the steady state, in the case of two degrees of
magnetic axis tilt.

The parallel diffusivity evaluates as 3.140868 × 10−6m2s−1 using ne = 1.0 × 1018m−3. This value
was exported from the code for checking and was found to agree with eq.1. The magnitude
here governs the speed of the time-evolution. One issue with the example is that it is set up
to run for one program time unit (corresponding to one second, as SI units are used), using a
time step ∆t of 1ms. These timescales are much longer than the dynamical timescale implied
by the lengthscale and diffusion coefficient in the problem (this timescale is L2

D for lengthscale
L and a scalar diffusivity D, which is calculated as 2κ‖

3ne
) and this has the effect of making the

problem appear steady-state, as this state is achieved after a single time-step. More sensible
are ∆t = 10−9s and a duration of a few times 10−5s, over which significant build-up of u at the
right-most boundary is achieved.

The zero-degree example here constitutes a one-dimensional problem; conceptually the Dirichlet
condition acts as a steady source, with the value of the field held constant along the left-hand-
side boundary, with a Neumann condition at the right-hand-side boundary representing a zero-flux
condition (meaning that the steady state is just a uniform field). In fact, a similar time-dependent
boundary value problem (u̇ = Du′′) has a simple analytic solution on the semi-infinite domain
x ≥ 0, viz.

u = 10

(
1− erf

(
x√
4Dt

))
. (4)

Here the amplitude of 10 is chosen to correspond to the field value in the example. The field
along the centre of the test profile of the example can be plotted at various times and compared
to this (the approximation is good while the field value at the right-hand-side boundary is small i.e.
t . L2

16D for a domain of length L). The correspondence (fig.2) is obvious; note the t = 10−6s case
shows a small amount of reflection due to the no-flux boundary condition on the right-hand side.

2.5 Examples III: torus

This example demonstrates the spatial variation of the anisotropic tensor, used here to represent
alignment with a semicircular magnetic axis. The mesh is quadrilateral with order-three elements.
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Figure 2: Time evolution: output of the anisotropic solver (dashed curves) overlain with theory (eq.4) for
times 10−9,10−8, 10−7, 10−6s respectively from left to right. The latest-time numerics deviate from the
semi-infinite theory due to the presence of the right-hand-side boundary.

Figure 3: Output of the anisotropic solver (κ⊥ = 0) for the steady state of a toroidally-aligned magnetic
axis.

The output demonstrates that the spatially-varying code is working in this two-dimensional exam-
ple. The generated field is shown in fig.3.

2.6 Further tests I: spectral convergence

One of the outputs of a Nektar++ simulation is an assessment of the global L2 error against a
reference analytic solution. It is therefore possible to test the convergence of a known stationary
analytic solution, regarding which it is trivial to generate solutions of the 2D Laplace equation by
taking the real or imaginary parts of analytic functions. Here we examine the convergence of
the isotropic case (no magnetic axis) in the case of the function cos(2x) cosh(2y) (the real part
of f(z) = cos(2z)). Dirichlet boundary conditions are chosen consistent with the solution. The
system is solved for element orders p = 1 − 11 using an isotropic diffusion tensor. A plot of the
behaviour of the logarithm of the global L2 error against element order (fig.4) shows a clear pattern
of exponential convergence, which saturates in this case for p = 9. Note that for this simulation,
and the ones in the following subsections, the computational domain was the unit square centred
on the origin, discretized into 100 identical squares.
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Figure 4: Plot of global L2 error from simulation of harmonic function as a function of element order,
showing exponential convergence (left). On the right is the output of the solver for element order p = 11.

Figure 5: Output of the anisotropic solver showing the solution as a stretched harmonic function.

2.7 Further tests II: anisotropic field

The following tests (this, and the following, subsections) used element order p = 3.

It is possible to test the validity of the anisotropic solver by setting up test cases that represent
solutions to Laplace’s equation in 2D in coordinates that are stretched. It is further possible to
assess the error in the solution by direct comparison with the analytic solution, as used in the
preceding section.

Selecting as a simple smooth trial solution for u the harmonic function x2 − y2 (the real part
of f(z) = z2), one can see that the stretched function

(
x
a

)2 − y2 is a solution to the equation
a2 ∂2u

∂x2
+ ∂2u

∂y2
= 0. A simulation with κ‖ = 2.0 and κ⊥ = 1.0 was performed and the output is shown

in fig.5.

The global L2 error remains of the order of 10−11 for the anisotropic solution, consistent with the
‘saturation’ seen earlier (2.6).

