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The report describes work for ExCALIBUR project NEPTUNE at Milestone 2.8.2.

This report provides a digest of the reports produced by the Oxford group regarding the develop-
ment of a drift kinetic model for plasma in the tokamak edge. There are eight reports to date, five
of which concern the development of the model: “Physics in the edge of fusion devices (2047357-
TN-03-02)” [1]; “1D drift kinetic models with periodic boundary conditions (2047357-TN-01-02) [2];
“1D drift kinetic models with wall boundary conditions (2047357-TN-05) [3]”; “2D drift kinetic model
with wall boundary conditions (2047357-TN-07-01)” [4]; and “2D drift kinetic model with periodic
boundary conditions (2047357-TN-09-01)” [5]. The remaining three reports concern the numerical
implementation of the model. The five theory reports are appended to this report in their logical
reading order: TN-03, TN-01, TN-05, TN-07, TN-09.

This report summarizes the five reports on theory development, discussing the state of the field
before this work in Section 1, and the development of the model in Section 2. The work is sum-
marized and future work is discussed in Section 3.

1 Background

The first report [1] describes the important physical regimes in the tokamak edge plasma and
reviews the state-of-the-art of edge plasma codes. The report focusses on known problems of
fluid models, but emphasises the importance of fluid models and states that research with fluid
model should proceed in parallel to research on kinetic models. In particular, one challenge it
notes for kinetic modelling is to match to fluid models efficiently, and to determine which spatial
regions may be treated using fluid models.

The report contains four topic sections: a discussion of characteristic time and length scales in
the edge; an overview of the existing fluid models for the edge; a list physical phenomena that
cannot be captured by fluid models (and an explanation of how these phenomena are currently
treated by fluid models); and a discussion of the proposed work to develop a complete set of
kinetic equations for the edge.

There are two key limitations of using fluid codes to model edge plasma. The first is that the
calculated diffusion heat flux is accurate only in a very collisional plasma. This is because the
heat flux is predominantly due to energetic particles which are much less collisional than thermal
particles. Fluid models overestimate the number of energetic particles present in hot plasmas,



while underestimating the number of energetic particles present in cold plasmas. This results in
inaccurate heat fluxes.

The second limitation concerns boundary conditions. At the wall, ions and electron recombine,
meaning that near the wall, the distribution function vanishes for velocities corresponding to motion
into the wall. Thus the distribution function of charged particles is highly non-Maxwellian near the
wall and must be treated kinetically.

Together, these two effects result in an incorrect description of energetic electrons, which in turn
yields incorrect heat transport and thus incorrect density and temperature profiles. Such effects
have been seen in 1D kinetic simulations [6, 7].

Kinetic models for neutrals have long been used by the community in codes such as EIRENE [8]
or DEGAS [9]. However, energetic electrons also mediate important collisional processes in neu-
tral models, like radiation, ionization and recombination, meaning that fluid-plasma simulations of
models containing neutrals can be inaccurate, even when kinetic models are used for the neutrals.

The community is also starting to develop edge code that treat charged particles kinetically, such
as XGC [10], GKEYLL [11] and COGENT [12]. However, all these models are based on δf gy-
rokinetics [13, 14], originally developed for the tokamak core, and which assume that turbulence
structures are larger than the ion gyroradius, and that density and temperature are slowly varying.
These assumption no longer hold at the edge, and it is necessary instead to use “full f ” gyroki-
netics [15, 16] where the distribution function is no longer taken to be a small perturbation about
a Maxwellian. Full f gyrokinetics is more general formulation, and by imposing appropriate addi-
tional orderings, one may recover either δf gyrokinetics for the core, or a regime appropriate for
describing the edge plasma. The latter is essentially drift kinetics but with corrections due to finite
gyroradius effects. These finite gyroradius effects are important in two places. Firstly, damping
terms appear in the kinetic equation which stabilize the small wavelength instabilities that appear
in drift kinetics. Secondly, a “polarization density” term appears in the field equations (quasineu-
trality and Ampére’s law). This term is often small, but can become important to determine the
electromagnetic fields in certain scenarios, such as in shear Alfvén waves.

While implementing the damping terms is relatively straightforward in PIC codes, doing so has not
been attempted in full f continuum codes. Moreover, the correction terms in the field equations can
lead to significant complications. For example, to include these corrections while also ensuring the
scheme conserves energy and momentum would lead to the need to solve a nonlinear equation
at every point in velocity space.

In addition to these problems, there are other issues a model must address. There is as yet no
gyrokinetic formulation for the wall boundary conditions (only a much less general formulation
for ions on magnetic field lines that intersect the wall at a shallow angle [17]). It also remains
to develop a model for collisions between charged particles and neutrals, which is challenging
in a gyrokinetic framework as gyrophase can be important in the process. Finally, gyrokinetics
assumes fluctuations have a characteristic scale of the ion gyroradius. In order to describe Edge
Localized Modes – significant disruptions in the plasma at the tokamak edge – it is necessary to
extend gyrokinetics to described fluctuations on larger MHD scales.
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1.1 Workplan

It is therefore established that accurate modelling of the tokamak edge requires the inclusion of
kinetic effects. A tractable model will also use gyroaveraging to remove the fastest timescales
from the problem. There is however, no existing systematic derivation containing both of these for
plasma in the tokamak edge. Making such a derivation is the main thrust of this work package.
The main difficulty is performing the derivation while ensuring that the equations contain all the
information required to completely determine the system. One specific problem is that the elec-
trostatic potential must be determined from the quasineutrality condition. However, even small
deviations from charge neutrality cause large variations in the electrostatic potential, leading to
numerical instabilities. Thus the derived system must be amenable to implicit time stepping, as
solving quasineutrality for the potential explicitly strongly limits possible timesteps [18].

The derivation introduces a novel “moment kinetic” approach, which evolves the fluid moments of
the distribution function separately from the rest of the distribution function. As well as allowing
efficient matching between fluid and kinetic models, this particular decomposition proves vital for
the derivation of a tractable system in 2D.

The work plan is to derive this model, first in 1D with periodic and wall boundary conditions ap-
propriate for closed and open field line regions of the edge respectively. The model will then be
extended to 3D, but using an axisymmetric helical field. This will provide a model that is improves
upon models implemented in existing continuum edge codes. The model is limited by being es-
sentially 2D, and for using a simplified helical field, rather than a realistic tokamak field. Both of
these are candidates for future work, as discussed in Section 3.1.

2 Theory development

2.1 1D drift kinetics with periodic boundary conditions

The first report “1D drift kinetic models with periodic boundary conditions (2047357-TN-01-02) [2]
develops a proof-of-concept for the moment kinetic approach. It uses a simple 1D drift kinetic
model with periodic boundary conditions, appropriate for the edge region inside the separatrix that
has closed field lines.

In the standard kinetic approaches, one solves for perturbations about a Maxwellian that has a
single global reference density, bulk velocity and thermal velocity. In the moment-kinetic approach,
one instead perturbs about a Maxwellian where the density, bulk velocity and thermal velocity are
themselves variables to be evolved using self-consistent fluid equations. Thus one replaces a
single kinetic equation for the distribution function with a set of a fluid equations and a kinetic
equation for a modified distribution function.

The main motivation for this approach is the hope that it would allow the electrostatic potential
to be derived through a vorticity equation (using fluid variables) rather than through a field solve
(requiring kinetic variables). This simplifies the solution procedure, but requires further theory de-
velopment. A secondary benefit of splitting out the moments is that it helps the numerics when
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dealing with dramatic change in thermal velocity from pedestal to divertor. This approach normal-
izes the velocity variable in the modified distribution function to the local thermal velocity, meaning
no regridding is necessary for different regimes in the plasma. Finally, this approach also allows
one to develop an adaptive model which would automatically switch from solving the fluid+modified
kinetic equations to only fluid equations when the distribution function was sufficiently close to
Maxwellian. This may prove to be a very natural and computationally tight way to couple a fluid
model to a kinetic model.

2.2 1D drift kinetics with wall boundary conditions

In the second report [3], the 1+1D drift kinetic model is extended so that it can treat the wall bound-
ary conditions of the open field line region of the edge. The wall is assumed to be perpendicular
to the magnetic field lines so that simplified boundary conditions, the logical sheath boundary
conditions [19] can be used.

The logical boundary conditions account for a thin sheath of non-neutral plasma of width order
Debye length in front of the wall. There is a potential drop across this sheath which repels electrons
– otherwise electrons (with their lower mass and higher thermal velocity) would flow into the wall
at a greater rate than ions, violating quasineutrality. Requiring current into the sheath to vanish
gives a condition for the electrostatic potential on the boundaries. This, in conjunction with the
electron parallel momentum equation, can be used to find the electrostatic potential across the
whole domain.

As before, the low moments of the distribution function are treated separately so that for ions and
neutrals three fluid equations and one kinetic equation for the modified distribution function must
be evolved. For electrons, two fluid equations and a kinetic equation must be evolved, with the
third fluid equation for parallel momentum being used to determine the electrostatic potential.

2.3 2D drift kinetic model with wall boundary conditions

The third report [4] extends the previous model with wall boundary conditions to a 2D model with
an axisymmetric helical magnetic field. While being simpler, the helical field has similarities to the
magnetic field in the edge of a tokamak.

As the magnetic field is now not perpendicular to the walls, it is in principle necessary to consider
the magnetic presheath [20]. However, the boundary conditions that this would entail in drift kinet-
ics are both complicated and an area of open research [17, 21]. To avoid this, it is assumed that
the electron gyroradius is much smaller than the Debye length, in which case boundary conditions
similar to the logical boundary conditions [19] can again be applied.

In this configuration, the ion and electron bulk properties only vary along field lines, so as before,
the system comprises three fluid equations and a kinetic equations for ions, and two fluid equa-
tions and a kinetic equation for electrons. As before, the parallel electron momentum equation is
used along with boundary conditions to determine the electrostatic potential. Now however, the
distribution functions depend on two spatial and two velocity space coordinates. The velocity coor-
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dinates are parallel and perpendicular to the magnetic field, with the third direction, the gyrophase,
removed by gyroaveraging.

As neutrals are unaffected by the magnetic field, the problem for neutrals is now essentially in
2+3D. There are thus five fluid equations to solve (for density and thermal velocity, plus three bulk
velocity components). The kinetic equation for neutrals now also depends on two spatial directions
and three velocity space directions.

2.4 2D drift kinetic model with periodic boundary conditions

The fourth report [5] derives a 2D model with periodic boundary conditions relevant for closed flux
surfaces, to complement the wall boundary conditions derived in a previous report. That report
described how to obtain the electrostatic potential and the parallel electron bulk velocity with wall
boundary conditions. The same prescription with periodic boundary conditions only allows one to
find the electron velocity; to obtain the electrostatic potential, higher-order terms must be included
in the current conservation equations. The main work of this report is deriving these higher-order
corrections, and consequently a final, additional equation (for current conservation at higher order)
to solve the electrostatic potential.

The derivation of this additional equation is only possible in the moment-kinetic framework, which
evolves the ion and electron densities independently of their normalized distribution functions. With
unnormalized distribution functions, the corresponding higher-order current conservation equation
is not consistent with the density found in the lower-order kinetic equations.

3 Summary

This body of work has rigorously and systematically derived 2D drift kinetic equations, appropriate
for the kinetic treatment of ions, electrons and neutral in the tokamak edge. There is one more
report on theory development to be submitted under this grant, “2D drift kinetics in a helical field
with a ‘separatrix”’ (which is currently under review) and which combines the 2D drift kinetic models
for the open and closed field line regions into a single model. This will complete the theoretical
work under the current grant.

The theoretical developments have been accompanied by the numerical implementation of these
equations, using a Chebyshev spectral finite element implementation in Julia. The code develop-
ments are described in separate reports [22, 23, 24], and the software is publicly available [25].
At present, this code only implements a subset of the models presented here; future reports will
discuss the software developments when the code is more mature.

3.1 Future directions

There are a number of directions for future work. The first is to extend the model into 3D with
realistic tokamak geometry. The main difficulty here is the inclusion of drifts in the direction per-
pendicular to the flux surfaces. These lead to finite-width particle orbits which can significantly
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alter the physics in quiescent 2D [26] and turbulent 3D [27] plasmas. The rigorous derivation of
these drifts requires further work.

The resulting 3D model is also expected to have instabilities on the grid scale. While the model
could be stabilized using numerical dissipation on the grid scale, further work is required to prop-
erly derive the finite ion gyroradius effects that determine behaviour of fluctuations at this scale.
This is particularly important for studying high confinement mode (H-mode) where the stabiliza-
tion of large-scale turbulence is not well understood. In H-mode, turbulence at the ion gyroscale
and smaller is important [27], and so the accurate capture of finite ion gyroradius effects is vital.
Including these finite gyroradius effects has the potential to be both theoretically and numerically
challenging.

The wall boundary conditions in the model are also simplified conditions which assume the mag-
netic field is perpendicular to the wall. In the edge, this is often not the case, with magnetic field
lines meeting the wall at very shallow angles. The boundary conditions are formally valid in the
limit of electron gyroradius being much smaller than the Debye length, but relaxing this condition
requires further study. This is currently being pursued by Parra and coworkers outside ExCAL-
IBUR.

Finally, it would be beneficial to extend the model to treat fluctuations in the magnetic field, as
well as electric field. While electrostatic models are often a good approximation for edge plasmas,
including electromagnetic effects would allow this model to connect with the MHD regime, and so
to study large-scale plasma disturbances.
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Physics in the edge of fusion devices

Felix I. Parra, Michael Barnes and Michael Hardman

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK

(This version is of 23 April 2021)

1. Introduction

We present a brief overview of the current state of fusion device edge modeling. This re-
port is written for ExCALIBUR NEPTUNE contract T/NA085/20. This contract stated
mission is the development of kinetic models for the edge. Thus, this report will focus on
the known problems of fluid models without making much emphasis on their many suc-
cesses. This lack of praise for fluid models is not the objective of this report and hence we
would like to start by reassuring the reader that we believe current fluid codes have much
to offer and need to be pursued in parallel to kinetic modeling. One of the challenges for
kinetic modeling is to devise methods to match with fluid simulations efficiently. With
this capability, the edge can be split into non-overlapping spatial regions with different
levels of kinetic sophistication.

The remainder of this reports is organized as follows. In section 2 we explain what the
characteristic time and length scales are in the edge. In section 3, we give an overview
of the existing fluid models for the edge. In section 4 we list physical phenomena that
cannot be captured by fluid models, and we explain how these phenomena have been
addressed so far. Finally, we discuss our proposal to develop a complete set of kinetic
equations for the edge in section 5.

2. The edge

In this report, we call the edge the plasma that surrounds the separatrix. The separatrix
(represented as a red line in figure 1) is the flux surface that separates the region where
magnetic field lines are in contact with the walls of the vessel from the region in which
magnetic field lines form nested toroidal flux surfaces. This means that the edge includes
both open field lines (those who are in contact with walls) and closed field lines
(those that form nested toroidal flux surfaces).

We need to distinguish the core, where the fusion reactions are supposed to take
place, from the edge. In this report, we will use a theoretical criterion to distinguish
one from the other: whether the characteristic transit times in the directions parallel
and perpendicular to the magnetic field are comparable or not. In the core, both ions
and electron closely follow magnetic field lines and can travel around the device many
times before collisions, turbulent fluctuations or other effects drive them away from the
magnetic field line on which they started. As a result, density and temperature are
almost constant along magnetic field lines, and one only worries about small fluctuations
around the mostly quiescent profiles of density and temperature. This is, of course, a
highly idealized situation that ignores violent events taking place in the core, such as
sawteeth (Hastie 1997), but it is a useful one.

In contrast, in the edge, charged particles that were well-confined in the core region
cross the separatrix and eventually reach the wall by following magnetic field lines. The
displacements of ions and electrons away from the magnetic field line in which they
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Closed field line 
region

Open field line 
region

Walls

Figure 1. Sketch of a tokamak edge on a plane that contains the axis of symmetry (represented
here by a dash-dot vertical line). The edge region is in blue, and the separatrix is the red line.

started are still small compared to the size of the device, but they are not small compared
with the characteristic lengths of the density and temperature in the edge region. If the
characteristic lengths of density and temperature along and across magnetic field lines
are L‖ and L⊥, the edge is characterized by

|v‖|
L‖
∼ |vd|

L⊥
, (2.1)

where v‖ is the characteristic parallel velocity of the particles, and vd their small drift
perpendicular to the magnetic field. Since |v‖| � |vd|, L⊥ is much smaller than L‖. In
the core, for comparison, we find that L‖ and L⊥ are of similar order and comparable to
the machine size, giving

|v‖|
L‖
� |vd|

L⊥
. (2.2)

There is another aspect that makes the edge very different from the core. The tem-
perature of both electrons and ions is kept low near the wall because the wall is a very
effective sink of energy (wall materials that prevent slow Hydrogen particles from going
back into the plasma are notable exceptions where the temperature of the plasma can be
large near the wall; see, for example, Schmitt et al. (2015) for liquid Lithium divertors,
or Jackson et al. (1991) for boronized walls). At low plasma temperatures, the plasma is
partially ionized and collisions between the charged particles in the plasma and neutrals
become important. In extreme limits, detachment occurs, that is, the plasma tempera-
ture decreases sufficiently due to radiation that the plasma recombines and a cushion
of neutrals appears in front of the walls protecting them (Krasheninnikov & Kukushkin
2017).

In addition to limiting the temperature, the presence of the wall controls the size of
the electric field and the flows in the open field line region. We will discuss these effects
in more detail in section 3.

We finish this section by calculating a few characteristic time and length scales. In
Militello & Fundamenski (2011), one can find a concise summary of typical values of
plasma characteristics in the edge of tokamaks. In current tokamaks, the magnitude of
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the magnetic field B is typically 2 T, and the characteristic size of the device is a few
meters. The plasma temperature T ranges from 1 keV in the closed magnetic field line
part of the edge to 100 eV at the separatrix down to 10 eV near the wall. In detached
plasmas, the temperature drops to 1 eV near the wall. The electron density ne ranges
from 1019 m−3 in the open field line region to 1020 m−3 in the closed field line region.
Neutral density nn is usually smaller than ne and it ranges from 1015 m−3 in the closed
field line region to 1019 m−3 in the open field line region (Colchin et al. 2000; Scotti et al.
2021). With these quantities, we calculate several characteristic frequencies of interest:
• The gyrofrequencies of both Deuterium and electrons, Ωi := eB/mD and Ωe :=

eB/me, are the characteristic frequencies of the nearly circular motion of the charged
particles around magnetic field lines. Here e is the proton charge, and mD and me are
the Deuterium and electron masses.
• The transit frequencies for Deuterium ions and electrons, vtD/L‖ and vte/L‖, are

the inverse of the time that it takes charged particles to move along a magnetic field line
from one wall to another in the open field line region, and the inverse of the time that
it takes charged particles to sample a flux surface in the closed field line region. Here
vtD :=

√
2T/mD and vte :=

√
2T/me are the Deuterium and electron thermal speeds,

and L‖ is the characteristic length of magnetic field lines in the edge, which we take to
be 10 m.
• The transit frequency for Deuterium neutrals, vtD/L⊥, is the inverse of the time

that it takes neutral atoms to cross the edge region. The characteristic scale of variation
of density and temperature across magnetic field lines, L⊥, is of the order of 5 cm or
larger in the closed field line region (Sugihara et al. 2000), and of the order of 1 cm or
larger in the open field line region (Goldston 2012).
• The collision frequencies

νii :=
4
√
π

3

e4ne ln Λ

(4πε0)2m
1/2
D T 3/2

(2.3)

and

νep :=
4
√

2π

3

e4ne ln Λ

(4πε0)2m
1/2
e T 3/2

(2.4)

describe how often Deuterium ions collide with each other or electrons collide with other
electrons or Deuterium ions, respectively. Here ln Λ ≈ 15 is the Coulomb logarithm and ε0
is the vacuum permittivity. The factor of

√
2 difference between νii and νep is a convention

introduced by Braginskii (Braginskii 1958).
• We also need the collision frequencies that describe how often Deuterium ions collide

with Deuterium neutral atoms, νin := nnvtDσin, and how often Deuterium neutral atoms
collide with Deuterium ions, νni := nivtDσin. Here, the ion-neutral cross section σin is of
order 10−18 m2 (Lindsay & Stebbings 2005). Similarly, we need the collision frequencies
that describes how often electrons collide with Deuterium neutral atoms, νen := nnvteσen,
and how often neutrals are ionized, νion := nevteσion. Here, the electron-neutral collision
cross section σen is of order 10−19 m2 (Brackmann et al. 1958) and the ionization collision
cross section σion is of order 10−20 m2 (Zel’dovich & Raizer 2013).
All these frequencies are shown in table 1. It is clear that the collision frequencies are
the ones that change the most across the edge. For ions and electrons, collisions become
very important in the cooler plasma of the open field line region, but are infrequent in
the closed field line region. Conversely, for neutrals, collision are more frequent in the
closed field line region than in the open field line region.

