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The report describes work for ExCALIBUR project NEPTUNE at the point of Deliverable 3.2. It
binds the technical reports “Identification of Testbed Platforms and Applications” (2047358-TN-02
[1]) and “Evaluation of Approaches to Performance Portability” (2047358-TN-03 [2]), the second
and third reports produced by the consortium from the Universities of York and Warwick.

This group’s first report “Approaches to Performance Portable Applications for Fusion” (2047358-
TN-01 [3]) provides a survey of the present state of exascale hardware and technologies. The key
point is that exascale hardware is expected to be diverse: HPC systems will be heterogeneous or
hierarchical, with GPUs accelerating host CPUs. Codes will need to be performance portable –
able to run efficiently on a range of hardware from multiple vendors, without requiring significant
source code modifications for each system. Many technologies are being developed to enable
performance portability – most notably SYCL, Kokkos and RAJA – which aim for a single source
code to target CPUs and GPUs (and FPGAs), and achieve comparable performance to native
implementation that use CUDA, OpenACC or OpenMP for their respective targets. The reports
[1, 2] assess the current state of these technologies as applied to fusion plasma software, with
the overarching aim of enabling best practice for achieving performance portability in NEPTUNE
software development.

TN-02: Identification of Testbed Platforms and Applications

The first of the reports included here describes the performance portability assessment method-
ology. It performs two main tasks. The first is to outline metrics to describe performance and
portability across a range of platforms. This is a new topic that is under development. The difficulty
lies in reducing very rich, multi-variate performance data into a concise but meaningful descrip-
tion. After discussing the single-number performance portability metric of Pennycook et al. [4], the
authors adopt two-dimensional metrics, namely box plots and the “cascade plot” approach from
Sewall et al. [5]. Cascade plots show a performance efficiency for each machine on the vertical
axis against a range of machines on the horizontal axis. This gives a clearer sense of portability
than a single score metric, but still necessarily suppresses a huge amount of data by giving a
single score for each machine. For example, from such plots one cannot assess how performance
changes with the number of compute nodes or with problem size. One must also bear in mind the
potential sensitivity of the metric to the choice of machines used in the assessment.



The second task the report performs is to determine the sets of hardware and software to be
used in the assessment. Both homogeneous and heterogeneous hardware platforms are used,
and most are UK Tier 1 (Archer2) or Tier 2 machines. The software is selected from existing
proxyapps, chosen to be broadly representative of NEPTUNE software, implementing algorithms
that have similar computation and communication patterns to those that will be used in NEPTUNE
code. Seven proxyapps are chosen: four fluid codes and three particle-in-cell (PIC) codes. The
software uses a variety of approaches, with the fluid codes covering finite difference, finite element
and spectral element approaches, and the PIC codes covering different algorithmic choices and
structure/unstructured meshes. The fluid proxyapps cover a range of programming models –
SYCL, Kokkos and RAJA, the DSL/code generation library OPS, and native implementations in
MPI, OpenMP, OpenACC and CUDA. The limited availability of PIC codes however means that
these are implemented only in Kokkos.

TN-03: Evaluation of Approaches to Performance Portability

The second report is an initial assessment of the platforms and applications selected in the pre-
vious report. This is intended as a living document, to be updated as more performance data
becomes available. Moreover, many of the proxyapps, libraries and programming models are un-
der active development, so conclusions are subject to change. Where possible, the report uses
performance data taken from publications, but where necessary the authors have supplemented
this with their own simulations.

The main conclusion is that non-portable implementations – MPI and/or OpenMP for CPUs and
CUDA for NVIDIA GPUs – always outperform the portable implementations provided by SYCL,
Kokkos and RAJA. The latter are at best 20% slower than native implementations on CPUs and
50% slower on GPUs. The DSL/code generation approach provided by OPS offers a compromise
option between the portable and non-portable paradigms. For example, OPS is used in the fluid
proxyapp TeaLeaf to generate code to target MPI, OpenMP, OpenACC, CUDA and HIP, achieving
performance comparable with native CPU implementations and within a factor of two of native
GPU implementations. However DSLs constrain source code to use their specific APIs, reducing
the flexibility allowed to developers (in this case, OPS only targets structured grids). Moreover,
the DSL inserts an additional abstraction layer to be maintained, likely by NEPTUNE developers,
rather than external developers as would be the case with SYCL, Kokkos and RAJA. In any case,
the conclusion at present is that ensuring best performance across a range of hardware requires
the maintenance of multiple implementations of the code, one for each hardware target.

Future directions

Choice of programming model In terms of assessing the relative merits of SYCL, Kokkos,
RAJA and OPS, the results presented here are preliminary and limited by available data. The
conclusions only apply to the fluids proxyapps, as all the PIC proxyapps are parallelized using
Kokkos. Moreover, even among the fluid proxyapps, there is no direct like-for-like comparison
between programming models.
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From these results, there is no clear choice of best model. While Kokkos and RAJA appear su-
perior to SYCL, at least some of this discrepancy is due to compiler and data-collection issues.
Elsewhere, Wright expresses a preference for using SYCL, though with the caveat that the choice
of model may not be critical [6]. Project NEPTUNE currently has links with Codeplay, devel-
opers of one of the SYCL implementations (who are also undertaking work on SYCL backend
for Kokkos), and with Lawrence Livermore National Laboratory, developers of RAJA. These links
should meet the concern that SYCL (and hence NEPTUNE) may fail consequent on for example,
withdrawal of support for DPC++ by Intel.

Given the performance advantages of native implementations over portable programming models,
it is natural to question the value of such models. For example, if it is necessary to write and
maintain bespoke backends for our SYCL or Kokkos implementation to obtain high performance
on different architectures, in what sense is our code actually portable? Does this tie NEPTUNE
unnecessarily into a dependence on an external library and constrain developers to using a pro-
gramming model, while still essentially requiring the maintenance of multiple native implementa-
tions? Possibly! Indeed, native implementations may make more sense when code execution is
limited to a small set of HPC systems, allowing intensive bespoke optimize for each. However, the
aspiration of the NEPTUNE project is to be widely-used and also long-lasting. This requires the
flexibility to run on as yet unseen hardware. Using programming models allows us to have a lot of
portability - here no more than 20% slower on CPUs and 50% slower on GPUs without tuning -
while maintaining a single source. While in absolute terms these are large degrees of performance
to lose in grand challenge problems, these are acceptable figures for untuned initial simulations.
They are a strong baseline to work from, allowing NEPTUNE developers to focus performance
optimization for specific machines as and when it becomes appropriate through modifying specific
backends. Moreover, choosing a programming model gives NEPTUNE the same advantages as
choosing library implementations: it becomes able to leverage the optimization work of others,
freeing NEPTUNE developers to work on NEPTUNE-specific problems.

Assessment of algorithms There is an important direction that this assessment does not treat
and which need to be addressed in future work. It assesses the performance of different imple-
mentations of the same algorithm, but it does not assess the relative performance of algorithms
that are meant to produce the same physics results by different numerical means. These results
show us that discrepancies exist, but do not explain why that is so.

On a related note, these reports deal with assessing on-node software performance. This is a
valuable exercise, as it is highly likely that the programming model at exascale will be MPI+X – MPI
between nodes, and X some unknown programming model within a node. Therefore much can
be learnt about exascale performance from single-node experiments on pre-exascale machines.
But nonetheless this analysis does not assess the suitability of algorithms for massively multi-
node simulations. It is conceivable that at scale large performance discrepancies arise between
different algorithms that were not observed simply from their small-scale implementations.