A further note on the performance is that the field in 2.6 was run using the method in this section for
values of κ‖

κ⊥ ranging from 10−10 to 1010 apparently without any effect on the efficiency or accuracy
of the code.
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Figure 6: Output of the anisotropic solver showing the solution as a stretched, rotated harmonic function.

2.8 Further tests III: rotated anisotropic field

It is possible to test the rotation of the magnetic axis in a simple analytic case. A 45-degree tilt
can be applied to the magnetic axis and the Dirichlet boundary conditions and the reference so-
lution can be made consistent with a one-dimensional steady-state diffusive solution u = x2 − y2

in rotated coordinates. It is found that the required solution is obtained, showing correct transfor-
mation of the diffusion tensor in the code; as before, the global L2 error remains consistent with
the saturation level and appears agnostic as to the choice of rotation angle. The field is shown in
fig.6, which is clearly a rotated view of the field in fig.5.

Amusingly, for the case of linear functions, one notes that the equation system is insensitive to
the rotation angle, because any linear function satisfies ∂2u

∂x2
= 0 and ∂2u

∂y2
= 0 independently. The

solution in this case is fully specified by the boundary conditions alone (i.e. the magnetic axis
does not need to coincide with the gradient of u). One issue here is that if the Nektar++ variable
GlobalSysSoln is set to DirectFull, an incorrect result is obtained for the linear function case. A
correct solution follows if this option is set to IterativeStaticCond.

3 Behaviour of Nektar-Driftwave proxyapp

This proxyapp, again based on the Nektar++ framework, is designed to solve the 2D Hasegawa-
Wakatani equations [8] - a coupled pair of equations for the plasma density and the electrostatic
potential found in resistive drift-wave turbulence, used to model plasma edge turbulence. The
equations are (potential φ, density n, vorticity ζ; square bracket is the Poisson bracket)

∂ζ

∂t
+ [φ, ζ] = α (φ− n) , (5)

∂n

∂t
+ [φ, n] = α (φ− n)− κn

∂φ

∂y
. (6)

Here, κn is a constant-density gradient scale-length and α is a parameter called the adiabaticity.
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Figure 7: Example simulated vorticity, density, and electrostatic potential (left to right) from Ammar Hakim’s
web page (ref) (top) with corresponding proxyapp outputs (bottom), showing qualitative correspondence.

The electrostatic potential φ is solved by the Poisson system ∇2φ = ζ (note that Nektar++ has
inbuilt capability to handle this type of equation as it is found in many fluid flows e.g. for the
pressure in the incompressible Navier-Stokes system).

The provided example solves the time-evolution of this system starting from Gaussian initial pro-
files, using a 64×64 grid with element order p = 3. The output includes check-point fields at regular
intervals during the solution history. One issue is that the example is set to run for 50 time units,
whereas the system is still clearly in a transient state at the end of this period. Increasing the du-
ration to 200 time units allows comparison with the adiabaticity-2.0 results from the webpage [9].
These results, together with the corresponding outputs of the proxyapp, are shown in fig.7. The
qualitative agreement is impressive; note that predicting the specific structures is not possible due
to the chaotic nature of the system - thus, a L2-error assessment against the field of a reference
solution is not applicable - one must instead examine the existence and statistics of structures
such as vortices (evident in both cases). One further thing to note is that the electrostatic potential
is seen to correlate well with the density profile. It must be stressed that this test forms a baseline
check of the proxyapp and does not provide a definitive guarantee of accuracy.

This longer simulation executed in approximately eight hours on a single modern desktop PC
using eight cores (it is assumed that the specified time-step size cannot be increased in order to
reduce the computation time). HPC performance is, as with Nektar-Diffusion, determined by the
underlying Nektar++ framework.

The coding style of the proxyapp is consistent with that of Nektar++.
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4 Soldrake

4.1 Introduction

Transport in the scrape-off layer (SOL) occurs primarily along magnetic field lines. The field lines
considered here are taken to be outside the last closed flux surface; they therefore terminate
in a divertor at both ends. For modelling transport along a field line, the latter is considered to
be a symmetric flux tube where plasma enters the tube in the perpendicular direction and is then
transported along the tube to the divertor which acts as the only sink for plasma. At the ends of the
tube, where the flux line meets the divertor, a scenario where plasma is extracted at a prescribed
velocity in considered. This study uses an established model for the plasma as a fluid without
neutral species; the model describes the evolution of a plasma described by density, velocity and
temperature with boundary conditions and sources that determine the profile of the fields. Of
particular interest are combinations of source terms and boundary conditions that produce high
spatial gradients in the steady state solution as these scenarios are the most challenging for a
numerical implementation to capture accurately.