We also calculate a few length scales of interest:



4 Felix I. Parra, Michael Barnes and Michael Hardman

Ion freq. [104 s−1] Neutral freq. [104 s−1] Electron freq. [106 s−1]

Region Ωi vtD/L‖ νii νin vtD/L⊥ νni νion Ωe vte/L‖ νep νen

Closed lines 9400 3.1 0.16 0.031 610 3100 1800 320000 1.8 0.13 0.0018
Open lines 9400 0.31 16 31 310 31 18 320000 0.18 13 1.8

Table 1. Characteristic frequencies for the closed field line region (B = 2 T, ne = 1020 m−3,
nn = 1015 m−3, T = 1 keV) and the open field line region (B = 2 T, ne = 1019 m−3,
nn = 1019 m−3, T = 10 eV).

Parallel lengths [1 m] Perpendicular lengths [1 cm]

Region L‖ λii λin λep λen L⊥ ρi ρe λni λion

Closed lines 10 190 1000 140 10000 5 0.33 0.0056 1 1.7
Open lines 10 0.19 0.1 0.14 1 1 0.033 0.00056 10 17

Table 2. Characteristic lengths for the closed field line region (B = 2 T, ne = 1020 m−3,
nn = 1015 m−3, T = 1 keV) and the open field line region (B = 2 T, ne = 1019 m−3,
nn = 1019 m−3, T = 10 eV).

• The mean free paths λii := vtD/νii and λin := vtD/νin are the distances that a Deu-
terium ion can travel before colliding with another Deuterium ion or with a Deuterium
atom, respectively. Similarly, the mean free paths λni := vtD/νni and λion := vtD/νion
are the distances that a Deuterium neutral atom can move before colliding with an ion or
getting ionized, respectively, and λep := vte/νep and λen := vte/νen are the distances that
an electron can move before colliding with another charged particle or with a neutral,
respectively.
• The Deuterium and electron gyroradii, ρi := vtD/Ωi and ρe := vte/Ωe, are the

characteristic size of the gyration of charged particles around magnetic field lines.
All these lengths are given in table 2. Unsurprisingly, we see that the mean free paths,
inversely proportional to the collision frequencies, are the characteristic lengths that
change the most across the edge. In the direction perpendicular to the magnetic field, we
see that the gyroradii are small compared to the characteristic lengths.

3. Drift-ordered fluid models

Due to the large collision frequencies in the open field line region, the bulk of the ion and
electron distribution functions is Maxwellian. For this reason, much of the edge modeling
has been based on plasma fluid equations derived in the limit of large Coulomb collisions
(Braginskii 1958). Since the most readily available fluid equations for magnetized plasmas
assume that there are no neutrals, most fluid models ignore neutrals, with some notable
exceptions.

The main difference between the fluid equations used in edge models and the usual fluid
equations is that diffusivities are anisotropic. As demonstrated by table 1, charged parti-
cles gyrate around magnetic field lines many times before having a collision. Thus, parti-
cles barely move across magnetic field lines and the diffusivity across magnetic field lines
is much smaller than the diffusivity along them. To capture the effect of this anisotropy
correctly and efficiently, one has to either use flux coordinates that follow magnetic field
lines (Beer et al. 1995) or employ appropriate discretizations (Hariri & Ottaviani 2013).
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The problem with following magnetic field lines is that it is difficult to find a grid that
both aligns with the magnetic field lines and extends to the walls of the vessel. Unfor-
tunately, the wall geometry is important because it determines how far neutrals leaving
the wall travel into the plasma (Wiesen et al. 2018). Finding grids that adjust to the wall
geometry has become a problem of great interest in recent years, and the community has
been trying exotic methods to address it (Isoardi et al. 2010; Bufferand et al. 2019).

An important aspect of the edge fluid models is the size of the flow. The potential
difference between the wall and the plasma is controlled by the non-neutral Debye sheath
that forms around the walls (Riemann 1991). Typically, the potential drop between the
wall and the plasma has to be several times the electron temperature because otherwise
a large electron current flows into the wall, breaking the neutrality of the plasma. If one
assumes that the wall in contact with the plasma is a conductor and hence the potential
is constant across its volume, the potential differences within the plasma are restricted
to be of the order of the electron temperature, φ ∼ T/e. This gives an electric field
E = −∇φ of the order of T/eL⊥. The perpendicular velocity of the fluid is determined
by the balance between the electric and magnetic forces,

u⊥ ×B ∼ E. (3.1)

This equation gives a perpendicular velocity of order

u⊥ ∼
|E|
B
∼ ρi
L⊥

vtD. (3.2)

Thus, according to table 2, u⊥ is significantly smaller than vtD.
The fluid equations obtained with the ordering (3.2) are known as drift-ordered

equations because the flow is of the same order as the slow particle drifts – the other
possible ordering is the high flow ordering that assumes that the perpendicular velocity
is sonic. Importantly, for fluid velocities of the size given in equation (3.2), one needs to
keep terms that depend on the gradient of the temperature and the pressure in the stress
tensor to be completely consistent (Mikhailovskii & Tsypin 1971; Simakov & Catto 2003;
Catto & Simakov 2004).

The system of drift-ordered fluid equations is usually comprised of
• one continuity equation per ion species (the electron density need not be calculated

because it is determined by quasineutrality),
• one conservation equation for the component of the plasma momentum parallel to

the magnetic field,
• a vorticity equation that determines the electrostatic potential,
• in electromagnetic models, Ampére’s law, and
• one conservation equation for the energy of all ion species and another one for the

energy of the electrons.
Note that there is one single conservation equation for the whole plasma parallel momen-
tum and one single conservation equation for the energy of all the ion species, and not
several conservation equations, one per ion species. The reason why all ion species must
be considered as one in these fluid equations is that, within the large collision frequency
approximation, all ion species have the same temperature and all charged species have the
same average flow. The electron temperature can be different from the ion temperature
due to the mass difference between the two species. The temperature differences between
the different ion species are of the same order as kinetic effects that are neglected. The
differences between the parallel flows are calculated and used in the vorticity equation,
where they are needed because the electric current enters in the Lorenz force.

As we mentioned at the start, the drift-ordered fluid equations usually implemented
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in edge codes (Mikhailovskii & Tsypin 1971; Simakov & Catto 2003; Catto & Simakov
2004) ignore neutrals. There have been attempts to include neutrals in the limit where
both ions and neutrals are sufficiently collisional that both species can be treated as fluids
(Hazeltine et al. 1992; Catto 1994; Helander et al. 1994). The advantage of these models
is that they account for the effect that ion-neutral collisions have on the diffusivities,
but it is generally believed that these models are insufficient because neutrals have long
mean free paths in large regions of the edge (see tables 1 and 2). There have been some
attempts at simplified kinetic treatments of the neutrals (Wersal & Ricci 2015) and there
exist sophisticated Monte-Carlo approaches with a large collection of collisions such as
EIRENE (Reiter et al. 2005) or DEGAS (Stotler & Karney 1994). Note that these Monte-
Carlo treatments are not completely self-consistent because they assume that the ion and
electron distribution functions are Maxwellian and, depending on the version of the code,
they ignore elastic collisions and they average over the dependence of the differential cross
section on the scattering angle. Moreover, these neutral kinetic codes are sensitive to the
parameters that determine how particles interact with the wall (Chankin et al. 2021),
and these parameters are not well known.

There are two types of problems in which the drift-ordered fluid equations are used: 2D
profiles and turbulence. The objective of 2D fluid solvers such as SOLPS (Wiesen et al.
2015), SolEdge2D (Bufferand et al. 2015), UEDGE (Rognlien et al. 2007) or EDGE2D
(Simonini et al. 1994) is to determine the toroidally averaged density and temperature
profiles in the edge. These codes cannot model turbulent fluctuation because they are
missing the third dimension. For this reason, instead of the collisional perpendicular
diffusion coefficients, these codes use enhanced perpendicular diffusion coefficients that
are chosen to match the experimental observations. These 2D codes are meant to provide
detailed understanding of transport along magnetic field lines and of neutrals, as some
of them are coupled to Monte-Carlo neutral codes such as EIRENE (Reiter et al. 2005)
or DEGAS (Stotler & Karney 1994).

Turbulence codes such as GBS (Halpern et al. 2016), TOKAM3X (Tamain et al. 2016),
Hermes (Dudson & Leddy 2017) or GRILLIX (Stegmeir et al. 2018) are 3D fluid codes.
Originally, fluid turbulence codes assumed that ions were much colder than electrons and
that the turbulent fluctuations were small compared to an almost constant background
(Zeiler et al. 1996). However, it was soon realized that this treatment is not appropriate
for the edge. Ions are not cold and the density and temperature profiles cannot be easily
split into a slowly varying piece plus small fluctuations due to the presence of the wall.
The same wall boundary conditions that constrain the fluid velocity perpendicular to
the magnetic field to be subsonic, as shown in equation (3.2), require that the fluid
velocity parallel to the magnetic field be sonic near the wall (Chodura 1982). The pressure
drops along magnetic field lines have to be significant to ensure that the parallel flow is
accelerated sufficiently. This is incompatible with the assumption that the fluctuations
are small. Thus, most current edge turbulence codes have tried to lift the assumption of
small fluctuations, and they have done so by differing degrees depending on the code or
the version of the code in use.

Overall, fluid codes are maturing, and although there is still work to be done, there is
starting to be a consensus on the physics that they must include. The same cannot be
said about kinetic effects in the edge.

4. Kinetic effects

Tables 1 and 2 are evidence that kinetic effects must be taken into account: in the closed
magnetic field line region and in part of the open field line region, ions and electrons can
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travel a distance of the size of the device without suffering a single collision. Moreover,
kinetic effects are surprisingly important even in the regions where the collision frequency
is high. There are two reasons for this.
• The diffusive heat flux calculated in the fluid limit is only accurate if νep & 100 vte/L‖

because the heat flux is dominated by energetic particles that collide much less than the
thermal particles (Gurevich & Istomin 1979; Gray & Kilkenny 1980). The fluid solution
assumes that there are too many energetic particles in the hot plasma regions, and
predicts too few energetic particles in the cooler regions. This is a well known issue, and
in 2D fluid simulations, it is resolved by imposing an upper bound for the electron heat
flux that is of order neTvte.
• The other region where kinetic effects are important is near the wall. The ions and

electrons that reach the wall recombine and do not come back as charged particles.
As a result of this recombination, the charged particle distribution functions vanish for
significant parts of the velocity space and cannot be approximated by Maxwellians, as
one would need to be the case to be able to use fluid equations. Thus, the treatment of
charged particles near the wall has to be kinetic (Loizu et al. 2011; Geraldini et al. 2018).
The combination of these two issues can manifest in a population of energetic electrons
that cannot be predicted by fluid models. In turn, these energetic electrons affect the
density and temperature by suppressing or enhancing heat transport and by changing
the potential difference across the Debye sheaths. Evidence of these effects has been found
in direct kinetic simulations of 1D problems (Tskhakaya et al. 2011; Chankin & Coster
2015).

The fact that kinetic effects are important has been recognized for neutrals, leading to
kinetic codes for them (Reiter et al. 2005; Stotler & Karney 1994). However, as we have
pointed out before, these codes ignore any possible non-Maxwellian features in the ion
and electron distribution functions, are sensitive to the parameters that determine how
particles interact with the wall and, depending on the version, do not include many elastic
collisions or detailed collision physics. The non-Maxwellian features of the electron dis-
tribution function are particularly important as electrons mediate many of the processes
considered important in these neutral models: radiation, ionization, recombination, etc.

For ions and electrons, the community is starting to construct edge kinetic codes
such as XGC (Ku et al. 2016), GKEYLL (Hakim et al. 2020) or COGENT (Dorf et al.
2016). These codes are broadly based on the same gyroaveraged kinetic models used in
δf gyrokinetic codes such as GS2 (Kotschenreuther et al. 1995; Dorland et al. 2000),
GENE (Dannert & Jenko 2005) or stella (Barnes et al. 2019), but are very different
from them because of the edge particularities, as we proceed to explain. The idea behind
gyroaveraged kinetic models is to average over the fast gyrofrequency time scale to avoid a
cripplingly small time step. All gyroaveraged kinetic models are based on an asymptotic
expansion in ρi/L⊥ � 1 (see table 2 for values of ρi and L⊥). The simplest possible
approach is drift kinetics (Hazeltine 1973) that assumes that the size of all turbulent
structures is much larger than ρi. Unfortunately, in the presence of temperature and
density gradients, drift kinetics develops instabilities at the grid scale. These instabilities
can be stabilized by numerical dissipation, and in the real word, they are stabilized by
finite gyroradius effects that drift kinetics neglects. Gyrokinetics (Catto 1978; Frieman
& Chen 1982) was developed to solve this problem in the core of the tokamak. Initially,
δf gyrokinetics assumed that turbulent fluctuations had a characteristic size of the order
of ρi and their amplitude was small by a factor of ρi/L⊥ � 1. This ensures that the
gradients of the fluctuations are comparable to the background gradient and not larger.

However, as we have explained in section 3, in the edge it is not possible to assume that
density and temperature are slowly varying quantities plus small fluctuations. This fact
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was part of the justification to develop what is know as full f gyrokinetics, in which the
distribution function is not assumed to be composed of a slowly varying piece plus small
fluctuations. See Parra & Catto (2008) and Brizard & Hahm (2007) for two different types
of derivations of full f gyrokinetics. Overall, full f gyrokinetics can be seen as a mixture
of drift kinetics and the original δf gyrokinetics. The distribution function is allowed
to have wavelengths that range from L⊥ to ρi, but the size of these different Fourier
components has to be sufficiently small that the gradient of the distribution function
is never larger than 1/L⊥. Assuming a core ordering (2.2), one naturally recovers δf
gyrokinetics, showing that the distribution function has to be a slowly varying piece plus
small fluctuations (Parra & Catto 2010; Calvo & Parra 2012).

In the edge ordering (2.1), full f gyrokinetics fundamentally becomes drift kinetics
with some small corrections. These corrections are of two types.

• The electromagnetic fields appear in the kinetic equation averaged over circular gyro-
orbits. Thus, electromagnetic fluctuations that have characteristic lengths much smaller
than the gyroradius are averaged over and do not drive fluctuations in the distribution
function. Since these short wavelength electromagnetic fluctuations can only survive if
there are charge and current fluctuations of similar wavelength, which they are not able
to drive, they eventually damp and disappear.
• The field equations, quasineutrality and Ampére’s law, contain densities and currents

that one calculates from the ion and electron distribution functions. As a result of the
gyrokinetic expansion, these distribution functions have finite gyroradius corrections that
give terms that are small in ρi/L⊥ � 1. One of these small terms in particular, the
polarization density in the quasineutrality equation, is important because, despite its
small size, it can determine the electric field in different situations. For example, for shear
Alfven waves, the polarization density is small, but so are the rest of the contributions
to the density, so in the end a balance between the polarization density and another
term determines the fluctuating electric field. Another example is the component of the
electric field perpendicular to the flux surfaces, which is also determined by a balance
between the polarization density and other terms (Parra & Catto 2009).

The small finite gyroradius terms in the full f gyrokinetic equations are important
to stabilize the short wavelength instabilities, and some of them (e.g. the polarization
density) can also be important for certain aspects of the physics. Keeping the finite gyro-
radius effects in the kinetic equation is relatively straightforward in PIC codes, although
one has to be careful with the accuracy of the average (Guadagni & Cerfon 2017). We
are not aware of any full f edge gyrokinetic code that retains finite gyroradius effects in
the kinetic equation.

The corrections to the field equations are much more difficult to retain – formulations
that explicitly try to conserve energy and momentum exactly require solving nonlinear
equations for every element in velocity space, for instance. This has driven the community
towards simplifying these terms. As a result of these simplifications, several edge codes
solve drift kinetics with some ad hoc additions to the field equations, such as a simplified
polarization density.

In addition to these fundamental issues, edge drift kinetics and gyrokinetics need to
address other problems. As gyrokinetics was devised to model turbulent fluctuations with
a spatial size of the order of ρi in tokamak cores, most available models do not include
features that are important for edge physics.

• There is no gyrokinetic formulation for the wall boundary conditions. Only recently
one such formulation was developed for drift kinetic ions in magnetic fields that reach
the wall with a grazing angle (Geraldini et al. 2018). This work has to be generalized to
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electrons, more general angles between the wall and the magnetic field, and eventually
to gyrokinetics.
• Gyrokinetics does not usually include collisions with neutrals, and such collisions

are important because neutrals break the symmetry introduced by the fast charged par-
ticle gyration around magnetic field lines. In other words, the dependence on gyrophase,
neglected in gyrokinetics, can become important.
• Gyrokinetics was developed for fluctuations with characteristic scales of the order of

the ion gyroradius. At these scales, the magnetic field fluctuations have a very constrained
form. For this reason, the extension of gyrokinetics to include MagnetoHydroDynamic
(MHD) modes is non-trivial and an active area of research. See Zheng et al. (2007) for a
theoretical treatment, and Collar et al. (2020) for recent numerical work in this area. A
gyrokinetic model of the edge should be able to reproduce MHD results, as MHD modes
are believed to be the main drive of the eruptions known as Edge Localized Modes
(ELMs) (Ham et al. 2020).

5. Discussion

A complete edge description requires kinetic effects. Current attempts to model kinetic
effects in the edge rely heavily on gyroaveraged kinetic models that average over the very
fast gyrofrequency timescale.

In our opinion, there does not exist a systematic procedure to choose the relevant finite
gyroradius effects to be kept in the kinetic and field equations. The first objective of a
kinetic modeling effort for the edge must be to establish the finite gyroradius effects to
be kept in the equations. To do so, for contract T/NA085/20, we have proposed as a
first attempt to construct a drift kinetic model. This drift kinetic model will be unstable
at grid scales, but hyperviscosity might be enough to stabilize such scales if they do
not contribute much to transport (as one would expect due to their small size). For
the contract work, we will use the model only in 1D and 2D configurations that cannot
develop these grid scale instabilities. We will then determine analytically which finite
gyroradius effects must be kept in the equations to determine every part of the problem,
and in particular the component of the electric field perpendicular to the flux surfaces.

