
ExCALIBUR

Code coupling and benchmarking

M7.2

Abstract
The report describes work for ExCALIBUR project NEPTUNE at the point of Milestone 7.2.
The hardware and software landscape of HPC systems is becoming increasing diverse, with a
proliferation of vendors and different technologies. To perform well at exascale, software will likely
need be able to target multiple heterogeneous systems. In such an environment, it is crucial for
developers to have access to benchmarking infrastructure to measure performance and highlight
regressions. This environment – and the separation of concerns approach taken to navigate it –
necessitates the development of discrete proxyapps which will need to be drawn together into a
single software suite. Thus the issue of code coupling will also be important at exascale.

In this report, we discuss work performed under the Code Structure and Coordination work pack-
age. We summarize the current hardware and software landscape, and discuss the available tools
and technologies available for benchmarking and code coupling.

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0053

Issue: 1.0
Date: 28 September 2021

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Joseph Parker N/A 28 September 2021

Wayne Arter N/A 28 September 2021
Will Saunders N/A 28 September 2021
James Cook N/A 28 September 2021

BD

Reviewed By: Rob Akers 28 September 2021

Advanced Computing
Dept. Manager

Approved By: Martin O’Brien 28 September 2021

MSSC

2

1 Introduction

This report covers two topics relating to the “Code Structure and Coordination” work package:
code coupling and benchmarking. This report also binds the technical report “Approaches to Per-
formance Portable Applications for Fusion” (2047358-TN-01 [1]), which provides the consortium
from the Universities of York and Warwick’s survey of the present state of exascale hardware and
technologies.

The key conclusion of the report [1] is that hardware is diversifying. Conventional CPU architec-
ture is becoming “fatter” with larger compute nodes (typically over 20 cores per node) and vector
widths (up to 512 bits). In addition to this increased on-node parallelism, there is also widespread
adoption of accelerators, for example, adding GPU cards to nodes, which offer around a thousand
low frequency compute cores. In this environment, computation is very cheap and the perfor-
mance bottleneck is memory bandwidth – typically data cannot be provided to the processors
at the same rate that it is consumed. This has led to innovations in memory technologies, like
High Bandwidth Memory (HBM) as well as off-node technologies like burst buffers and dedicated
I/O nodes. Machine interconnects have become faster and more complex, and GPUs have been
enabled to communicate directly without mediation through CPUs by tools like NVLink.

This is very a heterogeneous situation in contrast to that of around a decade ago when the vast
majority of HPC systems were homogeneous x86-64 clusters. To keep up with proliferation of
technologies has required sophisticated parallel programming, but neither industry nor academia
has been able to fully exploit the potential of new systems. Open standards are slow to support
new hardware, while proprietary solutions are narrowly focussed on specific devices.

For scientific software developers, maintaining multiple versions of code to target many different
devices is typically not feasible, and in any case, such an approach does not future-proof a code
against new hardware innovations. This difficulty has led to the development of programming
models like oneapi/SYCL, Kokkos and RAJA, which provide backends to compile a single source
code to target different devices. Though these technologies are immature, they show promise of
succeeding where the previous generation of auto-parallelizing compilers failed.

In this hardware and software landscape, it is imperative for developers to be able to measure
and track changes in the performance of their codes. The task of determining how to assess
performance is discussed in [2]. In this report however, in Section 2 we discuss the technologies
available for benchmarking: given tests, how one keeps track of performance. The adoption of new
programming models like SYCL, Kokkos and RAJA would require a complete overhaul of existing
projects’ source codes, or the development of new codes. It is therefore also an appropriate time
to consider the coupling of code from different projects, the available tools for code coupling and
their requirements and limitations, which we do in Section 3.

2 Benchmarking

It is important for developers to be aware of the performance impact of code changes or additional
features. An ideal tool for enabling this would track the performance of a suite of unit and regres-
sion tests against code revision, presenting the results graphically (perhaps on a website) and

3

highlighting significant regressions. In addition, such tests would also run on pull requests to in-
form developers of performance changes in prospective code. This requires automated behaviour
not dissimilar to that already in use for source code formatters/checkers (e.g. clang format/clang
tidy) and code coverage tools (e.g. Codecov), which can comment on, edit, and block the merging
of pull requests.

Such an approach faces some technical difficulties. For example, larger regression tests will
require access to HPC systems. Small tests might be run on the repository host’s servers, but
that would be subject to availablity/stability, and also suffer unreliable timings if exclusive access
to compute nodes could not be attained.

Investigations into suitable performance benchmarking tools have been undertaken as part of the
Code Structure and Coordination Work Package. This work has been delayed by departure of B.
Dudson and P. Hill from the NEPTUNE project, but is now being undertaken by E. Higgins. Two
tools have been considered as basis for benchmarking tools, Airspeed Velocity [3, 4] and ReFrame
[5, 6]. While neither meets all the requirements listed above, but provide good basis for further
work.

2.1 Airspeed velocity

Airspeed Velocity (ASV) [3, 4] is a simple Python tool for tracking the performance of Python
packages against revision history. It may be installed with pip, and provides a quickstart tool for
generating the necessary project and machine JSON configuration files. The user provides bench-
marks as functions in a class in Python scripts located in the user code’s repository. ASV has a
straightforward syntax providing usual functionality of setup/teardown functions and parameteriz-
able tests. Benchmarks may be configured to track run time, memory usage and peak memory
usage, and custom metrics may also be defined. Benchmarks may be run locally as part of the
development cycle, specifying ranges of commits to include. A simple publish command creates a
sparse-but-functional website plotting each test’s metric against code revision on the main page,
with a separate page listing regressions which can be sorted and filtered by regression size. An
example benchmarking suite of the numpy project provided by the ASV developers [7].

ASV provides a simple-to-use framework for benchmarking Python projects, or codes in other
languages that could be called from Python. ASV could serve a core framework on which to
add more advanced infrastructure, like for example GitHub integration. However, as it is limited
to Python, it may be difficult to use for C++ or Fortran unit testing (as opposed to whole-code
benchmarking). Moreover, it is not aimed at HPC and all benchmarks are run on a single process.
Finally, while open source, the project appears to be inactive, with the last release 0.4.2 being in
May 2020.

2.2 ReFrame

ReFrame [5, 6] is a regression test framework for HPC systems under development by the Swiss
National Supercomputing Center (CSCS). The aim is to abstract the handling of individual system
configurations, allowing uses to focus on writing portable regression tests to target a range of sys-

4

tems. Much like with ASV, ReFrame regression tests are provided by the user as simple Python
classes. ReFrame syntax is somewhat more powerful, allowing test factories and the dynamic
parametrization of tests. The main difference however is that ReFrame adds support for perform-
ing regression tests on HPC systems. This is achieved by executing tests in a “pipeline” which
handles all the details of running the job on an HPC system, including environment setup, com-
pilation, job submission and job status checking, and performance checking and analysis. These
aspects are separated into discrete tasks that may be performed asynchronously, concurrently, or
dispersed between other tests’ tasks.

To that end, ReFrame supports multiple work load managers, job launchers and module systems.
Different programming environments and system partitions can be used as test parameters. Re-
Frame reports test progress as the jobs run, and provides a session report in a JSON file. The
performance results are logged and can be reported in various formats (regular files, Syslog and
Graylog).

ReFrame is a powerful tool for regression testing on HPC platforms. As ReFrame handles the
interactions with HPC infrastructure, NEPTUNE developers would be able to focus on writing
high-level Python tests while still achieving portability across a range of HPC systems. Initial
investigation shows ReFrame to be a more sophisticated tool than Airspeed Velocity – and com-
mensurately more difficult to use. ReFrame is also being investigated for use by the ExCALIBUR
Benchmarking Working Group. This is an area where continuing collaboration between NEP-
TUNE and the Benchmarking Working Group will be beneficial.

3 Code coupling

The separation of concerns approach employed by Project NEPTUNE means that, so far as
possible, software is developed by domain specialists. Moreover, much software prototyping will
be performed through the development of proxyapps. Taken together, this means that the Project
NEPTUNE software suite will contain multiple components that will need to be coupled to create
a coherent whole.

There are varying degrees of “closeness” of code coupling. At the closest, there is loop fusion,
essentially merging two codes into a single source code using code generation. As a looser
approach, two discrete programs could be coupled through the use of productivity languages
(such as Python or Julia) as workflow managers to call functions from the main codes. Finally, as
the loosest coupling, one could simply execute discrete programs which read and write compatible
data formats. At exascale, it is anticipated that close coupling between codes will be necessary
in order to optimize performance, though the closer the coupling, the more problem-specific and
less flexible the solution.

In this section, we discuss technologies for code coupling, namely Python, Julia, and IMAS, ITER’s
Integrated Modelling & Analysis Suite. Of these examples, IMAS sits on the looser end of this
scale, defining a data format and offering some infrastructure for building workflows. Julia and
Python sit at the tighter end of the scale, either acting as the “glue” between programs in a work-
flow, or through their targetting of multiple devices (i.e. CPUs or GPUs) as a possible single-source
alternative to oneapi/SYCL, Kokkos or RAJA.

5

3.1 ITER Integrated Modelling & Analysis Suite (IMAS)

The Integrated Modelling & Analysis Suite (IMAS) [8] is a framework of various tools being devel-
oped by the ITER project to support both tokamak operations and research activities. One of its
main components is the ITER Physics Data Model, a standardized, extensible model designed for
both experimental and simulation data. IMAS provides a set of tools to access data and design
integrated modelling workflows with varying degrees of modularity. That is, as well as provid-
ing access to ITER (and other tokamak) data, and for writing results to shared databases, IMAS
provides a framework through which plasma applications may be coupled.

The means for this coupling is for codes to be compatible with the ITER Physics Data Model’s
Interface Data Structure (IDS). IMAS has APIs to manipulate IDS in Fortran, C++, Matlab, Python
and Java, with data ultimately stored in MDS+, ASCII or HDF5 formats. In order to be coupled,
each code needs to provide routines for reading and writing the IDS format, and then code coupling
may proceed in one of two modes.

The first mode is loose coupling through I/O, that is, each code independently reading and writing
the IDS data to the file system. This has the advantage that no modification is required to existing
codes (except to read and write IDS format) but is limited by the usual performance of loosely
coupled binaries: performance is limited by file system I/O, and the difficulty to balancing work
loads in discrete binaries. The second mode is to tightly couple codes using ‘workflow structures’
provided by drivers in the IMAS framework. In this case, user code needs to provide routines to
interface with IMAS. In particular, user code needs to be provided as a library that may be called
by IMAS driver scripts, rather than as a standalone executable.

In addition to being used in ITER projects, IMAS is also being adopted by the EUROfusion Theory
and Advanced Simulation Coordination (E-TASC) projects. Providing wrappers to give NEPTUNE
code the option of writing to IMAS would not be a significant overhead. It would allow integration
with ITER and EUROfusion tools and allow the option of code coupling through the IDS, even if
other approaches to coupling were also pursued.

Training in the use of IMAS is being provided by ITER, and has been attended by NEPTUNE
developers. The training materials are publicly available [9].

3.2 Python

Python is a mature language with a rich ecosystem of packages, and has grown as a productivity
language in a large number of domains including computational science and engineering. Vari-
ables in Python are dynamically typed and are always an object. A Python program is executed
by passing source code to one of the multiple Python interpreters, usually CPython, which exe-
cutes the source line by line. For each operation in the source line the interpreter must inspect
the variable types and perform the appropriate lower-level operation for the given types. As the
variable types are allowed to change, as Python is dynamically typed, the interpreter must perform
this type inspection for each operation. This type checking process is one of the main reasons
that native Python code is slower than a statically typed language. In a statically typed language a
line, or multiple lines, of source code can be considered as a block and optimised lower-level code
generated for the specific types and operations that are present.

6

The use of dynamic types means that working with large amounts of data or large equation sets
is usually very slow, and multiple approaches have been employed to overcome this performance
issues. A recurring theme of these approaches is to write or generate lower-level code, for example
in Numba, PyPy, Cython, C/C++ and Fortran, which is passed through a traditional compiler to
produce optimised machine code. This situation of having a fast-to-write slow-to-execute language
coupled with a slow-to-write fast-to-execute language is referred to as the “two language problem”.
In the cases that rely on an additional general programing language like C/C++, a function will be
implemented, either by hand or code generation, for a fixed set of parameter types. This eliminates
any type checking when a function is called as it is assumed that the calling arguments are correct.
Numba is an example of Just-In-Time (JIT) compilation approach where a user “decorates” a
function to indicate that the Numba library should attempt to produce a compiled implementation of
this function at runtime. When the function is called a lookup is performed to identify if a compiled
version exists for the particular calling argument types and if not a new version is compiled.

This JIT approach goes some way to closing the performance gap between Python and compiled
languages: PyPy claims to be 4.2 times faster than CPython code [10], while Numba claims it can
“approach the speeds of C or Fortran” [11].

3.3 Julia

Julia is a newer programming language which has emerged as a general programming language
that is particularly well suited for numerical computing. As with Python, Julia is a dynamically typed
language. Unlike Python, Julia replaces object-orientation for a multiple dispatch system where a
programmer specifies multiple implementations of functions based on the number and types of the
calling arguments. Although new in comparison to incumbent languages such as Python, there is
a rapidly growing ecosystem of Julia packages across many areas of numerical computing.

Just-In-Time is an integral component of the Julia programming language. The JIT approach in
Julia is implemented as a just-ahead-of-time (JAOT) method where all source code is compiled,
and hence optimised, for the particular variables types at runtime. Using this JAOT system, Julia
solves the two language problem as Julia is both high-level and efficient.

3.4 Python and Julia for code coupling

In both Python and Julia, a user can launch an external program via a subprocess or shell call.
Moreover both languages have a package which provides wrappers around an MPI implementa-
tion. Although other forms of distributed memory computation are available, MPI is the incumbent
interface which is supported by most vendors. By using MPI as a distributed memory model, a pro-
gram written in Both Python and Julia will each automatically connect with external libraries which
also employ the MPI approach. Furthermore both languages can natively call functions in shared
libraries written in C with varying support for C++ and Fortran based on target language versions.
Hence both languages support a loose coupling approach where input files are constructed by an
orchestration program which calls an external program that only supports a command line inter-
face. Output data, which was written to a file by the external program, can then be read, parsed
and processed by the orchestration program.