Typically in the plasma physics community the method of finite differences has been used as a
spatial discretization technique [10, 11, 12]. Here, the finite element method is used as the spatial
discretization method, as this is an area marked for investigation by the NEPTUNE project - in
particular, the investigation of simulation accuracy in response to the choice of spatial discretiza-
tion, where refinement can occur both through mesh refinement (h-adaptivity) and polynomial
order refinement (p-adaptivity). Both refinement types increase the number of degrees of freedom
(DOFs) used to represent the solution with the expectation that applying more DOFs to a compu-
tation results in a more accurate solution. An important target for NEPTUNE is to establish how
many DOFs are required to compute a solution to a given error tolerance.

As finite element implementations are highly non-trivial to implement, the Firedrake [4] framework
was used to easily implement our model equations from weak form. For the time discretization
approach, the Irksome [5] extension to the Firedrake framework was used; this provides an easy
method to implement general Runge-Kutta schemes. In the following sections the model equations
and initial results for systems without neutral species are described. These results demonstrate
that the numerical implementation is correct, and allow investigation of simulation output accuracy
as a function of spatial discretization.

4.1.1 Firedrake and Irksome

Firedrake is a framework that automates the computation of finite element based solutions of par-
tial differential equations (PDEs). Users describe a system of equations along with a domain and
boundary conditions in a high-level language called Unified Form Language (UFL). The Firedrake
framework consumes the UFL input and automatically uses code generation techniques to effi-
ciently conduct lower level operations such as matrix assembly. Linear and non-linear systems
are efficiently and automatically solved by the framework by using the PETSc[13] library.

For the canonical example, consider a 1D Poisson equation on the interval domain Ω = [0, 1]
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where

−∆U = f in Ω, (7)
U = 0 on ∂Ω. (8)

The corresponding weak formulation is to find a u ∈ V such that

∫
Ω
∇φ · ∇u dx =

∫
Ω
φf dx ∀ φ ∈ V (9)

where V is a function space that satisfies the prescribed boundary condition. The Python code
in Listing 1 demonstrates how this weak form would be described by UFL. Note that with this ap-
proach the function space and weak forms themselves can be easily modified for experimentation
and development. This is in contrast to a traditional monolithic code where alterations to function
space or functional form may easily result in a significant implementation cost to realize.

Irksome is a complementary project in the Firedrake ecosystem which provides high-level access
to Runge-Kutta integration schemes. In this work, implicit schemes that offer high stability proper-
ties are of particular interest. To allow users to implement time stepping at a high level, the Irksome
library implements an extension to UFL that provides the Dt operator which the user includes in
the time-dependent weak form of interest.

Listing 1: Implementation in UFL of the weak formulation of Poisson’s equation on a unit interval.
from f i r e d r a k e import ∗
mesh = Uni t In te rva lMesh (100)
V = FunctionSpace (mesh , ”CG” , 2)
u = T r i a l F u n c t i o n (V)
v = TestFunct ion (V)
a = inner ( grad ( u ) , grad ( v ) ) ∗ dx
F = Funct ion (V)
F . i n t e r p o l a t e (< cons t ruc t F>)
L = F∗v∗dx
bcs = [ D i r i ch le tBC (V, Constant ( 0 ) , ( 1 , ) ) ,

D i r i ch le tBC (V, Constant ( 0 ) , ( 2 , ) ) , ]
uu = Funct ion (V)
so lve ( a == L , uu , bcs=bcs )
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4.2 1D scrape-off layer model

4.2.1 Model equations

Consider a 1D domain of length L parameterized by the variable s ∈ [0, L] and parameterize time
by t. The equations describing conservation of mass, momentum, and energy are

Ur
∂n

∂t
= − ∂

∂s
(nu) + Sn, (10)

Ur
∂

∂t
(nu) = − ∂

∂s
(nu2)− ∂

∂s
(nT ) + Su, (11)

Ur
∂

∂t

(
(g − 2)nT + nu2

)
= − ∂

∂s
(gnuT + nu3) + κd

∂2T

∂s2
+ SE , (12)

where n = n(s, t) is the ion and electron density, u = u(s, t) is the velocity field of ions and
electrons, and T = T (s, t) is the temperature of ions and electrons. The constant g represents
specific heat capacity. The temperature diffusion coefficient κd typically takes the form κd = κ0T