A well known issue arises when keeping finite gyroradius effects in the field equations.
In quasineutrality, the only term that contains the electric potential explicitly is the
small finite gyroradius correction. Thus, unless an implicit time stepping algorithm is
employed, one needs to solve for the potential by inverting a small term in the equation.
This procedure limits the time step size severely (Lee 1987; Barnes et al. 2019). Thus,
in addition to keeping finite gyroradius effects, we need to make sure that the kinetic
equations that we obtain are amenable to implicit time stepping methods.

In addition to studying finite gyroradius effects, we will determine the effect that
collisions with neutrals have on the gyrokinetic formalism by introducing charge exchange
collisions and ionization collisions.

The final deliverable of contract T/NA085/20 will be a drift kinetic model with neutrals
and the finite gyroradius terms that are needed to calculate the component of the electric
field that is perpendicular to the flux surfaces. Both of these features will be improvements
on the models implemented in existing continuum edge codes.

By the end of the contract, the model will have been tested in 1D and 2D problems,
and even though it will have a 3D version, this 3D version will not have been tested in
the turbulent regime. Moreover, all the work will have been performed in a helical field
and not in a diverted tokamak field because the helical field is the state-of-the-art for
continuum edge kinetic codes (only recently, in the 2020 Annual APS DPP meeting, the
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two leading continuum codes, GKEYLL and COGENT, have reported the first runs with
more complex tokamak geometry). The limitations of the model delivered at the end of
contract T/NA085/20 leave two obvious avenues for future work.
• The main theoretical difficulty added by tokamak magnetic fields is the presence of

a component of the drifts in the direction perpendicular to the flux surface that does
not exist in the case of a helical field. This component of the drifts leads to finite orbit
widths and can significantly modify some of the physics of both quiescent 2D plasmas
(Kagan & Catto 2008; Landreman et al. 2014) and 3D turbulence (Parisi et al. 2020).
Adding this component of the particle drift to the equations will require extra work.
• As we have explained above, the 3D model is expected to have grid scale instabilities

that can be stabilized by hyperviscosity or other numerical methods of dissipation. To
properly capture the fluctuations at the ion gyroradius scale, one would have to include
more precise finite gyroradius effects. This is an obvious extension of the work in contract
T/NA085/20, and it is very important for High confinement mode (H-mode) where the
turbulence at scales larger than the ion gyroradius is stabilized for still unclear reasons.
In this regime, turbulence at scales of the order of or smaller than the ion gyroradius
is important (Hillesheim et al. 2016; Hatch et al. 2017; Parisi et al. 2020), and the
finite gyroradius effects become crucial for ions. We foresee that adding more detailed
finite gyroradius effects will be theoretically and numerically challenging and will require
dedicated work.

Two other aspects of an edge kinetic model are beyond the scope of contract T/NA085/20.
• To test the effect of wall boundary conditions on drift kinetics, we will impose

a simplified version of the boundary conditions that are valid in the limit in which
the electron gyroradius is much smaller than the Debye length. However, more detailed
boundary conditions must be found because usually the electron gyroradius is larger
than or comparable to the Debye length. This is work that is being pursued by one of
the authors of this report (F.I.P.) with other sources of funding.
• We pointed out above that it would be desirable to be able to recover MHD modes

with the edge kinetic model. In the work for contract T/NA085/20, the fluctuations
in the magnetic field will be neglected (this is a good approximation for many edge
plasmas), and hence it will not be possible to explore connections with MHD. This is an
area of research where ExCALIBUR NEPTUNE could benefit from collaboration with
the EPSRC Programme Grant ‘Turbulent Dynamics of Tokamak Plasmas (TDoTP)’.
Several PIs in the ExCALIBUR NEPTUNE project also belong to TDoTP.
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1. Introduction

In this report, we propose 1D drift kinetic equations to test the possibility of extracting
low order moments from the distribution functions for implicit methods. The model that
we present here has periodic boundary conditions, adequate for the closed field line region
of the edge. We will address wall boundary conditions for open field lines in the reports
for milestones M1.3, M2.4 and M2.5.

2. 1D electrostatic drift kinetics

We consider a plasma with one ion species with charge e and mass mi, electrons with
charge −e and mass me, and one species of neutrals with mass

mn = mi. (2.1)

The plasma is magnetized by a constant magnetic field B = Bẑ, and we assume that
the plasma only varies along magnetic field lines. In this case, the electric field produced
by the plasma is electrostatic, E = −(∂φ/∂z)ẑ. The potential φ(z, t) depends on the
position along magnetic field lines z and on time t.

If we assume that the gyroradii are small compared to the length scales of interest,
and that the gyrofrequencies are much larger than the frequencies that we want to model
(Hazeltine 1973), the distribution functions fs(z, v‖, v⊥, t) of the different species s =
i, e, n only depend on the component of the velocity parallel to the magnetic field v‖ and
the magnitude of the velocity perpendicular to the magnetic field v⊥, and are independent
of the direction of the velocity perpendicular to the magnetic field. Thus, the distribution
functions that in general can depend on three spatial variables r, three components of
the velocity v and the time t depend only on z, v‖, v⊥ and t,

fs(r,v, t) = fs(z, v‖, v⊥, t). (2.2)

The equations for the distribution functions of the different species are

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= Cii[fi] + Cin[fi, fn], (2.3)

∂fe
∂t

+ v‖
∂fe
∂z

+
e

me

∂φ

∂z

∂fe
∂v‖

= Cee[fe] + Cei[fe, fi] + Cen[fe, fn] (2.4)

and
∂fn
∂t

+ v‖
∂fn
∂z

= Cni[fn, fi]. (2.5)

Here we have included ion-ion and electron-electron collisions, modeled by the Fokker-
Planck collision operators Cii[fi] and Cee[fe] (Rosenbluth et al. 1957), elastic electron-ion
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and electron-neutral collisions, modeled by the simplified Fokker-Planck collision operator
Cei[fe, fi] (Braginskii 1958) and the Boltzmann collision operator Cen[fe, fn], and charge-
exchange collisions, represented by the simplified Boltzmann collision operators

Cin[fi, fn] = −
∫
Rin(|v − v′|) [fi(v)fn(v′)− fi(v′)fn(v)] d3v′ (2.6)

and

Cni[fn, fi] = −
∫
Rin(|v − v′|) [fn(v)fi(v

′)− fn(v′)fi(v)] d3v′, (2.7)

To simplify our equations, we assume that the function Rin is constant (Connor 1977;
Hazeltine et al. 1992; Catto 1994), finding

Cin[fi, fn] = −Rin (nnfi − nifn) (2.8)

and

Cni[fn, fi] = −Rin (nifn − nnfi) , (2.9)

where the densities are

ns(z, t) := 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥fs(z, v‖, v⊥, t). (2.10)

Note that we can neglect the effect of electron collisions on ions and on neutrals due to the
smallness of the electron mass (Braginskii 1958). We have also neglected neutral-neutral
collisions because, in current fusion devices, the neutral density is sufficiently small that
the neutral-neutral collisions are rare.

The kinetic equations will be solved in the interval z ∈ [0, L], and we will impose
periodic boundary conditions at z = 0 and z = L,

fs(z = 0, v‖, v⊥, t) = fs(z = L, v‖, v⊥, t). (2.11)

Finally, the potential φ(z, t) is determined by the quasineutrality equation

ni = ne. (2.12)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on ∂fi/∂t and ∂fe/∂t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function, notably the density.

Before we treat the complete problem, we will simplify the treatment of electrons to
obtain a system of equations that can be solved with an explicit time advance so that we
can compare our implicit schemes with an explicit numerical method. Instead of solving
for fe, we will use a Maxwell-Boltzmann response,

ne(z, t) = Ne exp

(
eφ(z, t)

Te

)
, (2.13)

whereNe and Te are constants (see Appendix A for a derivation of the Maxwell-Boltzmann
response). Moreover, the full Fokker-Planck ion-ion collision operator Cii[fi] is a com-
plicated integro-differential operator that we will not implement in the first versions of
our drift kinetic code, so we do not include it in the equations for now. Thus, the final
simplified model for fi(z, v‖, v⊥, t), fn(z, v‖, v⊥, t) and φ(z, t) is given by the equations

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin(nnfi − nifn), (2.14)
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∂fn
∂t

+ v‖
∂fn
∂z

= −Rin(nifn − nnfi) (2.15)

and

ni = Ne exp

(
eφ

Te

)
, (2.16)

with periodic boundary conditions (2.11). This system of equations can be solved explic-
itly because the simple electron model allows one to obtain φ as a function of ni.

3. 1D moment drift kinetics

Instead of solving for fs(z, v‖, v⊥, t), we solve for

Fs(z, w‖, w⊥, t) :=
v3ts(z, t)

ns(z, t)
fs

(
z, us‖(z, t) + vts(z, t)w‖, vts(z, t)w⊥, t

)
, (3.1)

where we have defined the normalized velocities

w‖(z, v‖, t) :=
v‖ − us‖(z, t)
vts(z, t)

(3.2)

and

w⊥(z, v⊥, t) :=
v⊥

vts(z, t)
, (3.3)

the average parallel velocity

us‖(z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(z, v‖, v⊥, t) (3.4)

and the thermal speed

vts(z, t) :=

√
4π

3ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥[(v‖ − us‖(z, t))2 + v2⊥]fs(z, v‖, v⊥, t). (3.5)

According to its definition, Fs(z, w‖, w⊥, t) must satisfy the conditions

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fs(z, w‖, w⊥, t) = 1, (3.6)

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fs(z, w‖, w⊥, t) = 0 (3.7)

and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fs(z, w‖, w⊥, t) =
3

2
(3.8)

at every point z and time t.
The equations for ions become

∂ni
∂t

+
∂

∂z

(
niui‖

)
= 0, (3.9)

nimi

(
∂ui‖
∂t

+ ui‖
∂ui‖
∂z

)
= −∂pi‖

∂z
− eni

∂φ

∂z
+ ninnmiRin(un‖ − ui‖), (3.10)
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3

2
nimivti

(
∂vti
∂t

+ ui‖
∂vti
∂z

)
= −∂qi‖

∂z
− pi‖

∂ui‖
∂z

+
3

4
ninnmiRin(v2tn − v2ti)

+
1

2
ninnmiRin(un‖ − ui‖)2 (3.11)

and
∂Fi
∂t

+ żi
∂Fi
∂z

+ ẇ‖i
∂Fi
∂w‖

+ ẇ⊥i
∂Fi
∂w⊥

= Ḟi + Cin. (3.12)

Here, we have defined the coefficients

żs[Fs](z, w‖, t) := us‖ + vtsw‖, (3.13)

ẇ‖s[Fs](z, w‖, t) :=
1

nsmsvts

∂ps‖
∂z

+
2w‖

3nsmsv2ts

[
∂qs‖
∂z

+

(
ps‖ −

3

2
nsmsv

2
ts

)
∂us‖
∂z

]
− w2

‖
∂vts
∂z

, (3.14)

ẇ⊥s[Fs](z, w‖, w⊥, t) :=
2w⊥

3nsmsv2ts

(
∂qs‖
∂z

+ ps‖
∂us‖
∂z

)
− w‖w⊥

∂vts
∂z

(3.15)

and

Ḟs[Fs](z, w‖, w⊥, t) :=

[
w‖

(
3
∂vts
∂z
− vts
ns

∂ns
∂z

)

− 2

nsmsv2ts

(
∂qs‖
∂z

+

(
ps‖ −

1

2
nsmsv

2
ts

)
∂us‖
∂z

)]
Fs, (3.16)

the parallel pressure

ps‖[Fs](z, t) := 2πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w
2
‖Fs(z, w‖, w⊥, t) (3.17)

the parallel heat flux

qs‖[Fs](z, t) := πnsmsv
3
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖(w
2
‖ + w2

⊥)Fs(z, w‖, w⊥, t), (3.18)

and the modified charge exchange collision operator

Cin[Fi, Fn, nn, ui‖, un‖, vti, vtn](z, w‖, w⊥, t)

:=− nnRin
[
Fi −

v3ti
v3tn

Fn

(
z,
ui‖ − un‖

vtn
+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ nnRin

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2
3v2ti

))
Fi

]
+
nnRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2
3v2ti

)
Fi

]
. (3.19)

Note that the differential terms in this modified collision operator could have been in-
cluded in the definitions of the coefficients ẇ‖i, ẇ⊥i and Ḟi, but we have decided to make
them part of a modified collision operator instead to separate the effect of collisions
clearly. This split should not be taken as a suggestion on how to implement these terms
in a code.
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The equations for the neutrals are

∂nn
∂t

+
∂

∂z

(
nnun‖

)
= 0, (3.20)

nnmi

(
∂un‖
∂t

+ un‖
∂un‖
∂z

)
= −∂pn‖

∂z
+ ninnmiRin(ui‖ − un‖), (3.21)

3

2
nnmivtn

(
∂vtn
∂t

+ un‖
∂vtn
∂z

)
= −∂qn‖

∂z
− pn‖

∂un‖
∂z

+
3

4
nnnimiRin(v2ti − v2tn)

+
1

2
nnnimiRin(un‖ − ui‖)2 (3.22)

and
∂Fn
∂t

+ żn
∂Fn
∂z

+ ẇ‖n
∂Fn
∂w‖

+ ẇ⊥n
∂Fn
∂w⊥

= Ḟn + Cni. (3.23)

Here, we have defined the modified charge exchange collision operator

Cni[Fn, Fi, ni, un‖, ui‖, vtn, vti](z, w‖, w⊥, t)

:=− niRin
[
Fn −

v3tn
v3ti

Fi

(
z,
un‖ − ui‖

vti
+
vtn
vti

w‖,
vtn
vti

w⊥, t

)]
+ niRin

∂

∂w‖

[(
ui‖ − un‖

vtn
+
w‖
2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2
3v2tn

))
Fn

]
+
niRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2
3v2tn

)
Fn

]
. (3.24)

Equations (3.12) and (3.23) for Fi and Fn are constructed such that conditions (3.6),
(3.7) and (3.8) are satisfied at all times if they are satisfied at t = 0.

4. Linear test

One possible test for the sets of 1D equations described above is the evolution of small
perturbations to a uniform Maxwellian equilibrium. We assume the following form for
the ion and neutral distribution functions,

fs(z, v‖, v⊥, t) = fMs(v‖, v⊥) + fs1(v‖, v⊥)[exp(ik‖z − iωt) + complex conjugate], (4.1)

where

fMs(v‖, v⊥) = ns

(
mi

2πTh

)3/2

exp

(
−
mi(v

2
‖ + v2⊥)

2Th

)
. (4.2)

Note that both species share the same constant temperature Th. To ensure that the
potential is small, we assume ni = Ne.

Since the perturbations fs1(v‖, v⊥) and φ are small, equations (2.14), (2.15) and (2.16)
can be linearized to give

(k‖v‖ − ω − innRin)fi1 + iniRinfn1 = − eφ
Th
k‖v‖ fMi + iRin(nn1fMi − ni1fMn), (4.3)

innRinfi1 + (k‖v‖ − ω − iniRin)fn1 = iRin(ni1fMn − nn1fMi) (4.4)

and
ni1
ni

=
eφ

Te
. (4.5)
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(d)

Figure 1. Solutions to the dispersion relation (4.7): acoustic waves (solid lines) and non-prop-
agating modes (dashed lines). (a) Real frequency ωr := Re(ω) and (b) growth rate γ := Im(ω)
as functions of the charge exchange collision frequency (ni + nn)Rin for Te/Th = 1 and several
values of the parameter ni/(ni + nn). (c) Real frequency ωr and (d) growth rate γ as functions
of the the charge exchange collision frequency (ni + nn)Rin for ni/(ni + nn) = 1/2 and several
values of the parameter Te/Th.

Here, we have defined the perturbations to the density as

ns1 = 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥fs1. (4.6)

Solving for the functions fi1 and fn1 as functions of ni1 and nn1 and then integrating
fi1 and fn1 over velocity space, we find the equations(

Aii Ain
Ani Ann

)(
ni1
nn1

)
=

(
0
0

)
, (4.7)

where the elements of the matrix are

Aii = 1 +
Te
Th

+
ni

ni + nn

Te
Th
ζZ(ζ) +

nn
ni + nn

[(
1 +

Te
Th

)
ζin − ζ

]
Z(ζin) (4.8)

Ain = − ni
ni + nn

(ζin − ζ)Z(ζin) (4.9)

Ani = − nn
ni + nn

{[(
1 +

Te
Th

)
ζin − ζ

]
Z(ζin)− Te

Th
ζZ(ζ)

}
(4.10)

and

Ann = 1 +
ni

ni + nn
(ζin − ζ)Z(ζin). (4.11)

Here, we have defined

ζ :=
ω

|k‖|vth
, ζin :=

ω + i(ni + nn)Rin
|k‖|vth

, (4.12)

with vth :=
√

2Th/mi, and we have used the plasma dispersion function (Fried & Conte
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1961)

Z(ζ) := exp(−ζ2)

(
i
√
π − 2

∫ ζ

0

exp(y2) dy

)
. (4.13)

By setting the determinant of the matrix in equation (4.7) to zero, we can calculate the
frequency ω of the modes for an initial k‖.

We show two different types of solutions to the dispersion relation in figure 1: acoustic
waves that have both real frequency ωr := Re(ω) and damping rate γ := Im(ω), and non-
propagating modes with ωr = 0. In the figure, we plot the real frequency and damping
rate for the acoustic waves as solid lines, whereas for the non-propagating modes, we
only plot the damping rates as dashed lines. We can use these solutions to benchmark
the implementation of the equations in our code.

5. Conclusions

We have identified the first set of equations that we will use to test a new approach to
drift kinetics that extracts the low order moments from the distribution function. The
chosen model can be integrated without employing implicit time-stepping methods. This
is a choice that we have made to ensure that we can compare the new model with the
well-established drift kinetic model.

We have also developed an analytical benchmark for the equations. The calculation
ignores ion-ion collisions and it is hence not relevant to all edge operational regimes,
but it allows us to test the implementation of the equations with and without collisions.
Similar calculations can be performed including the full ion-ion collision operator and
model collision operators.
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Appendix A. The Maxwell-Boltzmann response

The Maxwell-Boltzmann response in equation (2.13) is the solution to electron drift
kinetic equation (2.4) in the limit

√
me/mi � 1. The expansion in the mass ratio is

based on the fact that the species within the plasma tend to thermalize due to collisions,
and hence the different species have in general similar average kinetic energies. Thus,

the characteristic thermal speeds of the ions and neutrals, vti and vtn, scale as m
−1/2
i ,

whereas the electron thermal speed scales as m
−1/2
e , giving vte � vti ∼ vtn.