7

Furthermore there is growing support for accelerator devices, such as GPUs, through packages
that allow users to program for these devices both directly through vendor-specific APIs and
in portable approaches via abstractions. These abstraction packages aim to provide a vendor-
agnostic separation of concerns approach similar to that of Kokkos and SYCL with the advantage
that the user-written code is in Julia. As part of Project NEPTUNE’s investigation into DSLs for
particle operations in Julia, we are assessing the suitability of these vendor-agnostic interfaces.
This DSL investigation generates Julia code for the KernelAbstractions.jl library which targets
CPU and GPU architectures. Both Julia and Python also have vendor-specific packages such as
CUDA.jl and PyCUDA. Through this support, Python and Julia offer an alternative to oneapi/SYCL,
Kokkos and RAJA as a pathway to tightly coupled, performance portable code.

8

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] S. Wright, B. Dudson, P. Hill, D. Dickinson, and G. Mudalige. Approaches to Performance
Portable Applications for Fusion. Technical Report 2047358-TN-01-02, UKAEA Project Nep-
tune, 2021.

[2] J. T. Parker, W. Arter, W. Saunders, and J. Cook. Domain-Specific Language (DSL) and
Performance Portability Assessment D3.2. Technical Report CD/EXCALIBUR-FMS/0049-
M3.2.3, UKAEA, 2021.

[3] Airspeed velocity repository. https://github.com/airspeed-velocity/asv/, 2021. Ac-
cessed: September 2021.

[4] Airspeed velocity documentation. https://asv.readthedocs.io/en/stable/, 2021. Ac-
cessed: September 2021.

[5] ReFrame repository. https://github.com/eth-cscs/reframe, 2021. Accessed: September
2021.

[6] ReFrame documentation. https://reframe-hpc.readthedocs.io, 2021. Accessed:
September 2021.

[7] Airspeed velocity benchmarking suite for numpy. https://pv.github.io/numpy-bench/,
2021. Accessed: September 2021.

[8] F. Imbeaux, S.D. Pinches, J.B. Lister, Y. Buravand, T. Casper, B. Duval, B. Guillerminet,
M. Hosokawa, W. Houlberg, P. Huynh, S.H. Kim, G. Manduchi, M. Owsiak, B. Palak, M. Ploci-
ennik, G. Rouault, O. Sauter, and P. Strand. Design and first applications of the ITER inte-
grated modelling and analysis suite. Nuclear Fusion, 55(12):123006, 2015.

[9] ITER Integrated Modelling & Analysis Suite (IMAS) Training Materials, Poznan Supercomput-
ing and Networking Center. https://docs.psnc.pl/display/WFMS/IMAS+training, 2021.
Accessed: September 2021.

[10] PyPy website. https://www.pypy.org/, 2021. Accessed: September 2021.

[11] Numba website. https://numba.pydata.org/, 2021. Accessed: September 2021.

9

https://github.com/airspeed-velocity/asv/
https://asv.readthedocs.io/en/stable/
https://github.com/eth-cscs/reframe
https://reframe-hpc.readthedocs.io
https://pv.github.io/numpy-bench/
https://docs.psnc.pl/display/WFMS/IMAS+training
https://www.pypy.org/
https://numba.pydata.org/

T/NA086/20

Code structure and coordination

2047358-TN-01 Task 1

Approaches to Performance Portable

Applications for Fusion

Steven Wright, Ben Dudson, Peter Hill, and David Dickinson

University of York

Gihan Mudalige

University of Warwick

May 26, 2021

Contents

1 Executive Summary 1

2 Pre- and Post-Exascale Hardware 5

2.1 Computational Hardware . 5

2.1.1 CPU Architectures . 5

2.1.2 Accelerator Architectures 7

2.1.3 Reconfigurable Architectures 10

2.2 Notable Systems . 11

2.2.1 Planned Systems . 11

2.3 HPC Provision in the UK . 13

2.4 Summary . 14

3 Software Approaches to Exascale Application Development 15

3.1 General Purpose Programming Languages 15

3.2 Parallel Programming Models . 17

3.2.1 Accelerator Extensions . 18

3.3 Software Libraries . 21

3.4 C++ Template Libraries . 23

3.5 Domain Specific Languages . 24

3.5.1 DSLs for Stencil Computations 25

3.5.2 Higher-Level DSLs . 27

3.6 Summary . 32

4 Data Structures, I/O and Parallel File Systems 33

4.1 Data Layouts and Memory Management 34

i

4.2 High Performance I/O . 35

4.2.1 Parallel File Systems . 36

4.3 Summary . 38

5 Risks and Recommendations 39

5.1 Assessing Performance Portability 40

5.2 Considerations . 41

References 43

ii

Glossary

AVX Advanced Vector eXtensions

CFD Computational Fluid Dynamics

DIMM Dual In-line Memory Module

DRAM Dynamic Random Access Memory

DSL Domain Specific Language

eDSL Embedded Domain Specific Language

FLOP/s Floating point operations per second

FPGA Field Programmable Gate Array

HBM High Bandwidth Memory

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JIT Just-in-time Compilation

MCDRAM Multi-Channel DRAM

N-1 N processes writing data to a single file

N-N N processes writing data to their own files

N-M N processes writing to M files

PCIe Peripheral Component Interconnect Express

SIMD Single-instruction, multiple-data

SMT Simultaneous multi-threading

SPMD Single-program, multiple-data

SSE Streaming SIMD Extensions

SVE Scalable Vector Extensions

iii

1 Executive Summary

The end of CPU clock frequency scaling in 2004 gave rise to multi-core de-

signs for mainstream processor architectures. The turning point came about as

the current CMOS-based microprocessor technology reached its physical limits,

reaching the threshold postulated by Dennard in 1974 [1]. The end of Den-

nard scaling has meant that further increases in clock frequency would result

in unsustainably large power consumption, effectively halting a CPUs ability to

operate within the same power envelope at higher frequencies.

More than a decade and a half has passed since the switch to multi-core, where

we now see a golden age of processor architecture design with increasingly com-

plex and innovative designs used to continue delivering performance improve-

ments. The primary trend continues to be the development of designs that

use more and more discrete processor “cores” with the assumption that more

units can do more work in parallel to deliver higher performance by way of in-

creased throughput. This has aligned well with hardware industries’ ambition

to see the continuation of Moore’s Law – exponentially increasing the number

of transistors on a silicon processor.

As a result, on the one hand we see traditional CPU architectures gaining more

cores, currently over 20 cores for high-end processors, and increasing vector

lengths (e.g. Intel’s 512-bit vector units) per core, widening their ability to do

more work in parallel. On the other hand we see the widespread adoption of

separate devices, called accelerators, such as GPUs that contain much larger

numbers (over 1024) of low-frequency (power) cores, targeted at speeding up

specific workloads.

More cores on a processor has effectively resulted in making calculations on a

processor, usually measured by floating-point operations per second (FLOP/s),

cheap. However feeding the many processors with data to carry out the calcu-

lations, measured by bandwidth (bits/sec), has become a bottleneck. As the

growth in the speed of memory units has lagged that of computational units,

multiple levels of memory hierarchy have been designed, with significant chunks

of silicon dedicated to caches to bridge the bandwidth/core-count gap.

New memory technologies such as High Bandwidth Memory (HBM) has pro-

duced “stacked memory” designs where embedded DRAM is integrated on to

1

CPU chips. New non-volatile memory technologies such as Intel’s 3D X-Point

(Optane) memory, which can be put in traditional DIMM memory slots, pro-

vides higher storage capacity but with lower bandwidth. The memory hierarchy

has been further extended off-node, with burst buffers and I/O nodes serving

as staging areas for scientific data en route to a parallel file system. Larger and

more heterogeneous machines have also necessitated more complex intercon-

nection strategies. Technologies such as NVLink allows GPUs to communicate

point-to-point without requiring data to travel through the CPU. New high-

speed interconnects have been developed that seek to minimise the number of

hops required to move data between nodes and devices, potentially benefiting

both inter-node communications and file system operations.

A decade ago, the vast majority of the fastest HPC systems in the world were

homogeneous clusters based around the x86-64 architecture, with a few no-

table exceptions such as the IBM BlueGene architectures. Now, there is a

diverse range of multi-core CPUs on offer, supported by an array of manycore

co-processor architectures, complex high-speed interconnects, and multi-level

parallel file systems.

The underpinning expectation of the switch to multi-core and the subsequent

proliferation of complex massively parallel hardware was that performance im-

provements could be maintained at historical rates. However, this has led to

the need of a highly skilled parallel programming know-how to fully exploit the

full potential of these devices and systems. The switch to parallelism and its

consequences was aptly described by David Patterson in 2010 as a “Hail-Mary

pass”, an act done in desperation by the hardware vendors “without any clear

notion of how such devices would in general be programmed” [2].

Nearly a decade later, industry, academia and stakeholders of HPC have still not

been able to provide an acceptable and agile software solution to this issue. The

problem has become even more significant with the current run-up to deploying

Exascale-capable HPC systems, limiting their use for real-world applications for

continued scientific delivery. On the one hand, open standards have been slow

to catch up with supporting new hardware, and for many real applications have

not provided the best performance achievable from these devices. On the other

hand, proprietary solutions have only targeted narrow vendor-specific devices

resulting in a proliferation of parallel programming models and technologies.

2

For most large scientific simulation applications, maintaining multiple versions

of the code-base is simply not a reasonable option given the significant time

and effort, not to mention the expertise required. Even with multiple versions,

it does not guarantee a future-proof application where the next innovation in

hardware may well require yet another parallel programming “model” to obtain

best performance for the new device. These challenges are now general and

applicable equally to any scientific domain that rely on numerical simulation

software using HPC systems. As a recent review for applications in the com-

putational fluid dynamics (CFD) domain [3] elucidates, three key factors can

be identified when considering the development and maintenance of large-scale

simulation software, particularly aimed at production:

1. Performance: running at a reasonable/good fraction of peak perfor-

mance on given hardware.

2. Portability: being able to run the code on different hardware platform-

s/architectures with minimum manual modifications

3. Productivity: the ability to quickly implement new application, features

and maintain existing ones.

Over the years, attempts at developing a general programming model that deliv-

ers all three has not had much success. Auto-parallelising compilers for general

purpose languages have consistently failed [4]. Compilers for imperative lan-

guages as as C/C++ or Fortran, the dominant languages in HPC, have struggled

to extract sufficient semantic information, enabling them to safely parallelise a

program from all, but the simplest structures. Consequently, the programmer

has been forced to carry the burden of “instructing” the compiler to exploit avail-

able parallelism in applications, targeting the latest, and purportedly greatest,

hardware.

In many cases, the use of very low-level techniques, some only exposed by a

particular programming model/language extension are required with careful or-

chestration of computation and communications to obtain the best performance.

Such a deep understanding of hardware is difficult to gain, and even more so

unreasonable for domain scientist/engineers to be proficient in – especially given

that the expertise required rapidly change with the technology of the moment

following hardware trends. A good example is the many-core path originally

3

touted by Intel with accelerators such as the Xeon Phi which has been discon-

tinued – the first US Exascale systems will now both be GPU based, with one

system containing AMD GPUs and the other Intel GPUs.

As such, it is near impossible to keep re-implementing large science codes for

various architectures. This has led to a separation of concerns approach where

description of what to compute is separated from how the computation is im-

plemented. This is in direct contrast to languages such as C or Fortran, which

explicitly describes the computation.

In this report, we aim to review the key approaches and tools currently used

to develop new numerical simulation applications targeting modern HPC ar-

chitectures and systems, including methods of re-engineering existing codes to

modernise them. We focus on applications from the plasma fusion domain and

related supporting applications from engineering. Our aim is to survey and

present the state-of-the-art in achieving “performance portability” for Fusion,

where an application can achieve efficient execution across a wide range of HPC

architectures without significant manual modifications.

The remainder of this report is organised as follows:

Section 2 reviews the current hardware landscape, and outlines the hardware

expected in the coming five years. It concludes with a summary of some of the

pre- and post-Exascale machines expected in Europe and the United States.

Section 3 discusses current approaches to performance portable scientific ap-

plication development.

Section 4 reviews a number of libraries and approaches to data and file man-

agement at Exascale.

Section 5 concludes this report, highlighting risks and initial recommendations

from the report.

4

2 Pre- and Post-Exascale Hardware

In this section, we briefly introduce the architectures that are available, or likely

to become available in the coming years and provide an overview of the state-

of-the-art in Supercomputing in the UK, Europe and the rest of the world.

2.1 Computational Hardware

Recent trends in supercomputing suggest that reaching exascale will likely re-

quire a heterogeneous approach, or at the very least the use of a manycore

architecture (i.e., processors with a high number of parallel cores) [5, 6]. There

are already a number of systems in use or in active development that embody

this principle – composed of computational nodes coupling a multi-CPU archi-

tecture with GPU accelerators.

2.1.1 CPU Architectures

The Intel Xeon product line has dominated large HPC installations over the

past decade. Currently (as of November 2020) 90% of the Top500 use Intel Xeon

processors to provide some or all of their performance. However, coupled with

delays to Intel’s 10nm and 7nm production processes, there are signs that this

dominance may be beginning to wane with a number of recent (and planned)

systems opting for AMD products, or non-x86 platforms.

The most widely used, and recent, Intel Xeon CPUs are Skylake and Cascade

Lake. Both are manufactured using a 14nm process, with the Skylake being

available in configurations with between 2 and 28 cores, and Cascade Lake being

available with between 4 and 56 cores. Besides an increase in the number of

cores per package, Cascade Lake additionally includes support for Intel Optane

Persistent Memory DIMMs, and some additional instructions targeted at

Neural Networks.

Alongside the large number of processing cores, parallelism is provided by hyper-

threading and instruction-level parallelism (ILP) in the form of the Streaming

SIMD Extensions (SSE) and Advanced Vector eXtensions (AVX) instruction

5

https://www.top500.org/

sets – with Skylake onwards including 512-bit wide AVX instructions, intro-

duced by the Intel Xeon Phi product line.

The next server-level architectures available from Intel will be Ice Lake and

Sapphire Rapids, available in mid-2020 and 2021, respectively. Ice Lake will

be the first Intel server architecture using a 10nm production process and will

provide an additional two memory channels and support for PCIe Gen 4; Sap-

phire Rapids will additionally add support for DDR5 and PCIe Gen 5. Per-

formance of the Sapphire Rapids architecture will be further boosted by the

addition of on-package support for High Bandwidth Memory (HBM) – another

feature taken from the Intel Xeon Phi product line.