5/2

or can be set to zero in the conduction-free scenario. The constant Ur, which measures the
importance of the transient term, will be set to Ur = 1. The terms Sn(s), Su(s) and SE(s) are
time-independent sources which represent the addition or removal of quantities in the direction
perpendicular to the flux tube. For boundary conditions it is assumed that either ∂∗

∂s = 0 for ∗ ∈
{n, u, T} on s ∈ {0, 1} or that the exit velocity u(0) = −u(1) is fixed at a constant value. In the latter
case, where the velocity is fixed on the boundary, it follows from applying conservation of mass and
energy that by choosing an exit velocity the boundary values of mass and temperature are also
determined. Note that these equations are written in the non-dimensionalized form described by
Arter [14]. For a given set of source terms, quantities are normalized such that Dirichlet boundary
conditions could be applied where n, u and T all have magnitude 1 at the boundary.

By applying the product rule repeatedly and replacing time derivatives with spatial derivatives and
forcing terms Equations 11 and 12 are rewritten in the so-called non-conservative form,

Urn
∂u

∂t
= u

[
∂

∂s
(nu)− Sn

]
− ∂

∂s
(nu2)− ∂

∂s
(nT ) + Su, (13)

= −uSn − nu∂u
∂s
− ∂

∂s
(nT ) + Su (14)

and

Ur(g − 2)n
∂T

∂t
=
(
(g − 2)T − u2

) [ ∂
∂s

(nu)− Sn
]

+ 2u

[
∂

∂s
(nu2) +

∂

∂s
(nT )− Su

]
− ∂

∂s
(gnuT )− ∂

∂s
(nu3) + κd

∂2T

∂s2
+ SE

(15)

where square brackets have been used to more easily identify the insertion of Equations 10 and
11.

4.2.2 Weak formulation

In order to use the Firedrake framework, the system of equations must be written in weak form
such that the system can be represented in the Unified Form Language (UFL). The spatial dis-
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cretization used here takes the form of a function space V constructed of continuous Lagrange
basis functions (Firedrake CG) where the polynomial order was varied between 1 and 19 depend-
ing on the particular investigation. For a test function φ, the weak form of Equations (10), (13) and
(15) are simply formed by multiplication by the test function and integrating over the whole domain,

Ur〈φ,
∂n

∂t
〉 = 〈φ,− ∂

∂s
(nu) + Sn〉, (16)

Ur〈φ, n
∂u

∂t
〉 = 〈φ, u

[
∂

∂s
(nu)− Sn

]
− ∂

∂s
(nu2)− ∂

∂s
(nT ) + Su〉, (17)

Ur(g − 2)〈φ, n∂T
∂t
〉 = 〈φ,

(
(g − 2)T − u2

) [ ∂
∂s

(nu)− Sn
]
〉

+ 〈φ, 2u
[
∂

∂s
(nu2) +

∂

∂s
(nT )− Su

]
〉

+ 〈φ,− ∂

∂s
(gnuT )− ∂

∂s
(nu3) + SE〉

− κd〈
∂φ

∂s
,
∂T

∂s
〉,

(18)

where for brevity the notation 〈u, v〉
∫
s uvds is employed.

4.2.3 Implementation and results

The computation of steady state solutions is formed as a two stage process. First, a time depen-
dent system is constructed with the desired source terms and an initial condition that satisfies the
boundary conditions. This initial condition is evolved using the Implicit Euler time stepping scheme
via Irksome. It is common for the initial condition and boundary conditions to add spurious con-
tributions to the solution. In order to preserve the accuracy of the steady state solution, these
undesirable contributions are suppressed by using a small-in-magnitude diffusion operator every
set number of time steps.

After the transients from the initial condition have been either suppressed or transported from the
domain the fields relax in a direction that minimizes the residual. These evolved fields are an
approximation to the steady state and are used as the initial guess for a non-linear solver that
computes the steady state. Given a good initial guess, the non-linear solve computes a solution
with an acceptably small residual in a significantly shorter time frame than applying further time
stepping.

To test the correctness of the implementation, a model with zero heat conduction (κd = 0) was
compared with an analytic solution presented by Arter [14]. Dirichlet boundary conditions were
applied that set n(0) = n(1) = T (0) = T (1) = U(1) = 1 and u(0) = −1. This test case, which is
constructed with very smooth source terms, is presented in Figure 8.

