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Abstract
This report describes work for ExCALIBUR project NEPTUNE at Milestone 6.1. It includes an
application of the Nektar++ finite-element software to the classic problem of vertical natural con-
vection, with the aims of assessing the validity of the code in the context of equilibrium (non-kinetic)
heat transport, and attempting to detect relevant challenges and issues. Numerical solutions for
convective fields are obtained for a range of values of the Rayleigh number, the parameter gov-
erning the strength of the buoyancy force driving the convection; several regimes are observed,
representing heat transport dominated by either diffusion or boundary-layer convective flow, and
exhibiting complex time-dependent structures for larger Rayleigh number. The dependence of
the rate of heat transfer on the Rayleigh number is examined. Also included in the report is an
outline of the complementary experimental programme Smallab, and a brief mention of the work
of the Oxford-led discussion group that focusses on the further development of fluid and kinetic
models using finite elements. Appendices contain some technical details of the numerics, collect
some work reproducing early studies of convection in water-filled tanks, and provide some initial
estimates for the number of finite elements that may be mandated by the requirement to mesh
accurately a complicated first wall geometry.
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1 Introduction

High-order methods, which offer the potential for exponential improvement in accuracy given poly-
nomial increase in computation time, are seen as essential for maximizing the performance of
next-generation software intended to run on forthcoming exascale machines. They are a natu-
ral fit to modern HPC due to the high arithmetic intensity of the algorithms - broadly, a relatively
large number of floating point operations are applied per degree of freedom, thereby reducing the
requirement for computer memory and, crucially, the expected demands on data throughput.

One specific example of such an approach is the spectral / hp finite element method [1], of which a
modern C++ implementation is the software Nektar++ [2] co-written and maintained by one of the
NEPTUNE grantees. The Nektar++ framework forms the basis for some of the core NEPTUNE
proxyapps and is currently being augmented with capabilities to handle fusion-relevant problems
([3], [4]) and also extension to allow optimized operation on a wider range of computational ar-
chitectures. This dependency motivates an examination of the software by UKAEA staff, included
here in the application to vertical natural convection, a classic and historied problem which never-
theless has relevance to the issue of heat transport in the scrape-off layer (not to mention more
direct applicability to fusion reactor components designed to handle large heat fluxes). In this pre-
liminary work, results are obtained for two-dimensional convective flows. An attempt was made
during the course of this work to detect any relevant issues with Nektar and one numerical prob-
lem is presented in an appendix. An account of planned experimental work concerning convective
flows (Smallab) is included; the numerics are expected to complement this.

A brief account of the finite-element work of the Oxford-led discussion group (which meets regu-
larly and includes the Oxford NEPTUNE grantee) is given, with reference to a growing codebase
for gyrokinetic simulations written in the Julia language.

Any conclusions of the work with Nektar++ are subject to the constraint placed on the framework by
the need to mesh complicated first-wall geometries in a realistic simulation. An appendix contains
brief estimates of the number of finite elements required in a realistic NEPTUNE simulation.
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2 Vertical natural convection in Nektar++

One of the main problems of Earth-bound, controlled nuclear fusion is how to sustain a very large
temperature gradient for a significant time, i.e. a problem of heat transport. It has long been
known that classical (and neo-classical) transport calculations fail to account for the magnitude of
the experimentally-observed rates of heat loss from magnetically-confined fusion plasmas, leading
to the conclusion that turbulent and other phenomena are responsible for the bulk of the cross-field
transport; the gradients in a tokamak (in temperature, pressure and magnetic field) are sufficiently
extreme - e.g. approx. seven decades variation in temperature within the space of a few metres -
that the system is a prime candidate for turbulent phenomena (which act universally to suppress
large gradients). This invites study of simpler problems exhibiting qualitatively-similar behaviour.

One such example is vertical natural convection, in which an upright cavity has a hot side and a
cold side, and is filled with a fluid that experiences a vertical buoyancy force when heated. The
strength of this force then leads to different regimes of flow and heat transport. When the force is
negligible, heat is transferred diffusively from the hot surface to the cold one, in rough analogy with
classical transport. Greater buoyancy leads to fluid moving up the hot side, across the top of the
cell, and down the cold side, creating a steady (laminar, or ‘classical’) circulation and transporting
heat by advection. As the force is increased, the vertical flow becomes increasingly confined to a
kinetic boundary layer near the vertical walls; likewise, the temperature gradients are increasingly
restricted to a thermal boundary layer near the vertical walls. Further increasing the force, one
finds that the sheared flow near the vertical boundaries leads to an instability of Kelvin-Helmholtz
type that takes the form of waves that co-move with the convective flow, and which are chaotic in
nature; these boundary effects also lead ultimately to complicated, also-chaotic, time-dependent
flow structures in the bulk - turbulent flow.

The systems simulated in this study are purely two-dimensional, a fact which affects the results
because three-dimensional flow instabilities are automatically excluded; also, there are important
differences between turbulent flows in two dimensions and those in three. It might be noted that
the two-dimensional property seems rather compatible with the fusion use case, with the turbulent
and other transport phenomena - e.g. the well-known filaments - in a tokamak being strongly
elongated along the magnetic field lines and so the dynamics of the scrape-off layer is, in this
sense, two-dimensional.