We assume that the massive ions and neutrals control the dynamics of interest, giving
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the estimate
∂

∂t
∼ vti

L
. (A 1)

Thus, the time derivative in equation (2.4) is negligible compared to terms like

v‖
∂fe
∂z
∼ fe

vte
L
. (A 2)

Hence, we can neglect the time derivative to find

v‖
∂fe
∂z

+
e

me

∂φ

∂z

∂fe
∂v‖

= Cee[fe] + Cei[fe, fi] + Cen[fe, fn]. (A 3)

To solve this equation, we need to use the properties of the collision operators. The
electron-electron collision operator satisfies an H-theorem: the entropy production

−
∫

ln fe Cee[fe] d3v > 0 (A 4)

is always positive and it only vanishes if fe is a Maxwellian. The elastic collision operators
Cei[fe, fi] and Cen[fe, fn] also satisfy H-theorems, but they are much more complicated
as in general these theorems involve the ions and the neutrals. Luckily, if we perform the
expansion

√
me/mi � 1, Cei[fe, fi] and Cen[fe, fn] satisfy simplified versions of their

H-theorems, namely, the entropy productions

−
∫

ln fe Cei[fe, fi] d3v > 0 and −
∫

ln fe Cen[fe, fn] d3v > 0 (A 5)

are always positive, and they only vanish if fe is isotropic. Note that, in the limit√
me/mi � 1, these operators do not impose conditions on fi or fn.
Armed with these properties, we multiply equation (A 3) by − ln fe and we integrate

over velocity space to obtain

∂

∂z

[
−
∫

(fe ln fe − fe) v‖ d3v

]
=−

∫
ln fe Cee[fe] d3v −

∫
ln fe Cei[fe, fi] d3v

−
∫

ln fe Cen[fe, fn] d3v. (A 6)

Integrating this equation over z and using the periodic boundary conditions, we finally
obtain

0 =−
∫ L

0

dz

∫
ln fe Cee[fe] d3v −

∫ L

0

dz

∫
ln fe Cei[fe, fi] d3v

−
∫ L

0

dz

∫
ln fe Cen[fe, fn] d3v. (A 7)

Since the entropy production of each collision operator is always positive, this equation
can only be satisfied if each of the entropy productions vanish at every z. This implies
that, at every z, fe is Maxwellian and isotropic,

fe(z, v‖, v⊥) = fMe(z, v‖, v⊥, t) := ne(z, t)

(
me

2πTe(z, t)

)3/2

exp

(
−
me(v

2
‖ + v2⊥)

2Te(z, t)

)
.

(A 8)
We need to determine the dependence of ne(z, t) and Te(z, t) on z. Substituting the
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solution fMe(z, v‖, v⊥, t) on equation (A 3), we find[
v‖

(
∂

∂z
lnne −

e

Te

∂φ

∂z

)
+ v‖

(
me(v

2
‖ + v2⊥)

2Te
− 3

2

)
∂

∂z
lnTe

]
fMe = 0. (A 9)

Since this equation has to be satisfied for every value of v‖ and v⊥, Te(t) cannot depend
on z, and ne(z, t) = Ne(t) exp(eφ(z, t)/Te(t)). Thus, we find equation (2.13) with Ne and
Te being in general functions of t. For simplicity, we choose them to be constants.
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1. Introduction

In previous reports, we proposed 1D drift kinetic equations with periodic boundary
conditions, adequate for the closed field line region of the edge. In this report, we discuss
a minimal 1D drift kinetic model with wall boundary conditions that represents open
field lines. The basic drift kinetic model is presented in section 2, and the wall boundary
conditions are discussed in section 3. We then proceed to determine the novel moment
drift kinetic equations for ions and neutrals in section 4, and for electrons in section 5.
The electrons have to be treated differently so that we can exploit the expansion in the
electron-ion mass ratio. We finish with a discussion in section 6. Some of the details of the
collision operators in the moment drift kinetic formulation are relegated to appendices
to make the main text easier to read.

2. 1D electrostatic drift kinetics

We consider a plasma with one ion species with charge e and mass mi, electrons with
charge −e and mass me, and one species of neutrals with mass

mn = mi. (2.1)

The plasma is magnetized by a constant magnetic field B = Bẑ, and we assume that
the plasma only varies along magnetic field lines. In this case, the electric field produced
by the plasma is electrostatic, E = −(∂φ/∂z)ẑ. The potential φ(z, t) depends on the
position along magnetic field lines z and on time t.

If we assume that the gyroradii are small compared to the length scales of interest,
and that the gyrofrequencies are much larger than the frequencies that we want to model
(Hazeltine 1973), the distribution functions fs(z, v‖, v⊥, t) of the different species s =
i, e, n only depend on the component of the velocity parallel to the magnetic field v‖ and
the magnitude of the velocity perpendicular to the magnetic field v⊥, and are independent
of the direction of the velocity perpendicular to the magnetic field. Thus, the distribution
functions that in general can depend on three spatial variables r, three components of
the velocity v and the time t depend only on z, v‖, v⊥ and t,

fs(r,v, t) = fs(z, v‖, v⊥, t). (2.2)

The equations for the distribution functions of the different species are

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= Cii[fi] + Cin[fi, fn] + Ci,ion[fe, fn] + Cie[fi, fe] + Si, (2.3)
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∂fe
∂t

+ v‖
∂fe
∂z

+
e

me

∂φ

∂z

∂fe
∂v‖

= Cee[fe] + Cei[fe, fi]

[
1 +O

(
me

mi

)]
+Cen[fe, fn]

[
1 +O

(
me

mi

)]
+ Ce,ion[fe, fn] + Se (2.4)

and
∂fn
∂t

+ v‖
∂fn
∂z

= Cni[fn, fi] + Cne[fn, fe] + Cn,ion[fn, fe] + Sn. (2.5)

The sources Ss(z, w‖, w⊥, t) with s = i, e, n represent heating, fueling and the effect of
transport perpendicular to the magnetic field line.

We have included the following collisions.
• Ion-ion and electron-electron collisions are modeled by the Fokker-Planck collision

operators Cii[fi] and Cee[fe] (Rosenbluth et al. 1957),

Css[fs] :=
2πe4 ln Λ

(4πε0)2m2
s

∇v · (D[fs] · ∇vfs + P[fs]fs) , (2.6)

where the matrix D is

D[fs] :=

∫
|v − v′|2I− (v − v′)(v − v′)

|v − v′|3
fs(v

′) d3v′ (2.7)

and the vector P is

P[fs] := −2

∫
v − v′

|v − v′|3
fs(v

′) d3v′. (2.8)

Here, I is the 3D unit matrix, ε0 the vacuum permittivity and ln Λ ≈ 15 the Coulomb
logarithm.
• The effect of electron-ion and elastic electron-neutral collisions on the electron distri-

bution function can be simplified in the limit of small electron-ion mass ratio,me/mi � 1.
With this expansion, we find the simplified Fokker-Planck collision operator

Cei[fe, fi] :=
2πe4ni ln Λ

(4πε0)2m2
e

∇v ·
[
|v − ui|2I− (v − ui)(v − ui)

|v − ui|3
· ∇vfe

]
(2.9)

for electron-ion collisions (Braginskii 1958), and the simplified Boltzmann collision oper-
ator

Cen[fe, fn] :=
nn
4π

∫ π

0

dχ

∫ 2π

0

dϕ sinχRen(|v − un|, χ) [fe(v(v, χ, ϕ,un))− fe(v)]

(2.10)
for electron-neutral collisions. Here

ns(z, t) := 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥fs(z, v‖, v⊥, t). (2.11)

is the density of species s, us := n−1s
∫

vfs d3v is the average velocity of species s,

v(v, χ, ϕ,un) := un + cosχ(v − un) + |v − un| sinχ(cosϕ ê1 + sinϕ ê2) (2.12)

is a rotation of the vector v centered around un, Ren(|v−un|, χ) is a function determined
by the physics of the electron-neutral collisions, and the unit vectors ê1 and ê2 are chosen
to form an orthonormal basis with the vector (v − un)/|v − un|. In equation (2.4),
we have indicated that both Cei and Cen are missing pieces small in me/mi. These
pieces can become important because they represent collisional energy exchange and
collisional heating, but they are cumbersome. The moment method that we propose in
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this document will allow us to keep these important effects even with the simplified
collision operators (2.9) and (2.10).
• The expansion in electron-ion mass ratio also implies electron-ion collisions and

electron-neutral collisions have a very small effect on fi and fn – the terms Cie and
Cne in equations (2.3) and (2.5) are small compared with Cii and Cni by a factor of√
me/mi � 1,

Cie ∼
√
me

mi
Cii, Cne ∼

√
me

mi
Cni. (2.13)

Like the mass ratio corrections to Cei and Cen, these terms can become important because
they contain the collisional energy exchange between electrons and the heavier species.
We will keep these effects in a simplified form in our moment formulation.
• Charge-exchange collisions are represented by the simplified Boltzmann collision

operators

Cin[fi, fn] := −
∫
Rin(|v − v′|) [fi(v)fn(v′)− fi(v′)fn(v)] d3v′ (2.14)

and

Cni[fn, fi] := −
∫
Rin(|v − v′|) [fn(v)fi(v

′)− fn(v′)fi(v)] d3v′. (2.15)

• To model ionization, we use the collision operators

Ci,ion[fe, fn] := fn

∫
Rion(v′)fe(v

′) d3v′ (2.16)

and

Cn,ion[fe, fn] := −fn
∫
Rion(v′)fe(v

′) d3v′. (2.17)

We also need to include a collision operator Ce,ion in the electron equation to model the
increase in the number of electrons and the energy loss due to ionization. This operator
is complicated because it involves three particles (the resulting ion and two electrons),
but we will be able to avoid giving it a definite form. Instead, we will use the expansion
in me/mi � 1 and the fact that

Ce,ion[fe, fn] ∼ nnRionfe. (2.18)

• We have neglected neutral-neutral collisions because, in current fusion devices, the
neutral density is sufficiently small that the neutral-neutral collisions are rare. It is pos-
sible that the higher densities expected in fusion reactors will make neutral-neutral colli-
sions more relevant. To include neutral-neutral collisions, a Boltzmann collision operator
is in principle required, but using a simplified collision may be possible if the exact shape
of the neutral distribution function is not important for the physics of interest.

To simplify our equations, we assume that the functions Ren, Rin and Rion are constant
(Connor 1977; Hazeltine et al. 1992; Catto 1994), finding

Cen[fe, fn] = nnRen

[
1

2

∫ π

0

fe(z, un‖ + |v − un| cosχ, |v − un| sinχ, t) sinχdχ

−fe(z, v‖, v⊥, t)

]
, (2.19)
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with |v − un| =
√

(v‖ − un‖)2 + v2⊥,

Cin[fi, fn] = −Rin (nnfi − nifn) , (2.20)

Cni[fn, fi] = −Rin (nifn − nnfi) , (2.21)

Ci,ion[fe, fn] = fnneRion (2.22)

and

Cn,ion[fe, fn] = −fnneRion. (2.23)

The potential φ(z, t) is determined by the quasineutrality equation

ni = ne. (2.24)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on ∂fi/∂t and ∂fe/∂t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function.

3. Wall boundary conditions

The kinetic equations will be solved in the interval z ∈ [0, L], and we will impose wall
boundary conditions at z = 0 and z = L. We assume the wall to be exactly perpendicular
to the magnetic field lines to be able to impose a set of simplified boundary conditions:
the logical sheath boundary conditions of Parker et al. (1993). When the magnetic field
is at an angle to the wall, one needs to consider a thin boundary layer with a width of
the order of the ion gyroradius that forms on the wall and is known as the magnetic
presheath (Chodura 1982). The complicated boundary conditions that this layer imposes
on drift kinetic models are an active area of research (Geraldini et al. 2017, 2018, 2019;
Geraldini 2021). These works indicate that the magnetic presheath and the Debye sheath
must be solved in conjunction with the quasineutral plasma, but this is not necessarily
computationally expensive as the presheath and sheath models are 1D or at most 2D,
and hence cheaper than the 5D drift kinetic models that one needs for edge turbulence.
The technique proposed by Geraldini et al. (2018), for example, solves the magnetic
presheath in a single processor in seconds, and this technique can be parallelized.

Logical sheath boundary conditions make use of the fact that a thin sheath of non-
neutral plasma with a width of the order of the Debye length forms on walls to ensure
quasineutrality. The potential drop across this sheath repels electrons away from the wall
because otherwise electrons would flow to the wall at much greater rate than ions due to
their lower mass and higher thermal speed. In our model, φ(0, t) and φ(L, t) are not the
potential of the wall, but the potential at the entrance of the sheath. In this report, we
choose the potential of the wall at z = 0 to be 0 without loss of generality. We denote
the potential of the wall at z = L as φw. Then, for the sheaths to repel electrons, φ(0, t)
must be larger than 0 and φ(L, t) must be larger than φw.

The value of the potential at z = 0 and z = L is determined by requiring that the
current towards the wall at both z = 0 and z = L vanishes. We consider the sheath at
z = L first, and we will then apply the results that we obtain to the sheath at z = 0.
Since the thin sheath at z = L imposes a large electric field perpendicular to the wall,
which in this case is along the magnetic field B = Bẑ, the sheath only modifies the
parallel velocity of electrons. Within the sheath, the parallel energy E‖ := mev

2
‖/2−eφ is

conserved, and as a result an electron that has velocity v‖ at the entrance of the sheath
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is slowed down to a parallel velocity
√
v2‖ − 2e(φ(L, t)− φw)/me when it reaches the

wall. Thus, electrons with parallel velocity larger than
√

2e(φ(L, t)− φw)/me reach the
wall, where they recombine with ions, whereas electrons with parallel velocity smaller
than

√
2e(φ(L, t)− φw)/me are repelled back into the quasineutral plasma. Thus, the

boundary condition on the electron distribution function at z = L is

fe(L, v‖ < 0, v⊥, t) =

{
fe(L,−v‖, v⊥, t) for v‖ > −

√
2e(φ(L, t)− φw)/me,

0 for v‖ < −
√

2e(φ(L, t)− φw)/me,
(3.1)

i.e. the electron distribution is mirrored with respect to v‖ = 0 and a cut-off is imposed
for sufficiently negative parallel velocities. Note that no boundary condition is needed for
v‖ > 0 at z = L because of the direction of the characteristics of the kinetic equation.
Expression (3.1) also gives the electron current density towards the wall at the entrance
of the sheath at z = L,

Je‖(L, t) = −2πe

∫ ∞
√

2e(φ(L,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(L, v‖, v⊥, t). (3.2)

This is the electron current density at the wall because electron flow is conserved across
the sheath. Imposing that the electron current cancels the ion current gives us a nonlinear
equation for the potential difference φ(L, t)− φw,

2π

∫ ∞
√

2e(φ(L,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(L, v‖, v⊥, t)

= 2π

∫ ∞
0

dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(L, v‖, v⊥, t). (3.3)

To obtain the ion current, we have used the fact that the sheath attracts ions and hence
no ions can have negative parallel velocity at the entrance of the sheath at z = L.

The conditions at z = 0 for the electron distribution and the potential are similar to
those for z = L. For the electron distribution function, we find

fe(0, v‖ > 0, v⊥, t) =

{
fe(0,−v‖, v⊥, t) for v‖ 6

√
2eφ(0, t)/me,

0 for v‖ >
√

2eφ(0, t)/me,
(3.4)

and for the potential we obtain

2π

∫ −√2eφ(0,t)/me

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(0, v‖, v⊥, t)

= 2π

∫ 0

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(0, v‖, v⊥, t), (3.5)

Note that conditions (3.3) and (3.5) imply that no net electrical current is leaving the
system. Thus, the total source of charge in the magnetic field line of interest must be
zero, ∫ L

0

dz

∫
Si d3v =

∫ L

0

dz

∫
Se d3v. (3.6)

We still need boundary conditions for the ion and neutral distribution functions. Ions
recombine when they hit the wall, so no ions come back, giving

fi(0, v‖ > 0, v⊥, t) = 0, fi(L, v‖ < 0, v⊥, t) = 0. (3.7)

The neutrals hit the wall and thermalize at the temperature of the wall Tw, while also
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receiving back the ions that have recombined at the wall,

fn(0, v‖ > 0, v⊥, t) = Γ0fKw(v‖, v⊥), fn(L, v‖ < 0, v⊥, t) = ΓLfKw(v‖, v⊥), (3.8)

where

Γ0 :=
∑
s=i,n

2π

∫ 0

−∞
dv‖

∫ ∞
0

dv⊥ v⊥|v‖|fs(0, v‖, v⊥, t) (3.9)

and

ΓL :=
∑
s=i,n

2π

∫ ∞
0

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(L, v‖, v⊥, t) (3.10)

are the fluxes of neutrals and ions towards the walls at z = 0 and z = L. Here,

fKw(v‖, v⊥) :=
3

4π

(
mi

Tw

)2 |v‖|√
v2‖ + v2⊥

exp

(
−
mi(v

2
‖ + v2⊥)

2Tw

)
(3.11)

is the Knudsen cosine distribution (Knudsen 1916) that assumes that the particles have
entered the wall lattice, have reached thermodynamic equilibrium with it, and have then
left the wall. Knudsen showed that this distribution function fits experimental measure-
ments well.

4. 1D moment drift kinetics for ions and neutrals

Instead of solving for fs(z, v‖, v⊥, t) with s = i, n, we solve for

Fs(z, w‖, w⊥, t) :=
v3ts(z, t)

ns(z, t)
fs

(
z, us‖(z, t) + vts(z, t)w‖, vts(z, t)w⊥, t

)
, (4.1)

where we have defined the normalized velocities

w‖(z, v‖, t) :=
v‖ − us‖(z, t)
vts(z, t)

(4.2)

and

w⊥(z, v⊥, t) :=
v⊥

vts(z, t)
, (4.3)

the average parallel velocity

us‖(z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(z, v‖, v⊥, t) (4.4)

and the thermal speed

vts(z, t) :=

√
2Ts(z, t)

ms
, (4.5)

with

Ts(z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥
ms[(v‖ − us‖(z, t))2 + v2⊥]

3
fs(z, v‖, v⊥, t) (4.6)

the temperature of species s. According to its definition, Fs(z, w‖, w⊥, t) must satisfy the
conditions

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fs(z, w‖, w⊥, t) = 1, (4.7)
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2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fs(z, w‖, w⊥, t) = 0 (4.8)

and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fs(z, w‖, w⊥, t) =
3

2
(4.9)

at every point z and time t.

4.1. Ion equations

The equations for ni, ui‖ and Ti are

∂ni
∂t

+
∂

∂z

(
niui‖

)
= nnneRion +

∫
Si d3v, (4.10)

nimi

(
∂ui‖

∂t
+ ui‖

∂ui‖

∂z

)
= −

∂pi‖

∂z
− eni

∂φ

∂z
+ nimi(nnRin + neRion)(un‖ − ui‖)

+

∫
mi(v‖ − ui‖)Si d3v (4.11)

and

3

2
ni

(
∂Ti
∂t

+ ui‖
∂Ti
∂z

)
= −

∂qi‖

∂z
− pi‖

∂ui‖

∂z
+

3

2
ni(nnRin + neRion)(Tn − Ti)

+
1

2
nimi(nnRin + neRion)(un‖ − ui‖)2 +

∫
1

2
mi|v − ui‖ẑ|2Cie d3v

+

∫ (
1

2
mi|v − ui‖ẑ|2 −

3

2
Ti

)
Si d3v. (4.12)

Here, we have defined the parallel pressure

ps‖[Fs, ns, vts](z, t) := 2πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w
2
‖Fs(z, w‖, w⊥, t) (4.13)

and the parallel heat flux

qs‖[Fs, ns, vts](z, t) := πnsmsv
3
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖(w
2
‖ + w2

⊥)Fs(z, w‖, w⊥, t).

(4.14)
We have also included the term (1/2)

∫
mi|v − ui‖ẑ|2Cie d3v due to collisions with elec-

trons. Collisions with electrons are negligible to lowest order in
√
me/mi in the ion

kinetic equation and thus cannot determine the lowest order distribution function Fi,
but when collisions are sufficiently frequent that νiiL/vti &

√
mi/me � 1, the term

(1/2)
∫
mi|v− ui‖ẑ|2Cie d3v becomes comparable to the other terms in the energy equa-

tion. Here,

νii :=
8
√

2π

3

e4ni ln Λ

(4πε0)2m2
i v

3
ti

(4.15)

is the ion-ion collision frequency as defined by Braginskii (Braginskii 1958). At the large
collision frequencies required for the term (1/2)

∫
mi|v−ui‖ẑ|2Cie d3v to be relevant, the

ion and electron distribution functions become close to a Maxwellian,

fs ' fMs :=
ns

π3/2v3ts
exp

(
−

(v‖ − us‖)2 + v2⊥
v2ts

)
. (4.16)
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Thus, we can use the approximation∫
1

2
mi|v − ui‖ẑ|2Cie[fi, fe] d3v '

∫
1

2
mi|v − ui‖ẑ|2Cie[fMi, fMe] d3v

' 3nemeνei
mi

(Te − Ti), (4.17)

where

νei :=
16
√
π

3

e4ni ln Λ

(4πε0)2m2
ev

3
te

(4.18)

is the electron-ion collision frequency as defined by Braginskii (Braginskii 1958). Note
that Braginskii’s definitions of νii and νei differ by a factor of

√
2.