Intel’s main competitor in the x86 64 market comes from AMD in the form of

their AMD EPYC product line. Following a significant decline in popularity

between 2010 and 2015, the AMD EPYC family now power 12 of the Top 100,

and this looks set to increase in the coming years. The two current generation

EPYC CPUs are Rome, based on the Zen2 microarchitecture, and Milan,

based on the Zen3 microarchitecture. Both are manufactured using a 7nm pro-

cess, with Rome using a 14nm process for I/O components. The are available

in configurations up to 64 cores, and support all SIMD extensions up to AVX2

(256-bit), and have support for PCIe Gen 4. In contrast to the current genera-

tion Intel CPUs, the AMD Rome and Milan CPUs already provide 8 memory

channels – providing a performance boost for memory-bound applications.

The successor to Milan will be Genoa in 2022. Little technical information

is currently known about the Genoa, but it will be manufactured using a 5nm

production process and may be available in configurations up to 128 cores per

package. It is also likely to add support for DDR5 and PCIe Gen 5.

Outside of x86 architectures, IBM have a long history of successful supercom-

puters, from the BlueGene/L, through to Sierra and Summit. While Sierra and

Summit both get most of their performance from GPU accelerators, they are

driven by IBM Power9 processors. The Power9 CPU is built using a 14nm

production process, and is available in configurations up to 24 cores, with ad-

ditionally parallelism provided by 4-way simultaneous multithreading (SMT4).

Like the Rome architecture, memory-bound applications may also benefit from

the availability of 8 memory channels. The Power9 architecture is also notable

for its inclusion of NVIDIA’s NVLink protocol. NVLink allows for faster

6

communication between connected GPUs – hence the use of Power9 CPUs on

the Sierra and Summit systems.

IBM Power10 will be the next generation of the Power ISA, and will be re-

leased in the second half of 2021. It will be manufactured using a 7nm produc-

tion process and will increase the number of cores up to 48. Alongside support

for NVLink v3.0, there will also be additional instructions specialised for AI

inference operations.

Another non-x86 architecture gaining in popularity comes from Arm. Chipsets

based on the ARMv8.1-A and ARMv8.2-A ISAs are available from Marvell

and Fujitsu, among others. The Marvell ThunderX2 currently powers the

UK’s Isambard platform [7], and is also installed in Sandia’s Astra – the first

Petascale supercomputer built using Arm processors. The ThunderX2 is a 14nm

platform available with up to 32 cores, with 4-way multithreading. Its successor,

the ThunderX3 will not be produced for general-purpose use which may limit

its use in HPC systems – beyond availability on cloud platforms.

The Fujitsu manufactured A64FX platform currently powers Fugaku, the cur-

rent #1 supercomputer in the world. The A64FX uses a 7nm production pro-

cess, and consists of 48 computational cores per CPU (with 2 or 4 assistant

cores available on some models). It provides 512-bit Scalable Vector Extensions

(SVE) and 32 GB of on-package High Bandwidth Memory (HBM2). Besides

Fugaku, the A64FX is also available in other systems and is soon to be available

in Isambard-2. The EU’s Mont Blanc project is also in the process of pursuing

an Arm ISA based supercomputer in the coming years.

Alongside the architectures discussed above, alternative manycore CPUs are

available from manufacturers such as Sunway, installed in TaihuLight. How-

ever, these architectures are unlikely to be widely used in Europe and the US

and so are not discussed in this report.

2.1.2 Accelerator Architectures

Computational accelerators provide a significant performance boost to many of

the biggest HPC systems, and are the key components in many planned Exascale

systems. The most prominent accelerators in the Top500 are NVIDIA GPUs.

7

Manufacturer Name Architecture Key Features

Intel Cascade Lake x86 64 10nm, SSE and AVX
(up to AVX-512), up to
48 cores, PCIe Gen 5,
DDR5

AMD Genoa x86 64 7nm, SSE and AVX (up
to AVX2), up to 96
cores, PCIe Gen 5, 12-
channel DDR5

IBM Power10 Power ISA 7nm, SMT4, up to 48
cores, NVLink

Fujitsu A64FX ARMv8.2-A 7nm, 512-bit SVE,
SMT4, up to 48 cores,
32GB HBM2

Table 1: Summary of CPU architectures likely to be present in Exascale Systems

The two most recent generations of NVIDIA GPUs are Volta and Ampere.

Volta (V100) uses a 12nm production process and has a peak double-precision

performance of 7.8 TFLOP/s. It provides 16 or 32 GB of HBM2, and can be

connected via PCIe Gen 3.0 or NVLink 2.0 – allowing GPU-GPU communication

(where available). It was also NVIDIA’s first chip to feature Tensor cores,

specifically designed to accelerate deep learning.

Similarly, Ampere (A100) is available as a PCIe card (Gen 3.0), or can be

connected via NVLink 3.0. It is manufactured using a 7nm process, and can

provide 9.7 TFLOP/s of double-precision performance. The A100 is available

with 40 or 80 GB HBM2, and features a number of architectural improvements

in particular to the Tensor cores.

Details of the next NVIDIA GPU are scant, but it will likely appear in 2022 or

2023, and will be called “Hopper”. Hopper will be manufactured at 5nm and

is likely to provide double the performance of the Ampere architecture.

NVIDIA’s main competitor in the discrete GPU space is AMD. The Radeon

Instinct is AMDs primary offering in the HPC space. The current generation

MI50 and MI60 GPUs are manufactured with a 7nm process, and can provide

6.6 and 7.3 TFLOP/s double-precision performance, respectively. Both offer up

to 32 GB HBM2, and are connected via PCIe Gen 4.0. Like NVIDIA GPUs,

AMD GPUs can also communicate GPU-GPU via Infinity Fabric.

AMD Radeon Instinct GPUs will power the Frontier and El Capitan super-

8

computers, to be installed at Oak Ridge National Laboratory and Lawrence

Livermore National Laboratory, respectively. The MI100 GPU likely to be used

in Frontier is produced at 7nm, and has a peak double-precision performance of

11.5 TFLOP/s. Like the MI60, it includes 32 GB of on-package HBM2 and is

connected via PCIe Gen 4.0. The MI100 is built around the new AMD Compute

DNA (CDNA) architecture, specifically designed with HPC and AI in mind [8].

The Intel Xeon Phi began as a computational accelerator with the Knight Cor-

ner (KNC) range. KNC was manufactured on a 22nm process and introduced

4-way SMT and 512-bit wide vector instructions to Intel hardware. Its successor,

Knights Landing (KNL), was manufactured on a 14nm process and introduced

high bandwidth memory (in the form of MCDRAM), and was available as a

host platform, rather than a computational accelerator. While KNL’s successor

was expected to power Argonne National Laboratory’s Aurora supercomputer,

the Xeon Phi programme was cancelled in 2017, with many of the features from

the Phi range now being available on the Xeon line of CPUs.

In 2018, Intel announced the launch of a new discrete GPU, named Xe. Follow-

ing the cancellation of the Xeon Phi product line, six ‘Ponte Vecchio’ Xe-HPC

GPUs will be paired with two Sapphire Rapids CPUs in each node of Aurora.

It will be manufactured using a 7nm production process, and will feature a new

instruction set architecture.

Besides NVIDIA, AMD and Intel, computational accelerators are available from

manufacturers such as the National University of Defense Technology (NUDT)

and PEZY Computing, but these are unlikely to find widespread usage in sys-

tems installed in Europe and the US, so are omitted from this report.

Manufacturer Name Architecture Key Features

NVIDIA Hopper Hopper 5nm, ∼20 TFLOP/s,
HBM2

AMD Radeon Instinct MI100 CDNA 7nm, 11.5 TFLOP/s,
PCIe gen 4.0, HMB2

Intel Xe Unknown 7nm, Unknown

Table 2: Summary of accelerator architectures likely to be present in Exascale
Systems

9

2.1.3 Reconfigurable Architectures

For the past decade, accelerator architectures have demonstrated the benefit

of hardware specialisation to achieving high performance. Field-Programmable

Gate Arrays (FPGAs) may represent the next step towards application-specific

hardware. At compile-time, entire algorithms can be synthesised as sequential

logic circuits in hardware [9, 10].

The use of reconfigurable hardware in large HPC installations is currently rare,

but there are signs that this may change as new programming models emerge. In

particular, both OpenCL and Intel’s Data Parallel C++ can target FPGAs di-

rectly. Further, since FPGAs can synthesise circuitry specific to a computational

kernel, they are able to eliminate computational units that would otherwise be

powered but unused on CPU- and GPU-like architectures – potentially reducing

energy wastage.

It should be noted that, while a number of recent studies [9, 10] have shown

that FPGAs can achieve comparable performance to GPUs on some kernels,

specialised non-trivial optimisations are required, coupled with long compilation

times. The relative immaturity of the compiler toolchains, means that currently

targeting FPGAs may significantly harm developer productivity.

The FPGA market leaders are Xilinx (now part of AMD), and Intel (following

their acquisition of Altera). The Xilinx Alveo U280 is a 16nm architecture

that is connected via PCIe Gen 4.0, and provides 8 GB of HBM2. Intel’s data

centre offering is the Stratix 10, manufactured using a 14nm process. Like the

Alveo, it can be connected via PCIe Gen 4 and offers HBM2 – 8 or 16 GB.

On an FPGA, different kernels contain different control flow structures, arith-

metic functions, and data types, which all lead to synthesised hardware of hugely

varying efficiency. Making direct comparisons between FPGAs and traditional

architectures therefore needs to be done based on a higher-level goal, such as

time-to-solution of a problem or indeed using a performance portability metric

such as discussed later in this report. While many kernels can be optimised

on modern FPGAs to outperform similar sized GPUs, implementing full pro-

duction applications such as from plasma-fusion would be significantly difficult

and near infeasible in terms of cost/benefit on current hardware. This is espe-

cially the case on latest generation FPGA fabrics, considering the high resource

10

requirement for implementing double precision mathematics.

Manufacturer Name Architecture Key Features

Xilinx Alveo FPGA 16nm, HBM2, PCIe gen
4.0

Intel Stratix FPGA 14nm, HBM2, PCIe gen
4.0

Table 3: Summary of reconfigurable architectures

2.2 Notable Systems

In 2020, the Fugaku system became the fastest supercomputer in the world with

a theoretical peak double-precision performance in excess of half an ExaFLOP.

The system consists of 160,000 Fujitsu A64FX CPUs and is connected with a

6-dimensional torus interconnect (Torus Fusion). In addition to topping the

Top500, Fugaku also tops the Graph500, HPC-AI and HPCG lists – being the

first supercomputer to achieve this feat.

Prior to Fugaku, Summit and Sierra were the #1 and #2 systems, with peak

performances of 150 PFLOP/s and 95 PFLOP/s, respectively. Both systems

consist of two IBM Power9 CPUs, supplemented with NVIDIA V100 GPUs (6

per node in Summit, 4 per node in Sierra) and a Fat-tree infiniband interconnect.

Also of note, Sunway TiahuLight is a 93 PFLOP/s supercomputer powered by

41,000 Sunway SW26010 manycore processors. Each node is connected to 255

other nodes via PCIe Gen 3.0 to form a supernode; each supernode is connected

via an infiniband interconnect [11].

2.2.1 Planned Systems

Perhaps more interesting than the largest systems currently in use are the sys-

tems that are planned for installation in the next three years. These systems

offer the best clue as to which hardware any potential programming model or

DSL must target.

The Department of Energy have a number of pre- and post-Exascale systems

planned. The first to be installed is likely to be Perlmutter, being installed at

11

NERSC. Perlmutter will be a HPE/Cray Shasta system using AMD EPYC

Milan CPUs and NVIDIA A100 GPUs, with performance that should exceed

100 PFLOP/s [12].

The Cray Shasta architecture allows for a wide range of processors, coproces-

sors, node configurations, and system interconnects within a new cabinet design.

The majority of these systems will be supported by Cray’s own new Slingshot

interconnect, based on “HPC Ethernet”. Perlmutter will embrace this flexi-

bility with the system being comprising of two phrases, the first with NVIDIA

GPUs, and the second with 64-core AMD CPUs.

The three Exascale systems currently in development are Aurora, Frontier and

El Capitan, to be installed at Argonne National Laboratory, Oak Ridge Na-

tional Laboratory and Lawrence Livermore National Laboratory, respectively.

All three systems are also Cray Shasta systems, using the Slingshot interconnect.

The first US supercomputer expected to exceed an ExaFLOP will be Frontier.

Frontier will be installed in 2021 and will consist of AMD EPYC Milan CPUs

with AMD Radeon Instinct GPUs. Aurora will follow and will be constructed

with Intel CPUs and GPUs – with each node being two Sapphire Rapids CPUs,

with six Ponte Vecchio GPUs. These systems will be followed in 2023 by El

Capitan, expected to exceed two ExaFLOP/s. Like Frontier, El Capital will

consist of AMD hardware, with EPYC Genoa CPUs and a next generation

Radeon Instinct architecture.

Within Europe, the EuroHPC Joint Undertaking governing body selected 8

sites for supercomputing centres in June 2019. Of these 8 sites, 3 will host pre-

Exascale machines capable of at least 150 PFLOP/s. LUMI will be installed

in Kajaani, in Finland, and will be a Cray Shasta system comprising of AMD

EPYC CPUs and AMD Radeon Instinct GPUs. It is expected to be capable of

approximately 550 PFLOP/s.

LEONARDO will be installed at Cineca, Italy, and will be a Atos BullSequana

system. It will be constructed of Intel Sapphire Rapids CPUs, coupled with

14,000 NVIDIA A100 GPUs, connected with Infiniband.

MareNostrum 5 will be installed within the Barcelona Supercomputing Cen-

tre. Its predecessor, MareNostrum 4, comprises of 4 distinct systems – an Intel

Xeon system, an IBM Power9 + NVIDIA V100 system, an AMD EPYC +

12

Radeon Instinct system, and a Fujitsu A64FX system. Likewise, MareNostrum

5 will be two distinct (and currently unknown) systems, but may feature some

use of the ARM and RISC-V architectures currently being explored by the EU’s

Mont Blanc project [13].