A more realistic value for the conduction term κ0 = 200 is described by Arter in [14]. To investigate
the effect of this parameter on the steady state solution, κ0 was varied between 0 and 2000 whilst
using a momentum source term constructed from two sharp Gaussian distributions located near
the two boundaries. The source terms for this investigation are presented in Figure 9a. As in the
correctness test these momentum sources Su oppose the flow of the plasma. In contrast to the
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Figure 8: Source terms and computed steady state profiles for density, velocity and temperature
for a zero heat conduction test case. Left: source terms for plasma density, plasma momentum
and system energy. Right: steady state solution.

correctness test Su is constructed with narrower Gaussian widths such that the resulting profiles
feature higher gradients. The same Dirichlet boundary conditions used for the correctness were
applied and the same spatial discretisation was used, i.e. mesh spacing h = 0.1 with first order
Continuous Lagrange elements. The resulting steady state profiles from the sweep of κ0 values is
presented in Figure 9.

As expected the higher conduction coefficients, shown in lighter colours in Figure 9, result in
smaller temperature variation over the domain and reduced temperature gradients near the bound-
ary. The variation of κ0 has minimal effect on the overall shape of the velocity profile but does
slightly alter the shape at the inflection points near to the boundary. A similar effect is observed
for the density profile where, at the inflection points, the intermediate values of κ0 produce pro-
files which have a significant positive gradient before the turning point and then negative gradient
when heading to the boundary. This is in contrast to the extreme values of κ0 that produce density
profiles with near-right-angled inflection points.

Our final section on the neutral-free model investigates the error of the computed steady state
profiles as a function of mesh spacing h and polynomial order p. The density, momentum and
energy sources and boundary conditions of our test case are identical to those applied in the
sweep of κ0 values and are presented in Figure 9a. The mesh refinement experiment applied first
order Continuous Lagrange finite elements for all mesh resolutions and in the polynomial order
refinement experiment the mesh spacing was fixed at h = 0.1. For this investigation κ0 was given
a fixed value of 200. The error in each of the test profiles was evaluated using a reference solution
computed using a mesh spacing of h = 2×10−5 with Continuous Galerkin order-1 basis functions.
This reference function space features approximately 5.5× 106 DOFs for the simulation domain.

Each test profile was constructed by using the steady state solver to compute a new profile for the
particular mesh spacing or polynomial order. In Figures 10 the L2 error in the computed solution
is shown as a function of the mesh spacing h and polynomial order p respectively. The dashed
black line is a reference that indicates an O(hp+1) rate of convergence.
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Figure 9: Steady state density, velocity and temperature profiles for conduction terms κ0 between
0 and 2000 for the presented source terms.
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Figure 10: Left: L2 error as a function of mesh spacing h. Right: L2 error as a function of
polynomial order p. Dashed black line indicates an error convergence behaviour of O(hp+1).

The error results demonstrate that, for this test case, the implementation attains a rate of con-
verge that asymptotically behaves O(hp+1) both with mesh refinement and increasing polynomial
order. Furthermore these convergence results were computed from profiles that exhibit significant
gradients which are an expected feature in the SOL.

4.3 Conclusions and future work

It was demonstrated that finite element based implementations of 1D SOL models can be effi-
ciently and correctly produced using the Firedrake framework. The implementation allows a user
to easily modify the equations, discretization, and time stepping method, in contrast to a tradi-
tional monolithic code. These alterations can be performed without detailed knowledge of the
inner workings of a finite element code. Furthermore the code generation approach of Firedrake,
along with inbuilt use of libraries such as PETSc, mean that the produced implementation should
be efficient.

With this implementation, the capability to produce density, temperature and velocity profiles that
feature sharp spatial gradients similar in magnitude to those found for realistic source conditions
was shown. This implementation provides a testbed to assess the impact of mesh refinement
(h-adaptivity) and polynomial order refinement (p-adaptivity) on the error of steady state solutions.
Future work should investigate inclusion of more realistic source terms and boundary conditions
for the model and implementation. One avenue to produce realistic source terms is to study the
addition of a neutral species to the model. This neutral species could interact with the existing
plasma species via additional interaction terms that govern how charge and momentum are trans-
ferred between the two species. In the plasma physics community the model including a neutral
species is considered a significantly harder problem that the neutral-free case.
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5 Summary

This report has provided an overview and initial assessment of two of the NEPTUNE proxyapps,
both of which utilize the spectral-hp method as implemented in the Nektar++ framework. The
author-supplied examples for each have been run successfully. In the case of Nektar-Diffusion the
spectral convergence and the correctness of the anisotropic Laplacian solver have been demon-
strated in simple cases.

An overview of 1D modelling using the flexible Firedrake framework was also provided, including
plausible solutions to equations describing the physics of the scrape-off layer and a demonstration
of spectral convergence. This study clears the path for the examination of more complicated
models within the same framework.
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