The ion kinetic equation is

∂Fi
∂t

+ żi
∂Fi
∂z

+ ẇ‖i
∂Fi
∂w‖

+ ẇ⊥i
∂Fi
∂w⊥

= Ḟi + Cii + Cin + Ci,ion + Si. (4.19)

Here, we have defined the coefficients

żs[Fs, us‖, vts](z, w‖, t) := us‖ + vtsw‖, (4.20)

ẇ‖s[Fs, ns, us‖, vts](z, w‖, t) :=
1

nsmsvts

∂ps‖

∂z

+
2w‖

3nsmsv2ts

[
∂qs‖

∂z
+

(
ps‖ −

3

2
nsmsv

2
ts

)
∂us‖

∂z

]
− w2

‖
∂vts
∂z

, (4.21)

ẇ⊥s[Fs, ns, us‖, vts](z, w‖, w⊥, t) :=
2w⊥

3nsmsv2ts

(
∂qs‖

∂z
+ ps‖

∂us‖

∂z

)
− w‖w⊥

∂vts
∂z

(4.22)

and

Ḟs[Fs, ns, us‖, vts](z, w‖, w⊥, t) :=

[
w‖

(
3
∂vts
∂z
− vts
ns

∂ns
∂z

)

− 2

nsmsv2ts

(
∂qs‖

∂z
+

(
ps‖ −

1

2
nsmsv

2
ts

)
∂us‖

∂z

)]
Fs. (4.23)

We have also defined a modified source Si and several modified collision operators. The
modified source is given by

Ss[Ss, Fs, ns, us‖, vts](z, w‖, w⊥, t)

:=−
[
Fs
ns

∫
Ss d3v − v3ts

ns
Ss(z, us‖ + vtsw‖, vtsw⊥, t)

]
+

∂

∂w‖

[
Fs

(
1

nsvts

∫
(v‖ − us‖)Ss d3v +

w‖

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

)]
+

1

w⊥

∂

∂w⊥

[
w2
⊥Fs

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

]
. (4.24)

Note that the differential terms in this modified source could have been included in the
definitions of the coefficients ẇ‖i, ẇ⊥i and Ḟi, but we have decided to make them part
of a modified source instead to separate the effect of the source clearly. We will do the
same for collisions. This split should not be taken as a suggestion on how to implement
these terms in a code. The modified collisions operators are described in Appendix A.
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4.2. Neutral equations

The fluid equations for the neutrals are

∂nn
∂t

+
∂

∂z

(
nnun‖

)
= −nnneRion +

∫
Sn d3v, (4.25)

nnmi

(
∂un‖

∂t
+ un‖

∂un‖

∂z

)
= −

∂pn‖

∂z
+ nnminiRin(ui‖ − un‖)

+

∫
mi(v‖ − un‖)Sn d3v (4.26)

and

3

2
nn

(
∂Tn
∂t

+ un‖
∂Tn
∂z

)
= −

∂qn‖

∂z
− pn‖

∂un‖

∂z
+

3

2
nnniRin(Ti − Tn)

+
1

2
nnminiRin(un‖ − ui‖)2 +

∫
1

2
mi|v − un‖ẑ|2Cne d3v

+

∫ (
1

2
mi|v − un‖ẑ|2 −

3

2
Tn

)
Sn d3v. (4.27)

As with electron-ion collisions, the term (1/2)
∫
mi|v− un‖ẑ|2Cne d3v only becomes im-

portant when the collisions are sufficiently frequent that the distribution functions are
close to Maxwellians, giving∫

1

2
mi|v − un‖ẑ|2Cne[fn, fe] d3v '

∫
1

2
mi|v − un‖ẑ|2Cne[fMn, fMe] d3v

' 3nemennRen
mi

(Te − Tn), (4.28)

The neutral kinetic equation is

∂Fn
∂t

+ żn
∂Fn
∂z

+ ẇ‖n
∂Fn
∂w‖

+ ẇ⊥n
∂Fn
∂w⊥

= Ḟn + Cni + Sn. (4.29)

The modified charge exchange collision operator Cni is described in Appendix B.

Equations (4.19) and (4.29) for Fi and Fn are constructed such that conditions (4.7),
(4.8) and (4.9) are satisfied at all times if they are satisfied at t = 0. In practice, this
property has to be enforced in the numerical method. We have found an algorithm that
works well and we have discussed it in report 2047357-TN-04-02 M2.2.

4.3. Boundary conditions

These equations for ions and neutrals have to be solved with the boundary conditions in
equations (3.7) and (3.8). For ns, us‖, vts and Fs known at time t, we can construct fs
at z = 0 and z = L, and we can apply boundary conditions (3.7) and (3.8). We can then
use the resulting fs to obtain ns, us‖, vts and Fs, and to calculate ps‖ and qs‖, closing
the system of equations.

We note that this is the only place where the full distribution function fs is needed.
Depending on the numerical method chosen to solve these equations, reconstructing fs
could be expensive. This is one of the problems that needs to be addressed in the proxy
apps.
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5. 1D moment drift kinetics for electrons

The equation for Fe can be significantly simplified using the expansion in
√
me/mi.

The electron source Se is usually of order

Se ∼
vtife
L

(5.1)

because the ions control the dynamics due to their large mass, and the electrons adapt
to the ions because of collisions and quasineutrality. Thus, Se is a small term in equa-
tion (2.4) by a factor of vti/vte ∼

√
me/mi � 1. Moreover, the electron parallel flow

ue‖ is of the order of the ion parallel flow because boundary conditions (3.3) and (3.5)
impose that these two velocities be equal at z = 0 and z = L, and quasineutrality keeps
the difference of the order of vti. As a result, ue‖ ∼ ui‖ ∼ vti � vte and we can neglect
ue‖ to lowest order in most terms in equation (2.4) – the two exceptions in which ue‖
cannot be neglected are given in Appendix C. Finally, the effect of ionization, modeled
by Ce,ion ∼ nnRionfe is, according to equation (4.10), of the order of fevti/L and thus
also small.

5.1. Electron kinetic equation

Employing the expansion in
√
me/mi � 1, the kinetic equation for electrons becomes

że
∂Fe
∂z

+ ẇ‖e
∂Fe
∂w‖

+ ẇ⊥e
∂Fe
∂w⊥

= Ḟe + Cee + Cei + Cen, (5.2)

where

że[Fe, vte](z, w‖, t) := vtew‖, (5.3)

ẇ‖e[Fe, ue‖, vte](z, w‖, t) :=
1

nemevte

∂pe‖

∂z
+

2w‖

3nemev2te

∂qe‖

∂z
− w2

‖
∂vte
∂z

, (5.4)

ẇ⊥e[Fe, ue‖, vte](z, w‖, w⊥, t) :=
2w⊥

3nemev2te

∂qe‖

∂z
− w‖w⊥

∂vte
∂z

(5.5)

and

Ḟe[Fe, ue‖, vte](z, w‖, w⊥, t) :=

[
w‖

(
3
∂vte
∂z
− vte
ne

∂ne
∂z

)
− 2

nemev2te

∂qe‖

∂z

]
Fe. (5.6)

The modified collision operators Cee, Cei and Cen are described in Appendix C. Note that,
in equations (C 1) and (C 6), we have kept small terms that scale with (us‖ − ue‖)/vte ∼√
me/mi � 1, where s = i, n. These terms are kept to ensure that we recover the

Braginskii equations in the appropriate limit (see subsection 5.4).
We have ensured that equation (5.2) is compatible with conditions (4.7), (4.8) and (4.9)

by keeping terms that are second order in ue‖ in the collision operators in Appendix C.
Indeed, multiplying equation (5.2) by 1, w‖ and w2

‖ +w2
⊥ and integrating over velocities

gives 0 = 0. Despite the fact that we do not keep all possible terms that are second order
in
√
me/mi in the collision operator, we will see in subsection 5.4 that proposed model

recovers the regimes of interest.
Conditions (4.7), (4.8) and (4.9) have to be imposed on Fe when solving the kinetic

equation (5.2). One possible way to impose these conditions is to include the term ∂Fe/∂t
in equation (5.2) so that we can evolve Fe to a steady state solution. With this approach,
if Fe satisfies conditions (4.7), (4.8) and (4.9) at t = 0, it will satisfy them at all times.
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5.2. Electron fluid equations

Once we know Fe, we can calculate the fluid equations for electrons.
• The electron continuity equation is

∂ne
∂t

+
∂

∂z

(
neue‖

)
= −nennRion +

∫
Se d3v. (5.7)

Subtracting this equation from equation (4.10) and using quasineutrality, we obtain the
current conservation equation

∂

∂z

[
ne
(
ui‖ − ue‖

)]
=

∫
Si d3v −

∫
Se d3v. (5.8)

This equation can be used to calculate ue‖.
• The electron parallel momentum equation simplifies to

0 = −
∂pe‖

∂z
+ ene

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (5.9)

where

Fei‖[Fe, ne, ni, ue‖, ue‖, vte, vti](z, t)

:=− 8π2e4neni ln Λ

(4πε0)2mev2te

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥(w‖ − (ui‖ − ue‖)/vte)Fe

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(5.10)

is the friction force between electrons and ions. Equation (5.9) can be used to calculate
the potential φ. Since the potential at φ(0, t) is determined by equation (3.5), we can start
integrating φ at z = 0. With the potential φ(L, t) that we obtain from this integration
and condition (3.3), we can calculate the potential difference between the two walls, φw.
• The electron energy equation is

3

2
ne

(
∂Te
∂t

+ ue‖
∂Te
∂z

)
= −

∂qe‖

∂z
− pe‖

∂ue‖

∂z
+

∫
1

2
me|v − ue‖ẑ|2Ce,ion d3v

+

∫
1

2
me|v − ue‖ẑ|2Cei

[
1 +O

(
me

mi

)]
d3v

+

∫
1

2
me|v − ue‖ẑ|2Cen

[
1 +O

(
me

mi

)]
d3v

+

∫ (
1

2
me|v − ue‖ẑ|2 −

3

2
Te

)
Se d3v. (5.11)

For the integral over the ionization collision operator, we use the model∫
1

2
me|v − ue‖ẑ|2Ce,ion d3v = −nennRionEion, (5.12)

where Eion is the ionization energy cost that includes in it radiation from excited states.
The integrals over Cei and Cen are only sufficiently large when collisions are large. In
this limit, all the species are Maxwellian and we can easily calculate the integrals over
Cei and Cen to higher order in the mass ratio expansion, finding∫

1

2
me|v − ue‖ẑ|2Cei[fe, fi]

[
1 +O

(
me

mi

)]
d3v ' 3nemeνei

mi
(Ti − Te)

+Fei‖(ui‖ − ue‖) (5.13)
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and∫
1

2
me|v − ue‖ẑ|2Cen[fe, fn]

[
1 +O

(
me

mi

)]
d3v ' 3nemennRen

mi
(Tn − Te)

+nemennRen(un‖ − ue‖)2. (5.14)

5.3. Boundary conditions

These equations for electrons have to be solved with the boundary conditions in equa-
tions (3.1) and (3.4). As for ions and neutrals, the best way to impose these boundary
conditions is to transform back to fe, apply the boundary conditions and then calculate
Fe, ne, me, vte, pe‖ and qe‖ from fe.

5.4. Some limits of interest

We finish by showing that these equations recover the desired result in the two limits of
interest: a modified Braginskii limit with neutrals, and a collisionless limit.

5.4.1. Braginskii-like equations

For the Braginskii-like limit, we use the orderings suggested in (Catto 1994; Helander
et al. 1994): we assume that the ion-ion, ion-neutral, electron-electron, electron-ion and
electron-neutral collisions are so frequent that their collision frequencies νss′ satisfy

νss′L

vts
∼
√
mi

me
� 1, (5.15)

whereas the ionization frequencies neRion and nnRion are of order vti/L.
In this limit, the charge exchange collisional terms dominate in the ion and neutral

momentum and energy equations, forcing ui‖ = un‖ and Ti = Tn. We use uh‖ and Th to
denote the average flow and temperature of the heavy species. By summing the ion and
neutral momentum equations (4.11) and (4.26), we find the equation for uh‖,

(ni + nn)mi

(
∂uh‖

∂t
+ uh‖

∂uh‖

∂z

)
= − ∂

∂z
(pi‖ + pn‖)− eni

∂φ

∂z

+

∫
mi(v‖ − uh‖)(Si + Sn) d3v. (5.16)

By summing the ion and neutral energy equations (4.12) and (4.27), we find the equation
for Th,

3

2
(ni + nn)

(
∂Th
∂t

+ uh‖
∂Th
∂z

)
= − ∂

∂z
(qi‖ + qn‖)− (pi‖ + pn‖)

∂uh‖

∂z

+
3neme(νei + nnRen)

mi
(Te − Th) +

∫ (
1

2
mi|v − uh‖ẑ|2 −

3

2
Th

)
(Si + Sn) d3v.

(5.17)

Note that in this energy equation, the terms due to electron-ion and electron-neutral
collisions are of the same order as the other terms.

In the electron fluid equations, the collisional friction terms in the electron momentum
equation (5.9) are comparable to the pressure and electric field terms. The electron heat
flux term and the terms related to the electron-ion and electron-neutral collisions in the
electron energy equation (5.11) are also comparable to the rest of the terms.

In the kinetic equations, the collisions dominate and lead to distribution functions that
are Maxwellian to lowest order. We can use the kinetic equations to find the corrections
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to the Maxwellian. For ions and neutrals, the corrections to the Maxwellian do not give
large contributions to either the parallel pressure or the heat flux. For the electrons, how-
ever, the correction gives important contributions to the friction force in the momentum
equation (5.9) and to the electron heat flux in the energy equation (5.11). If we write
Fe = FM + Fe1 + . . ., with FM := π−3/2 exp(−w2

‖ − w
2
⊥), we can find the equation for

Fe1 (Braginskii 1958),

C(`)ee [Fe1] + C(`)ei
[
Fe1 −

2(uh‖ − ue‖)w‖
vte

FM

]
+ C(`)en

[
Fe1 −

2(uh‖ − ue‖)w‖
vte

FM

]
+

16π2e4ni ln Λ

(4πε0)2m2
ev

3
te

w‖FM

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥w

′
‖Fe1(z, w′‖, w

′
⊥, t)

(w′2‖ + w′2⊥)3/2

=

[
vtew‖

(
w2
‖ + w2

⊥ −
5

2

)
∂

∂z
lnTe +

32
√
πe4ni ln Λ(uh‖ − ue‖)w‖

3(4πε0)2m2
ev

4
te

+
2nnRen(uh‖ − ue‖)w‖

vte

]
FM . (5.18)

Here we have neglected the electron heat flux qe‖ because it is proportional to Fe1.

The collision operators C(`)ee , C(`)ei and C(`)en are the linearized collision operators, given
in Appendix D. Note that the terms proportional to uh‖ − ue‖, needed to recover the
friction force and electron heat flux in Braginskii (1958) (see subsection 5.4), come from
the electron-ion and electron-electron collision operators in equations (C 1) and (C 6).

We finish by pointing out that Fe satisfies conditions (4.7), (4.8) and (4.9) to the order
that we have calculated it. Since FM satisfies these conditions, the conditions for Fe1
become

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fe1(z, w‖, w⊥, t) = 0, (5.19)

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fe1(z, w‖, w⊥, t) = 0 (5.20)

and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fe1(z, w‖, w⊥, t) = 0. (5.21)

These conditions determine the pieces of Fe1 that are in the kernel of the operators in
the left side of equation (5.18).

5.4.2. Collisionless electron equations

We call this limit collisionless in contraposition to the collisional Braginsikii-like limit
discussed above, but we still keep collisions. We assume that ion-ion, ion-neutral, electron-
electron, electron-ion, electron-neutral and ion-neutral collisions satisfy

νss′L

vts
∼ 1. (5.22)

The ionization frequencies neRion and nnRion are still assumed to be of order vti/L.
In this limit, we can neglect the collisional coupling between the heavy species (ions

and neutrals) and electrons in the fluid equations. In the electron energy equation (5.11),
the dominant term is ∂qe‖/∂z, giving

∂qe‖

∂z
' 0 (5.23)
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In the electron momentum equation (5.9), the friction forces are negligible, giving

∂pe‖

∂z
' ene

∂φ

∂z
. (5.24)

Using these results in the electron kinetic equation (5.2) and neglecting ui‖ − ue‖ and
un‖ − ue‖ in the collision operators in equation (C 1) and (C 6), we find[

vtew‖
∂

∂z
+

(
e

mevte

∂φ

∂z
− w2

‖
∂vte
∂z

)
∂

∂w‖
− w‖w⊥

∂vte
∂z

∂

∂w⊥

](
neFe
v3te

)
=
ne
v3te

(
Cee + C(`)ei + C(`)en

)
. (5.25)

The collision operators C(`)ei and C(`)en are defined in Appendix D.
We can use entropy production of the electron-electron, electron-ion and electron-

neutral collision operators to solve equation (5.25). We multiply equation (5.25) by
− ln(neFe/v

3
te) to find[

vtew‖
∂

∂z
+

(
e

mevte

∂φ

∂z
− w2

‖
∂vte
∂z

)
∂

∂w‖
− w‖w⊥

∂vte
∂z

∂

∂w⊥

] [
neFe
v3te

(
1− ln

(
neFe
v3te

))]
= − ne

v3te
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
.

(5.26)

Multiplying by v3te and integrating over velocity space, we obtain

∂

∂z

[
nevte

∫ (
1− ln

(
neFe
v3te

))
Few‖w⊥ dw‖ dw⊥

]

= −ne
∫

ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥. (5.27)

Integrating equation (5.27) over z gives[
nevte

∫ (
1− ln

(
neFe
v3te

))
Few‖w⊥ dw‖ dw⊥

]z=L
z=0

= −ne
∫ L

0

dz

∫
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥. (5.28)

Conditions (3.3) and (3.5) impose that only a few electrons leave the system towards the
wall. The number of electrons that leave is small by a factor of

√
me/mi � 1 and thus,

the left side of equation (5.28) can be neglected, finally giving

−
∫ L

0

dz

∫
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥ ' 0. (5.29)

The integrand under the integral over z is the entropy production, and it is positive
unless the distribution function Fe is the Maxwellian FM . Hence, Fe is a Maxwellian to
lowest order in the expansion in

√
me/mi.