2.3 HPC Provision in the UK

The UK’s Tier-1 national supercomputer is ARCHER2, installed at the Edin-

burgh Parallel Computing Centre (EPCC). ARCHER2 is a Cray Shasta system,

with an estimated peak performance of 28 PFLOP/s. Unlike the US Shasta sys-

tems, ARCHER2 is a homogeneous cluster, where the compute is provided by

AMD EPYC Rome CPUs, connected with Cray Slingshot fabric.

In contrast to ARCHER2, there is a significant degree of diversity in the UK’s re-

gional HPC centres (Tier-2). The N8’s Bede system, installed at the University

of Durham, offers an architecture similar to that found on Sierra and Summit, of

IBM Power9 CPUs coupled with NVIDIA V100 GPUs. The Isambard-2 sys-

tem, at the University of Bristol, will replace a ThunderX2-based system with

an A64FX-based system. Isambard-2 will also contain partitions with many of

the other competing architectures likely to be available at Exascale.

Besides these systems, many of the other Tier-2 sites offer predominantly CPU-

based systems with small GPU partitions. For example, the Viking cluster

at the University of York contains both Intel-based CPU nodes, alongside two

GPU nodes, each containing four V100 GPUs.

Although the currently available UK systems are relatively small when compared

to the European and US systems mentioned here, they are representative of the

hardware likely to be available at pre- and post-Exascale. The UK itself is

planning to deploy an Exascale supercomputer by 20251.

Additionally, there are a number of partnerships in place between UK institu-

tions and US/EU counterparts that mean these systems will be available for UK

researchers. Developing applications that are portable between UK systems is

therefore vitally important and will ensure that these applications can benefit

1https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#

g156388.q2

13

https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#g156388.q2
https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#g156388.q2

from the performance available on upcoming Exascale systems.

2.4 Summary

The end of the “free lunch” [14] and the breakdown of Dennard scaling [15] has

meant that today’s performance improvements come from increasing parallelism

rather than clock speed. Server-grade CPUs typically contain 10-50 cores, and

offer increasingly wide vector operations. GPUs and other accelerators, that

offer hundreds of simple cores, now represent a significant proportion of the

compute available on many of the worlds biggest supercomputers.

The diversity of architectures that are, or will be, available at Exascale repre-

sents a significant challenge for users of these systems – the majority of pre-

and post-Exascale systems currently being installed will use both CPUs and

Accelerators to achieve their stated performance. With this in mind, being able

to develop applications and algorithms that can exploit the hierarchical paral-

lelism likely to be available on Exascale systems will be vitally important. Even

considering the likely prevalence of GPUs, the extensive use of GPU-GPU com-

munication, and MPI-Aware programming models the architectures provided

differ sufficiently such that a platform-agnostic approach will be vital to the

success of any future-proofed Fusion simulation code.

14

3 Software Approaches to Exascale Application

Development

Considering the systems that are likely to be available in the next 5-10 years, it is

clear that heterogeneity is likely to be a key feature, particularly with the efforts

to build Exascale systems. With the exception of Fugaku, all announced pre-

and post-Exascale systems make use of a CPU architecture coupled with GPU

accelerators. As such, achieving high performance on such systems requires

exploitation of hierarchical parallelism.

On heterogeneous platforms, a significant proportion of the available perfor-

mance comes from the accelerators, with the host CPU primarily providing

problem setup, synchronisation, and I/O operations. Each of the major GPU

manufacturers provide a different programming model to interact with their

accelerators and so application developers must consider their approach when

targeting a heterogeneous system. Further consideration must also be given to

vendor-supported approaches that may lead to vendor lock-in.

In this section, we outline the programming languages, models and libraries that

provide abstractions for developers at various levels to develop applications tar-

geting these systems. Our survey follows much of the findings from [3] together

with specific considerations for algorithms of interest for the fusion domain.

3.1 General Purpose Programming Languages

In this class we consider traditional programming languages with long history of

usage and support in scientific computing. These languages typically allow fine

control over every aspect of an algorithms implementation.

Scientific computing is dominated by the Fortran, C and C++ programming

languages. On ARCHER, the UK’s recently retired Tier-1 resource, Fortran

applications accounted for 69.3% of the machine’s core hours, while C and C++

applications made up 6.3% and 7.4%, respectively [16]. This skew towards

Fortran is in part due to a number of mature applications with large user bases,

such as CASTEP and VASP, and its longevity in HPC, meaning that it benefits

from mature compiler support more than most other languages.

15

Although usage of Fortran-based applications currently dwarfs C/C++ applica-

tions in HPC, there are signs that this is changing, likely as a result of the levels

of support for C/C++ in new programming models and libraries. Of particular

note are those that make extensive use of templates. These programming mod-

els encourage portability across different hardware – a key motivation as HPC

becomes more heterogeneous.

Another language growing in popularity in HPC is Python. While not tradi-

tionally a “high performance” language, it provides interfaces to many external

libraries, often written using languages such as C and Fortran. This has meant

that Python can provide an easy interface for developers to write their appli-

cations at a high-level, leaving the implementation and execution to optimised

libraries (see Section 3.5). Due to Python’s use in a wide range of fields, by

large corporations such as Alphabet, the community has invested significant

effort into improving the performance of pure Python. The flexibility of the

language and dynamic type system limits opportunities for static analysis and

optimisation; instead Just-In-Time (JIT) compilers have been developed, both

as libraries to target particular code hotspots (Numba), and whole programs

(PyPy). However, the parallel performance of Python remains poor, limited

by the Global Interpreter Lock (GIL) present in the reference CPython imple-

mentation, PyPy and Stackless Python. Removing this lock has proven difficult,

limiting Python’s use in HPC to primarily a “glue” language, coordinating work

done in components implemented in higher-performance languages.

There is a long history of research and development of languages for scientific

and high performance computing, including those such as Chapel, Fortress and

X10 (DARPA 2002) which target parallel computation. These have tended to re-

main niche languages and have not been widely adopted. A promising language

which is general purpose but designed in particular for scientific computing, is

the Julia language2. This has a syntax which is familiar to Matlab or Fortran

programmers, but is built on a sophisticated type system and language design,

and uses LLVM to perform JIT compilation for CPU and GPU hardware. It is a

relatively new language (version 1.0 was released in August 2018), but is seeing

rapid adoption in scientific and machine-learning communities, and already has

some libraries which are recognised as best in class (e.g. DifferentialEquations.jl,

[17]). It aims to combine the flexibility and high productivity of Python, with

2https://julialang.org/

16

https://julialang.org/

high performance.

Developing applications in these general purpose programming languages present

a number of challenges:

1. The languages are very prescriptive, and optimising an application for one

system may harm performance on another system. In fact optimising for

one architecture can obfuscate the science source so much so that future

maintenance and addition of new features becomes difficult.

2. Applications developed with multiple code paths may provide portable

performance, but requires duplicated effort keeping each code path up to

date.

3. Parallelism must be explicitly written into the application, almost always

using parallel programming extensions to the languages (as discussed in

the next section), significantly increasing the complexity of development.

3.2 Parallel Programming Models

In this class we consider the programming models that extend from traditional

general purpose programming languages to provide parallelisation both on- and

off-node. We also consider programming models that are designed specifically

for heterogeneous computation with accelerator devices.

The parallelism available on modern supercomputers is hierarchical in nature.

Vector operations (in the form of SSE and AVX) provide parallelism within a

core, while threading (or Symmetric Multithreading, SMT) provides parallelism

within a node. Parallelism across a system is usually provided in the form of

message passing or shared global memory techniques.

Vectorised code can be achieved during the compilation phase, if there are no

data dependencies present in the code. All modern compilers attempt to gen-

erate vectorised code through auto-vectorisation, usually when higher optimi-

sation levels are specified (e.g. with compiler flags such as -O2 and above).

However, the compiler will only produce vectorised code when it is absolutely

certain that no dependencies exist. In almost all non-trivial (especially real-

17

world) codes a conclusive determination cannot be made and auto-vectorisation

fails.

A developer can aid the compiler with the use of compiler directives or vector

intrinsics. SIMD compiler directives, such as #pragma omp simd, were added

to the OpenMP 4.0 standard, and should be supported in any compliant com-

piler. The pragmas allow a developer to indicate that an assumed dependency

can be ignored, potentially resulting in the compiler generating vectorisable code

that is portable across architectures. However, the compiler may still believe

there is a dependency present; in this case, the developer must use intrinsics

to directly manipulate the vector registers. This is likely to result in higher

performance at the expense of both portability and productivity [18].

Distributing execution across all cores in a node typically requires threading and

shared memory, and in HPC this is often done with OpenMP [19] – compiler

directives are used to parallelise iterations using a fork-join model.

Parallelisation beyond a single node requires inter-node communications. The de

facto standard in HPC is the Message Passing Interface (MPI) [20]. MPI

provides a number of functions for distributed computation, including point-

to-point communications, one-sided communications, collective operations and

reduction operations. In an MPI-parallelised program, each process operates on

its own data, and communicates edge values to surrounding processes where a

dependency exists.

There are also a number of programming models that treat the distributed

memory space as a single homogeneous block. This partitioned global address

space (PGAS) approach is taken by Coarray Fortran and Unified Parallel

C, among others. In this model, communications are hidden to the application

developer, but are typically implemented using MPI in the backend library.

3.2.1 Accelerator Extensions

For heterogeneous systems, host code is typically written using the program-

ming languages mentioned previously to coordinate between compute nodes,

however, the accelerators themselves usually require a different approach. This

is a consequence of the significant differences in the accelerator architectures

18

compared to traditional CPUs.

Each vendor offers their own platform-specific programming model, such as

CUDA from NVIDIA and HIP/ROCm from AMD. However, these approaches

are typically not portable between vendors and algorithms often require signifi-

cant re-engineering. Although proprietary, CUDA has been the most dominant

accelerator programming extension and has maintained a high level of adoption

in HPC given the widespread use of NVIDIA GPU hardware and the matu-

rity and support that NVIDIA put into the numerical solver libraries based

on CUDA. It follows a Single Instruction Multiple Data (SIMD) programming

model where large number of threads are executed in lock-step on different data.

OpenCL largely mirrors the SIMD model of CUDA, having a one-to-one equiv-

alent API, but is developed as an open standard. With CUDA and OpenCL the

programmer is given the opportunity to write explicit computational kernels for

devices, with significant control over the orchestration of parallelism. OpenCL

is supported by all major vendors (Intel, AMD, NVIDIA) has been promoted

as a vendor agnostic model. However the same OpenCL application will not

necessarily give the best performance on all architectures, where some level of

device specific optimisations are required to obtain best performance.

While offering much less control, OpenACC directives can be used to indi-

cate/instruct a compiler what code can be executed on an accelerator. Ope-

nACC also provides directives to indicate whether memory should be allocated

on the host or the device, and when to move data between the two. Memory

management including when data is moved on to/from the device and how often

are key considerations to achieving good performance. If not handled correctly,

directives can lead to frequent data movement to/from device leading to signifi-

cant slowdowns. Currently OpenACC is provided in commercial compilers from

PGI and Cray, with the latter only supporting Cray-supplied hardware. GCC

also offers nearly complete support for OpenACC 2.5, targeting both NVIDIA

and AMD devices.

OpenMP added support similar to OpenACC for offloading computation to ac-

celerators in version 4.0 of the standard. Similar to its counterpart, data locality

is controlled through compiler directives, with parallelisable loops being speci-

fied using the #pragma omp target directive. OpenMP 4.0 is a good example

of standards attempting to catch up with evolving hardware, where support

for accelerator directives (which were introduced as a proprietary solution first

19

in 2011 with OpenACC with the adoption of NVIDIA GPUs in HPC) were

only added to the OpenMP standard in 2013. Even then OpenMP supporting

compilers took several years more to fully implement the standard for working

code.

Support for the OpenMP 4.0 and above can be found in commercial compilers

from Intel, IBM, AMD and Cray, with a variety of target architectures. Sup-

port also exists in the Clang/LLVM [21] and GCC open-source compilers, with

support for accelerators from NVIDIA, AMD and Intel.

While the explicit device control provided by the CUDA and OpenCL program-

ming model may be more powerful than directive-based approaches, it may

also significantly increase developer effort. More recently, the Khronos Group

released SYCL, a new high-level cross-platform abstraction layer, which can

be viewed as a data-parallel version of C++ based on OpenCL. Much of the

concepts remain the same, but the significant amount of “boiler-plate” code

required to setup parallelism in OpenCL applications is now not required where

SYCL uses a heavily templated C++ API.

Building on SYCL, Intel announced a new programming model, OneAPI in

2018. OneAPI is a unified programming model, that combines several libraries

(e.g. the Math Kernel Library), with Thread Building Blocks (TBB) and Data

Parallel C++ (DPC++). DPC++ is a cross-architecture language built upon

the C++ and SYCL standard, providing some extensions to SYCL. Support for

SYCL and DPC++ is provided in a number of compilers from vendors such

as AMD, Intel, Codeplay and Xilinx, and can target a number of device types

directly, or via existing OpenCL targets. In the case of the Intel and Xilinx

compilers, it is even possible to use SYCL to target FPGA devices. However,

the question of whether one code written in SYCL is able to obtain the best

performance on all supported hardware remains to be answered [22, 23].

Parallelisation based on OpenMP and MPI have a long history in HPC ap-

plication development. CUDA also now has about a decade of development,

with OpenACC, and OpenCL following close behind. SYCL/DPC++ is the

latest addition to the parallel programming extensions available. While CUDA,

OpenMP, OpenACC all support C/C++ and Fortran, OpenCL and SYCL only

support C/C++. If indeed C/C++ based extensions and frameworks dominate

the parallel programming landscape for emerging hardware, there could well be

20

a need for porting existing Fortran-based applications to C/C++.

The key considerations and challenges when using the above programming mod-

els and extensions to general purpose languages include:

1. Open Standards lagging hardware development – especially when the stan-

dard is developed by a large number of organisations.

2. The complete implementation of these standards into many compilers can

be slow.

3. Some of these programming models offer low-level fine control over par-

allelism and therefore may lead to overly complex code. In some cases

different code-paths are required to get the best performance on differ-

ent architectures [23], for example to handle the different memory layouts

required to optimise for CPUs vs GPUs.

3.3 Software Libraries

In this class we consider classical software libraries that target scientific appli-

cation development, implementing a diverse set of numerical algorithms.