As the software development plan becomes more refined, the issue of comparing algorithm per-
formance – both on-node and off – will be a key area of focus.
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1 Introduction

In our previous report we provided a state-of-the-art review of available hard-

ware and software for the development of post-Exascale applications. The report

highlights two key observations:

• The hardware landscape is diversifying. At Exascale there will likely be

a diverse range of hardware available, and many of the largest systems

will employ heterogeneous/hierarchical parallelism, characterised predom-

inantly by the use of GPU accelerators.

• There is a wide range of approaches to software development which allow

for portability between architectures. However, whether these approaches

enable us to obtain the best performance on each architecture (perfor-

mance portability) without significant manual modifications (productiv-

ity) is a key question.

The focus of this project is to establish best practice for developing a new

plasma-fusion application that might achieve the trinity of Performance, Porta-

bility and Productivity.

In this project we seek to evaluate a number of hardware platforms and asso-

ciated software development methodologies. This report outlines how we will

assess these factors for the remainder of the project. We will also identify a

number of representative applications, in the form of mini-applications that

implement algorithms of interest with similar computational/communication

patterns to those likely to be present in the NEPTUNE codebase.

1.1 Evaluating Performance Portability

The basis for this investigation will be to analyse the performance portability of

a number of software development methodologies using the established metric

introduced by Pennycook et al. [1] and restated in Equation 1.
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PP(a, p,H) =


|H|∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

The performance portability ( PP) of an application a, solving problem p, on a

given set of platforms H, is calculated by finding the harmonic mean of an ap-

plications performance efficiency (ei(a, p)). The performance efficiency for each

platform can be calculated by comparing achieved performance against the best

recorded (possibly non-portable) performance on each individual target plat-

form (i.e. the application efficiency, or by comparing the achieved performance

against the theoretical maximum performance achievable on each individual

platform (i.e. the architectural efficiency). Should the application fail to run on

one of the target platforms, a performance portability score of 0 is awarded.

The work by Pennycook et al. highlights a number of alternative measures of

performance portability, highlighting their shortcomings at providing actionable

insights [1]. They outline five criteria a useful metric should aspire to, and then

demonstrate how their metric meets each of these criteria. Specifically, a useful

metric should: (i) be measured specific to a set of platforms of interest H; (ii)

be independent of the absolute performance across H; (iii) be zero if a platform

in H is unsupported, and approach zero as the performance of platforms in H

approach zero; (iv) increase if performance increases on any platform in H; and

(v) be directly proportional to the sum of scores across H.

Since publication of this metric, it has been used extensively to assess the

performance portability of a number of applications and programming mod-

els [2, 3, 4, 5, 6, 7]. This project aims to replicate this effort with a focus on

applications and algorithms of interest to the plasma fusion community.

While a single, numeric metric has a number of advantages, there are also

some shortcomings. For example, if a particular application fails to run on one

platform then it will score 0, even if the application is performant on all other

platforms. To overcome issues such as this, Sewall et al. have proposed a number

of methods for visualising performance portability metrics [8].

The first of these is box plots, as demonstrated on synthetic data in Figure 1.
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Fig. 2: Box plots of synthetic performance data.

Such visualizations would enable developers to quickly (albeit
subjectively) answer Question 1, Question 2 and Question 3.

A. Box Plots

Box plots are a common, well-understood figure showing
the spread of data around the median, and are an obvious
candidate for summarizing the distribution of performance
efficiency data. The graph consists of a box formed by the
lower and upper quartiles, which is divided by the median.
Many software packages produce box plots with whiskers at
1.5 times the interquartile range from the box edge, and plot
outliers beyond this range as circles.

Figure 2 shows box plots for the synthetic data introduced in
Section II-C. This data is intended to stress test the approaches,
and we can clearly see that the box plots fail to show useful
information for many of these data sets. In the multi-target
case, the fact that the data has two clusters is not represented
in any way. The large box shows that the data is spread far
from the median, but doesn’t provide insight into the amount
of data around these points. Likewise, the inconsistent data
shows a fairly large box and a similar median value to the
multi-target data, as we found in Table II. The data is evenly
spread throughout the entire range, but this is not represented.
The consistent data sets do not utilize the visible space on
the graph well, but the lack of visible boxes conveys that the
data is highly clustered around the median. Additionally, the
difference in absolute performance between the two consistent
data sets (30% and 70%) is clearly represented. For the
unportable and single target data sets, the lack of boxes
reflects the clustering around the low performance efficiency
values. The single platforms with high performance efficiency
are represented as outliers, reflecting that these results are not
characteristic of this application – however, it is important to
note that the decision to label these results as outliers is under
user control, and therefore subject to abuse.

Figure 3 shows box plots for the real-world applications
described in Section II-C. Each chart in the figure pertains
to one code, with different box plots for each application
(programming model). The first two box plots for BabelStream
show clearly that much of the efficiency data is consistently

high; however, it is easy to miss that some platforms did not
run (represented by the outliers at zero), and the number of
unsupported platforms is obscured (by nature of all outliers
being at the same point). The other plots for this code do
not yield much information as to the quality of performance
portability; the boxes all cover the complete range [0, 100],
and we are left only with the median to make comparisons.
Many of the box plots shown draw the median line at zero:
most of the efficiency results are classified as not portable (i.e.
most applications did not run on most platforms). It is difficult
to see results where the data is non-zero.

When performance efficiencies are clustered around the
median, box plots intuitively represent the extent of that clus-
tering. However, in more general cases it can be challenging
to understand the number and effect of outliers. In particu-
lar, bimodal distributions (like multi-target) appear severely
distorted and indistinguishable from other distributions. Box
plots therefore suffer from many of the same problems as the
metrics discussed in Section III, and do not provide a clear
way to intuit a ranking of applications.

B. Histograms

Another classic way to visualize the distribution of data is to
produce a histogram. Data are grouped into categories (bins)
and plotted as a bar chart showing the number of items in
each bin, highlighting which bins are highly populated. A
histogram also shows all the data directly (albeit smoothed
into categories), preserving outliers and intermediate values
occurring between regions of high density.

In selecting the bins, it is important to remember the
meaning that we have ascribed to 0% performance efficiency
(i.e. that an application did not run or produced an incorrect
result). This is distinct from (0 + ✏)%, which indicates that
an application ran correctly, but with very low efficiency. As
such, we recommend separating “did not run” results into
their own bin, so as to distinguish them from low efficiencies.
This is a special case of a common problem in constructing
histograms: using too few bins hides useful information; but
using too many bins does nothing to summarize the data. The
significance of being in one bin or another is also open to
interpretation: one might feel that efficiencies of 69% and 71%
are equivalent, yet these results may fall into distinct bins.

Histograms for the synthetic data are shown in Figure 4a.
We show all the data sets on the same graph for brevity also
to allow direct comparison between them. Given the limited
range of the data, it is important to plot the different data
sets as independent bars side-by-side on the chart; in practice,
overlaying them almost always obscures data points.

These histograms capture the characteristics of the data sets
effectively. The two consistent data sets show strong peaks in
the bins corresponding to 30% and 70% efficiency, and the two
peaks of the multi-target data set are similarly intuitive. The
presence of many low frequency bins for the inconsistent data
set reflects the wide spread of data. An approximate ordering
of applications by performance portability can be derived by
examining whether the largest peaks occur for low or high
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Figure 1: Visualising performance portability with box plots [8]

In both Figure 1 and Figure 2: an unportable application does not run on

one or more of the available platforms; a single target solution runs well on a

single platform, and achieves 10% performance on all other platforms; a multi-

target application runs at 100% on half of the platforms, and 10% on all other

platforms; an inconsistent solution performs increasingly better on each platform

(from 10% to up 100%); and the consistent applications perform at 30% and

70% on all platforms, respectively.