In dimensionless form, the system of equations describing vertical natural convection is, for fluid
velocity u, temperature T and pressure p, for a system coordinatized such that the vertical, gravity-
opposing direction is ŷ,

1

Pr

(
∂u

∂t
+ u · ∇u

)
= −∇p+Ra T ŷ +∇2u, (1)(

∂T

∂t
+ u · ∇T

)
= ∇2T, (2)

∇ · u = 0. (3)

The Boussinesq approximation is assumed, with the density fluctuation entering only as a temperature-
dependent buoyancy force (hence the incompressibility condition) - for this reason, the system is
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simulated using the incompressible Navier-Stokes solver of Nektar++. Dirichlet boundary condi-
tions were used for the vertical wall temperatures (T = 1 on the left and T = 0 on the right) and
zero Neumann conditions (i.e. no heat flux) on the horizontal walls (top and bottom). The ve-
locity boundary conditions were no-slip / no-penetration and the pressure used a zero Neumann
condition, for all walls.

The dimensionless parameters are the Rayleigh number, where β is the thermal expansion coef-
ficient, ∆T the temperature difference across cavity width L,

Ra =
βg∆TL3

κν
(4)

and the Prandtl number: the ratio of kinematic viscosity ν to thermal diffusivity κ (a property of the
fluid filling the cavity - small e.g. 0.01 for something like a liquid metal, rising to c.105 for viscous
oils),

Pr =
ν

κ
. (5)

The other relevant parameter is the aspect ratio λ = L
H of the cavity (width L, height H).

The main output that is studied is the averaged Nusselt number, the physical meaning of which is
that it measures the per-unit length heat flux through the cavity (i.e. going in to the left-hand side
and out from the right-hand side) at any instant of time, defined as

Nu =

∫ H
0 −∇xT (x0, y) +∇xT (x1, y)dy∫ H

0 −∇xT (x0, y) +∇xT (x1, y)dy|Ra=0

. (6)

Computational parameters enter as the mesh resolution (for simplicity, meshes comprising uniform
squares are used for this study, with h denoting the size of a single element) and the global order
p (a natural number) of the spectral elements, with the lowest allowed value (p = 1) meaning
that linear intra-element basis functions are used, and greater p corresponding to higher-order
Lagrange polynomials. For reference, a continuous Galerkin formulation was employed.

The open-source software Nektar++ gives the ability to tackle research-grade problems in fluid
mechanics on hardware ranging from a single PC to thousands-of-core HPC (note that, writing in
the year 2021, it is quite possible to execute the supercomputer-class calculations of the 1980s
and the early 1990s on a single modern PC - in the case of the results in this preliminary report, an
Intel Core i7-10700KF 3.8GHz with 16 logical cores). Briefly, the software implements the spectral
/ hp element method for a range of problems. The convergence is, in ideal cases, expected to
lead to L2 error scaling as ∼ hp+1 (see Appendix A for a demonstration). Note also that certain
simulation data are efficiently extracted from Nektar++ using filters; because filters for the quanti-
ties of interest needed in this investigation are not included in the source code, the software was
modified in order to calculate the Nusselt number, and the temperature and location of the hottest
point on the cold wall as time series. Nektar++ contains a number of different solvers built on the
same underlying finite-element framework; the one used here is the incompressible Navier-Stokes
solver (details of the implementation can be found in [1]).
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During the work presented in this report, a small anomaly was found in one part of the Nektar++
incompressible Navier-Stokes algorithm (the pressure-solver option VelocityCorrectionScheme);
an account is given in Appendix B.

2.1 Brief literature review

Historically, problems in convection have examined the output Nusselt number Nu as a function
of the Rayleigh number Ra, typically concluding in a power-law relation of the type

Nu ∼ Raγ (7)

and proposing various values for the exponent γ, typically in the range 1
4 −

1
2 .

Early studies were undertaken by Elder in the 1960s. Numerical calculations were able at that
time to access only low-Ra laminar flows ([5]); experiments with water-filled (Pr = 7.0) tanks
allowed investigation of the phenomenology of more active flows, including a demonstration of the
wall-wave instability ([6]). See Appendix C for some examples revisited using Nektar++.

More recent studies have focussed on air-filled cavities (Pr = 0.71) in the contexts of double-
glazing and building cooling systems. The 1989 review [7] by Wright and Sullivan includes a
survey of experimental results for various values of the aspect ratio in the range 1

5 to 1
110 . The

2005 paper [8] by Xamán and collaborators obtained an approximate scaling exponent of 0.25 for
a two-dimensional laminar convective model, rising to 0.3 when a three-dimensional turbulence
model was included.

The current state-of-the-art appears to be the work of Lohse and collaborators [9]. An earlier work
by Grossmann and Lohse [10], treating the related case of Rayleigh-Bénard convection, where
the heating is applied from beneath, rather than from the side, included an analysis that revealed
a range of physics-motivated scaling laws Nu ∼ RaγPrδ for various regimes differentiated by
whether the boundary layer or the bulk dominates the global kinetic and thermal dissipation, and
by which of the thermal or kinetic boundary layers is thicker. This theory led to an instructive ‘phase
diagram’ of various flow regimes in the two-dimensional Pr,Ra parameter space, with their own
values of γ and δ, the boundaries between regimes being determined by numerical experiment.
It is notable that the same calculations are not possible in the case of vertical natural convection
due to the lack of closure of the system of equations in that case. One might nevertheless expect
something similar to exist in the case of vertical natural convection, viz. a collection of physically-
motivated power laws that change as the parameter space in Ra and Pr is navigated; the authors
of [9] state that they are working on this problem. A solution would rationalize the jumble of historic
power-law fits.