Beyond the programming models mentioned previously, portability can also be

achieved using kernel libraries provided by various vendors. These software

libraries typically provide common mathematical functions and are often highly

optimised for particular architectures.

The basis of many of these libraries is BLAS (Basic Linear Algebra Subpro-

grams), first developed in 1979. BLAS provides vector operations, matrix-vector

operations and matrix-matrix operations. LAPACK (Linear Algebra Package)

builds on BLAS and provides routines for solving systems of linear equations.

The FFTW library provides functions for computing discrete Fourier trans-

forms, and is known to be the fastest free software implementation of the FFT.

Architecture-tuned implementations of BLAS, LAPACK and FFTW are often

available, with notable examples being AMD Optimized CPU Libraries,

ARM Performance Libraries, Intel Math Kernel Library, cuBLAS,

21

clBLAS, OpenBLAS, and Boost.uBLAS. Similarly, MAGMA provides

dense linear algebra kernels for multicore and accelerator architectures [24].

The Portable, Extensible Toolkit for Scientific Computation (PETSc)

provides a number of data structures and routines for solving PDEs. It was

developed by Argonne National Laboratory and employs MPI for distributing

algorithms across an HPC system. Recently PETSc has implemented an ab-

straction layer for scalable communications over MPI and between host and

GPU devices, PetscSF [25].

Similarly, HYPRE is a library of data structures, preconditioners and solvers

developed at Lawrence Livermore National Laboratory. It can be built with

support for GPU devices through CUDA, OpenMP offload, or using RAJA or

Kokkos.

Trilinos is an extensive collection of open-source libraries that can be used to

build scientific software, developed by Sandia National Laboratories. It provides

a large number of packages for solving linear systems, preconditioning, using

sparse graphs and matrices, among many others. It supports distributed mem-

ory computation through MPI and also provides shared memory computation

through its own Kokkos package. Trilinos is included on Cray supercomputers

as part of the Cray Scientific and Math Libraries.

The CoPA Cabana library provides a number of data structures, algorithms

and utilities specifically for particle-based simulations [26]. Parallel execution

of particle kernels is achieved through Kokkos for on-node parallelism (see Sec-

tion 3.4) and MPI for off-node communication. Each of these libraries can be

used to abstract away some of the mathematical operations and data storage

requirements needed by scientific applications.

Using these libraries introduces a number of key considerations and challenges:

1. While the standard interfaces to these libraries may restrict their useful-

ness to some applications, it does encourage vendors to produce optimised

and portable versions of performance critical functions.

2. Library functions often operate in lock-step, meaning operations cannot

typically be fused. This may necessitate a number of unnecessary CPU-

GPU transfers.

22

3.4 C++ Template Libraries

For this class we consider libraries that facilitate scheduling and execution of

data parallel or task-parallel algorithms in general, but themselves do not imple-

ment numerical algorithms.

An approach, exclusive to C++ is the use of template libraries, which enables

developers to write a generic “template” to express the operation such as a

parallel-loop iteration, but at compile time select a specific implementation of

a method or function (known as static dispatch). This allows users to express

algorithms as a sequence of parallel primitives executing user-defined code at

each iteration, e.g., providing a loop-level abstraction. These libraries follow

the design philosophy of the C++ Standard Template Library [27] – indeed,

their specification and implementation is often considered as a precursor towards

inclusion in the C++ STL. The largest such projects are Boost [28], Eigen [29],

and parallel runtime system, HPX [30]. While there are countless such libraries,

here we focus on ones that also target performance portability in HPC.

Kokkos [31] is a C++ performance portability layer that provides data con-

tainers, data accessors, and a number of parallel execution patterns. It supports

execution on shared-memory parallel platforms, namely CPUs using OpenMP

and pthreads, and NVIDIA GPUs using CUDA. It does not consider distributed

memory parallelism, rather it is designed to be used in conjunction with MPI.

Kokkos ships with Trilinos, and is used to parallelise various libraries in Trilinos,

but it can also be used as a stand-alone tool. Its data structures can describe

where data should be stored (CPU memory, GPU memory, non-volatile, etc.),

how memory should be laid out (row/column-major, etc), and how it should

be accessed. Similarly, one can specify where algorithms should be executed

(CPU/GPU), what algorithmic pattern should be used (parallel for, reduction,

tasks), and how parallelism is to be organised. It is a highly versatile and general

tool capable of addressing a wide set of needs, but as a result is more restricted

in what types of optimisations it can apply compared to a tool that focuses on

a more narrower application domain.

RAJA is a similar abstraction developed by Lawrence Livermore National Lab-

oratory [32]. It is in many respects very similar to Kokkos but offers more flex-

ibility for manipulating loop scheduling, particularly for complex nested loops.

23

It also supports CPUs (with OpenMP and TBB), as well as NVIDIA GPUs

with CUDA.

Both Kokkos and RAJA were designed by US DoE labs to help move existing

software to new heterogeneous hardware, and this very much is apparent in their

design and capabilities – they can be used in an iterative process to port an ap-

plication, loop-by-loop, to support shared-memory parallelism. Of course, for

practical applications, one needs to convert a substantial chunk of an applica-

tion; on the CPU that is because non-multithreaded parts of the application can

become a bottleneck, and on the GPU because the cost of moving data to/from

the device. Kokkos and RAJA are used heavily within the Exascale Computing

Project (ECP) [33], and due to their reliance on template meta programming,

can be used alongside almost any modern C++ compiler.

Using C++ template libraries comes with the following considerations:

1. Development time may be high due to high compilation times that come

with using heavily templated code.

2. Applications are restricted to being developed in modern C++.

3. Debugging heavily templated code can be difficult, with errors obfuscated

by numerous templates. This can be particularly problematic for novice

physicist programmers.

4. Platform specific code can be easily integrated into templated code to

achieve higher performance on some platforms, provided that the abstrac-

tion used is carefully designed and at a sufficiently high level.

3.5 Domain Specific Languages

In this category we consider a wide range of languages and libraries – the key

commonality is that their scope is limited to a particular application or algorith-

mic domain.

Domain Specific Languages (DSLs) and approaches by definition restrict their

scope to a narrower problem domain, set of algorithms, or computation/commu-

nication patterns. By sacrificing generality, it becomes feasible to attempt and

24

address challenges in gaining all three of performance, portability and produc-

tivity. A wide range of approaches exist, at different levels of abstractions start-

ing from libraries focusing on specific numerical methods (e.g. Finite Element

method) to low-level parallel computation patterns and loop abstractions. Some

are embedded in general purpose languages (eDSLs) such as C/C++/Fortran or

Python allowing them to make use of the compiler and development infrastruc-

ture (debuggers and profilers) of these languages. Others develop an entirely

new language of their own.

Restricting to a specific domain allows DSLs to apply more powerful optimisa-

tions to help deliver performance as well as portability. The key reason being

that a lot of assumptions are already built into the programming interface (the

domain specific API). As such, explicit description of the problem need not oc-

cur when programming with DSLs, significantly improving productivity. Con-

versely, the key deficiency of DSLs then is their limited applicability – if they

cannot develop a considerable userbase, they will lack the support required to

maintain them. As such two key challenges to building a successful DSL or

framework are:

1. An abstraction that is wide enough to cover a range of interesting applica-

tions, but narrow enough so that powerful optimisations can be applied.

2. An approach to long-term support. A feasible model would be to follow

the maintenance pattern of classical libraries.

DSLs can be categorised based on their level of abstraction. At a low level a

DSL might provide abstractions for sequences of basic algorithmic primitives,

such as parallel for-each loops, reduction, scan operations etc. Kokkos and

RAJA can be thought of as such loop-level abstractions supporting a small set

of computation-communication “patterns”.

3.5.1 DSLs for Stencil Computations

At a higher-level we could consider DSLs for stencil computations, providing

abstractions for structured or unstructured stencil-based algorithms. This class

of DSLs are for the most part oblivious to the numerical methods being im-

25

plemented, which in turn allows them to be used for a wider range of algo-

rithms, e.g., finite differences, finite volumes, or finite elements. The key goal

here is to create an abstraction that allows the description of parallel compu-

tations over either structured or unstructured meshes (or hybrid meshes), with

neighbourhood-based access patterns. Similar DSLs can be constructed for do-

mains such as molecular dynamics that help express N-body interactions.

There are a number of notable and currently active DSLs at this level of ab-

stractions. Halide [34] is a DSL intended for image processing pipelines, but

generic enough to target structured-mesh computations [35], it has its own lan-

guage, but is also embedded into C++ – it targets both CPUs and GPUs, as

well as distributed memory systems. YASK [36] is a C++ library for automat-

ing advanced optimisations in stencil computations, such as cache blocking and

vector folding. It targets CPU vector units, multiple cores with OpenMP, as

well as distributed-memory parallelism with MPI. OPS [37] is a multi-block

structured mesh DSL embedded in both Fortran and C/C++, targeting CPUs,

GPUs and clusters of CPUs/GPUs – it uses a source-to-source translation strat-

egy to generate code for a variety of parallelisations. ExaSlang [38] is part of

a larger European project, ExaStencils, which allows the description of PDE

computations at many levels – including at the level of structured-mesh stencil

algorithms. It is embedded in Scala, and targets MPI and CPUs, with lim-

ited GPU support. Another DSL for stencil computations, Bricks [39] gives

transparent access to advanced data layouts using C++, which are particularly

optimised for wide stencils, and is available on both CPUs, and GPUs.

OP2 [40] and its Python extension, PyOP2 [41] give an abstraction to de-

scribe neighbourhood computations for unstructured meshes. They are embed-

ded in C/Fortran and Python respectively, and can target CPUs, GPUs, and

distributed memory systems. Unlike the structured-mesh motif (which uses

a regular stencil), unstructured mesh computations are based on explicit con-

nectivity information between mesh elements, leading to indirect increments.

Indirect increments needs to be carefully handled when parallelising given the

existence of data dependencies and as such needs different code-paths to obtain

the best performance on different architectures [23]. OP2 generates parallel

code targeting CPU and GPU clusters making use of a range of parallel pro-

gramming models (SIMD, OpenMP, CUDA, SYCL etc. and their combinations

with MPI). For mixed mesh-particle, and particle methods, OpenFPM [42],

26

embedded in C++, provides a comprehensive library that targets CPUs, GPUs,

and supercomputers.

A number of DSLs have emerged from the weather prediction domain such as

STELLA [43] and PSyclone [44]. STELLA is a C++ template library for

stencil computations, that is used in the COSMO dynamical core [45], and

supports structured mesh stencil computations on CPUs and GPUs. PSyclone

is part of the effort in modernising the UK MetOffice’s Unified Model weather

code and uses automatic code generation. It currently uses only OpenACC

for executing on GPUs. A very different approach is taken by the CLAW-

DSL [46], used for the ICON model [47], which is targeting Fortran applications,

and generates CPU and GPU parallelisations – mainly for structured mesh

codes, but it is a more generic tool based on source-to-source translation using

preprocessor directives. It is worth noting that these DSLs are closely tied to a

larger software project (weather models in this case), developed by state-funded

entities, greatly helping their long-term survival. At the same time, it is unclear

if there are any other applications using these DSLs.

3.5.2 Higher-Level DSLs

Domain specificity can be at even a higher level where the DSL focuses on the

declaration and solution of particular numerical problems. The most widely im-

plemented DSLs at such a high level are frameworks for the solution of PDEs.

The problem is specified starting at the symbolic expression of the problem

(e.g. in Einstein notation), and (semi-) automatically discretise and generate

solutions for them. Most are focused on a particular set of equations and dis-

cretisation methods, and offer excellent productivity – assuming the problem to

be solved matches the focus of the library.

Many of these libraries, particularly ones where portability is important, are

built with a layered abstractions approach; the high-level symbolic expressions

are transformed, and then passed to a layer that maps them to a discretisa-

tion, then this is given to a layer that arranges parallel execution – the exact

layering of course depends on the library. This approach allows the develop-

ers to work on well-defined and well-separated layers, without having to gain a

deeper understanding of the whole system. These libraries are most commonly

embedded in the Python language, which has the most commonly used tools

27

for symbolic manipulation in this field – although functional languages are ar-

guably better suited for this, they still have little use in HPC. Due to the poor

performance of interpreted Python, these libraries ultimately generate low-level

C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [48], which targets the Fi-

nite Element Method. However it only supports CPUs and distributed memory

cluster execution with MPI. Firedrake [49] is a similar project with a different

feature set, which also only supports CPUs – it uses the aforementioned PyOP2

library for parallelising and executing generated code. A feature of Firedrake is

that it generates code at runtime to exploit further optimisation opportunities,

for example based on the mesh being available/input at runtime. The ExaS-

tencils project [50] uses four layers of abstraction to create code running on

CPUs or GPUs from the continuous description of the problem – its particular

focus is structured meshes and multigrid. OpenSBLI [51] is a DSL embed-

ded in Python, focused on resolving shock-boundary layer interactions and uses

finite differences and structured meshes – it generates C code using the OPS

library which provides the stencil abstraction. As noted before OPS then gen-

erates parallel code targeting distributed memory machines with both CPUs

and GPUs. Devito [52] is a DSL embedded in Python which allows the sym-

bolic description of PDEs, and focuses on high-order finite difference methods,

with the key target being seismic inversion applications. Devito also supports

CPU and GPU paralleisation, where GPU acceleration is obtains by generating

OpenACC directives.

In fusion research, the BOUT++ framework has been developed as a flexible

toolbox for solving a wide range of PDEs [53, 54]. Its design was in large

part driven by the need for physicist users to modify and customise the model

equations being solved. BOUT++ therefore uses C++ features to implement

models in a way which closely mimics their mathematical form. For example

28

the MHD equations (Eq. 1-4) can be expressed in C++ as in Figure 1.

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v (1)

∂p

∂t
= −v · ∇p− γp∇ · v (2)

∂v

∂t
= −v · ∇v +

1

ρ
(−∇p+ (∇×B)×B) (3)

∂B

∂t
= ∇× (v ×B) (4)

1 ddt(rho) = -V_dot_Grad(v, rho) - rho*Div(v);

2 ddt(p) = -V_dot_Grad(v, p) - g*p*Div(v);

3 ddt(v) = -V_dot_Grad(v, v) + (cross(Curl(B),B) - Grad(p))/rho;

4 ddt(B) = Curl(cross(v,B));

Figure 1: BOUT++ MHD equations implementation

The BOUT++ framework then solves these equations, and allows the user run-

time control over the finite difference methods and stencils used, as well as time

integration solver, Laplacian inversions, and so on.