In Figure 1, we can see that although the unportable application scores 0, there is

an outlier showing that the application is performant on some of the platforms

– information that is lost when evaluating based on a single numeric metric.

For the other synthetic datasets, we see the performance portability ( PP), along

with information about the range of efficiencies across all of the platforms. For

some applications or kernels, it may be the case that a performance portability

profile like that of the multi-target solution is acceptable, whereas for others,

a consistent 70% might be more appropriate. Figures such as this can help us

make these assessments, without relying on a single piece of information.

The second visualisation technique proposed by Sewall et al. is cascade plots,

as shown in Figure 2. In these plots, the target platforms are labelled A-J, and

plotted beneath the graph. Each application is profiled based on an increas-

ing set of platforms (ordered from most efficient to least for each application),

where the filled lines plot the platform efficiencies, and the dotted lines show
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Fig. 7: Efficiency cascade plot for synthetic data sets, along
with platform chart.

better performance portability appear closer to the top-left of
the graph, achieving higher PP scores for larger platform sets.

The study defined the least supported platform as the one
with the fewest non-zero performance efficiencies across all
applications (programming models) being compared. As a
result, the approach cannot be directly applied to studies of a
single application (where the number of non-zero performance
efficiencies for each platform will always be either 0 or
1). We refine that approach here, by considering alternative
constructions of the platform domain (the x-axis).

B. Efficiency Cascade Plots

Consider an application with efficiencies E0 observed for a
platform set H0, and a minimum efficiency min E0. Removing
any one platform among those with the minimum efficiency
gives a new platform set H1 with corresponding efficiencies
E1. We continue in this fashion for n = |H0| steps until we
obtain Hn = ;. We then plot |Hn�1|, |Hn�2|, . . . , |H0| against
min En�1, min En�2, . . . , min E0 (i.e. increasing number of
platforms vs. minimum efficiency in each subset). It is trivial to
compute PP using Ei for each |Hi| and to plot it alongside the
efficiency. The resulting visualization shows how precipitously
an application’s support for various platforms degrades and,
since the plotted values are necessarily non-increasing, we
designate these plots as efficiency cascade plots.

Reading a platform number from the x-axis and consulting
the plotted efficiency gives the number of platforms with at
least that level of efficiency. Conversely, reading right from
an efficiency or PP value on the y-axis to where it intercepts
a plotted value gives the number of platforms that have an
efficiency or PP greater than the chosen y value. Care must
be taken when plotting multiple applications aggregated onto
a single cascade plot, because the platform sets are winnowed
as described above individually; the Hi at each tick on the
x-axis will not necessarily be the same set of platforms across
applications, and only the plotted cardinalities are shared.

Figure 7 demonstrates such a plot for the synthetic data
sets, with solid and dashed lines representing the minimum
efficiency and PP values respectively. By nature of the

harmonic mean, the PP for an application on a given set of
platforms is never lower than the minimum efficiency – for
the consistent data sets, the PP and efficiency are identical.
The bimodal nature of the single target and multi-target
data sets is also reflected in the efficiency cascade, with clear
transitions between two levels of support marked by sharp
drops in efficiency.

Figure 8 shows efficiency cascade plots for the real-world
data. There are numerous distinct patterns that help to quickly
assess application (i.e. language/framework) behavior. The
number of supported platforms is marked by a drop to zero ef-
ficiency. There are some applications that show high efficiency
for a subset of platforms after which efficiency precipitously
drops, reminiscent of the single target data set.

It is reasonable to wonder how the data presented in an
efficiency cascade plot coincides (or does not) with one’s idea
of performance portability, quantitative or qualitative. Since PP
is featured in the plots, these questions are simple to answer:
the highest point in the rightmost column is the application
with the highest PP across all platforms in H0. Comparing
points to the left can be misleading, since the Hi at each of
these points is not necessarily the same across applications.
The exception is the rightmost point for each application,
which shows the minimum efficiency and PP calculated across
all platforms.

Insights into the qualitative question are readily available in
efficiency cascades. Imagine a line of the form y = �↵x + c
sweeping from the top-right of the plot (i.e. by decreasing
c); the first application that is intersected can reasonably be
argued to be the most performance portable. For ↵ � 1, the
line becomes steeper – the first intersected point will be the
application with the highest PP across the most platforms, as
described above. For smaller ↵ (> 0) the line may intersect
an application that supports fewer platforms but does so at a
higher net efficiency than the application that maximizes PP
over all platforms. This process may be used progressively to
sort applications by their performance portability.

For example, in Figure 7, consistent (70%) has the highest
PP across all platforms. If a developer values performance on

a subset of platforms more than what PP expresses over a
larger set, multi-target may satisfy. Likewise, in Figure 8,
Kokkos has the highest PP for Cloverleaf and Neutral, but
valuing the highest maximum for these applications may result
in OpenMP appearing the most performance portable. These
valuations can quickly become subjective, but remain useful
in guiding discussions.

Other observations are notable for requiring subjective
evaluation. In all data sets, OpenMP leads or ties all other
applications through most of the platforms. In some cases,
Kokkos supports more platforms, or supports later platforms
with higher efficiency than OpenMP. For additional discourse
on this subject, we refer the reader to the study of Deakin
et al. [17]. It is an interesting exercise for the developer or
application user to consider whether they prefer performance
or portability: in some cases, it is most important that as many
platforms be supported as possible; while in other cases, higher
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Figure 2: Visualising performance portability with cascade plots [8]

the corresponding performance portability as the platform set grows. Again,

visualising performance portability data using these visual heuristics allows a

developer to make a reasoned assessment about what might be acceptable for a

particular application or kernel.

2 Proxy Applications

The exploratory stage of NEPTUNE includes a number of projects that are

investigating the behaviour of plasmas through proxy applications. The appli-

cations currently being used broadly fall in to two categories, fluid models and

particle models. In particular, T/NA078/20 is using Nektar++ to explore the

performance of spectral elements, T/NA083/20 is focused on building a fluid

referent model in both Bout++ and Nektar++, and T/NA079/20 is exploring

the use of particle methods with the EPOCH particle-in-cell (PIC) code. It

is therefore likely that the resultant NEPTUNE software stack will be a fluid

model, based on the output of T/NA078/20 and T/NA083/20, coupled with a

particle model, based on the output of T/NA079/20.

The three aforementioned applications are the result of many years of develop-

ment and typically consist of many thousands of lines of C/C++ or Fortran.

They are already widely used by the UK’s scientific computing community on

a diverse range of problems.
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Prior to the development of the NEPTUNE software stack, it is prudent to

assess the wide range of available technologies, without the associated burden

of redeveloping these mature simulation applications into new programming

frameworks. In this project, we have therefore decided to identify a series mini-

applications that implement key computational algorithms that are similar to

those used by the NEPTUNE proxy applications. These mini-applications are

typically limited to a few thousand lines of code and are often available imple-

mented in a wide range of programming frameworks already.

Notable collections of such mini-applications includes Rodinia [9], UK-MAC [10],

the NAS Parallel Benchmarks [11], the ECP Proxy Apps [12] and the SPEC

benchmarks [13]. In this section, we will discuss the applications we have iden-

tified from these benchmark suites, that may be relevant to our performance

investigations.