It is to be emphasized that much of the literature, including the state-of-the-art mentioned above,
is concerned with the three-dimensional case, whereas the results presented in this report are
two-dimensional.

Also recently, the paper [11] has exposed an analogy between the Rayleigh-Bénard problem and
the heat transport in a tokamak.
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2.2 Air-filled cavity: simulation outputs

Matching the studies in [7], [8], and [9] a value of Pr = 0.71 was selected, this corresponding to
the cavity being filled with air. Aspect ratios λ of 1

2.5 , 1
5 , and 1

10 were studied. In the initial work,
a two-dimensional mesh of uniform squares was used as the finite-element discretization, with
48 squares across the width of the cavity; thus h = 1

48 and the cavity meshes comprised 5760,
11520, and 23040 elements. The lower-Ra simulations are easily simulated using as initial data
the diffusive - Ra = 0 - solution (i.e. a uniform temperature gradient from the hot to the cold side,
zero velocity, and no pressure gradient) though note it is advisable to add a small perturbation to
this in order to avoid simulations getting ‘stuck’ on the diffusive solution. At higher Ra of c.104 and
above, this choice of initial condition leads to a violent transition to the new flow state, which is
prone to numerical instability, and so the fields from a lower-Ra simulation (typically one decade
less in Ra) are used as initial data. Note also that, for values of Ra below the critical value for the
appearance of wall-wave instabilities, the problem is simply one of finding a stable steady state;
for higher Ra, the system fluctuates about what is termed a ‘quasi-steady state’ in which statistical
properties (e.g. the time-averaged value of Nu) are time-independent.

Plots of the temperature field in the steady state, or, in higher-Ra cases, the quasi-steady state,
are shown in Figs.1, 2, and 3 for the three different aspect ratios. These demonstrate the transi-
tion from a diffusion-dominated solution (with temperature gradient in the horizontal direction) to a
steady laminar (aka classical) convective cell solution (where the temperature gradient is increas-
ingly in the vertical direction) and later to an unsteady flow which displays wall-wave instabilities,
which are waves travelling up the hot wall and down the cold one (the properties of the boundary-
layer waves are examined briefly in 2.3). It is obvious that the diffusive solution represents a strict
minimum in heat transfer rate, and that increased Ra gives, in all cases studied here, increased
heat transport. It is apparent that the smaller aspect ratio cavity retains its classical flow for greater
values of Ra than the larger aspect ratio cases - this probably due to the fact that the near-wall
velocities are greater for larger aspect ratio (Fig.5), since in that case the fluid is acted on by the
buoyancy force over a greater distance; one also notes that the wall waves tend to appear first
near the top of the hot wall and the bottom of the cold, where the vertical speed is expected to be
maximal.

The data used in Figs.1-6 were taken from the most accurate simulation run for each choice of
parameters (for the λ = 1

2.5 cavity, p = 3 for Ra = 105, p = 4 for the higher-Ra ones, with the
exception of the Ra = 109 case which was simulated using a h = 1

6 mesh with p = 15, and
checked by repeating the calculation for p = 10− 14, after it was found that using high order in this
way was more time-efficient); for the λ = 1

5 cavity, p = 3 for Ra ≥ 105; for the λ = 1
10 cavity, p = 2

for for Ra ≥ 105; and the unquoted lower-Ra flows all used p = 1). See also 2.2.1.

The dependency of the averaged Nusselt number Nu on Ra is shown in Fig.4. This shows ap-
proximate power laws valid over much of the range; exponents of 0.2579, 0.2550, and 0.2701 were
obtained over the Ra ranges 104 − 108, 104 − 107, and 104 − 107 for aspect ratios 1

2.5 , 1
5 , and 1

10 re-
spectively. For quasi-steady cases, Nu was calculated using an average over the trend-free region
of the Nusselt number time series. The reason why these numerics do not give exponents ≈ 0.3,
as found in [8], [10], is because the simulations presented here are two-dimensional, whereas
those works refer to the three-dimensional case.

The dependency of the maximum mid-height vertical velocity on Ra is shown in Fig.5. The max-
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Figure 1: Temperature fields for the λ = 1
2.5 cavity (blue: cold; red: hot; range 0 to 1). Ra increases

from 102 to 105 in decades from left to right across the upper row, and from 106 to 109 across the lower.
Instability-driven wall waves appear in the Ra = 108 case near the top of the hot side and bottom of the cold
side, occurring over a larger portion of the vertical walls in the Ra = 109 case.
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Figure 2: Temperature fields for the λ = 1
5 cavity. Ra increases from 102 to 107 in decades from left to right.

Wall waves appear in the Ra = 107 case near the top of the hot side and bottom of the cold side.
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Figure 3: Temperature fields for the λ = 1
10 cavity. Ra increases from 102 to 107 in decades from left to

right. Wall waves appear in the Ra = 106 case near the top of the hot side and bottom of the cold side;
for this aspect ratio they are capable of developing into ‘prominences’ capable of advecting heat significant
distances into the bulk (not seen for the smaller aspect ratio cases here).
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Figure 4: Dependence of Nu on Ra for cavities with aspect ratios 1
2.5 , 1

5 , and 1
10 .

imum velocity appears rather well-fitted by a power law, with exponents 0.496, 0.490, and 0.515
being found over the Ra ranges 104 − 109, 104 − 107, and 104 − 106 for aspect ratios 1

2.5 , 1
5 , and

1
10 respectively. There is no significant deviation from these power laws at higher Ra. Note that the
dependency is linear for smaller Ra due to the linear growth of the convective mode.