BOUT++’s physics model implementation language is an example of a eDSL, in

this case C++ is the host language. eDSLs have the advantage of the user/de-

veloper being able to easily “break out” of the DSL and write generic code for

situations not handled by the DSL, for example to handle complicated bound-

ary conditions. The cost of this approach is that certain transformations of

the code are harder to achieve. For example, each physics and arithmetic op-

erator in BOUT++ contains a loop over the whole domain for its own kernel.

To achieve the full performance with OpenMP or accelerators requires merging

these loops into a single loop. This in turn necessitates rewriting the top-level

set of equations to include this loop explicitly, or to use something akin to ex-

pression templates (as is done in libraries such as Eigen or Blitz++), which have

their own downsides.

In addition to the above eDSL for implementing physics models, BOUT++ has

a second DSL to specify the inputs and initial conditions for the simulations.

This started from a simple INI input format, but has developed over time into

a Turing-complete language of its own, with a custom interpreter included in

29

BOUT++. This gradual increase in complexity has been driven by the needs of

physics studies, improving ease of use (reducing or eliminating pre-processing

steps), and to facilitate testing with complex analytical expressions using the

Method of Manufactured Solutions (MMS).

1 [n] # Density

2 height = 0.5

3 width = 0.05

4

5 blob1 = height * exp(-((x -0.35)/width)^2

6 - ((z/(2*pi) - 0.5)/width)^2)

7 blob2 = height * exp(-((x -0.15)/width)^2

8 - ((z/(2*pi) - 0.4)/width)^2)

9

10 function = 1 + blob1 + blob2

Figure 2: Part of a BOUT++ input file, specifying the density initial condition
as a function of position in x and z.

This flexibility in the input has proven to be extremely useful to users, and

as a DSL the format is well suited to its specialised task of providing input

expressions to BOUT++ simulations. Because of how it has gradually evolved in

BOUT++, it is however a DSL with a very limited number of users, with all the

disadvantages which come with this discussed previously. BOUT++ currently

only supports execution on CPUs with OpenMP for multi-threading and MPI

for distributed memory execution. Experimental branches exists with ongoing

development to support GPU execution. These include (1) Using Hypre [55]

with GPU support for the Laplacian inversion parts of the problem (which in

practice can take about half the total time) and (2) With RAJA for putting the

user physics model on GPUs, with Umpire [56] to handle memory. This requires

modifying the physics DSL to enable operations to be fused together, reducing

the number of separate kernels which need to be launched.

Similar to BOUT++, the Unified Form Language (UFL), used in FEniCS

and Firedrake provides a high-level language to describe variational forms. The

problem to be solved is specified at a high level, which corresponds closely to

the mathematical form. For example 3, the modified Helmholtz equation:

−∇2u+ u = f (5)

∇ · n̂ = 0 on boundary Γ (6)

3From ://www.firedrakeproject.org/demos/helmholtz.py.html

30

://www.firedrakeproject.org/demos/helmholtz.py.html

1 from firedrake import *

2 mesh = UnitSquareMesh (10, 10) # Define the mesh

3 V = FunctionSpace(mesh , "CG", 1) # Function space of the solution

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = Function(V) # Define a function and give it a value

7 x, y = SpatialCoordinate(mesh)

8 f.interpolate ((1+8* pi*pi)*cos(x*pi*2)*cos(y*pi*2))

9 # The bilinear and linear forms

10 a = (inner(grad(u), grad(v)) + inner(u, v)) * dx

11 L = inner(f, v) * dx

12 u = Function(V) # Re-define u to be the solution

13 # Solve the equation

14 solve(a == L, u, solver_parameters ={’ksp_type ’: ’cg’})

Figure 3: UFL implementation of the Helmholtz equation

can be transformed into variational form by multiplying by a test function v

and integrating over the domain Ω:∫
Ω

∇u · ∇v + uvdx =

∫
vfdx+

∫
Γ

v∇u · n̂ds︸ ︷︷ ︸
→0 due to boundary condition

(7)

This can be implemented in UFL as in Figure 3.

Firedrake uses the FEniCS Form Compiler (FFC) to convert UFL to an in-

termediate representation, and then uses PyOP2 to generate code for target

architectures, aiming to be performance portable on both CPUs and GPUs.

The most common challenges when using DSLs include:

1. Difficulties in debugging due to the extra hidden layers of software between

user code and code executing on the hardware. However, DSLs generating

low-level C/C++/Fortran codes can use standard debuggers of profilers.

2. Extensibility – implementing algorithms that fall slightly outside of the

abstraction defined by the DSL can be an issue.

3. Customisability – it is often difficult to modify the implementation of

high-level constructs generated automatically.

To mitigate some of these issues, systems can be provided with “escape hatches”,

which provide ways for users to implement components of the problem which

31

cannot be expressed in the high-level DSL. An example is custom flux-limiters,

which cannot currently be expressed in UFL; instead a user needs to be able

to implement their own kernels, and integrate these into the remainder of the

system in an elegant way. Firedrake provides such escape hatches for direct ac-

cess to linear algebra operators (PETSc), and allows implementation of custom

PyOP2 kernels. However it should be noted that such modifications may not

deliver the best performance on all hardware and should be used only sparingly

or for prototyping. As it is the case with many complex performance issues

there is no silver-bullet to solve all cases.

3.6 Summary

The increasingly diverse range of hardware being used in modern day HPC

systems is making programming for these systems much more difficult. While

most vendors provide hardware-specific programming models for dealing with

heterogeneous parallelism, these are typically not portable between competing

architectures and therefore may require significant redevelopment for any new

hardware platforms.

Instead, a number of performance portable approaches have been proposed and

developed. These approaches range from lightweight directive-based approaches,

instructing a compiler to parallelise code effectively, to kernelising code specifi-

cally for execution on an accelerator.

Achieving high performance on the today’s largest HPC systems requires appli-

cation developers to deal with hierarchical parallelism. For many new applica-

tions, this will likely require a mix of programming languages and programming

models (e.g. so called “MPI+X”). Additionally, this may require multiple levels

of DSL, e.g., a DSL that allows users (domain scientists) to express the equa-

tions required, while a lower-level DSL generates efficient application code for

execution on a wide-range of hardware. Certainly combining the expertise of

DSL developers at these different levels, optimising for a multi-layered solution

seems to be the most feasible and performant. Additionally, such an approach

appears to provide the best future-ready option with transparent layers aiding

in maintenance and extensibility.

32

4 Data Structures, I/O and Parallel File Sys-

tems

While compute has generally accelerated in line with Moore’s law, data move-

ment has fast become the bottleneck to achieving high performance. Different

hardware typically requires different memory layouts in order to obtain maxi-

mum performance.

Alongside data movement between main memory and the CPU, data move-

ment to persistent storage has also historically lagged developments in com-

pute performance. This further degrades application performance, when data

is frequently written to disk for visualisation, analysis and error recovery (e.g.

checkpointing).

In response to these challenges, the “standard” memory hierarchy has been

significantly extended to include new intermediary data storage such as High

Bandwidth Memory (HBM), Non-volatile RAM (NVRAM) and Burst Buffers

(see Figure 4). Achieving the highest possible performance on these machines

requires careful orchestration of data between these layers.

Capacity

Registers

Cache

High Bandwidth Memory

DRAM

NVRAM / Persistent Memory

Burst Buffers / Node-local SSD

File System Cache / SSD

HDD / File System

O
n-core

O
n-chip

Pe
rfo

rm
an

ce
Co

st
 p

er
 b

yt
e

Node-local
System

-wide

Figure 4: The memory hierarchy

In this section, we outline a number of libraries designed for in-memory data

management, a number of libraries designed for the persistent storage of simula-

tion data, and some of the parallel file systems likely to be available on Exascale

systems.

33

4.1 Data Layouts and Memory Management

Modern HPC hardware exposes parallelism in a variety of different ways, ranging

from SIMD through to SPMD approaches. Key to achieving high performance

from these approaches, is to ensure extraneous data movement between main

memory and the CPU is minimised through the use of caches – a cache miss

can incur a significant performance penalty.

Minimising this penalty requires application developers to carefully consider

which platforms they are targeting and how their simulation data is stored in

memory. For example, when deciding between an Array-of-Structures (AoS)

or Struct-of-Arrays (SoA) approach, they may wish to consider whether they

are targeting CPU-like architectures or accelerator architectures. Picking one in

favour of another may impact the performance portability of their application on

current- and future-generation architectures [57, 58]. To solve this, a number of

libraries are available that abstract away the in-memory data layout, providing

a convenient and consistent API to developers.

SIMD Data Layout Templates (SDLT) is a C++11 template library de-

veloped by Intel that allows developers to represent arrays of “plain old data”

using layouts that enable the C++ compiler to generate efficient SIMD vec-

torised code.

Similarly, Kokkos provides a View class for creating N-dimensional arrays. The

data layout of these “Views” can be specified at compile time and can be ad-

justed based on the target architecture, whether column or row-major. Addi-

tionally, Kokkos views can be manipulated to provide an AoS or SoA-like layout,

such as that achieved by VPIC 2.0 [59].

Although RAJA also provides a similar, lightweight view-like container format,

they instead encourage use of CHAI [60] and UMPIRE for data manage-

ment [56] – with UMPIRE providing the underlying memory management and

CHAI providing the user API. Like Kokkos views, data can be allocated on ei-

ther the host platform or an accelerator device (or both), and data is transferred

between the two when required.

There are a number of similar libraries such as Sidre (part of Axom) [61] and

the Warwick Data Structure (WDS) library [62]. Again, they each provide

34

an API for storing scientific data and associated metadata, and have operations

for simple data transformations to better enable portable software development.

There are also a number of libraries that specialise in storing data for a particular

class of algorithms. Notable examples include phdMesh [63] from Trilinos for

storing unstructured meshes, ATLAS from ECMWF [64] for storing grid and

mesh data for numerical weather prediction systems, and CoPA Cabana from

Los Alamos National Laboratories for storing particle-based data [26].

Much like in the previous section, native memory management (i.e. using mal-

loc or cudaMalloc, etc) and choosing the optimal data layout may provide the

highest performance possible for a given platform. However, this can signifi-

cantly reduce the portability of the application. Abstracting away how data

is stored therefore leads to a cleaner, more performance portable application,

and enables developers to make efficient data transformations when necessary,

without having to redevelop large portions of the code base.

4.2 High Performance I/O

Application

SILO TyphonIO Exodus

HDF5 netCDF ADIOSSDF

File System (POSIX-IO / Lustre / GPFS)

MPI-IO

Figure 5: I/O Stack

Just as MPI has become the de facto standard for building massively parallel

applications, the MPI-IO library has become the standard for managing par-

allel file accesses. The library contains functionality designed to orchestrate N-1

file writing across a cluster (i.e. N processes writing to a single shared file). The

most widely adopted MPI-IO implementation is ROMIO [65], which is used by

the vast majority of MPI implementations (OpenMPI, MPICH, etc).

The MPI-IO library gives low-level control to the programmer, akin to POSIX-

IO. Because of this, there are a number of file format libraries that exist to

35

abstract these low-level I/O operations from the application. These formats

typically have good support in applications such as VisIt.

Perhaps the two most commonly found file formats for scientific software de-

velopment are HDF-5 [66] and NetCDF [67]. Both implement an tree-like

structure for storing large volumes of scientific data and associated metadata.

HDF-5 can be compiled with MPI-IO support to enable efficient parallel I/O,

and there is a parallel extension of netCDF (PnetCDF) that also uses MPI-IO

for low-level file operations. The longevity and widespread adoption of these

libraries is testament to their versatility.

The ADIOS (Adaptable I/O System) library, developed at Oak Ridge National

Laboratory, is a more recent addition to the file format space [68]. ADIOS

can support a range of file formats, though typically uses the ADIOS Binary-

pack (BP) format, and implements an API similar to POSIX-IO. BP files are

containers that allow applications to have a view over a single file, while the

backend can parallelise the file operations by writing up to a file per rank (i.e.

N-N, N processes each writing to a separate file). This has led to ADIOS

demonstrating the highest level of synchronous I/O for a number of key DoE

applications.

There are a number of libraries that further abstract I/O operations from an

application. Notable examples include Exodus [69], from Sandia National Lab-

oratories, SILO from Lawrence Livermore National Laboratory [70] and Ty-

phonIO from UK AWE [71]. Each of these libraries provide applications with a

simple API that can be targeted to alternative formats such as HDF-5, netCDF

and ADIOS.

4.2.1 Parallel File Systems

The performance dominant factor when performing I/O operations on an HPC

platform is usually the parallel file system that is available. While users typically

do not have control over which file system to use, there are often still consider-

ations to be made when choosing which file format library to use and whether

there are any configuration options that might provide higher performance.

In a parallel file system, files are typically split into chunks and striped across

36

targets in parallel. The number of targets available typically controls maximum

throughput.

The most popular parallel file system in use on the Top500 is Lustre [72]. A

Lustre system is constructed from a number of Object Storage Servers, each

with numerous Object Storage Targets, and a Metadata server for file system

information. File striping can be controlled for individual files and directories,

but otherwise assumes the systems default. Optimal configuration of these

settings can significantly affect application I/O performance – a setting that is

too low will reduce the parallelism that is available, a setting that is too high

may be cause contention with other jobs on the system.

IBM’s Spectrum Scale (GPFS) file system is also popular among large HPC

sites [73]. In GPFS, metadata is also distributed, meaning that some opera-

tions, such as directory and file creation, can also be parallelised. This may be

especially important when applications output data in an N-M or N-N configu-

ration.

Besides Lustre and GPFS, there are a number of other systems in use such as

BeeGFS [74] and PVFS2 [75]. In each case, these file systems all provide a

POSIX-like interface to users alongside an optimised API. When using MPI-IO,

the file system driver can have a significant effect on whether the file system is

used efficiently, and whether configuration options such as the stripe count and

width can be set per job [76].

As the gap has further widened between compute and I/O performance, the

I/O hierarchy has been extended to include node-local (or cabinet-local) burst

buffers, or specialised in-situ analysis nodes. Intel’s DAOS (Distributed Asyn-

chronous Object Storage) system operates above a Lustre file system, using

Optane persistent memory and Optane SSDs to provide an object store for par-

allel applications [77]. DAOS will be deployed on the Aurora supercomputer.