Substituting the Maxwellian into equation (5.25), we find that the right side of the
equation vanishes. For the left side of the equation to be zero for all w‖ and w⊥, we need
∂vte/∂z = 0 and

ne(z, t) = Ne(t) exp

(
eφ(z, t)

Te(t)

)
. (5.30)



1D drift kinetic models with wall boundary conditions 15

The value of Ne(t) is calculated from quasineutrality,

Ne(t)

∫ L

0

exp

(
eφ(z, t)

Te(t)

)
dz =

∫ L

0

ni(z, t) dz. (5.31)

The value of Te(t) is obtained from the electron energy equation. Integrating the energy
equation (5.11) over z, we find

3

2

d

dt

[
NeTe

∫ L

0

exp

(
eφ

Te

)
dz

]
= −

[
5

2
neue‖Te + qe‖

]z=L
z=0

+

∫ L

0

(
ene

∂φ

∂z
− nennRionEion +

∫
1

2
mev

2Se d3v

)
dz. (5.32)

It might seem that the heat flux should vanish here because the distribution function is
a Maxwellian to lowest order. In reality, the real Fe is sufficiently far from a Maxwellian
at large velocities to induce a significant heat flux. Indeed, to satisfy boundary condi-
tions (3.1) and (3.4), the distribution function must vanish exactly in certain regions of
phase space. Since these regions are at large velocities, the techniques used to calculate
the collisional losses into the loss cones of mirror machines can be used (Pastukhov 1974).

6. Discussion

The model that we propose is comprised of:
• the three fluid equations (4.10), (4.11) and (4.12) for ions that have to be solved in

conjunction with the ion kinetic equation (4.19);
• the three fluid equations (4.25), (4.26) and (4.27) for neutrals that have to be solved

in conjunction with the neutral kinetic equation (4.29);
• the two fluid equations (5.8) and (5.11) for electrons that have to be solved in

conjunction with the electron kinetic equation (5.2) with the modified coefficients (5.3),
(5.4), (5.5) and (5.6); and
• the electron parallel momentum equation (5.9) for the potential.

The boundary conditions for this system of equations are described in section 3.
To test the model proposed in this report, we will first extend the existing code based

on adiabatic electrons, which we prove to a be a good approximation for collisionless
plasmas in section 5.4, to wall boundary conditions. We will then explore the effect of
adding electrons. For most physics of interest, it is sufficient to use simplified ion-ion and
electron-electron collision operators, and for this reason we do not expect to implement
a full Fokker-Planck collision operator.

Appendix A. Modified collision operators for the ion kinetic equation

The modified Fokker-Planck like-particle collision operator is

Css[Fs,ns, vts](z, w‖, w⊥, t)

:=
2πe4ns ln Λ

(4πε0)2m2
sv

3
ts

{
∂

∂w‖

(
D‖‖[Fs]

∂Fs
∂w‖

+D‖⊥[Fs]
∂Fs
∂w⊥

+ P‖[Fs]Fs
)

+
1

w⊥

∂

∂w⊥

[
w⊥

(
D‖⊥[Fs]

∂Fs
∂w‖

+D⊥⊥[Fs]
∂Fs
∂w⊥

+ P⊥[Fs]Fs

)]}
. (A 1)
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The coefficients needed for this collision operator are

D‖‖[Fs](z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)−

(w‖ − w′‖)
2E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t), (A 2)

D‖⊥[Fs](z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t), (A 3)

D⊥⊥[Fs](z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w2
⊥

√
(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

{
2w⊥

[
w⊥(w‖ − w′‖)

2

(w‖ − w′‖)2 + (w⊥ − w⊥)2
− w′⊥

]
E(κ)

+[(w‖ − w′‖)
2 + w2

⊥ + w′2⊥][K(κ)− E(κ)]

}
Fs(z, w

′
‖, w

′
⊥, t), (A 4)

P‖[Fs](z, w‖, w⊥, t) := 8

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)− E(κ)

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
− E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t)

(A 5)

and

P⊥[Fs](z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t). (A 6)

Here, K(κ) :=
∫ π/2
0

(1− κ2 sin2 α)−1/2 dα and E(κ) :=
∫ π/2
0

(1− κ2 sin2 α)1/2 dα are the
elliptic integrals, and the function κ is

κ(w‖, w⊥, w
′
‖, w

′
⊥) :=

√
4w⊥w′⊥

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
. (A 7)
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The modified charge exchange collision operator for the ion kinetic equation is

Cin[Fi, Fn, nn, ui‖, un‖, vti, vtn](z, w‖, w⊥, t)

:=− nnRin
[
Fi −

v3ti
v3tn

Fn

(
z,
ui‖ − un‖

vtn
+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ nnRin

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

))
Fi

]
+
nnRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

)
Fi

]
. (A 8)

Finally, the modified ionization collision operator for the ion kinetic equation is

Ci,ion[Fn, ne, ui‖, un‖, vti, vtn](z, w‖, w⊥, t)

:=− neRion

[
Fi −

v3ti
v3tn

Fn

(
z,
ui‖ − un‖

vtn
+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ neRion

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

))
Fi

]
+
neRion

w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

)
Fi

]
. (A 9)

Appendix B. Modified collision operators for the neutral kinetic
equation

The modified charge exchange collision operator for the neutral kinetic equation is

Cni[Fn, Fi, ni, un‖, ui‖, vtn, vti](z, w‖, w⊥, t)

:=− niRin
[
Fn −

v3tn
v3ti

Fi

(
z,
un‖ − ui‖

vti
+
vtn
vti

w‖,
vtn
vti

w⊥, t

)]
+ niRin

∂

∂w‖

[(
ui‖ − un‖

vtn
+
w‖

2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2

3v2tn

))
Fn

]
+
niRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2

3v2tn

)
Fn

]
. (B 1)

Appendix C. Modified collision operators for the electron kinetic
equation

The electron-electron collision operator is described in equation (A 1).
The modified ion-electron collision operator is

Cei[Fe, ni, ui‖, ue‖, vte](z, w‖, w⊥, t)

:=
2πe4ni ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

[
M‖‖

∂Fe
∂w‖

+M‖⊥
∂Fe
∂w⊥

+

(
1 +

2(ui‖ − ue‖)w‖
3vte

)
F‖Fe

]

+
1

w⊥

∂

∂w⊥

[
w⊥

(
M‖⊥

∂Fe
∂w‖

+M⊥⊥
∂Fe
∂w⊥

+
2(ui‖ − ue‖)w⊥

3vte
F‖Fe

)]}
, (C 1)
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where

M‖‖[ue‖, vte, ui‖](z, w‖, w⊥, t) :=
w2
⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (C 2)

M‖⊥[ue‖, vte, ui‖](z, w‖, w⊥, t) := −
(w‖ − (ui‖ − ue‖)/vte)2w⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (C 3)

M⊥⊥[ue‖, vte, ui‖](z, w‖, w⊥, t) :=
(w‖ − (ui‖ − ue‖)/vte)2

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(C 4)

and

F‖[Fe, ue‖, vte, ui‖](z, t)

:= −4π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥[w‖ − (ui‖ − ue‖)/vte]Fe(z, w‖, w⊥, t)

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

. (C 5)

The modified electron-neutral collision operator is

Cen[Fe, nn, un‖, ue‖, vte](z, w‖, w⊥, t) := −nnRen
[
Fe −

1

2

∫ π

0

sinχFe(z, w‖, w⊥, t) dχ

]
+
nnRen(un‖ − ue‖)

vte

∂

∂w‖

[(
1 +

2(un‖ − ue‖)w‖
3vte

)
Fe

]
+

2nnRen(un‖ − ue‖)2

3v2tew⊥

∂

∂w⊥

(
w2
⊥Fe

)
,

(C 6)

where

w‖[ue‖, vte, un‖](χ, z, w‖, w⊥, t) :=
un‖ − ue‖

vte
+ cosχ

√(
w‖ −

un‖ − ue‖
vte

)2

+ w2
⊥ (C 7)

and

w⊥[ue‖, vte, un‖](χ, z, w‖, w⊥, t) := sinχ

√(
w‖ −

un‖ − ue‖
vte

)2

+ w2
⊥. (C 8)

Appendix D. Linearized collision operators for electrons

The linearized electron-electron collision operator is given by

C(`)ee [Fe1, ne, vte](z, w‖, w⊥, t)

:=
2πe4ne ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

(
D‖‖[FM ]

∂Fe1
∂w‖

+D‖⊥[FM ]
∂Fe1
∂w⊥

+ P‖[FM ]Fe1

− 2w‖D‖‖[Fe1]FM − 2w⊥D‖⊥[Fe1]FM + P‖[Fe1]FM

)

+
1

w⊥

∂

∂w⊥

[
w⊥

(
D‖⊥[FM ]

∂Fe1
∂w‖

+D⊥⊥[FM ]
∂Fe1
∂w⊥

+ P⊥[FM ]Fe1

− 2w‖D‖⊥[Fe1]FM − 2w⊥D⊥⊥[Fe1]FM + P⊥[Fe1]FM

)]}
. (D 1)



1D drift kinetic models with wall boundary conditions 19

The coefficients are defined in Appendix A.
The linearized electron-ion collision operator is

C(`)ei [Fe1, ni, vte](z, w‖, w⊥, t)

:=
2πe4ni ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

[
w2
⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w‖

−
w‖w⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w⊥

]

+
1

w⊥

∂

∂w⊥

[
w⊥

(
−

w‖w⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w‖

+
w2
‖

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w⊥

)]}
. (D 2)

Finally, the linearized electron-neutral collision operator is

C(`)en [Fe1, nn, vte](z, w‖, w⊥, t) := −nnRen

[
Fe1

− 1

2

∫ π

0

sinχFe1

(
z, cosχ

√
w2
‖ + w2

⊥, sinχ
√
w2
‖ + w2

⊥, t
)

dχ

]
. (D 3)
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1. Introduction

In previous reports, we proposed 1D drift kinetic equations with periodic boundary
conditions, adequate for the closed field line region of the edge, and wall boundary con-
ditions. In this report, we build a 2D drift kinetic model for a helical magnetic field. The
helical magnetic field has similarities with the magnetic field in the tokamak edge.

2. Helical magnetic field

To describe the geometry of the magnetic field, we use the cylindrical coordinates
{r, z, ζ} (see figure 1). In this coordinates, the helical field is

B(r, ζ) := Bz(r)ẑ +Bζ(r)ζ̂(ζ), (2.1)

where ẑ and ζ̂ are the unit vectors in the direction of ∇z and ∇ζ. Note that the compo-
nents Bz and Bζ only depend on the radial position r.

In principle, one can use any Bz(r) and Bζ(r). There is a particular choice that is more
physical. In the edge, the magnetic field is determined by currents running through the
core plasma or through external magnets. Thus, according to Ampére’s law, the magnetic
field in the edge should satisfy ∇×B ' 0. This condition imposes that Bz be a constant
and that Bζ decay as 1/r,

Bζ(r) =
I

r
, (2.2)

where I is a constant determined by the vertical current through the core plasma.

3. Geometry and orderings

We consider a magnetized plasma with one ion species with charge e and mass mi,
electrons with charge −e and mass me, and one species of neutrals with mass

mn = mi. (3.1)

The plasma is magnetized by a helical magnetic field like the one described in the previous
section, and we assume that the plasma only varies in r and z. We assume that the electric
field produced by the plasma is electrostatic, E = −(∂φ/∂r)r̂− (∂φ/∂z)ẑ, where r̂ is the
unit vector in the direction ∇r. The potential φ(r, z, t) depends on the coordinates r and
z and on time t.

There are two conducting walls at z = 0 and z = Lz. In the radial direction, we
consider the interval between r = r0 and r = r0 + Lr. The length Lr is determined by
a balance between the fast parallel velocity of the particles along magnetic field lines
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⇣

Figure 1. Two magnetic field lines (in blue and red) of the helical magnetic field. Note that the
direction of the angle ζ is opposite to the direction usually chosen in cylindrical coordinates.

and their slow drift across them. The characteristic length between the two walls along
a magnetic field line is of order

L‖ ∼
B

Bz
Lz. (3.2)

Thus, the typical time that it takes an ion to move from wall to wall is L‖/vti ∼
(B/Bz)(Lz/vti), where vti :=

√
2Ti/mi is the ion thermal speed and Ti is the ion tem-

perature. For a potential φ of the order of Ti/e, where e is the proton charge, the radial
E×B drift is

vEr := −Bζ
B2

∂φ

∂z
∼ ρi
Lz
vti, (3.3)

where ρi := vti/Ωi is the characteristic ion gyroradius and Ωi := eB/mi is the ion
gyrofrequency. Thus, the time it takes for an ion to cross the domain in the radial
direction is Lr/vEr ∼ LrLz/ρivti. By making this time of the same order as L‖/vti, we
solve for Lr to find

Lr ∼
B

Bz
ρi (3.4)

To simplify the problem to a tractable drift kinetic form, we assume that ρi is much
smaller than Lr. This implies that

ρi
Lr
∼ Bz

B
∼ Bz
Bζ
� 1, (3.5)

that is, we will limit our model to magnetic fields that are mostly azimuthal and have a
very small vertical component. This is an approximation that is consistent with magnetic
field geometry in conventional tokamaks and also in the edge of many shots in spherical
tokamaks.

We also assume that r0 ∼ Lz � Lr. Since r0 is the characteristic length of variation of
the magnetic field B, the magnetic field barely changes across the domain [r0, r0 + Lr].
Thus, within our ordering, we assume B to be uniform in the domain of interest.

Our orderings above rest on the assumption φ ∼ Ti/e. This ordering is a result of the
wall boundary conditions that impose φ ∼ Te/e (see section 5) and the fact that Ti ∼ Te
due to collisional temperature equilibration.
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4. 2D electrostatic drift kinetics

We assume that the gyroradii are small compared to the length scales of interest, and
that the gyrofrequencies are much larger than the frequencies that we want to model.
Thus, the distribution functions fs(r, z, v‖, v⊥, t) of the charged species s = i, e only
depend on the component of the velocity parallel to the magnetic field v‖ and the mag-
nitude of the velocity perpendicular to the magnetic field v⊥, and are independent of
the direction of the velocity perpendicular to the magnetic field (Hazeltine 1973). The
distribution functions of ions and electrons (s = i, e) that in general can depend on three
spatial variables r, three components of the velocity v and the time t depend only on r,
z, v‖, v⊥ and t,

fs(r,v, t) = fs(r, z, v‖, v⊥, t). (4.1)

The neutral distribution function depends in general on the three velocity components,

fn(r,v, t) = fn(r, z, vr, vz, vζ , t). (4.2)

We remind the reader that the model is 2D because we have assumed that the plasma
parameters do not depend on the angle ζ.

The equations for the distribution functions of the different species are

∂fi
∂t
− 1

B

∂φ

∂z

∂fi
∂r

+

(
v‖Bz

B
+

1

B

∂φ

∂r

)
∂fi
∂z
− eBz
miB

∂φ

∂z

∂fi
∂v‖

= Cii[fi] + 〈Cin[fi, fn]〉+ 〈Ci,ion[fe, fn]〉+ Cie[fi, fe] + Si, (4.3)

∂fe
∂t
− 1

B

∂φ

∂z

∂fe
∂r

+

(
v‖Bz

B
+

1

B

∂φ

∂r

)
∂fe
∂z

+
eBz
meB

∂φ

∂z

∂fe
∂v‖

= Cee[fe]

+ Cei[fe, fi]

[
1 +O

(
me

mi

)]
+

〈
Cen[fe, fn]

[
1 +O

(
me

mi

)]〉
+ 〈Ce,ion[fe, fn]〉+ Se

(4.4)

and

∂fn
∂t

+ vr
∂fn
∂r

+ vz
∂fn
∂z

= Cni[fn, fi] + Cne[fn, fe] + Cn,ion[fn, fe] + Sn. (4.5)

The triangular brackets on a function G(r, z, vr, vz, vζ , t) indicate gyoraverage,

〈G〉(r, z, v‖, v⊥, t) :=
1

2π

∫ 2π

0

G
(
r, z, v⊥ cosϕ, v⊥ sinϕ, v‖, t

)
dϕ. (4.6)

The sources Ss(r, z,v, t) with s = i, e, n represent heating, fueling and the effect of
turbulence. The ion and electron particle sources satisfy∫

Si d3v =

∫
Se d3v. (4.7)

Note that we have neglected the curvature and ∇B drifts in equations (4.3) and (4.4).
These drifts point in the z- and ζ-direction. The ζ-direction is unimportant because
it is a direction of symmetry, whereas in the z-direction, the magnetic drifts can be
neglected compared to the much larger terms due to the parallel velocity, v‖Bz/B, and
the z-component of the E×B drift, vEz ' B−1(∂φ/∂r).

We have included the following collisions.
• Ion-ion and electron-electron collisions are modeled by the Fokker-Planck collision
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operators Cii[fi] and Cee[fe] (Rosenbluth et al. 1957),

Css[fs] :=
2πe4 ln Λ

(4πε0)2m2
s

∇v · (D[fs] · ∇vfs + P[fs]fs) , (4.8)

where the matrix D is

D[fs] :=

∫
|v − v′|2I− (v − v′)(v − v′)

|v − v′|3
fs(v

′) d3v′ (4.9)

and the vector P is

P[fs] := −2

∫
v − v′

|v − v′|3
fs(v

′) d3v′. (4.10)

Here, I is the 3D unit matrix, ε0 the vacuum permittivity and ln Λ ≈ 15 the Coulomb
logarithm.
• The effect of electron-ion and elastic electron-neutral collisions on the electron distri-

bution function can be simplified in the limit of small electron-ion mass ratio,me/mi � 1.
With this expansion, we find the simplified Fokker-Planck collision operator

Cei[fe, fi] :=
2πe4ni ln Λ

(4πε0)2m2
e

∇v ·
[
|v − ui|2I− (v − ui)(v − ui)

|v − ui|3
· ∇vfe

]
(4.11)

for electron-ion collisions (Braginskii 1958), and the simplified Boltzmann collision oper-
ator

Cen[fe, fn] :=
nn
4π

∫ π

0

dχ

∫ 2π

0

dϕ sinχRen(|v − un|, χ) [fe(v(v, χ, ϕ,un))− fe(v)]

(4.12)
for electron-neutral collisions. Here

ns(r, z, t) :=

∫
fs(r, z,v, t) d3v. (4.13)

is the density of species s,

us(r, z, t) :=
1

ns

∫
vfs(r, z,v, t) d3v (4.14)

is the average velocity of species s,

v(v, χ, ϕ,un) := un + cosχ(v − un) + |v − un| sinχ(cosϕ ê1 + sinϕ ê2) (4.15)

is a rotation of the vector v centered around un, Ren(|v−un|, χ) is a function determined
by the physics of the electron-neutral collisions, and the unit vectors ê1 and ê2 are chosen
to form an orthonormal basis with the vector (v − un)/|v − un|. In equation (4.4), we
have indicated that both Cei and Cen are missing pieces small in me/mi. These pieces
can become important because they represent collisional energy exchange and collisional
heating, but they are cumbersome. We showed in report 2047357-TN-05-01 M1.3 that
the moment method that we use allows us to keep these important effects in the moment
equations even with the simplified collision operators (4.11) and (4.12).
• The expansion in electron-ion mass ratio also implies electron-ion collisions and

electron-neutral collisions have a very small effect on fi and fn – the terms Cie and
Cne in equations (4.3) and (4.5) are small compared with Cii and Cni by a factor of√
me/mi � 1,

Cie ∼
√
me

mi
Cii, Cne ∼

√
me

mi
Cni. (4.16)
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Like the mass ratio corrections to Cei and Cen, these terms can become important because
they contain the collisional energy exchange between electrons and the heavier species.
We will keep these effects in a simplified form in our moment formulation.
• Charge-exchange collisions are represented by the simplified Boltzmann collision

operators

Cin[fi, fn] := −
∫
Rin(|v − v′|) [fi(v)fn(v′)− fi(v′)fn(v)] d3v′ (4.17)

and

Cni[fn, fi] := −
∫
Rin(|v − v′|) [fn(v)fi(v

′)− fn(v′)fi(v)] d3v′. (4.18)

• To model ionization, we use the collision operators

Ci,ion[fe, fn] := fn

∫
Rion(v′)fe(v

′) d3v′ (4.19)

and

Cn,ion[fe, fn] := −fn
∫
Rion(v′)fe(v

′) d3v′. (4.20)

We also need to include a collision operator Ce,ion in the electron equation to model the
increase in the number of electrons and the energy loss due to ionization. This operator
is complicated because it involves three particles (the resulting ion and two electrons),
but we will be able to avoid giving it a definite form. Instead, we will use the expansion
in me/mi � 1 and the fact that

Ce,ion[fe, fn] ∼ nnRionfe. (4.21)

See report 2047357-TN-05-01 M1.3 for more details.
• We have neglected neutral-neutral collisions because, in current fusion devices, the

neutral density is sufficiently small that the neutral-neutral collisions are rare.
To simplify our equations, we assume that the functions Ren, Rin and Rion are constant

(Connor 1977; Hazeltine et al. 1992; Catto 1994), finding

〈Cen[fe, fn]〉 =− nnRen

[
fe(r, z, v‖, v⊥, t)

− 1

8π2

∫ π

0

dχ

∫ 2π

0

dϕ

∫ 2π

0

dϕ′ sinχfe
(
r, z, v‖, v⊥, t

) ]
, (4.22)

with

v‖(v‖, v⊥, χ, ϕ
′,un) := un‖ + ven cosχ, (4.23)

v⊥(v‖, v⊥, χ, ϕ, ϕ
′,un) :=

√
u2n⊥ + v2en sin2 χ− 2un⊥ven sinχ cosϕ (4.24)

and

ven(v‖, v⊥, ϕ
′,un) :=

√
(v‖ − un‖)2 + v2⊥ + u2n⊥ − 2v⊥un⊥ cosϕ′, (4.25)

〈Cin[fi, fn]〉 = −Rin (nnfi − ni〈fn〉) , (4.26)

Cni[fn, fi] = −Rin (nifn − nnfi) , (4.27)

〈Ci,ion[fe, fn]〉 = 〈fn〉neRion (4.28)

and

Cn,ion[fe, fn] = −fnneRion. (4.29)
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The potential φ(r, z, t) is determined by the quasineutrality equation

ni = ne. (4.30)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on ∂fi/∂t and ∂fe/∂t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function.