This discovery of the approximate relations Nu ∼ Ra
1
4 and vmax ∼ Ra

1
2 is consistent with the low-

Pr Regime Il for Rayleigh-Bénard convection found in [10], in their eqs (2.31) and (2.32) (note
that vmax here stands as a proxy for the Reynolds number). This regime corresponds to viscous
and thermal dissipations being dominated by the boundary layer, as opposed to the bulk, region,
and the velocity boundary layer being less wide than the thermal boundary layer (i.e. small Pr) -
though caution is advised applying these criteria to the present case as their derivation assumed
the Rayleigh-Bénard case. It is also stated in that paper than the same relations have been found
to be valid for low-Pr two-dimensional convection in [12].

The horizontal profiles of temperature and vertical velocity component (normalized to the maxi-
mum value) at the mid-height of the cavity are shown in Fig.6. It is evident that the temperature
profile is linear in the diffusion-dominated regime, changing to something that is remarkably uni-
form except in the thermal boundary layers near the cavity walls, i.e. the gradients in the bulk
are suppressed in the classical convective solutions; larger-Ra flows show significant disruption
due to the non-steady phenomena. The vertical velocity profile varies from a sinusoid-like profile
at low Ra to a flow dominated by boundary layer transport, before again becoming disrupted by
non-steadiness. Large gradients in temperature and velocity become apparent near the boundary
and these appear to increase monotonically with increasing Ra; note that the near-boundary tem-
perature exhibits apparently monotonic decrease with distance from the boundary, whereas the
no-slip condition means that the vertical velocity rises to a sharp peak and then falls back. Note
that time-averaging over the quasi-steady state can be performed to uncover the mean profiles
in the unsteady cases, as done in [9]. The profiles in the figure are for the λ = 1

2.5 cavity but

11



Figure 5: Dependence of maximum mid-height vertical flow velocity on Ra for cavities with aspect ratios
1
2.5 , 1

5 , and 1
10 .

are expected to be broadly similar for the other two cases, subject to rescalings in the Ra values
demarcating the transitions between regimes.

2.2.1 Air-filled cavity: convergence, and pathways to convergence, and stability

The calculations ultimately become limited in terms of accessible Ra by the numerical resolution
needed to simulate the velocity and temperature gradients: high-Ra is thus a computational chal-
lenge. In order to achieve convergence using the initial h = 1

48 meshes, the element order was
increased until the Nusselt number changed by less than a few percent. One point is that the
convergence is harder to assess for the non-steady solutions since the averaged Nusselt num-
ber varies in time in the quasi-steady state (as an example, ±10% variation in Nu is seen for the
Ra = 109 case). Note the the graphs plotted in order to obtain the power laws are rather forgiving
in their response to errors (due to the logarithm). It was assumed that the convergence results for
the smallest cavity ought to apply also to the larger cases (subject to rescalings of Ra e.g. it was
assumed the flow corresponding to the onset of wall waves mandated a similar level of numerical
precision in all cases).

The ability to change both h- and p-refinement seems currently to be under-explored in the convec-
tion literature (e.g. [9] uses a fully conservative fourth-order staggered finite difference scheme for
the velocity field and the QUICK scheme to advect the temperature field, and the two-dimensional
study in [8] uses a finite-volume method based on the method of Patankar). Initial results ob-
tained during this work incline toward p-refinement: to cite the case of the Ra = 107 case for the
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Figure 6: Mid-height horizontal temperature profile (left) and mid-height velocity normalized to maximum
in profile (right) for λ = 1

2.5 cavity.

p Nu (Ra = 105) Nu (Ra = 106) Nu (Ra = 107) Nu (Ra = 108)
1 4.123 7.279 12.286 18.231
2 4.173 7.601 14.222 26.613
3 4.167 7.523 13.711 25.222
4 − 7.554 − −

Table 1: Convergence of Nu values with increasing element order p, for various Ra and λ = 1
2.5 cavity /

h = 1
48 mesh.

λ = 1
2.5 cavity, the h = 1

48 p = 3 case (note (p + 1)2 degrees of freedom (DOFs) per element)
using 48 × 120 × 42 = 92, 160 DOFs and ∆t = 2 × 10−6 took 3392s to propagate for 0.1 time
units, while the apparently as-accurate h = 1

6 p = 11 case (see Tables 1, 2) needed 796s using
6 × 15 × 122 = 12, 960 DOFs with ∆t = 5 × 10−6 to evolve for the same amount of time (exe-
cuted on the same hardware). The advantage here stems from the very significant reduction in
the number of degrees of freedom needed to achieve a given level of accuracy, which is really the
beauty of high-order methods. Note however that the simple structure here has no constraints on
the level of h-refinement arising from the requirement to mesh a complicated surface accurately
(see D.1 for some initial estimates in this direction). Note also that the question of performance-
optimal discretization depends on machine architecture: in a massively-parallel system, it is likely
that a decent number of elements will need to be associated with each compute core for efficient
operation, and one certainly cannot have fewer than one element per core.

It may be of benefit to refine selectively the mesh near the wall, as, at least for the laminar flows,
the largest velocity and temperature gradients are to be found there. For larger Ra, the existence
of complicated time-dependent structures in the bulk (see the right-most case in Fig.1) probably
means that a fine grid is needed everywhere. Note that it may be possible to increase element
order p locally as well as performing local h-refinement.