2.1 Fluid Models

As previously noted, the fluid modelling aspects of the NEPTUNE project are

largely focused on the use of Bout++ [14, 15] and Nektar++ [16]. Bout++

is a framework for writing fluid and plasma simulations in curvilinear geometry,

implemented using a finite-difference method, while Nektar++ is a framework

for solving computational fluid dynamics problems using the spectral element

method.

Both applications are large C++ applications designed primarily for execution

across homogeneous clusters. Parallelisation across a cluster in both appli-

cations is achieved using MPI, with Bout++ additionally capable of on-node

parallelism with OpenMP. GPU acceleration is under development in both ap-

plications, through RAJA and HYPRE in Bout++, and through OpenACC in

Nektar++ [17].

Rather than redevelop these applications, this project has instead identified

a series of mini-applications that implement similar computational schemes.

Specifically, we have identified a finite difference mini-app, two finite element

mini-apps and one spectral element mini-app, each of which are implemented

in a range of programming models for rapid evaluation of approaches to perfor-

mance portability.
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TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduc-

tion equation on a regular grid using a 5-point stencil. It has been used

extensively in studying performance portability already [7, 2, 18, 19], and

is available implemented using CUDA, HYPRE, OpenCL, PETSc and

Trilinos1.

miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark

suite [20, 21, 22, 23]. It implements an unstructured implicit finite element

method and is available implemented using CUDA, Kokkos, OpenMP and

OpenMP with offload2.

Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [24,

25, 23]. It implements a high-order curvilinear finite element scheme on

an unstructured mesh. It uses HYPRE for parallel linear algebra, and is

additionally available in CUDA, RAJA and OpenMP implementations3.

Nekbone

Nekbone is a mini-app that is representative of one of the core kernels

of the incompressible Navier-Stokes solver Nek5000, from Argonne Na-

tional Laboratory [26, 27, 28, 23]. Like Nek5000, it uses a high-order

spectral element discretisation. The mini-app is available implemented

using OpenMP, and with accelerator support via CUDA and OpenACC4.

2.2 Particle Methods

The optimal use of particles in NEPTUNE is currently being explored using the

EPOCH particle-in-cell code [29], and its associated mini-app, minEPOCH [30]5.

EPOCH is a PIC code that runs on a structured grid, using a finite differencing

scheme and an implementation of the Boris push. Like Bout++ and Nek-

tar++, EPOCH is a mature software package that is used widely by the UK

science community, and thus is difficult to evaluate in alternative programming

1http://uk-mac.github.io/TeaLeaf/
2https://github.com/Mantevo/miniFE
3https://github.com/CEED/Laghos
4https://github.com/Nek5000/Nekbone
5https://github.com/ExCALIBUR-NEPTUNE/minepoch
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models without a significant redevelopment effort. Furthermore, EPOCH (and

minEPOCH) is developed in Fortran, making it increasingly difficult to adapt

to many new programming models that are heavily based on C++.

The mini-app variant of EPOCH, minEPOCH, is likewise developed in Fortran

and thus not appropriate for this study. However, there are a number of particle-

based mini-apps that may be of interest to this project, that implement similar

particle schemes, backed by a variety of electric/magnetic field solvers.

CabanaPIC

CabanaPIC is a structured PIC code built using the CoPA Cabana library

for particle-based simulations [23]. Through the CoPA Cabana library, the

application can be parallelised using Kokkos for on-node parallelism and

GPU use, and with MPI for off-node parallelism6.

VPIC/VPIC 2.0

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for mod-

elling kinetic plasmas in one, two or three dimensions, developed at Los

Alamos National Laboratory [31]. VPIC is parallelised on-core using vec-

tor intrinsics, on-node through pthreads or OpenMP and off-node using

MPI. VPIC 2.0 [32] adds support for heterogeneity by using Kokkos to

optimise the data layout and allow execution on accelerator devices7.

EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMag-

netic Plasma In Realistic Environments (EMPIRE) project [33]. It solves

Maxwell’s equations on an unstructured grid using a finite-element method,

and implements the Boris push for particle movement. EMPIRE-PIC

makes extensive use of the Trilinos library, and uses Kokkos as its parallel

programming model [34, 35].

Each of the three particle-based mini-apps identified implement a PIC algo-

rithm that is similar to that found in EPOCH. However, one weakness of this

evaluation set is that all three applications are parallelised on-node through

the Kokkos performance portability layer. Currently, we are unaware of any

SYCL/DPC++-based PIC codes, however Kokkos has a range of backends

6https://github.com/ECP-copa/CabanaPIC
7https://github.com/lanl/vpic
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including OpenMP target, and preliminary support for SYCL/DPC++ code

generation.

Alongside the minEPOCH mini-app, there was a C++ mini-app port called

miniEPOCH that is now orphaned [36], but may prove a useful evaluation ve-

hicle should time allow a porting exercise.

Beyond the PIC method, there are other particle-based applications that we may

consider as part of our evaluation, such the molecular dynamic mini-application,

miniMD [37]. The evaluation set will be re-evaluated as the project progresses.

3 Evaluation Platforms

The primary focus of this project is to provide an assessment of the options

available when developing Exascale-capable software. In the previous section

we identified a series of mini-applications that have been implemented using

a range of techniques that we believe will be important to developing future-

proofed fusion simulations.

Many of these applications have already been evaluated on various platforms

by others, and this project does not seek to re-run these experiments. Instead,

wherever possible we will seek to collect performance data from existing stud-

ies and apply the metrics and visualisation techniques described in Section 1.

Where evaluations do not already exist, we will look to evaluate performance

on UK-based platforms.

Broadly speaking, we can divide UK-based HPC platforms into two categories,

homogeneous systems and heterogeneous systems. The UK’s only Tier-1 system,

ARCHER2, is an homogeneous system with an estimated peak performance of

28 PFLOP/s. Across the UK’s Tier-2 systems, there is a significant degree of

diversity, offering a wide range of homogeneous and heterogeneous platforms/-

partitions.

Where we require additional evaluation of these applications, we will be able to

leverage access to a number of systems in the UK, such as those listed below.

Evaluation on other UK or US based systems may also be possible, through

existing collaborations.

8



3.1 Homogeneous Systems

ARHCER2

The national supercomputer, ARCHER2, is installed at the Edinburgh

Parallel Computing Centre (EPCC). ARCHER2 is a Cray Shasta system

interconnected with Cray Slingshot fabric. It consists of 5,848 nodes, each

with two AMD EPYC Rome CPUs.

Avon

Avon will be a homogeneous cluster of 180 nodes, containing dual Intel

Xeon Cascade Lake CPUs installed at the University of Warwick (expected

mid-2021). It will be interconnected with Infiniband.

Isambard

The Isambard Tier-2 service is predominantly composed of Marvell Thun-

derX2 ARM cores, connected by a Cray Aries interconnect. Beside the

ThunderX2 cabinet, Isambard also contains a cabinet of Fujistu A64FX

processors.

Viking

Viking is a large Linux compute cluster supporting research needs at the

University of York. It consists of approximately 170 compute nodes, each

with Intel Xeon Skylake CPUs, connected via Infiniband.

Cirrus

The Cirrus cluster, installed at EPCC, consists of 280 compute nodes,

each with dual Intel Xeon Broadwell processors. The cluster is connected

via Infiniband fabric.