LLNL’s El Capitan system will have a similar solution called Rabbit. Small

groups of El Capitan’s compute nodes will be connected to Rabbit I/O nodes

that will have capability to run containerised code. These I/O nodes can there-

fore be configured to act like burst buffers, or could perform analysis in-situ [78].

37

4.3 Summary

In a similar vein to the previous section, the best achievable performance for

an application will require optimisations that are specific to the system in use.

However, this will come at the expense of portability and (in most cases) pro-

ductivity. To address this, there are solutions that abstract these complexities

away from applications, making data layout and file I/O operations transparent

to the developer, while providing portable high performance.

Among the current NEPTUNE proxy applications, some of these libraries are al-

ready in use. There is currently ongoing work implementing portions of Bout++

in RAJA using Chai, and it uses netCDF for reading and writing data sets. Sim-

ilarly, Nektar++ uses HDF5 for its parallel IO.

These libraries remove the complexity of managing scientific data file formats

from the application developers, meaning optimisations to file systems and these

associated libraries will benefit numerous applications. Furthermore, integration

between these libraries and the parallel file systems in use will further boost the

potential performance of applications.

38

5 Risks and Recommendations

The breakdown of Dennard scaling around 2004 has meant that today’s per-

formance improvements have come about from increased levels of parallelism,

rather than increases in processor clock speeds. In turn, this has led to the

widespread adoption of accelerator devices, such as GPUs that can provide hun-

dreds of simple arithmetic cores operating in a SIMD-like fashion. Where the

Supercomputing landscape was once dominated by large homogeneous Beowulf-

type clusters, it now consists of a wide range of host and accelerator architec-

tures, connected with increasingly complex interconnection strategies.

The recent diversification of hardware has further exacerbated the task of achiev-

ing performance, portability and productivity for any given scientific applica-

tion. Achieving high performance on a heterogeneous cluster relies on careful

exploitation of hierarchical parallel and fine grained control over data move-

ment between compute nodes and accelerator devices. Achieving portability

between platforms replies on developing applications that can adapt their exe-

cution strategies and data layouts/placements to ensure efficient execution, re-

gardless of the platform. Achieving productivity relies on providing developers

with a programming model that is powerful enough to express their problems,

while high-level enough such that a compiler can generate efficient code, with

as much information as possible.

In this report, we have summarised some of the hardware and systems that are

currently in development and that will likely provide an ExaFLOP of perfor-

mance in the coming years. The diversity among these systems will necessitate

a vendor-agnostic approach to application development; while programming in

CUDA or HIP/ROCm may provide the best performance on NVIDIA and AMD

devices, applications developed with these vendor-led solutions are unlikely to

be portable between competing architectures.

To combat vendor lock-in, a number of programming models, libraries and do-

main specific languages have been (or are being) developed. This report has

outlined a number of these libraries, and enumerated some of the challenges that

exist when using some of these solutions. Ultimately, it is likely that developing

applications for execution on an Exascale platform will require a mixture of these

programming languages and models (i.e. “MPI+X”). Furthermore, achieving

39

the trinity of performance, portability and productivity for Fusion applications

most likely will require the development or adoption of multiple domain specific

languages/frameworks operating at different levels – with a high-level DSL for

scientists to express their equations, while a low-level DSL is used to produce

performance portable application code for execution on HPC platforms. Such a

multi-layered approach, we believe, will pose the least risk in maintaining and

extending the resultant production applications for Fusion research.

While the compute performance of modern day systems has continued to im-

prove approximately in line with Moore’s law, the memory and I/O subsystems

have historically lagged. Achieving the highest level of attainable performance

is heavily dependant on the optimisation (and sometimes minimisation) of data

movement. This report has outlined a number of these solutions that abstract

away data movement and I/O operations from application, while providing an

easy to use programming interface. These libraries allow compilers to auto-

matically control data data layout and movement, as well as enabling efficient

parallel I/O operations – some of these libraries are already in use among the

NEPTUNE proxy applications.

5.1 Assessing Performance Portability

The remainder of this project will be primarily focused on assessing the perfor-

mance portability of some of the approaches outlined in this report specifically

in relation to fusion applications. In the first instance this will mean gathering

performance data from a number of proxy- and mini-applications that are sim-

ilar to the proposed NEPTUNE proxy applications, but implemented in some

of the performance portable approaches discussed. This performance data will

be gathered from other studies, or from execution on some of the systems that

are available to us during this project.

There are a number of ways to analyse the performance of these miniapps in

order to form some insights into how a particular approach to application devel-

opment might benefit the NEPTUNE project. In the first instance, performance

models such as Roofline [79] will be used to identify potential bottlenecks to

achieving high performance.

In the second instance, we will assess the portability of an application using the

40

metric introduced by Pennycook et al. [80]. Equation 8 outlines the Pennycook

approach to calculating the performance portability (PP) of an application a,

solving problem p, on a given set of platforms (H). In Equation 8, ei(a, p) is the

performance efficiency of application a, calculated as the fraction of performance

achieved compared to the best recorded (possibly non-portable) performance of

the application solving the same problem, on a given platform, i. Essentially,

the metric returns the harmonic mean of efficiencies for a given set of platforms,

or zero if there is a platform on which the application will not run.

PP(a, p,H) =

|H|∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(8)

Since publication of this metric, it has been used extensively to assess the

performance portability of a number of applications and programming mod-

els [81, 82, 83, 84, 85, 86]. In this project, we seek to replicate this effort with

a focus on applications and algorithms of interest to the Fusion community.

5.2 Considerations

This work package seeks to assess a number of approaches to developing a per-

formance portable Fusion applications for the NEPTUNE project. Throughout

the project there are a number of risks that must be considered.

• Achieving the highest levels of performance on a given platform will likely

require using vendor-led approaches, however applications developed in

this manner are unlikely to be portable and may lead to vendor lock-in.

For this reason, this work package will not look at vendor-specific libraries,

unless there is widespread support, such as with libraries like BLAS.

• A number of the approaches outlined have been developed by large multi-

disciplinary teams. However, there is always a risk that these projects are

wound down or abandoned. Focusing on open standards with widespread

adoption and support should minimise this risk.

• Libraries and DSLs are often developed with specific use cases in mind.

41

Applications must be developed within the bounds of the Library/DSL, or

an appropriate escape mechanism must be provided that can retain high

performance.

42

References

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical

Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[2] David Patterson. The trouble with multi-core. IEEE Spectrum, 47(7):28–

32, 53, 2010.

[3] István Z. Reguly and Gihan R. Mudalige. Productivity, performance, and

portability for computational fluid dynamics applications. Computers &

Fluids, 199:104425, 2020.

[4] Jaswinder Pal Singh and John L Hennessy. An empirical investigation of the

effectiveness and limitations of automatic parallelization. Shared memory

multiprocessing, pages 203–207, 1992.

[5] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J.

Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brant-

ley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayi-

ran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch,

Steven K. Reinhardt, Greg Sadowski, and Vilas Sridharan. Design and

analysis of an apu for exascale computing. In 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages

85–96, 2017.

[6] Jack Dongarra, Steven Gottlieb, and William T. C. Kramer. Race to ex-

ascale. Computing in Science and Engg., 21(1):4–5, January 2019.

[7] Simon McIntosh-Smith, James Price, Tom Deakin, and Andrei Poe-

naru. A performance analysis of the first generation of hpc-optimized

arm processors. Concurrency and Computation: Practice and Experience,

31(16):e5110, 2019. e5110 cpe.5110.

[8] AMD. Introducing AMD CDNA Architecture. https://www.amd.com/

system/files/documents/amd-cdna-whitepaper.pdf (accessed April

27, 2021), 2020.

[9] K. Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A.

Fahmy. High-level fpga accelerator design for structured-mesh-based ex-

43

https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf

plicit numerical solvers. In 35th IEEE International Parallel & Distributed

Processing Symposium. IEEE, May 2020.

[10] Tan Nguyen, Samuel Williams, Marco Siracusa, Colin MacLean, Douglas

Doerfler, and Nicholas J. Wright. The performance and energy efficiency

potential of fpgas in scientific computing. In 2020 IEEE/ACM Performance

Modeling, Benchmarking and Simulation of High Performance Computer

Systems (PMBS), pages 8–19, 2020.

[11] Jack Dongarra. Report on the Sunway TaihuLight System. Technical re-

port, University of Tennessee, June 2016.

[12] NERSC. NUG Monthly Meeting. https://www.nersc.gov/assets/

Uploads/NUG-Meeting-21-Jan.pdf (accessed April 27, 2021), 2021.

[13] Michael Feldman. Europe Will Enter Pre-Exascxale Realm With MareNos-

trum 5, 2019.

[14] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Concur-

rency in Software. Dr. Dobb’s Journal, 30(3):202–210, March 2005.

[15] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant,

O. H. Dokumaci, A. Kumar, X. Wang, J. B. Johnson, and M. V. Fischetti.

Silicon CMOS Devices Beyond Scaling. IBM Journal of Research and De-

velopment, 50(4.5):339–361, 2006.

[16] Andrew Turner. Parallel Software usage on UK National HPC Facilities

2009-2015: How well have applications kept up with increasingly parallel

hardware? Technical report, Edinburgh Parallel Computing Centre, April

2015.

[17] Christopher Rackauckas and Qing Nie. Differentialequations.jl–a perfor-

mant and feature-rich ecosystem for solving differential equations in julia.

Journal of Open Research Software, 5(1), 2017.

[18] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. Jarvis. Exploring

simd for molecular dynamics, using Intel Xeon processors and Intel Xeon

Phi coprocessors. In Parallel and Distributed Processing Symposium, In-

ternational, pages 1085–1097, Los Alamitos, CA, USA, may 2013. IEEE

Computer Society.

44

https://www.nersc.gov/assets/Uploads/NUG-Meeting-21-Jan.pdf
https://www.nersc.gov/assets/Uploads/NUG-Meeting-21-Jan.pdf

[19] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard

API for Shared-Memory Programming. IEEE Computational Science &

Engineering, 5(1):46–55, January–March 1998.

[20] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-

dard Version 2.2. High Performance Computing Applications, 12(1–2):1–

647, 2009.

[21] David Truby, Carlo Bertolli, Steven A. Wright, Gheorghe-Teodor Bercea,

Kevin O’Brien, and Stephen A. Jarvis. Pointers inside lambda closure ob-

jects in openmp target offload regions. In 2018 IEEE/ACM 5th Workshop

on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages 10–17,

2018.

[22] Tom Deakin and Simon McIntosh-Smith. Evaluating the Performance of

HPC-Style SYCL Applications. In Proceedings of the International Work-

shop on OpenCL, IWOCL’20, New York, NY, USA, 2020. Association for

Computing Machinery.

[23] I. Z. Reguly, A. M. B. Owenson, A. Powell, S. A. Jarvis, and G. R. Mu-

dalige. Under the Hood of SYCL – An Initial Performance Analysis With an

Unstructured-mesh CFD Application. In Proceedings of the International

Supercomputing Conference (ISC 2021), June 2021.

[24] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense lin-

ear algebra for hybrid GPU accelerated manycore systems. Parallel Com-

puting, 36(5-6):232–240, June 2010.

[25] Junchao Zhang et al. The petscsf scalable communication layer. arXiv,

page 2102.13018, 2021.

[26] Los Alamos National Laboratory. CoPA Cabana - The Exascale Co-Design

Center for Particle Applications Toolkit. https://github.com/ECP-copa/

Cabana (accessed April 20, 2021), 2021.

[27] P.J. Plauger, Meng Lee, David Musser, and Alexander A. Stepanov. C++

Standard Template Library. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 2000.

[28] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

45

https://github.com/ECP-copa/Cabana
https://github.com/ECP-copa/Cabana

[29] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.

http://eigen.tuxfamily.org, 2010.

[30] Hartmut Kaiser, Bryce Adelstein Lelbach, Thomas Heller, Agust́ın Bergé,

Mikael Simberg, John Biddiscombe, Anton Bikineev, Grant Mercer, An-

dreas Schäfer, Adrian Serio, Taeguk Kwon, Kevin Huck, Jeroen Habraken,

Matthew Anderson, Marcin Copik, Steven R. Brandt, Martin Stumpf,

Daniel Bourgeois, Denis Blank, Shoshana Jakobovits, Vinay Amatya, Lars

Viklund, Zahra Khatami, Devang Bacharwar, Shuangyang Yang, Erik

Schnetter, Patrick Diehl, Nikunj Gupta, Bibek Wagle, and Christopher.

STEllAR-GROUP/hpx: HPX V1.2.1: The C++ Standards Library for

Parallelism and Concurrency, February 2019.

[31] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:

Enabling manycore performance portability through polymorphic mem-

ory access patterns. Journal of Parallel and Distributed Computing,

74(12):3202 – 3216, 2014. Domain-Specific Languages and High-Level

Frameworks for High-Performance Computing.

[32] Rich Hornung, Holger Jones, Jeff Keasler, Rob Neely, Olga Pearce, Si Ham-

mond, Christian Trott, Paul Lin, Courtenay Vaughan, Jeanine Cook, et al.

ASC Tri-lab Co-design Level 2 Milestone Report 2015. Technical report,

Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),

2015.

[33] Exascale Computing Project. ECP Proxy Applications. https://

proxyapps.exascaleproject.org/ (accessed April 20, 2021), 2021.

[34] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, and Saman Amarasinghe. Halide: A Language and Com-

piler for Optimizing Parallelism, Locality, and Recomputation in Image

Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’13,

pages 519–530, New York, NY, USA, 2013. ACM.

[35] B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlishwaran. Roofline

Guided Design and Analysis of a Multi-stencil CFD Solver for Multicore

Performance. In 2018 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), pages 753–762, May 2018.

46

https://proxyapps.exascaleproject.org/
https://proxyapps.exascaleproject.org/

[36] C. Yount, J. Tobin, A. Breuer, and A. Duran. Yask—yet another stencil

kernel: A framework for hpc stencil code-generation and tuning. In 2016

Sixth International Workshop on Domain-Specific Languages and High-

Level Frameworks for High Performance Computing (WOLFHPC), pages

30–39, Nov 2016.