It is also the case that the simulations encounter numerical instability that grows worse as Ra is
increased (though this can be mitigated by matching the initial data closely to the quasi-steady
state, where possible - as mentioned above). The precise determination of the maximum stable
time step size is complicated and problem-dependent (see, for example, §6.3.1 of [1]) for these
types of simulation (for purely linear systems the question is much easier, and indeed analytic
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p Nu (Ra = 107) run time / s ∆t

3 13.936 46 5× 10−6

4 16.405 52 5× 10−6

5 15.286 88 5× 10−6

6 14.024 94 5× 10−6

7 13.509 109 5× 10−6

8 13.461 360 1.25× 10−6

9 13.557 467 1.25× 10−6

10 13.657 678 1.25× 10−6

11 13.716 796 1.25× 10−6

12 13.738 1198 5× 10−7

13 13.750 1418 5× 10−7

Table 2: Convergence of Nu values with increasing element order p, for Ra = 107 and λ = 1
2.5 cavity /

h = 1
6 mesh. Also included are wall-clock run times in seconds (these are not definitive, as the time step

size ∆t was likely smaller than necessary, especially for the lower orders (< 8); also, some set-up time was
included in the timings).

Ra ∆t (p = 1) ∆t (p = 2) ∆t (p = 3) ∆t (p = 4)
105 10−5 10−5 10−5 −
106 10−5 10−5 5× 10−6 5× 10−6

107 10−5 2× 10−6 2× 10−6 1.5× 10−6

108 2× 10−6 10−6 5× 10−7 2.5× 10−7

Table 3: Table of stable time step sizes used for various Ra and λ = 1
2.5 cavity / h = 1

48 mesh.

for uniform computational meshes), and Nektar++ seems to have no facility for obtaining even an
estimate of a stable time step size - it is, to the author’s knowledge, currently a case of trial and
error. It might be noted that, from the aforementioned reference, the maximum stable time step
size is expected to scale linearly with the size of the finite elements and inversely with the maximum
local velocity (note the approximate scaling law vmax ∼ Ra

1
2 found in the preceding subsection),

with an additional penalty factor depending on the element order p. Some empirically-found stable
time step sizes used in the simulations herein are presented in Table 3 (these represent lower
bounds as a detailed search for the boundary between stable and unstable was not performed;
also, ‘stable’ here means only that simulations run with these time step sizes showed no evidence
of instability).

The question of performance is further muddied by the number of iterations in part of the solver
being reduced as the time step size is reduced - thus a simulation with a larger number of time
steps may potentially execute more quickly than one with fewer.

2.3 Transient time series and extreme event characterization

The time-dependent convective instabilities have implications for the time-variation in the global
heat transport and also the variation in the local amount of heat transfer as a function of position
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Figure 7: Transient behaviour associated to boundary-layer waves. The left-hand-side plot shows the
maximum temperature at a small displacement from the cold-side wall and the right-hand-side one shows
the vertical position of the hottest point near the cold wall, both as time series.

on the walls. This is of interest in the sense of study of ‘extreme events’ - the amount of local
heating determines whether damage might result to a heat-absorbing engineering structure such
as a tokamak first wall. The two-dimensional waves also have something of the character of the
‘filaments’ that have in recent years been observed near the outer boundary of tokamak plasmas.

To this purpose, a custom filter was added to Nektar++, designed to output the maximum near-wall
temperature over a specified portion of the cavity side at regular time-intervals, and to output sim-
ilarly the location of such a ‘hot spot’. Technically, the filter finds the maximum value of the normal
derivative of the temperature field at the boundary (because of the fixed T values on the vertical
boundaries, the temperature very close to the boundary is approximated as the boundary value
minus ε∇nT where ∇n represents the outward normal derivative and ε a small spatial displace-
ment), and note that this is in spirit a maximum value of the ‘local’ version of the averaged Nusselt
number used above. Of course, in the steady state, the resulting time series are featureless, but
in the cases exhibiting the wall-wave instability the outputs track e.g. cooling blobs of fluid as they
descend the cold side.

The outputs (Fig.7), which were recorded in all cases for the lower 0.5 units of the cold-side wall,
show clearly an increasing degree of variability in the maximum near-wall temperature as Ra is
increased. The gradients of the hotspot position graph on the right-hand side show also that
the wall waves move with greater velocity (represented by the gradient of these time series) for
larger Ra (the graphs show hotter parts of fluid descending, cooling as they go, and ultimately
being supplanted by the next hot wave entering the top of the monitored region). Note that the
discrete character of the position graph comes from the fact that the filter currently outputs only
the position of the intra-element Lagrange basis node and not the precise maximum. Note also
that the Ra = 109 time series was excluded from the right-hand plot as it is sufficiently chaotic to
obscure the other data; suffice it to say that the motion is a great deal more rapid in this case.

It is also possible to obtain time series for the averaged Nusselt number.

One issue is that the filter described in this section is currently not compatible with MPI execution
of Nektar++ due to its use of code that sums across threads (this is clearly not a problem for
additive quantities such as the Nusselt number integrals described in the preceding section).
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These time series have been used as the basis for uncertainty quantification and as training data
for a Gaussian process. Further work could characterize the effect on heat transfer of the ‘promi-
nences’ seen in the larger aspect ratio cavity (Fig.3) as these are expected to give rise to significant
local heating events.