3.2 Heterogeneous Systems

Viking

The Viking cluster, at the University of York, is further bolstered by two

GPU nodes, providing a small heterogeneous compute capability. The two

GPU nodes each contain four NVIDIA V100 GPUs.

Bede

The Bede system, installed at the University of Durham, has an architec-

ture similar to that found on Summit and Sierra. Bede is a single cabinet

of IBM POWER9 CPUs each supporting four NVIDIA V100 GPUs.

9



Isambard

Alongside the two ARM-based partitions on the Isambard system is the

Multi-Architecture Comparison System (MACS). MACS contains four

nodes each with two NVIDIA P100 GPUs, and four nodes each with an

NVIDIA V100 GPU. It also contains four nodes with AMD EPYC Rome

CPUs, and four nodes with Intel Xeon Cascade Lake CPUs. Finally,

there are also eight Intel Xeon Phi nodes, and two IBM Power9 nodes

with NVIDIA V100 GPUs.

CSD3

The Cambridge Service for Data Driven Discovery (CSD3) provide two

supercomputers under EPSRC Tier-2. Peta4 is a system comprising pre-

dominantly of Intel Xeon Skylake CPUs, with a small number of Intel

Xeon Phil nodes. Wilkes2 provides the largest GPU enabled system in

the UK, comprising of 90 nodes each with four NVIDIA P100 GPUs.

Baskerville

The Baskerville system will be the University of Birmingham’s Tier-2 clus-

ter. There are 46 compute nodes, each with four NVIDIA A100 GPUs

alongside Intel Xeon Ice Lake CPUs.

4 Conclusions

This report has identified a number of mini-applications that implement sim-

ilar numerical methods to those of interest in the NEPTUNE project. These

applications will be our focus for the remainder of this project, using these

applications to evaluate approaches to developing performance portable fusion

applications.

Our next report will gather performance data from available sources, and will

begin the process of evaluating performance across a range of architectures using

performance portability metrics and visualisation techniques. Where data is not

available it will be gathered from the systems we have at our disposal.

This analysis will allow us to make comparisons between differing programming

models and in turn make well reasoned recommendations for the NEPTUNE

programme.
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1 Introduction

The focus of the code structure and coordination work package is to establish a

series of “best practices” on how to develop simulation applications for Exascale

systems that are able to obtain high performance on each architecture (i.e. are

performance portable) without significant manual porting efforts.

In the past decade, a large number of approaches to developing performance

portable code have been developed. In this report we will begin to report on

our evaluation of some of these approaches through the execution of a small

number of mini-applications that implement methods similar to those likely to

be required in NEPTUNE.

These applications are detailed in report 2047358-TN-02, but are summarised

below for convenience:

TeaLeaf

A finite difference mini-app that solves the linear heat conduction equation

on a regular grid using a 5-point stencil1.

miniFE

A finite element mini-app, and part of the Mantevo benchmark suite2.

Laghos

A high-order curvilinear finite element scheme on an unstructured mesh3.

Nekbone

A high-order spectral element application for solving the incompressible

Navier-Stokes equations.4.

CabanaPIC

A structured PIC code built using the CoPA Cabana library for particle-

based simulations5.

VPIC/VPIC 2.0

A general purpose PIC code for modelling kinetic plasmas in one, two or

1http://uk-mac.github.io/TeaLeaf/
2https://github.com/Mantevo/miniFE
3https://github.com/CEED/Laghos
4https://github.com/Nek5000/Nekbone
5https://github.com/ECP-copa/CabanaPIC
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three dimensions, developed at Los Alamos National Laboratory6.

EMPIRE-PIC

An unstructured PIC code that uses the finite-element method.

The selected applications broadly represent the algorithms of interest for the

NEPTUNE project and fall in to two categories – fluid-methods and particle-

methods. Within the fluid-method tranche, the applications are available im-

plemented in a wide range of programming models, allowing us a good op-

portunity to evaluate the effect of programming model on the performance,

and importantly the performance portability of that particular approach to ap-

plication development. There are a relatively small number of particle-in-cell

mini-applications available, and thus the selected particle-methods applications

are only available implemented using Kokkos. However, this still allows us an

opportunity to evaluate the appropriateness of Kokkos as a programming model

for performance portable application development.

As stated previously, we will evaluate the performance portability of these ap-

plications using the metric introduced by Pennycook et al. [1], and use the

visualisation techniques outlined by Sewall et al. [2].

Where possible, performance data has been taken from previously published

works. Where no data exists, the data has been collected from the UK’s Tier-

2 platforms, in particular Isambard’s Multi-Architecture Comparison System

(MACS), ThunderX2 system and A64FX system.

As many of the applications, libraries and programming models used in this re-

port are under active development, the data presented here is subject to change.

New data is being collected all the time and analysed, and will be updated in

the future where necessary. This document should therefore be considered a liv-

ing document, reflecting the current state of performance portable application

development focused on applications of interest for the simulation of plasma

physics.

6https://github.com/lanl/vpic
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2 Application Evaluations

In this section we present performance data for a number of mini-applications,

across a range of architectural platforms, using a range of different approaches

to performance portability.

The applications chosen in each case are broadly representative of some of the

algorithms of interest to NEPTUNE. In particular, the fluid-method based mini-

apps implement algorithms that range from finite-difference (like Bout++ [3])

to high-order finite element or spectral element (like Nektar++ [4]). Similarly,

the particle-methods mini-apps all implement the particle-in-cell method (like

EPOCH [5]).

2.1 TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction

equation on a regular grid using a 5-point stencil, developed as part of the

UK-MAC (UK Mini-App Consortium) project.

It has been used extensively in studying performance portability already [6, 7,

8, 9], and is available implemented using CUDA, OpenACC, OPS, RAJA, and

Kokkos, among others7. The results in this section are extracted from two of

these studies, namely one by Kirk et al. [7] and one by Deakin et al. [6].

In both studies, the largest test problem size (tea bm 5.in) is used, a 4000×4000

grid.

2.1.1 Performance

The study by Kirk et al. executes 8 different implementation/configurations

of TeaLeaf across 3 platforms, a dual Intel Broadwell system, an Intel KNL

system and an NVIDIA P100 system. The raw runtime figures are presented in

Figure 1. Note that in the study, some results are missing due to incompatibility

(e.g. CUDA on Broadwell/KNL).

7http://uk-mac.github.io/TeaLeaf/
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Figure 1: TeaLeaf runtime data from Kirk et al. [7]

The study by Deakin et al. is more recent, using a C-based implementation

of TeaLeaf as its base. It consequently evaluates less programming models,

but over a wider range of hardware, including a dual Intel Skylake system,

both NVIDIA P100 and V100 systems, AMDs Naples CPU, and the Arm-based

ThunderX2 platform. Runtime results are provided in Figure 2.

2.1.2 Performance Portability

Both studies evaluate some portable and non-portable implementations. In most

cases, there is a non-portable implementation that achieves the lowest runtime,

however this places a restriction on the hardware that it can target.

For study by Kirk et al. [7], Figures 3 and 4 allow us to visualise the performance

portability of each approach to application development. The figures show a

clear divide between portable approaches (Kokkos, OPS and RAJA), and the

non-portable approaches (CUDA, OpenMP and MPI). While typically higher

performance can be achieved non-portably, each of these programming models

tightly binds developers to particular architectures.
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Figure 2: TeaLeaf runtime data from Deakin et al. [6]

Of the portable approaches, the best portability is achieved by RAJA, followed

by Kokkos, and then the domain specific language, OPS. Referring back to

Figure 1, we can see that on the Intel KNL system, the Kokkos performance

is double that of other performance portable approaches, and thus skews the

portability calculation. It is likely that this is the result an unidentified issue

in TeaLeaf or Kokkos at the time of evaluation. Otherwise, these three pro-

gramming models each achieve similar levels of performance and, importantly,

portability across different architectures.