5. Wall boundary conditions

We impose wall boundary conditions at z = 0 and z = Lz. In principle, we need to
consider the effect of the magnetic presheath (Chodura 1982) because the magnetic field
is not perpendicular to the wall. However, the complicated boundary conditions that
the magnetic presheath imposes on drift kinetic models are an active area of research
(Geraldini et al. 2017, 2018, 2019; Geraldini 2021). To avoid this complication, we assume
that the electron gyroradius is much smaller than the Debye length, thus ensuring that
electrons are magnetized even within the thin sheath of non-neutral plasma with a width
of the order of the Debye length that forms on walls to ensure quasineutrality. With this
assumption, we can impose boundary conditions similar to those proposed by Parker
et al. (1993).

The boundary conditions that we propose make use of the fact that the potential drop
across the magnetic presheath and the Debye sheath repels electrons away from the wall
because otherwise electrons would flow to the wall at much greater rate than ions due to
their lower mass and higher thermal speed. In our model, φ(r, 0, t) and φ(r, Lz, t) are not
the potential of the wall, but the potential at the entrance of the magnetic presheath. In
this report, we choose the potential of the wall at z = 0 to be 0 without loss of generality.
We denote the potential of the wall at z = Lz as φw. Then, for the magnetic presheaths
and Debye sheaths to repel electrons, φ(r, 0, t) must be larger than 0 and φ(r, Lz, t) must
be larger than φw.

The value of the potential at z = 0 and z = Lz is determined by the relationship
between the current crossing the magnetic presheath and the Debye sheath and the total
potential drop across these layers. We consider the magnetic presheath and the Debye
sheath at z = Lz first, and we will then apply the results that we obtain to the magnetic
presheath and the Debye sheath at z = 0. Ions recombine when they hit the wall, so
no ions come back. The velocity of the ions perpendicular to the wall is a combination
of parallel velocity and E ×B drift, v‖Bz/B + B−1(∂φ/∂r). Thus, the ions that would
come back from the wall must satisfy v‖ < −B−1z (∂φ/∂r), giving

fi(r, Lz, v‖ < −B−1z (∂φ/∂r), v⊥, t) = 0. (5.1)

Since the electrons are magnetized, the potential drop across the magnetic presheath and
the Debye sheath only modifies the parallel velocity of electrons. Within these layers, the
parallel energy E‖ := mev

2
‖/2 − eφ is conserved, and as a result an electron that has

velocity v‖ at the entrance of the sheath is slowed down to a parallel velocity [v2‖ −
2e(φ(r, Lz, t) − φw)/me]

1/2 when it reaches the wall. Thus, electrons with a parallel
velocity larger than

√
2e(φ(r, Lz, t)− φw)/me reach the wall, where they recombine with

ions, whereas electrons with parallel velocity smaller than
√

2e(φ(r, Lz, t)− φw)/me are
repelled back into the quasineutral plasma. Thus, the boundary condition on the electron
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distribution function at z = Lz is

fe(r, Lz, v‖ < 0, v⊥, t) =

{
fe(r, Lz,−v‖, v⊥, t) for v‖ > −

√
2e(φ(r, Lz, t)− φw)/me,

0 for v‖ < −
√

2e(φ(r, Lz, t)− φw)/me.
(5.2)

Here we can neglect the E×B drift because it is small compared to the typical electron
thermal speed by a factor of

√
me/mi � 1. Expressions (5.1) and (5.2) give the parallel

ion and electron current density towards the wall at the entrance of the sheath at z = Lz,

Ji‖(r, Lz, t) = 2πe

∫ ∞
−B−1

z (∂φ/∂r)

dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(r, Lz, v‖, v⊥, t) (5.3)

and

Je‖(r, Lz, t) = −2πe

∫ ∞
√

2e(φ(r,Lz,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(r, Lz, v‖, v⊥, t). (5.4)

Hence, the total parallel current density at z = Lz is the following function of φ(r, Lz, t)−
φw and the radial derivative of φ(r, Lz, t)− φw,

J‖(r, Lz, t) = 2πe

∫ ∞
−B−1

z (∂φ/∂r)

dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(r, Lz, v‖, v⊥, t)

−2πe

∫ ∞
√

2e(φ(r,Lz,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(r, Lz, v‖, v⊥, t). (5.5)

We assume that the potential φw does not depend on r and hence the radial derivative
of φ(r, Lz, t)− φw is simply the radial derivative of φ(r, Lz, t).

The conditions at z = 0 for the ion and electron distribution functions and the potential
are similar to those for z = Lz. For the ion and electron distribution functions, we find

fi(r, 0, v‖ > −B−1z (∂φ/∂r), v⊥, t) = 0 (5.6)

and

fe(r, 0, v‖ > 0, v⊥, t) =

{
fe(r, 0,−v‖, v⊥, t) for v‖ 6

√
2eφ(r, 0, t)/me,

0 for v‖ >
√

2eφ(r, 0, t)/me,
(5.7)

The relationship between the parallel current and the potential at the magnetic presheath
entrance is

J‖(r, 0, t) = −2πe

∫ −B−1
z (∂φ/∂r)

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(r, 0, v‖, v⊥, t)

+2πe

∫ −√2eφ(r,0,t)/me

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(r, 0, v‖, v⊥, t). (5.8)

We still need boundary conditions for the neutral distribution function. The neutrals
hit the wall and thermalize at the temperature of the wall Tw, while also receiving back
the ions that have recombined at the wall, that is,

fn(r, 0, vr, vz > 0, vζ , t) = Γ0fKw

(
vz,
√
v2r + v2ζ

)
(5.9)

and

fn(r, Lz, vr, vz < 0, vζ , t) = ΓLfKw

(
vz,
√
v2r + v2ζ

)
, (5.10)
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where

fKw(vn, vt) :=
3

4π

(
mi

Tw

)2 |vn|√
v2n + v2t

exp

(
−mi(v

2
n + v2t )

2Tw

)
(5.11)

is the Knudsen cosine distribution (Knudsen 1916), and

Γ0 := 2π

∫ −B−1
z (∂φ/∂r)

−∞
dv‖

∫ ∞
0

dv⊥ v⊥

∣∣∣∣v‖BzB
+

1

B

∂φ

∂r

∣∣∣∣ fi(r, 0, v‖, v⊥, t)
+

∫ ∞
−∞

dvr

∫ 0

−∞
dvz

∫ ∞
−∞

dvζ |vz|fn(r, 0, vr, vz, vζ , t) (5.12)

and

ΓL := 2π

∫ ∞
−B−1

z (∂φ/∂r)

dv‖

∫ ∞
0

dv⊥ v⊥

(
v‖Bz

B
+

1

B

∂φ

∂r

)
fi(r, Lz, v‖, v⊥, t)

+

∫ ∞
−∞

dvr

∫ ∞
0

dvz

∫ ∞
−∞

dvζ vzfn(r, Lz, vr, vz, vζ , t) (5.13)

are the fluxes of neutrals and ions towards the walls at z = 0 and z = Lz.

6. 2D moment drift kinetics

Instead of solving for fs(r, z, v‖, v⊥, t) with s = i, e, we solve for

Fs(r, z, w‖, w⊥, t) :=
v3ts(r, z, t)

ns(r, z, t)
fs

(
r, z, us‖(r, z, t) + vts(r, z, t)w‖, vts(r, z, t)w⊥, t

)
, (6.1)

where we have defined the normalized velocities

w‖(r, z, v‖, t) :=
v‖ − us‖(r, z, t)
vts(r, z, t)

(6.2)

and

w⊥(r, z, v⊥, t) :=
v⊥

vts(r, z, t)
, (6.3)

the average parallel velocity

us‖(r, z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(r, z, v‖, v⊥, t) (6.4)

and the thermal speed

vts(r, z, t) :=

√
2Ts(r, z, t)

ms
, (6.5)

with

Ts(r, z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥
ms[(v‖ − us‖(r, z, t))2 + v2⊥]

3
fs(r, z, v‖, v⊥, t) (6.6)

the temperature of species s. According to its definition, Fs(r, z, w‖, w⊥, t) must satisfy
the conditions

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fs(r, z, w‖, w⊥, t) = 1, (6.7)

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fs(r, z, w‖, w⊥, t) = 0 (6.8)
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and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fs(r, z, w‖, w⊥, t) =
3

2
(6.9)

at every point (r, z) and time t.
Similarly, for neutrals, we solve for

Fn(r, z, wr, wz, wζ︸ ︷︷ ︸
=w

, t) :=
v3tn(r, z, t)

nn(r, z, t)
fn

(
r, z,un(r, z, t) + vtn(r, z, t)w, t

)
, (6.10)

where we have defined the neutral temperature

Tn(r, z, t) :=
1

nn

∫
mi|v − un(r, z, t)|2

3
fn(r, z,v, t) d3v. (6.11)

According to its definition, Fn(r, z,w, t) must satisfy the conditions∫
Fn(r, z,w, t) d3w = 1, (6.12)∫
wFn(r, z,w, t) d3w = 0 (6.13)

and ∫
w2Fn(r, z,w, t) d3w =

3

2
(6.14)

at every point (r, z) and time t.

6.1. Ion equations

The equations for ni, ui‖ and Ti are

∂ni
∂t
− ∂

∂r

(
ni
B

∂φ

∂z

)
+

∂

∂z

[
ni

(
ui‖Bz

B
+

1

B

∂φ

∂r

)]
= nnneRion +

∫
Si d3v, (6.15)

nimi

[
∂ui‖

∂t
− 1

B

∂φ

∂z

∂ui‖

∂r
+

(
ui‖Bz

B
+

1

B

∂φ

∂r

)
∂ui‖

∂z

]
= −Bz

B

∂pi‖

∂z
− eniBz

B

∂φ

∂z

+nimi(nnRin + neRion)(un‖ − ui‖) +

∫
mi(v‖ − ui‖)Si d3v (6.16)

and

3

2
ni

[
∂Ti
∂t
− 1

B

∂φ

∂z

∂Ti
∂r

+

(
ui‖Bz

B
+

1

B

∂φ

∂r

)
∂Ti
∂z

]
= −Bz

B

∂qi‖

∂z
−
pi‖Bz

B

∂ui‖

∂z

+
3

2
ni(nnRin + neRion)(Tn − Ti) +

1

2
nimi(nnRin + neRion)[(un‖ − ui‖)2 + u2n⊥]

+
3nemeνei

mi
(Te − Ti) +

∫ (
1

2
mi|v − ui‖ẑ|2 −

3

2
Ti

)
Si d3v. (6.17)

Here,

νei :=
16
√
π

3

e4ni ln Λ

(4πε0)2m2
ev

3
te

(6.18)

is the electron-ion collision frequency as defined by Braginskii (Braginskii 1958), and we
have defined the parallel pressure

ps‖[Fs, ns, vts](r, z, t) := 2πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w
2
‖Fs(r, z, w‖, w⊥, t) (6.19)
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and the parallel heat flux

qs‖[Fs, ns, vts](r, z, t) := πnsmsv
3
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖(w
2
‖ + w2

⊥)Fs(r, z, w‖, w⊥, t)

(6.20)
for the charged species s = i, e.

The ion kinetic equation is

∂Fi
∂t

+ ṙi
∂Fi
∂r

+ żi
∂Fi
∂z

+ ẇ‖i
∂Fi
∂w‖

+ ẇ⊥i
∂Fi
∂w⊥

= Ḟi + Cii + Cin + Ci,ion + Si. (6.21)

Here, we have defined the coefficients

ṙi[φ](r, z, t) := − 1

B

∂φ

∂z
, (6.22)

żi[ui‖, vti, φ](r, z, w‖, t) :=
ui‖Bz

B
+

1

B

∂φ

∂r
+
vtiBz
B

w‖, (6.23)

ẇ‖i[Fi, ni, ui‖, vti](r, z, w‖, t) :=
Bz

nimivtiB

∂pi‖

∂z

+
2w‖Bz

3nimiv2tiB

[
∂qi‖

∂z
+

(
pi‖ −

3

2
nimiv

2
ti

)
∂ui‖

∂z

]
−
w2
‖Bz

B

∂vti
∂z

, (6.24)

ẇ⊥i[Fi, ni, ui‖, vti](r, z, w‖, w⊥, t) :=
2w⊥Bz

3nimiv2tiB

(
∂qi‖

∂z
+ pi‖

∂ui‖

∂z

)
−
w‖w⊥Bz

B

∂vti
∂z
(6.25)

and

Ḟi[Fi, ni, ui‖, vti](r, z, w‖, w⊥, t) :=
Bz
B

[
w‖

(
3
∂vti
∂z
− vti
ni

∂ni
∂z

)

− 2

nimiv2ti

(
∂qi‖

∂z
+

(
pi‖ −

1

2
nimiv

2
ti

)
∂ui‖

∂z

)]
Fi. (6.26)

We have also defined a modified source Si and several modified collision operators. The
modified source for the charged species s = i, e is given by

Ss[Ss, Fs, ns, us‖, vts](r, z, w‖, w⊥, t)

:=−
[
Fs
ns

∫
Ss d3v − v3ts

ns
Ss(r, z, us‖ + vtsw‖, vtsw⊥, t)

]
+

∂

∂w‖

[
Fs

(
1

nsvts

∫
(v‖ − us‖)Ss d3v +

w‖

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

)]
+

1

w⊥

∂

∂w⊥

[
w2
⊥Fs

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

]
. (6.27)

Note that the differential terms in this modified source could have been included in the
definitions of the coefficients ẇ‖i, ẇ⊥i and Ḟi, but we have decided to make them part
of a modified source instead to separate the effect of the source clearly. We will do the
same for collisions. This split should not be taken as a suggestion on how to implement
these terms in a code. The modified collisions operators are described in Appendix A.
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6.2. Electron equations

For the electrons, we use the expansion in me/mi described in report 2047357-TN-05-01
M1.3. We first describe the electron fluid equations and how to use them.

• The electron continuity equation is

∂ne
∂t
− ∂

∂r

(
ne
B

∂φ

∂z

)
+

∂

∂z

[
ne

(
ue‖Bz

B
+

1

B

∂φ

∂r

)]
= −nennRion +

∫
Se d3v. (6.28)

Subtracting this equation from equation (6.15) and using quasineutrality, we obtain the
current conservation equation

Bz
B

∂

∂z

[
ne
(
ui‖ − ue‖

)]
= 0, (6.29)

where we have used property (4.7). This equation can be used to calculate ue‖ once ue‖
is known at z = 0. We discuss how to obtain ue‖ at z = 0 in the next bullet point.
• The electron parallel momentum equation simplifies to

0 = −Bz
B

∂pe‖

∂z
+
eneBz
B

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (6.30)

where

Fei‖[Fe, ne, ni, ue‖, ue‖, vte, vti](z, t)

:=− 8π2e4neni ln Λ

(4πε0)2mev2te

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥(w‖ − (ui‖ − ue‖)/vte)Fe

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(6.31)

is the friction force between electrons and ions. Equation (6.30) can be used to calcu-
late the potential difference between z = 0 and any value of z, φ(r, z, t) − φ(r, 0, t). To
completely determine the potential, we need to calculate φ(r, 0, t). We do so with the
current-potential relationships of the magnetic presheath and the Debye sheath, given
in equations (5.5) and (5.8). We use two coupled nonlinear equations for the unknowns
φ(r, 0, t) and φ(r, Lz, t).

◦ Integrating equation (6.29) between z = 0 and z = Lz, we obtain the condi-
tion J‖(r, Lz, t) − J‖(r, 0, t) = 0. Since equations (5.5) and (5.8) give J‖(r, Lz, t)
and J‖(r, 0, t) as functions of φ(r, Lz, t) − φw and φ(r, 0, t), condition J‖(r, Lz, t) −
J‖(r, 0, t) = 0 is an equation for φ(r, Lz, t) and φ(r, 0, t) (we assume the bias φw to
be externally determined).
◦ The other equation is the value of φ(r, Lz, t) − φ(r, 0, t) obtained by integrating
equation (6.30) from z = 0 to z = Lz. Note that the value of φ(r, Lz, t)−φ(r, 0, t) de-
pends on the unknown ue‖(r, 0, t) (recall that ue‖ can be determined everywhere from
equation (6.29) for a given ue‖(r, 0, t)). The value ue‖(r, 0, t) depends on φ(r, 0, t)
via equation (5.8) and so, in the end, equation (6.30) gives a relationship between
φ(r, Lz, t)− φ(r, 0, t) and φ(r, 0, t).