2.4 Conclusion

The incompressible Navier-Stokes solver of Nektar++ was used to obtain plausible results for the
problem of two-dimensional vertical natural convection. The relation between the Rayleigh number
control parameter Ra and the heat transport as quantified by the averaged Nusselt number Nu
was obtained for regimes ranging from the diffusive up to and beyond the onset of wall-wave
instability and two-dimensional turbulence, for cavities of aspect ratio 1

2.5 , 1
5 , and 1

10 . Nektar++
filters capable of producing time series forNu, as well as for diagnostics of the near-wall dynamics,
were demonstrated.

The main useful conclusion of this work is the indication that p-refinement is likely to lead to sig-
nificant efficiency gains if used in preference to h-refinement. Another key issue is that of the
maximum stable time step size which is one of the main criteria determining how much compu-
tational effort is entailed by a calculation and which was found to depend on the fineness of the
discretization and on details of the flow through the Rayleigh number. Additionally, expertise in
using Nektar++ has been cultivated. This two-dimensional work prepares the path to more exten-
sive simulations in more complicated geometries and in three dimensions, and is likely to prove a
valuable guide to how best to organize future work on HPC.

3 Smallab experimental programme

In a cutting-edge technology programme such as fusion reactor development for STEP or DEMO,
test facilities must be flexible to deal with issues which perhaps were not initially regarded as
important and may require rapid resolution, for example in the light of new experimental data or
during construction work. UKAEA’s Yorkshire Fusion Technology Facility FTF will be home to the
CHIMERA test rig, to help develop and test materials and components that can cope with the con-
ditions of high magnetic-field and heat-flux found inside a fusion power plant. FTF helps address
critical STEP and DEMO design issues identified by Bachmann et al [13], viz. integrated design
of breeding blanket and ancillary systems (their point ii) and power exhaust taking advantage of
advanced divertor configurations (point iii). In support of CHIMERA, to verify scaling properties
and provide physical insight, will be smaller, simpler table-top experiments such as Smallab.

New experiments, focussing on the key physics are justified because of better diagnostics enabled
by greater data handling capability, advances in remote measurement techniques etc. For exam-
ple, many of the key heat transport correlations are ripe for updating, as they date back 40 to 80
years, apply to a relatively restricted set of geometrical configurations, and come with little or no
information as to their accuracy. Preliminary studies for NEPTUNE illustrate that there have been
even greater advances in techniques for fitting models to data, in fields such as optimisation, un-
certainty quantification and data assimilation, now often bracketed as Machine Learning, expected
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to give more robust fitting with improved error estimates, relative to the old power-law scalings.

Increased computational power and the greater accuracy expected from NEPTUNE codes en-
ables the use of more complex 2-D, 3-D and time-dependent physical models expected to be
more robust under extrapolation to new situations and regimes. Nonetheless the presence of in
particular turbulent behaviour means that there is still a need for cross-validation capabilities such
as represented in particular by Smallab.

The concept is that Smallab experimental flows will be quick and easy to set up, not much more
than the assembling of pipes, small vessels and heaters from stock. A typical example is the prob-
lem of convection in a slot with a heated sidewall, already investigated as part of NEPTUNE UQ
activities [14] (and also in this report), a slightly more complex example is that of an annular pipe
with a heated central core. Flow speeds of 5 m/s or less will be typical and similarly temparature
differences limited to a few tens of degrees C.

The main outlay (near six-figure sum) has been to the LaVision company for a flow imaging system,
specifically a MiniShaker + LED300 system. This itself may be rapidly set up and calibrated on
timescales as little as 20 minutes. In the supplied diagnostic system, fluid flow is measured by
Doppler effects in strong LED illumination. The raw data is processed by the DaVis 10 software
supplied by LaVision to return flow vectors as high-resolution volumetric data sampled in time at up
to 500 Hz. The DaVis 10 is capable of using knowledge of the equations of classical hydrodynamics
to refine the flow-field information, which should be particularly interesting for comparison with
Nektar++ software. Any such comparison is promised to be made easier by the DaVis ability to
output in a wide range of formats for visualisation and similar software on both Windows and linux.
Should more complex analyses be required, the software is opensource C++ and therefore might
be customised by skills widely available to project NEPTUNE.

It is to be noted that the numerics described in the preceding sections would have to be extended
to three dimensions in order to apply to larger-Ra Smallab experiments, due to three-dimensional
instabilities and turbulence.

4 Oxford-led discussion group meetings

The group have been meeting roughly fortnightly over Zoom. The meetings were chaired by
Felix Parra until his departure for PPPL, and are now chaired by Michael Barnes. Other regular
attendees are Michael Hardman and Javier Maurino-Alperovich (from the University of Oxford)
and John Omotani, Sarah Newton, Stefan Mijin and Joseph Parker (from UKAEA), along with
members of other NEPTUNE projects, Ben McMillan, Ben Dudson and David Dickinson.