[37] István Z. Reguly, Gihan R. Mudalige, Michael B. Giles, Dan Curran,

and Simon McIntosh-Smith. The OPS Domain Specific Abstraction for

Multi-block Structured Grid Computations. In Proceedings of the 2014

Fourth International Workshop on Domain-Specific Languages and High-

Level Frameworks for High Performance Computing, WOLFHPC ’14, pages

58–67, Washington, DC, USA, 2014. IEEE Computer Society.

[38] Sebastian Kuckuk, Gundolf Haase, Diego A. Vasco, and Harald Köstler. To-

wards generating efficient flow solvers with the ExaStencils approach. Con-

currency and Computation: Practice and Experience, 29(17):e4062, 2017.

[39] T. Zhao, S. Williams, M. Hall, and H. Johansen. Delivering performance-

portable stencil computations on cpus and gpus using bricks. In 2018

IEEE/ACM International Workshop on Performance, Portability and Pro-

ductivity in HPC (P3HPC), pages 59–70, Nov 2018.

[40] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J. Kelly.

OP2: An active library framework for solving unstructured mesh-based

applications on multi-core and many-core architectures. In 2012 Innovative

Parallel Computing (InPar), pages 1–12, May 2012.

[41] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Lori-

ant, David A Ham, Carlo Bertolli, and Paul HJ Kelly. PyOP2: A high-level

framework for performance-portable simulations on unstructured meshes.

In 2012 SC Companion: High Performance Computing, Networking Stor-

age and Analysis, pages 1116–1123. IEEE, 2012.

[42] Pietro Incardona, Antonio Leo, Yaroslav Zaluzhnyi, Rajesh Ramaswamy,

and Ivo F. Sbalzarini. OpenFPM: A scalable open framework for particle

and particle-mesh codes on parallel computers. Computer Physics Com-

munications, 241:155 – 177, 2019.

[43] Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cum-

ming, Mauro Bianco, Andrea Arteaga, and Thomas Schulthess. Towards

47

a performance portable, architecture agnostic implementation strategy for

weather and climate models. Supercomputing Frontiers and Innovations,

1(1), 2014.

[44] PSyclone Project, 2018. http://psyclone.readthedocs.io/.

[45] Michael Baldauf, Axel Seifert, Jochen Förstner, Detlev Majewski, Matthias

Raschendorfer, and Thorsten Reinhardt. Operational convective-scale nu-

merical weather prediction with the COSMO model: description and sen-

sitivities. Monthly Weather Review, 139(12):3887–3905, 2011.

[46] Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne,

Carlos E. Osuna, Robert Pincus, Jon Rood, and William Sawyer. The

CLAW DSL: Abstractions for Performance Portable Weather and Climate

Models. In Proceedings of the Platform for Advanced Scientific Computing

Conference, PASC ’18, pages 2:1–2:10, New York, NY, USA, 2018. ACM.

[47] V. Clément, P. Marti, O. Fuhrer, and W. Sawyer. Performance portability

on GPU and CPU with the ICON global climate model. In EGU Gen-

eral Assembly Conference Abstracts, volume 20 of EGU General Assembly

Conference Abstracts, page 13435, April 2018.

[48] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin

Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes,

and Garth N. Wells. The FEniCS Project Version 1.5. Archive of Numerical

Software, 3(100), 2015.

[49] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange,

Fabio Luporini, Andrew T. T. Mcrae, Gheorghe-Teodor Bercea, Graham R.

Markall, and Paul H. J. Kelly. Firedrake: Automating the Finite Ele-

ment Method by Composing Abstractions. ACM Trans. Math. Softw.,

43(3):24:1–24:27, December 2016.

[50] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank

Hannig, Harald Köstler, Ulrich Rüde, Jürgen Teich, Alexander Greb-

hahn, Stefan Kronawitter, Sebastian Kuckuk, Hannah Rittich, and Chris-

tian Schmitt. ExaStencils: Advanced Stencil-Code Engineering. In Lúıs

Lopes, Julius Žilinskas, Alexandru Costan, Roberto G. Cascella, Gabor

Kecskemeti, Emmanuel Jeannot, Mario Cannataro, Laura Ricci, Siegfried

Benkner, Salvador Petit, Vittorio Scarano, José Gracia, Sascha Hunold,

48

http://psyclone.readthedocs.io/

Stephen L. Scott, Stefan Lankes, Christian Lengauer, Jesús Carretero,

Jens Breitbart, and Michael Alexander, editors, Euro-Par 2014: Parallel

Processing Workshops, pages 553–564, Cham, 2014. Springer International

Publishing.

[51] David J. Lusher, Satya P. Jammy, and Neil D. Sandham. Shock-

wave/boundary-layer interactions in the automatic source-code generation

framework OpenSBLI. Computers & Fluids, 173:17 – 21, 2018.

[52] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo,

P. Velesko, P. Kazakas, and G. Gorman. Devito: Towards a generic finite

difference dsl using symbolic python. In 2016 6th Workshop on Python for

High-Performance and Scientific Computing (PyHPC), pages 67–75, Nov

2016.

[53] Benjamin Daniel Dudson, Peter Alec Hill, David Dickinson, Joseph Parker,

Adam Dempsey, Andrew Allen, Arka Bokshi, Brendan Shanahan, Brett

Friedman, Chenhao Ma, David Schwörer, Dmitry Meyerson, Eric Grinaker,

George Breyiannia, Hasan Muhammed, Haruki Seto, Hong Zhang, Ilon

Joseph, Jarrod Leddy, Jed Brown, Jens Madsen, John Omotani, Joshua

Sauppe, Kevin Savage, Licheng Wang, Luke Easy, Marta Estarellas, Matt

Thomas, Maxim Umansky, Michael Løiten, Minwoo Kim, M Leconte,

Nicholas Walkden, Olivier Izacard, Pengwei Xi, Peter Naylor, Fabio Riva,

Sanat Tiwari, Sean Farley, Simon Myers, Tianyang Xia, Tongnyeol Rhee,

Xiang Liu, Xueqiao Xu, and Zhanhui Wang. BOUT++, 10 2020.

[54] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson.

BOUT++: A framework for parallel plasma fluid simulations. Computer

Physics Communications, 180:1467–1480, 2009.

[55] Robert D Falgout, Jim E Jones, and Ulrike Meier Yang. The design and

implementation of hypre, a library of parallel high performance precondi-

tioners. In Numerical solution of partial differential equations on parallel

computers, pages 267–294. Springer, 2006.

[56] D. Beckingsale, M. Mcfadden, J. Dahm, R. Pankajakshan, and R. Hornung.

Umpire: Application-Focused Management and Coordination of Complex

Hierarchical Memory. IBM Journal of Research and Development, 2019.

49

[57] Simon John Pennycook, Simon David Hammond, Steven Alexander Wright,

John Andrew Herdman, Iain Miller, and Stephen Andrew Jarvis. An In-

vestigation of the Performance Portability of OpenCL. Journal of Parallel

and Distributed Computing (JPDC), 73(11):1439–1450, November 2013.

[58] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Reguly. De-

signing OP2 for GPU Architectures. Journal of Parallel and Distributed

Computing, 73(11):1451–1460, 2013.

[59] Robert F. Bird, Nigel Tan, Scott V. Luedtke, Stephen Lien Harrell, Michela

Taufer, and Brian J. Albright. VPIC 2.0: Next generation particle-in-cell

simulations. CoRR, abs/2102.13133, 2021.

[60] Lawrence Livermore Alamos National Laboratory. CHAI. https://

github.com/LLNL/CHAI (accessed April 20, 2021), 2021.

[61] Richard D. Hornung, Aaron Black, Arlie Capps, Ben Corbett, Noah Elliott,

Cyrus Harrison, Randy Settgast, Lee Taylor, Kenny Weiss, Chris White,

George Zagaris, and USDOE National Nuclear Security Administration.

Axom, 10 2017.

[62] R. O. Kirk, M. Nolten, R. Kevis, T. R. Law, S. Maheswaran, S. A. Wright,

S. Powell, G. R. Mudalige, and S. A. Jarvis. Warwick data store: A data

structure abstraction library. In 2020 IEEE/ACM Performance Model-

ing, Benchmarking and Simulation of High Performance Computer Systems

(PMBS), pages 71–85, 2020.

[63] H. Carter Edwards. phdmesh, version 00, 1 2008.

[64] Willem Deconinck, Peter Bauer, Michail Diamantakis, Mats Hamrud,

Christian Kühnlein, Pedro Maciel, Gianmarco Mengaldo, Tiago Quintino,

Baudouin Raoult, Piotr K. Smolarkiewicz, and Nils P. Wedi. Atlas : A

library for numerical weather prediction and climate modelling. Computer

Physics Communications, 220:188 – 204, 2017.

[65] Rajeev Thakur, Ewing Lusk, and William Gropp. Users Guide for ROMIO:

A High-Performance, Portable MPI-IO Implementation. Technical Re-

port ANL/MCS-TM-234, Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL, October 1997.

[66] Quincey Koziol and R. Matzke. HDF5 – A New Generation of HDF: Ref-

erence Manual and User Guide. Champaign, IL, 1998.

50

https://github.com/LLNL/CHAI
https://github.com/LLNL/CHAI

[67] Russ K. Rew and Glenn P. Davis. NetCDF: An Interface for Scientific Data

Access. IEEE Computer Graphics and Applications, 10(4):76–82, 1990.

[68] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg

Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski,

Kevin Huck, Axel Huebl, Mark Kim, James Kress, Tahsin Kurc, Qing Liu,

Jeremy Logan, Kshitij Mehta, George Ostrouchov, Manish Parashar, Franz

Poeschel, David Pugmire, Eric Suchyta, Keichi Takahashi, Nick Thomp-

son, Seiji Tsutsumi, Lipeng Wan, Matthew Wolf, Kesheng Wu, and Scott

Klasky. Adios 2: The adaptable input output system. a framework for

high-performance data management. SoftwareX, 12:100561, 2020.

[69] Gregory Sjaardema, Harry Ward, Ron Oldfield, Craig Ulmer, and Shyamali

Mukherjee. Snl atdm: I/o and data management. 1 2019.

[70] Lawrence Livermore National Laboratory. SILO – A Mesh and Field I/O

Library and Scientific Database. https://wci.llnl.gov/simulation/

computer-codes/silo/ (accessed April 20, 2021), 2021.

[71] James Dickson, S. A. Wright, Satheesh Maheswaran, J. A. Herdman,

Mark C. Miller, and Stephen A. Jarvis. Replicating HPC I/O workloads

with Proxy Applications. In 1st Joint International Workshop on Paral-

lel Data Storage & Data Intensive Scalable Computing Systems (PDSW-

DISCS’16). IEEE Computer Society, Los Alamitos, CA, November 2016.

[72] Philip Schwan. Lustre: Building a File System for 1,000-node Clusters.

In Proceedings of the Linux Symposium, pages 380–386, Ottawa, Ontario,

Canada, July 2003. The Linux Symposium.

[73] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for

Large Computing Clusters. In Proceedings of the 1st USENIX Conference

on File and Storage Technologies (FAST’02), pages 231–244, Monterey,

CA, January 2002. USENIX Association Berkeley, CA.

[74] Jan Heichler. An introduction to beegfs, 2014.

[75] Philip H Carns, Walter B Ligon III, Robert B Ross, and Rajeev Thakur.

PVFS: A Parallel File System for Linux Clusters. In Proceedings of the 4th

Annaul Linux Showcase and Conference (ALS’00), pages 317–327, Atlanta,

GA, October 2000. USENIX Association.

51

https://wci.llnl.gov/simulation/computer-codes/silo/
https://wci.llnl.gov/simulation/computer-codes/silo/

[76] Rob Latham, Rob Ross, and Rajeev Thakur. The impact of file systems on

mpi-io scalability. In Dieter Kranzlmüller, Péter Kacsuk, and Jack Don-

garra, editors, Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pages 87–96. Springer Berlin Heidelberg, 2004.

[77] Intel. DAOS: Revolutionizing High-Performance Stor-

age with Intel Optane. https://www.intel.co.

uk/content/www/uk/en/high-performance-computing/

daos-high-performance-storage-brief.html (accessed April 20,

2021), 2021.

[78] Tiffany Trader. Livermore’s El Capitan Super-

computer to Debut HPE ‘Rabbit’ Near Node Lo-

cal Storage. https://www.hpcwire.com/2021/02/18/

livermores-el-capitan-supercomputer-hpe-rabbit-storage-nodes/

(accessed April 20, 2021), 2021.

[79] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:

An insightful visual performance model for floating-point programs and

multicore architectures. Technical report, Lawrence Berkeley National

Lab.(LBNL), Berkeley, CA (United States), 2009.

[80] S. J. Pennycook, J. Sewall, and V. Lee. Implications of a Metric for Per-

formance Portability. Future Generation Computer Systems (In Press),

2017.

[81] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau,

and S. A. Jarvis. Achieving Performance Portability for a Heat Conduction

Solver Mini-Application on Modern Multi-core Systems. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pages 834–

841, Sep. 2017.

[82] Daniela F. Daniel and Jairo Panetta. On applying performance portability

metrics. In 2019 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC), pages 50–59, 2019.

[83] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen,

D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, and R. Robey. Effective

performance portability. In 2018 IEEE/ACM International Workshop on

Performance, Portability and Productivity in HPC (P3HPC), pages 24–36,

Nov 2018.

52

https://www.intel.co.uk/content/www/uk/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.intel.co.uk/content/www/uk/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.intel.co.uk/content/www/uk/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.hpcwire.com/2021/02/18/livermores-el-capitan-supercomputer-hpe-rabbit-storage-nodes/
https://www.hpcwire.com/2021/02/18/livermores-el-capitan-supercomputer-hpe-rabbit-storage-nodes/

[84] T. R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J. A. Herdman,

and S. A. Jarvis. Performance portability of an unstructured hydrodynam-

ics mini-application. In 2018 IEEE/ACM International Workshop on Per-

formance, Portability and Productivity in HPC (P3HPC), pages 0–12, Nov

2018.

[85] Simon McIntosh-Smith. Performance Portability Across Diverse Computer

Architectures. In P3MA: 4th International Workshop on Performance

Portable Programming models for Manycore or Accelerators, 2019.

[86] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru,

Patrick Atkinson, Codrin Popa, and Justin Salmon. Performance porta-

bility across diverse computer architectures. In 2019 IEEE/ACM Inter-

national Workshop on Performance, Portability and Productivity in HPC

(P3HPC), pages 1–13, 2019.

53