Figures 5 and 6 show the same visualisations for the data from Deakin et al. [6].

Again, the non-portable programming model (CUDA) achieves the highest per-

formance on its target architecture. For CPU architectures OpenMP produces

the highest result, and using offload directives, portability is available to GPU

devices. It should be noted that to support the use of GPU devices, there are

two OpenMP implementations that must be maintained (with and without of-

fload directives), though these results are presented together here. Much like

in the previous study, the performance portability of Kokkos is affected by an

anomalous result on the Intel KNL platform.
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Figure 3: Box plot visualisation of performance portability from Kirk et al. [7]
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Figure 5: Box plot visualisation of performance portability from Deakin et al. [6]
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Figure 6: Cascade visualisation of performance portability from Deakin et al. [6]

2.2 miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark suite

[10, 11, 12, 13]. It implements an unstructured implicit finite element method
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and has versions available in CUDA, Kokkos, OpenMP (3.0+ and 4.5+) and

SYCL8.

While there are a number of data sources for miniFE data, many of these are

limited in scope, and so to ensure consistency, all data presented in this section

has been newly gathered. In all cases, a 256 × 256 × 256 problem size has been

used, and all runs have been conducted on the platforms available on Isambard.

2.2.1 Performance
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Figure 7: miniFE runtime data

The raw runtime results for these runs can be seen in Figure 7. It should be

noted that the SYCL data is gathered from a miniFE port that can be found

as part of the oneAPI-DirectProgramming github repository9, and is compiled

using hipSYCL and GCC. Data has not yet been collected for the ARM-based

systems with SYCL. The OpenMP with offload variant of miniFE runs success-

fully on both AMD Rome and Cavium ThunderX2 platforms, but the runtimes

8https://github.com/Mantevo/miniFE
9https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl
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are several orders of magnitude greater than all other platforms (likely due to

an bug in the compiled code), and so have been removed.

In many of the miniFE ports available, only the conjugate solver has been

parallelised effectively, so the results presented here represent only the timing

from this kernel.

2.2.2 Performance Portability

Figures 8 and 9 present visualisations of the performance portability of miniFE,

through various approaches.
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Figure 8: Box plot visualisation of performance portability of miniFE

Again, non-portable approaches (CUDA, OpenMP and MPI) often provide the

best performance, but this leads to a significant restriction on the platforms that

can be used. Figure 9 shows how the performance portability of miniFE evolves

as more platforms are added for the Kokkos variant. While the performance is

lower than native implementations, it has the advantage of being able to target

every platform from a single codebase.

Likewise, both OpenMP with Offload and SYCL can target every platform,

10



though in some cases, we have not yet collected data (SYCL on Arm platforms),

and in some cases, compiler issues are preventing reasonable performance.
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Figure 9: Cascade visualisation of performance portability of miniFE

2.3 Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [14, 15,

13]. It implements a high-order curvilinear finite element scheme on an unstruc-

tured mesh. The majority of the computation is performed by the HYPRE and

MFEM libraries, and can thus use any programming model that is available for

these libraries10.

The results presented below have all been collected from the Isambard platform.

2.3.1 Performance

Figure 10 shows the runtime for Laghos, running problem #1 (Sedov blast

wave), in three dimensions, up to 1.0 second of simulated time, using partial

assembly (i.e., ./laghos -p 1 -dim 3 -rs 2 -tf 1.0 -pa -f).

10https://github.com/CEED/Laghos
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Figure 10: Laghos runtime data

2.3.2 Performance Portability

Portability visualisations of each implementation of Laghos are provided in Fig-

ures 11 and 12.

Again, it is clear that the highest achievable performance is often not from a

portable approach. However, RAJA achieves the highest performance porta-

bility, due to being able to span each of the platforms, and provide near equal

performance to the CUDA and MPI variants, and much better performance

than the OpenMP implementation.
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Figure 11: Box plot visualisation of performance portability of Laghos
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2.4 CabanaPIC

CabanaPIC is a structured PIC demonstrator application built using the Co-

PA/Cabana library for particle-based simulations [13]. The application uses

Kokkos as its programming model for on-node parallelism and GPU use, and

uses MPI for off-node parallelism11.

2.4.1 Performance

Since there is only a single implementation of CabanaPIC, it is not possible for

us to evaluate how the programming model affects its performance portability,

however, we can show how its performance changes between architectures.

Figure 13 shows the achieved runtime for CabanaPIC across four of Isambard’s

platforms, running a simple 1D 2-stream problem with 6.4 million particles.
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Figure 13: CabanaPIC data

Approximately equivalent performance can be seen on the CascadeLake, Rome

and V100 systems. Similar to our previous Kokkos results on KNL, the runtime

11https://github.com/ECP-copa/CabanaPIC
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is significantly worse than expected, possibly indicating a Kokkos bug, or a

configuration issue.

2.5 VPIC

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling ki-

netic plasmas in one, two or three dimensions, developed at Los Alamos National

Laboratory [16]. VPIC is parallelised on-core using vector intrinsics and on-node

through a choice of pthreads or OpenMP. It can additionally be executed across

a cluster using MPI12.

Recently, a VPIC 2.0 [17] has been developed that adds support for hetero-

geneity by using Kokkos to optimise the data layout and allow execution on

accelerator devices.

2.5.1 Performance

Figure 14 shows the runtime for the three variants of the VPIC code running on

seven platforms13. This data is taken from the VPIC 2.0 study, comparing the

non-vectorised, vectorised and Kokkos variants of the VPIC code. In each case,

the runtime is the time taken for 500 time steps, with 66 millions particles.

2.5.2 Performance Portability

In terms of the performance portability of VPIC, we can see that the original

and vectorised variants are only viable on the CPU architectures. Figures 15

and 16 visualise how the performance portability varies as more platforms are

evaluated.

The highest performance in most cases comes from the vectorised variant of

VPIC, as it achieves the best performance on all CPU platforms (except the

ThunderX2, where no data is provided). However, Figure 15, when evaluating

12https://github.com/lanl/vpic
13https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf

15

https://github.com/lanl/vpic
https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf


Skylake KNL TX2 Naples Rome Power9 V100

100

200

300

Platform

R
u

n
ti

m
e

(s
)

Original SIMD

Kokkos

Figure 14: VPIC runtime data from Bird et al. [17]
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Figure 15: Box plot visualisation of performance portability of VPIC

the entire set of platforms, its performance portability would be 0, due to non-

16



1 2 3 4 5 6 7
# of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p 

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y 
(s

ol
id

)

SIMD eff.
SIMD PP
Ref eff.
Ref PP
Kokkos eff.
Kokkos PP

Skylake
KNL
TX2
Naples

Rome
Power9
V100

Figure 16: Cascade visualisation of performance portability of VPIC

execution on the V100 platform.

Figure 16 shows that while Kokkos performs worse than the vectorised imple-

mentation, its performance is similar the non-vectorised variant, but is also

capable of execution on the V100 platform.

It should be noted that this data is from a study based on the initial implemen-

tation of VPIC using Kokkos. It is likely that these performance figures will be

improved in future, potentially closing the performance gap on the vectorised

implementation, while maintaining portability to heterogeneous architectures.