The meetings were primary focused on Felix Parra and Michael Barnes presenting their respective
progress with the development of the referent equations and their implementation, and to discuss
challenges arising. The progress is presented in the project’s technical reports. In addition, the
project’s source code is available at the GitHub repository [15] The code is presently 1+1D for
space and velocity space parallel to the magnetic field line. In both dimensions, the user may
choose a finite difference or Chebyshev (pseudo)spectral element discretization at run time. The
code is written in Julia, making extensive use of external libraries (which in Julia are automatically
managed and may be precompiled). The project has good software practices, making use of
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GitHub issues and peer-reviewed pull requests. The code has unit and regression test suites that
are automatically run on pull requests, as well as frameworks for code profiling and performance
regression.
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5 Summary

This report has provided an overview of preliminary application of Nektar++ to a problem in thermal
convection. It has identified that the dynamics of the system in question become more challeng-
ing for larger temperature differences (encoded in the dimensionless Rayleigh number) and the
consequent greater rates of heat transfer (measured by the dimensionless averaged Nusselt num-
ber). The main challenges are the need to resolve steep gradients in the boundary regions and
the fact that the maximum stable time step size decreases as the Rayleigh number is increased
and also as the accuracy of the calculation is increased. Probably the main conclusion is the
effectiveness of p-refinement in favour of h-refinement. In addition, attention was drawn to the re-
strictions on the maximum stable time step size imposed by the spatial discretization and also as a
result of increasing the Rayleigh number (a more detailed study of this issue is clearly indicated).
The complementary experimental programme Smallab was outlined with reference to its operlap
with the Nektar++ numerical simulations. In addition to this application of finite element methods,
the Oxford-led discussion group continues to innovate in terms of applying finite element to more
advanced referent models of the exotic fluids found in magnetically-confined fusion plasmas.

The numerical simulations outlined in this report used a very simple geometry; one eye is kept on
the case of realistic first-wall geometries and the additional constraints applied by accurate mesh-
ing requirements; a small excursion in this direction is presented in Appendix D. Such geometrical
considerations lead to the proliferation of elements and perhaps consequent moderation of the
choice of element order, though more study needs to be done in order to uncover firm conclusions
in this area.

The main author of this report would like to cite support received via the Nektar++ mail list, from in
particular Dr. Abhishek Kumar (Centre for Fluid and Complex Systems, Coventry University) who
provided an example Nektar++ session file for the Rayleigh-Bénard problem. The author would
like to thank also the developers of Nektar++ for useful discussions.
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A Convergence

In this appendix, the theoretical exponential convergence of the Nektar++ software is demon-
strated for the steady state of a classical convection problem solved on a fixed uniform 2D quadri-
lateral mesh.

For a smooth convecting solution in a cavity, the logarithmic error in the calculation (evaluated
against a ‘converged’ high-order calculation for this simple smooth flow) was plotted against the
element order. The error here is the global L2 error in the solution fields i.e. the squared error
integrated over the entire domain, which is output automatically by Nektar++.
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Figure 8: Error scaling with element order showing exponential convergence.

The results (Fig.8) show that this error decreases exponentially with increasing element order, in
line with the theoretical promise for spectral / hp methods as applied to a smooth solution.

Note that this method cannot be applied directly to the higher-Ra, quasi-steady cases, as these
are chaotic and only statistical properties of the flows are expected to remain consistent between
simulations with different computational parameters (i.e. one cannot meaningfully compare indi-
vidual instantaneous field values).

B Nektar++ VelocityCorrectionScheme pressure anomaly

Simulations of smooth convective fields showed an obvious anomaly in the pressure field (left-
hand-side plot in Fig.9): using the VelocityCorrectionScheme option for the incompressible
Navier-Stokes solver resulted in a single boundary point having a pressure value fixed at zero, dif-
fering in a large amount from all neighbouring nodal values (note that the VelocityCorrectionScheme

is a component of the incompressible Navier-Stokes algorithm that deals with decoupling the ve-
locity and the pressure systems; the latter is solved using a Poisson equation with a homogeneous
Neumann boundary condition).

In fact, the same problem as seen here can be created artificially using a Poisson equation where
the Neumann boundary condition is inconsistent with the right-hand-side of the equation. The
Neumann problem has a compatibility condition: if ∇2u = −f in a domain Ω and the boundary
condition is αu+β∇nu = g on ∂Ω then the divergence theorem gives the constraint

∫
∂Ω g+

∫
Ω f =

0. As a test, this problem was set up in the two-dimensional advection-diffusion-reaction solver
of Nektar++ and it was seen that an inconsistent case gives a similar anomaly to that observed
in the incompressible Navier-Stokes solver pressure field; also that the anomaly disappears if the
right-hand-side term term is offset to give a volume integral of zero. The hypothesis is that a
similar inconsistency is present within the implementation of VelocityCorrectionScheme. It is
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Figure 9: Left: pressure anomaly in the top-right domain corner using VelocityCorrectionScheme in
Nektar++. Right: the same system solved using VCSWeakPressure instead, showing no issue.

Figure 10: Temperature contours (Fig.7(a) from [5]) on the left (Ra = 2× 104; Pr = 1; λ = 1 and note that
the aspect ratio of the simulated cavity is actually unity, though not shown as such in the figure). The middle
plot shows the Nektar++ temperature profile at the end of the p = 3 simulation (steady state reached) and
the rightmost image shows (if not very well) the 20× 20 grid of finite elements.

presumably straightforward to perform the relevant integrals in the Nektar++ framework to confirm
this, though this is yet to be done. The need to solve this issue is tempered by the availability
within Nektar++ of an alternative to the VelocityCorrectionScheme, called VCSWeakPressure:
this alternate does not show the anomaly.

C Elder’s results

C.1 Elder’s results

Early numerical work by Elder on classical convection, using Pr = 1, shows plots of the tempera-
ture field that concur well with the output of Nektar++ (Fig.10). However, an accompanying graph
of Nu as a function of Ra disagrees in the size of Nusselt number obtained for given Rayleigh
number (Fig.11). The difference is probably due to a choice of boundary condition, given that the
historic simulation used different degrees of freedom (namely velocity potential and vorticity).