2.6 EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma

In Realistic Environments (EMPIRE) project [18]. It solves Maxwell’s equa-

tions on an unstructured grid using a finite-element method, and implements

the Boris push for particle movement. EMPIRE-PIC makes extensive use of

the Trilinos library, and subsequently uses Kokkos as its parallel programming

model [19, 20].
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2.6.1 Performance

The EMPIRE-PIC application is export controlled, and thus the results in this

section come from the study by Bettencourt et al. [19], looking specifically at

the particle kernels within EMPIRE-PIC.

Figure 17 shows the runtime of the Accelerate, Weight Fields, Move and Sort

kernels within EMPIRE-PIC for an electromagnetic problem with 16 million

particles (8 million H+, 8 million e-). The geometry for this problem is the tet

mesh that can be seen in Figure 7 in Bettencourt et al. [19].

Accelerate Weight Fields Move Sort
0

10

20

30

Kernel

R
u

n
ti

m
e

(s
)

BDW CSL KNL TX2 P100 V100

Figure 17: EMPIRE-PIC runtime data

2.6.2 Performance Portability

While there is only a single programming model implementation of EMPIRE-

PIC, we can use the equations given in Table 2 of Bettencourt et al. [19] to

calculate the FLOP/s achieved and compare this to each machines maximum

performance, thus calculating the architectural efficiency. The equations pre-

sented assume the best case performance, whereby particles are evenly dis-

tributed across the domain, there is no particle migration throughout the sim-

ulation, and they are sorted at the start of the simulation. Nevertheless, they
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provide a useful opportunity to analyse the performance portability of Kokkos

for particle-based kernels.

Figures 18 and 19 provide visualisations of EMPIRE-PIC’s performance porta-

bility across six platforms.
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Figure 18: Box plot visualisation of performance portability for four particle
kernels in EMPIRE-PIC

It is important to note that although Figure 18 shows incredibly low efficiency,

this is compared to each platform’s peak performance, where a vectorised fused-

multiply-add instruction must be executed each clock cycle. Achieving less than

10% of this peak performance is not unusual for a real application. In the case

of the Sort kernel, the efficiency is lower still, as this is not a kernel that is

bound by floating point performance.

What is clear from the performance portability visualisations is that the variance

in achieved efficiency between platforms is not large, indicating that Kokkos is

able to achieve a similar portion of the available performance for EMPIRE-PIC’s

particle kernels. Achieved efficiency is higher on the ThunderX2 and Broadwell

systems, due to less reliance on well vectorised code, and a lower available peak

performance.
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This data perhaps suggests that EMPIRE-PIC is not able to fully exploit the

available on-core parallelism available through vectorisation. We can further

support this analysis using Roofline models for the Cascade Lake, KNL, Thun-

derX2 and V100 systems. Figure 20 shows roofline models for these four plat-

forms, with the four particle kernels plotted according to their arithmetic inten-

sity and achieved FLOPs/s.

In all cases, we can see that the application is not successfully using vectorisation

(and this is confirmed by compiler reports). As stated in Bettencourt et al. [19],

the control flow required to handle particles crossing element boundaries leads to

warp divergence on GPUs and makes achieving vectorisation difficult on CPUs.

Nonetheless, on the Cascade Lake and ThunderX2 platforms, we are within an

order of magnitude of the non-vectorised peak performance for the three main

kernels, and we can observe that all four kernels are memory bound. For the

two many-core architectures (KNL and V100), floating-point performance is

further from the peak, but all kernels are likewise memory bound by available

DRAM/HBM bandwidth.

Figure 20 demonstrates how vital efficient memory accesses are for achieving

high performance in PIC codes, due to the relatively low arithmetic intensity

of the kernels when compared to the amount of bytes that need to be moved
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to and from main memory. An alternative approach to the FEM-PIC method

has been explored using EMPIRE-PIC by Brown et al. [20], whereby complex

particle shapes are supported using virtual particles based on quadrature rules.

Using virtual particles in this manner can increase the arithmetic intensity of

particle kernels without requiring significantly more data to be moved from and

to main memory.
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Figure 20: Roofline plots on four platforms, gathered using the Empirical
Roofline Toolkit [21]
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3 Conclusions

This report serves as a living document of the performance of applications that

implement algorithms of interest to the NEPTUNE project. For each of the ap-

plications in this report, there are typically a number of alternative implemen-

tations, solving the same algorithm but using a different parallel programming

model. This allows us an opportunity to assess these programming models and

their appropriateness for the NEPTUNE project, with the goal of creating a

set of best practices to developing plasma physics applications that are both

performant and portable.

The results presented in the previous section show that in most cases, OpenMP

and/or MPI provide the best performance on CPU platforms, while CUDA

typically provides the best performance on NVIDIA GPUs. However, these

programming models significantly affect the portability of these applications,

with the former unable to use accelerators, and the latter unable to use host

platforms. Developing an application that can exploit all available parallelism

that is likely to be present on post-Exascale systems would therefore require

developers to maintain multiple implementations of a code – potentially one for

each class/generation of host or accelerator platforms.

For fluid codes, there are a number of domain specific languages (DSLs) that

provide abstractions for grid-based algorithms. OPS is one such DSL targeted

at structured mesh applications, and capable of code generation targeting MPI,

OpenMP, OpenACC, CUDA and HIP. Our study with TeaLeaf shows that it is

able to provide performance that in many cases is on par with native OpenMP

and MPI, and within 2× native CUDA performance on a P100. However, such

DSLs often reduce the flexibility afforded to a developer.

Besides code generation from a higher-level abstraction, GPUs can be targeted

using pragma-based language extensions such as OpenMP 4.5 and OpenACC.

Both offer similar functionality, but only OpenMP 4.5 allows portability between

accelerator and non-accelerator platforms. However, our evaluation has shown

that although OpenMP 4.5 allows us to target GPUs, different pragmas are

often required to achieve sufficient performance on accelerators when compared

to host systems, meaning that multiple implementations would likely need to

be maintained. This is well demonstrated by our miniFE results, where the
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OpenMP with offload code does successfully execute on the CPU architectures

but offers significantly worse performance than OpenMP itself.

The template libraries, Kokkos and RAJA are both capable of providing full

portability across all architectures, and in most cases offer good performance.

The significant exception from our results is for the Intel Knights Landing plat-

form, where Kokkos performance is typically poor. This performance gap is

likely the result of a bug or memory configuration issue, but will not be inves-

tigated further due to the discontinuation of the KNL architecture. Regardless,

where we are able to compare Kokkos or RAJA to a native programming model,

they are typically able to achieve a runtime that is no more than 20% greater

than the native programming model on CPUs and no more than 50% greater

than the native programming model on GPUs, but from a single code base.

Another approach that is gaining traction is that of SYCL/DPC++. In our cur-

rent benchmark set, only a single application is available implemented in SYCL

(miniFE), and that implementation has been generated using Intel’s DPC++

Compatibility Toolkit. The resulting application is portable across platforms

but in most cases has performance that is only slightly better than the available

OpenMP 4.5 implementation. This warrants additional exploration to account

for this performance difference; for such an immature programming model, it

is likely that choice of compiler, and some very simple optimisations will bring

performance more inline with other approaches to portability. As this project

progresses, hopefully more applications will be available for evaluation, and

compiler support will evolve.