21



Figure 11: Overlay of Elder’s graph (from [5]) and Nektar++ results (blue spots) for the dependence of Nu
on Ra.

Note that larger-Ra Nektar++ simulations using Pr = 7.0 (the value for water) show flow patterns
(Fig.12) that compare quite well with water-tank experiments by the same author [6].

D Estimates for the number of finite elements in a NEPTUNE simu-
lation

D.1 Estimate of number of elements required on surface meshing grounds

This subsection contains an estimate of the number of elements necessitated by surface meshing
accuracy requirements found in the NEPTUNE grantee report [16].

The following assumptions are made:

• There are 500 structures to be meshed in the tokamak, each of which approximates a sphere
or a box section as treated in [16].

• There are 20 elements needed to mesh away from the meshed surface to give a 3D mesh.

These assumptions together give an uplift of 10,000 above the number of elements needed to
mesh the surface of a single structure such that there are no deviations between the mesh and
the CAD greater than 0.1◦.

Note that the box section structure treated in [16] may be a reasonable proxy for some of the
components in a real tokamak e.g. the plasma-facing Faraday screen of the RF antennae used
for ICRF heating and current drive, and also the ITER divertor support structure.

The number of elements needed to mesh an individual object is estimated from Tables 1 and 2
in [16] by interpolating or extrapolating the relation between the worst angle deviation and the
number of needed elements to give the number of elements needed for a 0.1◦ worst deviation (the
average angle deviation could also be considered). This interpolation / extrapolation was done
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Figure 12: On the left is Fig.2(a) of [6] showing flow pattern for Ra = 2.2×107 in a tank of water, visualized
using dye injection. On the right is the quasi-steady state for the corresponding Nektar++ simulation; this
simulation used a uniform mesh 12 quadrilaterals across the horizontal axis and p = 3.
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structure order num elts in mesh num DOFs in computation
sphere 2 4.7× 107 4.7× 109

sphere 3 6.0× 106 1.2× 109

sphere 4 9.2× 105 3.2× 108

box 2 1.6× 109 1.6× 1011

box 3 6.7× 108 1.4× 1011

box 4 1.2× 108 4.1× 1010

box 5 8.3× 107 4.7× 1010

Table 4: Estimates of the number of elements required to achieve surface normal accuracy of 0.1◦ or better
for the two structures tested in [16].

Figure 13: Log-linear fits for interpolating / extrapolating the number of elements needed to give θmax =
0.1◦, for sphere.

by constructing a plot of log10 θmax against log10Nelmt where θmax is the worst angle and Nelmt

the number of elements in the surface mesh - the resulting plots are near linear (i.e. approximate
power-law relations). Note that the 90◦ anomalies and also the highest-res p = 4 sphere mesh
were excluded from these fits. For the sphere case, see Fig.13.

The results are shown in Table 4. Numbers include the uplift mentioned above. The DOF count
assumes the 3D element computational order matches the geometrical order of the surface for
all elements (and includes also an uplift of 10 to allow for multiple fields e.g. Maxwell, pressure,
temperature ...) - for a single field the number of degrees of freedom isNDOF = 1

6(p+3)(p+2)(p+1)
for an element of order p i.e. assuming tetrahedral elements (other element geometries modify
this formula but all scale ∼ p3).

Simple explanation - order-2 sphere - look at Fig.13 and see that the blue curve crosses log10 θmax =
−1 (i.e. 0.1◦) at about 5,000 elements, then multiply by the uplift of 10,000 to get the number
4.7 ∗ 107; for the DOFs multiply this by 10 DOFs per elt at p = 2 and a factor of 10 to allow for all
the different fields.
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D.2 Order-of-magnitude estimates for tokamak edge modelling

This subsection contains some ballpark estimates of the computational feasibility of an anticipated
full-scale NEPTUNE calculation.

Suppose plasma number density n ≈ 1018 m−3. Order of magnitude dimensions are L ≈ 0.1 m
for SOL thickness, reactor minor and major radii say a = 3 m and R0 = 10 m, so volume of SOL
≈ 4π2aR0L ≈ 100 m3. Hence total number of electrons ≈ 1020.

Shortest timescale is inverse eB/me, the electron cyclotron frequency, where e/me = 1.76×1011 C
kg−1, and B ≈ 10 T, so τBe ≈ 10−12 s. Hence number of particle-steps to evolve 1 s of physical
time is 1020+12+1, and assuming 1000 flop per update, need 1036 flops. So to complete in 1 s
on Exascale machine, only allowed to sample 1 particle-step in 1018. (Unlikely to be adequate
because of electrostatic and other effects.)

Suppose fluid instead, ie. representing electron distribution by first 3 moments. Electron tempera-
ture Te ≈ 10 eV, thermal speed VTe ≈ 106 m s−1. Sample SOL at uniform 1 mm interval, number of
sample-points ≈ 1011, timestep for explicit scheme ≈ 0.1× (10−3/106) so number of sample-point
updates is 1011+10, assume 1000 flop each update, need 1024 flops.

Another way, suppose numerical problem is D-dimensional, need 1000 flop each sample update
and allowed ND samples per spatial dimension and N2

D in time. Then to update in 1 s, have
ND+2
D ≈ 1015. Thus if D = 3, N3 ≈ 1 000, and N5 ≈ 100. Accuracy controlled, unstructured,

implicit fluid models should be possible.
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