For the particle methods tranche of applications, they are predominantly avail-

able using Kokkos as a parallel programming model. This does allow portable

execution across all available platforms, but makes it difficult to compare per-

formance against native implementations. In the case of VPIC, we can see

that Kokkos provides performance that is inline with the original, unvectorised

implementation on all platforms, and allows us to extend our platform set to

include GPU devices. However, the greatest performance comes from using

non-portable vector intrinsics, which in this case means maintaining an imple-

mentation for each set of vector instructions (i.e. SSE, AVX, AVX-2, Altivec,

etc.).
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3.1 Limitations

The work presented in this report represents our initial evaluation of approaches

to performance portability. We intend that this document is continually updated

as new data becomes available, and as applications and implementations are

developed. Currently, the data in this report contains a few limitations that we

aim to rectify in future.

Firstly, due to its immaturity relative to other approaches, there are a lack of rel-

evant fluid and particle-in-cell applications available that use the SYCL/DPC++

programming model. This means, that with the exception of miniFE, it is dif-

ficult to assess its appropriateness as an approach to performance portable ap-

plication development. A recent study has by Reguly et al. shows that for a

computational fluid dynamic application SYCL may be able to achieve compa-

rable performance, though this may require different code paths for different

hardware [22].

Secondly, the PIC codes assessed in this report all use the Kokkos programming

model. Again, this limits our ability to reason about the appropriateness of

this approach for PIC codes, but we can use the VPIC data to show that while

we cannot match native, hand-vectorised performance, it can provide perfor-

mance that is similar to the original implementation, and can be extended to

heterogeneous architectures.

Finally, we have not currently evaluated performance on any AMD Radeon

Instinct or Intel Xe hardware, due to availability of test platforms. We aim

to add these platforms in the near future, when available, either through the

COSMA8 system at Durham University, or through Amazon EC2 instances.

References

[1] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for

performance portability. Future Generation Computer Systems, 92:947 –

958, 2019.

[2] Jason Sewall, S. John Pennycook, Douglas Jacobsen, Tom Deakin, and

Simon McIntosh-Smith. Interpreting and visualizing performance portabil-

24



ity metrics. In 2020 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC), pages 14–24, 2020.

[3] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson.

BOUT++: A framework for parallel plasma fluid simulations. Computer

Physics Communications, 180:1467–1480, 2009.

[4] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,

D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu,

Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, and

S.J. Sherwin. Nektar++: An open-source spectral/hp element framework.

Computer Physics Communications, 192:205–219, 2015.

[5] T D Arber, K Bennett, C S Brady, A Lawrence-Douglas, M G Ramsay, N J

Sircombe, P Gillies, R G Evans, H Schmitz, A R Bell, and C P Ridgers.

Contemporary particle-in-cell approach to laser-plasma modelling. Plasma

Physics and Controlled Fusion, 57(11):113001, sep 2015.

[6] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru,

Patrick Atkinson, Codrin Popa, and Justin Salmon. Performance porta-

bility across diverse computer architectures. In 2019 IEEE/ACM Inter-

national Workshop on Performance, Portability and Productivity in HPC

(P3HPC), pages 1–13, 2019.

[7] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau,

and S. A. Jarvis. Achieving Performance Portability for a Heat Conduction

Solver Mini-Application on Modern Multi-core Systems. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pages 834–

841, Sep. 2017.

[8] Matthew Martineau, Simon McIntosh-Smith, and Wayne Gaudin. Assess-

ing the performance portability of modern parallel programming models

using tealeaf. Concurrency and Computation: Practice and Experience,

29(15):e4117, 2017.

[9] Simon McIntosh-Smith, Matthew Martineau, Tom Deakin, Grzegorz

Pawelczak, Wayne Gaudin, Paul Garrett, Wei Liu, Richard Smedley-

Stevenson, and David Beckingsale. TeaLeaf: A Mini-Application to Enable

Design-Space Explorations for Iterative Sparse Linear Solvers. In 2017

IEEE International Conference on Cluster Computing (CLUSTER), pages

842–849, 2017.

25



[10] Richard Frederick Barrett, Li Tang, and Sharon X. Hu. Performance and

Energy Implications for Heterogeneous Computing Systems: A MiniFE

Case Study. 12 2014.

[11] Alan B. Williams. Cuda/GPU version of miniFE mini-application. 2 2012.

[12] Meng Wu, Can Yang, Taoran Xiang, and Daning Cheng. The research and

optimization of parallel finite element algorithm based on minife. CoRR,

abs/1505.08023, 2015.

[13] David F. Richards, Yuri Alexeev, Xavier Andrade, Ramesh Balakrishnan,

Hal Finkel, Graham Fletcher, Cameron Ibrahim, Wei Jiang, Christoph

Junghans, Jeremy Logan, Amanda Lund, Danylo Lykov, Robert Pavel,

Vinay Ramakrishnaiah, et al. FY20 Proxy App Suite Release. Technical

Report LLNL-TR-815174, Exascale Computing Project, September 2020.

[14] J. C. Camier. Laghos summary for CTS2 benchmark. Technical Report

LLNL-TR-770220, Lawrence Livermore National Laboratory, March 2019.

[15] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-

Sylvain Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron

Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido

Akkerman, Johann Dahm, David Medina, and Stefano Zampini. Mfem: A

modular finite element methods library. Computers & Mathematics with

Applications, 81:42–74, 2021. Development and Application of Open-source

Software for Problems with Numerical PDEs.

[16] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J.

Kerbyson. 0.374 Pflop/s Trillion-Particle Kinetic Modeling of Laser Plasma

Interaction on Roadrunner. In Proceedings of the 2008 ACM/IEEE Con-

ference on Supercomputing, SC ’08. IEEE Press, 2008.

[17] Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Harrell, Michela Taufer,

and Brian Albright. VPIC 2.0: Next Generation Particle-in-Cell Simula-

tions. IEEE Transactions on Parallel and Distributed Systems, pages 1–1,

2021.

[18] Matthew T. Bettencourt and Sidney Shields. EMPIRE Sandia’s Next Gen-

eration Plasma Tool. Technical Report SAND2019-3233PE, Sandia Na-

tional Laboratories, March 2019.

26



[19] Matthew T. Bettencourt, Dominic A. S. Brown, Keith L. Cartwright,

Eric C. Cyr, Christian A. Glusa, Paul T. Lin, Stan G. Moore, Duncan A. O.

McGregor, Roger P. Pawlowski, Edward G. Phillips, Nathan V. Roberts,

Steven A. Wright, Satheesh Maheswaran, John P. Jones, and Stephen A.

Jarvis. EMPIRE-PIC: A Performance Portable Unstructured Particle-in-

Cell Code. Communications in Computational Physics, x(x):1–37, March

2021.

[20] Dominic A.S. Brown, Matthew T. Bettencourt, Steven A. Wright, Satheesh

Maheswaran, John P. Jones, and Stephen A. Jarvis. Higher-order particle

representation for particle-in-cell simulations. Journal of Computational

Physics, 435:110255, 2021.

[21] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki,

Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker.

Roofline Model Toolkit: A Practical Tool for Architectural and Program

Analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Ham-

mond, editors, High Performance Computing Systems. Performance Model-

ing, Benchmarking, and Simulation, pages 129–148. Springer International

Publishing, 2015.

[22] Istvan Z. Reguly, Andrew M. B. Owenson, Archie Powell, Stephen A.

Jarvis, and Gihan R. Mudalige. Under the Hood of SYCL – An Initial

Performance Analysis with An Unstructured-Mesh CFD Application. In

Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and Piotr

Luszczek, editors, High Performance Computing, pages 391–410. Springer

International Publishing, 2021.

27