Once these two equations for φ(r, 0, t) and φ(r, Lz, t) are solved, we can substitute the
value of φ(r, 0, t) in equation (5.8) to calculate ue‖(r, 0, t), and then integrate equa-
tion (6.29) to find ue‖ everywhere.
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• The electron energy equation is

3

2
ne

[
∂Te
∂t
− 1

B

∂φ

∂z

∂Te
∂r

+

(
ue‖Bz

B
+

1

B

∂φ

∂r

)
∂Te
∂z

]
= −Bz

B

∂qe‖

∂z
−
pe‖Bz

B

∂ue‖

∂z

−nennRionEion +
3nemeνei

mi
(Ti − Te) + Fei‖(ui‖ − ue‖)

+
3nemennRen

mi
(Tn − Te) + nemennRen[(un‖ − ue‖)2 + u2n⊥]

+

∫ (
1

2
me|v − ue‖ẑ|2 −

3

2
Te

)
Se d3v, (6.32)

where Eion is the ionization energy cost that includes in it radiation from excited states.
The kinetic equation for electrons is

że
∂Fe
∂z

+ ẇ‖e
∂Fe
∂w‖

+ ẇ⊥e
∂Fe
∂w⊥

= Ḟe + Cee + Cei + Cen, (6.33)

where

że[Fe, vte](z, w‖, t) := vtew‖, (6.34)

ẇ‖e[Fe, ue‖, vte](z, w‖, t) :=
Bz

nemevteB

∂pe‖

∂z
+

2w‖Bz

3nemev2teB

∂qe‖

∂z
−
w2
‖Bz

B

∂vte
∂z

, (6.35)

ẇ⊥e[Fe, ue‖, vte](z, w‖, w⊥, t) :=
2w⊥Bz

3nemev2teB

∂qe‖

∂z
−
w‖w⊥Bz

B

∂vte
∂z

(6.36)

and

Ḟe[Fe, ue‖, vte](z, w‖, w⊥, t) :=
Bz
B

[
w‖

(
3
∂vte
∂z
− vte
ne

∂ne
∂z

)
− 2

nemev2te

∂qe‖

∂z

]
Fe. (6.37)

The modified collision operators Cee, Cei and Cen are described in Appendix B.

6.3. Neutral equations

The fluid equations for the neutrals are

∂nn
∂t

+∇ · (nnun) = −nnneRion +

∫
Sn d3v, (6.38)

nnmi

(
∂un
∂t

+ un · ∇un

)
= −∇ ·Pn + nnminiRin

(
ui‖ζ̂ − un

)
+

∫
mi(v − un)Sn d3v (6.39)

and

3

2
nn

(
∂Tn
∂t

+ un · ∇Tn
)

= −∇ · qn −Pn : ∇un +
3

2
nnniRin(Ti − Tn)

+
1

2
nnminiRin[(un‖ − ui‖)2 + u2n⊥] +

3nemennRen
mi

(Te − Tn)

+

∫ (
1

2
mi|v − un|2 −

3

2
Tn

)
Sn d3v. (6.40)
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Here, we have defined the pressure tensor

Pn[Fn, nn, vtn](r, z, t) := nnmiv
2
tn

∫
wwFn(r, z,w, t) d3w (6.41)

and the heat flux

qn[Fn, nn, vtn](z, t) :=
1

2
nnmiv

3
tn

∫
w2wFn(r, z,w, t) d3w. (6.42)

The neutral kinetic equation is

∂Fn
∂t

+ ṙn
∂Fn
∂r

+ żn
∂Fn
∂z

+ ẇn · ∇wFn = Ḟn + Cni + Sn, (6.43)

where we have defined the coefficients

ṙn[unr, vtn](r, z, wr, t) := unr + vtnwr, (6.44)

żi[unz, vtn](r, z, wz, t) := unz + vtnwz, (6.45)

ẇn[Fn, nn,un, vtn](r, z,w, t) :=
1

nnmivtn
∇ ·Pn

+
2w

3nnmiv2tn
(∇ · qn + Pn : ∇un)−w · ∇un −ww · ∇vtn, (6.46)

The modified charge exchange collision operator Cni is described in Appendix C. The
modified source is

Sn[Sn, Fn, nn,un, vtn](r, z,w, t) := −
[
Fn
nn

∫
Sn d3v − v3tn

nn
Ss(r, z,un + vtnw, t)

]
+∇w ·

[
Fn

(
1

nnvtn

∫
(v − un)Sn d3v +

w

3nnv2tn

∫ (
|v − un|2 −

3

2
v2tn

)
Sn d3v

)]
.

(6.47)

6.4. Boundary conditions

These equations have to be solved with the boundary conditions in equations (5.1), (5.2),
(5.6), (5.7), (5.9) and (5.10). For ns, us‖, vts and Fs known at time t, we can construct
fs at z = 0 and z = Lz, and we can apply the wall boundary conditions to fs. We can
then use the resulting fs to obtain ns, us, vts and Fs, closing the system of equations.

7. Discussion

The model that we propose is comprised of:
• the three fluid equations (6.15), (6.16) and (6.17) for ions that have to be solved in

conjunction with the ion kinetic equation (6.21);
• the five fluid equations (6.38), (6.39) and (6.40) for neutrals that have to be solved

in conjunction with the neutral kinetic equation (6.43);
• the two fluid equations (6.29) and (6.32) for electrons that have to be solved in

conjunction with the electron kinetic equation (6.33); and
• the electron parallel momentum equation (6.30) for the potential.

The boundary conditions for this system of equations are described in section 5.
To test the model proposed in this report, we will first extend the existing 1D code

based on adiabatic electrons to wall boundary conditions. We will then explore the effect
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of adding electrons. For most physics of interest, it is sufficient to use simplified ion-
ion and electron-electron collision operators, and for this reason we do not expect to
implement a full Fokker-Planck collision operator.

Appendix A. Modified collision operators for the ion kinetic equation

The modified Fokker-Planck like-particle collision operator is

Css[Fs,ns, vts](r, z, w‖, w⊥, t)

:=
2πe4ns ln Λ

(4πε0)2m2
sv

3
ts

{
∂

∂w‖

(
D‖‖[Fs]

∂Fs
∂w‖

+D‖⊥[Fs]
∂Fs
∂w⊥

+ P‖[Fs]Fs
)

+
1

w⊥

∂

∂w⊥

[
w⊥

(
D‖⊥[Fs]

∂Fs
∂w‖

+D⊥⊥[Fs]
∂Fs
∂w⊥

+ P⊥[Fs]Fs

)]}
. (A 1)

The coefficients needed for this collision operator are

D‖‖[Fs](r, z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)−

(w‖ − w′‖)
2E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t), (A 2)

D‖⊥[Fs](r, z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t), (A 3)

D⊥⊥[Fs](r, z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w2
⊥

√
(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

{
2w⊥

[
w⊥(w‖ − w′‖)

2

(w‖ − w′‖)2 + (w⊥ − w⊥)2
− w′⊥

]
E(κ)

+[(w‖ − w′‖)
2 + w2

⊥ + w′2⊥][K(κ)− E(κ)]

}
Fs(z, w

′
‖, w

′
⊥, t), (A 4)

P‖[Fs](r, z, w‖, w⊥, t) := 8

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)− E(κ)

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
− E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t)

(A 5)
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and

P⊥[Fs](r, z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t). (A 6)

Here, K(κ) :=
∫ π/2
0

(1− κ2 sin2 α)−1/2 dα and E(κ) :=
∫ π/2
0

(1− κ2 sin2 α)1/2 dα are the
elliptic integrals, and the function κ is

κ(w‖, w⊥, w
′
‖, w

′
⊥) :=

√
4w⊥w′⊥

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
. (A 7)

The modified charge exchange collision operator for the ion kinetic equation is

Cin[Fi, 〈Fn〉, nn, ui‖,un, vti, vtn](z, w‖, w⊥, t)

:=− nnRin
[
Fi −

v3ti
v3tn
〈Fn〉

(
r, z,

ui‖ − un‖
vtn

+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ nnRin

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2[(un‖ − ui‖)2 + u2n⊥]

3v2ti

))
Fi

]
+
nnRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2[(un‖ − ui‖)2 + u2n⊥]

3v2ti

)
Fi

]
, (A 8)

where

〈Fn〉[Fn,un⊥](r, z, w‖, w⊥, t)

:=
1

2π

∫ 2π

0

Fn

(
r, z, w⊥ cosϕ− unr

vtn
, w⊥ sinϕ− unz

vtn
, w‖, t

)
dϕ (A 9)

is the gyroaverage of Fn.

Finally, the modified ionization collision operator for the ion kinetic equation is

Ci,ion[〈Fn〉, ne, ui‖,un, vti, vtn](r, z, w‖, w⊥, t)

:=− neRion

[
Fi −

v3ti
v3tn
〈Fn〉

(
r, z,

ui‖ − un‖
vtn

+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ neRion

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2[(un‖ − ui‖)2 + u2n⊥]

3v2ti

))
Fi

]
+
neRion

w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2[(un‖ − ui‖)2 + u2n⊥]

3v2ti

)
Fi

]
. (A 10)

Appendix B. Modified collision operators for the electron kinetic
equation

The electron-electron collision operator is described in equation (A 1).
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The modified ion-electron collision operator is

Cei[Fe, ni, ui‖, ue‖, vte](r, z, w‖, w⊥, t)

:=
2πe4ni ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

[
M‖‖

∂Fe
∂w‖

+M‖⊥
∂Fe
∂w⊥

+

(
1 +

2(ui‖ − ue‖)w‖
3vte

)
F‖Fe

]

+
1

w⊥

∂

∂w⊥

[
w⊥

(
M‖⊥

∂Fe
∂w‖

+M⊥⊥
∂Fe
∂w⊥

+
2(ui‖ − ue‖)w⊥

3vte
F‖Fe

)]}
, (B 1)

where

M‖‖[ue‖, vte, ui‖](r, z, w‖, w⊥, t) :=
w2
⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (B 2)

M‖⊥[ue‖, vte, ui‖](r, z, w‖, w⊥, t) := −
(w‖ − (ui‖ − ue‖)/vte)2w⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (B 3)

M⊥⊥[ue‖, vte, ui‖](r, z, w‖, w⊥, t) :=
(w‖ − (ui‖ − ue‖)/vte)2

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(B 4)

and

F‖[Fe, ue‖, vte, ui‖](r, z, t)

:= −4π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥[w‖ − (ui‖ − ue‖)/vte]Fe(z, w‖, w⊥, t)

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

. (B 5)

The modified electron-neutral collision operator is

Cen[Fe, nn,un, ue‖, vte](z, w‖, w⊥, t) := −nnRen

[
Fe

− 1

8π2

∫ π

0

dχ

∫ 2π

0

dϕ

∫ 2π

0

dϕ′ sinχFe(z, w‖, w⊥, t)

]

+ nnRen
∂

∂w‖

[(
1 +

2[(un‖ − ue‖)2 + u2n⊥]w‖

3v2te

)
Fe

]
+

2nnRen[(un‖ − ue‖)2 + u2n⊥]

3v2tew⊥

∂

∂w⊥

(
w2
⊥Fe

)
, (B 6)

where

w‖[ue‖, vte,un](r, z, w‖, w⊥, χ, ϕ
′, t) :=

un‖ − ue‖
vte

+ wen cosχ, (B 7)

w⊥[ue‖, vte, un‖](r, z, w‖, w⊥, χ, ϕ, ϕ
′t) :=

√
u2n⊥
v2te

+ w2
en sin2 χ− 2un⊥wen

vte
sinχ cosϕ

(B 8)
and

wen[ue‖, vte,un](r, z, w‖, w⊥, ϕ
′, t)

:=

√(
w‖ +

ue‖ − un‖
vte

)2

+ w2
⊥ +

u2n⊥
v2te
− 2un⊥w⊥

vte
cosϕ′. (B 9)
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Appendix C. Modified collision operators for the neutral kinetic
equation

The modified charge exchange collision operator for the neutral kinetic equation is

Cni[Fn, Fi, ni,un, ui‖, vtn, vti](r, z, wr, wz, wζ , t)

:=− niRin
[
Fn −

v3tn
v3ti

Fi

(
r, z,

un‖ − ui‖
vti

+
vtn
vti

wζ ,
vtn
vti

∣∣∣∣w⊥ +
un⊥
vtn

∣∣∣∣ , t)]
+ niRin∇w ·

[(
ui‖ζ̂ − un

vtn
+

w

2

(
v2ti
v2tn
− 1 +

2[(un‖ − ui‖)2 + u2n⊥]

3v2tn

))
Fn

]
,

(C 1)

where ∣∣∣∣w⊥ +
un⊥
vtn

∣∣∣∣ '
√(

wr +
unr
vtn

)2

+

(
wz +

unz
vtn

)2

. (C 2)
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1. Introduction

In report 2047357-TN-07-02, we presented a 2D drift kinetic model for a helical mag-
netic field with wall boundary conditions. The wall boundary conditions made it possible
to obtain the potential and the electron flow from the conservation of parallel current
and the electron parallel momentum equation. With periodic boundary conditions, ap-
propriate for closed flux surfaces, it will not be sufficient with conservation of parallel
current, and we will have to include terms small in the expansion parameter that we use,
the ion gyroradius over the characteristic width of the scrape-off layer (ρi/Lr).

In this report, we first remind the reader of the content in report 2047357-TN-07-02,
and we then explain how to modify the current conservation equations for cases with
periodic boundary conditions.

2. Magnetic field, geometry and orderings

We use the cylindrical coordinates {r, z, ζ} (see report 2047357-TN-07-02 for the direc-
tion of increase of ζ). We consider a magnetized plasma with one ion species with charge
e and mass mi, electrons with charge −e and mass me, and one species of neutrals with
mass

mn = mi. (2.1)

The plasma is magnetized by the helical magnetic field

B(r, ζ) := Bz(r)ẑ +Bζ(r)ζ̂(ζ), (2.2)

where ẑ and ζ̂ are the unit vectors in the direction of ∇z and ∇ζ. Note that the compo-
nents Bz and Bζ only depend on the radial position r.

We assume that the plasma only varies in r and z. We assume that the electric field
produced by the plasma is electrostatic, E = −(∂φ/∂r)r̂− (∂φ/∂z)ẑ, where r̂ is the unit
vector in the direction ∇r. The potential φ(r, z, t) depends on the coordinates r and z
and on time t.

We impose periodic boundary conditions at z = 0 and z = Lz. In the radial direction,
we consider the interval between r = r0 and r = r0 + Lr. The length Lr is determined
by a balance between the fast parallel velocity of the particles along magnetic field lines
and their slow drift across them. The characteristic length between the two walls along
a magnetic field line is of order

L‖ ∼
B

Bz
Lz. (2.3)

Thus, the typical time that it takes for an ion to move from wall to wall is L‖/vti ∼
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(B/Bz)(Lz/vti), where vti :=
√

2Ti/mi is the ion thermal speed and Ti is the ion tem-
perature. For a potential φ of the order of Ti/e, where e is the proton charge, the radial
E×B drift is

vEr := −Bζ
B2

∂φ

∂z
∼ ρi
Lz
vti, (2.4)

where ρi := vti/Ωi is the characteristic ion gyroradius and Ωi := eB/mi is the ion
gyrofrequency. Thus, the time it takes for an ion to cross the domain in the radial
direction is Lr/vEr ∼ LrLz/ρivti. By making this time of the same order as L‖/vti, we
solve for Lr to find

Lr ∼
B

Bz
ρi (2.5)

To simplify the problem to a tractable drift kinetic form, we assume that ρi is much
smaller than Lr. This implies that

ρi
Lr
∼ Bz

B
∼ Bz
Bζ
� 1, (2.6)

that is, we will limit our model to magnetic fields that are mostly azimuthal and have a
very small vertical component. This is an approximation that is consistent with magnetic
field geometry in conventional tokamaks and also in the edge of many shots in spherical
tokamaks.

We also assume that r0 ∼ Lz � Lr. Since r0 is the characteristic length of variation of
the magnetic field B, the magnetic field barely changes across the domain [r0, r0 + Lr].
Thus, within our ordering, we assume B to be uniform in the domain of interest.

We assume the time derivatives to be of the same order as the parallel and perpendic-
ular time scales that we have discussed above,

∂

∂t
∼ ρi
Lr

vti
Lz
. (2.7)

Our orderings above rest on the assumption φ ∼ Ti/e. In the case with wall boundary
conditions, the wall boundary conditions ensured that φ remained of this order. With
periodic boundary conditions, the size of φ is controlled by the momentum input. The
force per unit volume on the plasma due to external sources, neutral-plasma collisions or
ionization must satisfy

|Fi,ext⊥|, |Fe,ext⊥|, |Fin⊥|, |Fen⊥|, |Fi,ion⊥|, |Fe,ion⊥| .
(
ρi
Lr

)2
pi
Lz
, (2.8)

where pi is the ion pressure. This estimate for the force per unit volume comes from
making the force of the order of the perpendicular inertia, ∂(nimiui⊥)/∂t, where the
perpendicular ion velocity ui⊥ is taken to be of order (ρi/Lr)vti (see equation (4.7)
below for a justification of this ordering for ui⊥; also note that this means that the
perpendicular flow is much smaller than the parallel one, which we assume to be of the
order of vti). Equation (2.8) might seem stringent, but the friction between ions and
neutrals and electron and neutrals (due to elastic collisions or ionization) is small in the
closed field line region of the tokamak because the neutral density is small, i.e. we can
assume that

nnRin ∼ nnRen
√
me

mi
∼ nnRion .

(
ρi
Lr

)2
vti
Lz
, (2.9)

where nnRin, nnRen and nnRion are the ion-neutral, electron-neutral and ionization
collision frequencies.
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3. Summary of report 2047357-TN-07-02

The model in report 2047357-TN-07-02 is comprised of:
• three fluid equations (conservation of particles, parallel momentum and energy) for

ions that have to be solved in conjunction with an ion kinetic equation to determine
the ion density ni = ne, the ion parallel velocity ui‖, the ion temperature Ti and the
normalized ion distribution function Fi;
• five fluid equations (conservation of particles, the three components of momentum

and energy) for neutrals that have to be solved in conjunction with a neutral kinetic
equation to determine the neutral density nn, the three components of the neutral velocity
un, the neutral temperature Tn and the normalized neutral distribution function Fn;
• two fluid equations (conservation of parallel current,

Bz
B

∂

∂z

[
ni
(
ui‖ − ue‖

)]
= 0, (3.1)

and conservation of energy) for electrons that have to be solved in conjunction with
an electron kinetic equation to determine the electron parallel velocity ue‖, the electron
temperature Te and the electron normalized distribution function Fe; and
• the electron parallel momentum equation,

0 = −Bz
B

∂pe‖

∂z
+
eneBz
B

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (3.2)

for the potential φ. Here, Fei‖ is the collisional friction force between electrons and ions.
In report 2047357-TN-07-02, we proposed a method to solve equations (3.1) and (3.2)

in conjunction with wall boundary conditions. Equation (3.1) can be integrated in z
to obtain ue‖(r, z, t) − ue‖(r, 0, t) (recall that ni and ui‖ are time-advanced using ion
equations). With this result, equation (3.2) can be integrated in z to obtain the difference
φ(r, z, t)−φ(r, 0, t) as a function of the unknown ue‖(r, 0, t) (recall that pe‖ is determined
by the electron energy equation and the electron kinetic equation, and that Fei‖ depends
on ue‖). With wall boundary conditions, we could solve for both ue‖(r, 0, t) and φ(r, 0, t).
Unfortunately, the same cannot be said for periodic boundary conditions. With periodic
boundary conditions and these equations, it is possible to find an equation for ue‖(r, 0, t),
but not for φ(r, 0, t). Indeed, dividing equation (3.2) by ne, integrating in z and using
the periodic boundary conditions for φ, we find the condition

0 =

∫ Lz

0

[
− Bz
neB

∂pe‖

∂z
+
Fei‖

ne
+mennRen(un‖ − ue‖)

]
dz. (3.3)

This condition is satisfied by choosing the correct value of ue‖(r, 0, t). Within equa-
tions (3.1) and (3.2), there is no other similar condition for φ(r, 0, t). To find such a
condition, we need to modify equation (3.1) by keeping higher order terms in ρi/Lr.

4. Current conservation for periodic boundary conditions

Parra & Catto (2008) showed that gyrokinetic equations (and consequently the sub-
sidiary limit of drift kinetics) require higher order terms in ρi/Lr in order to determine
the component of the electric field perpendicular to the flux surfaces traced by the mag-
netic field when the magnetic field is axisymmetric. In this case, this means that one
needs higher order terms to determine ∂φ/∂r.

The need for higher order terms can be demonstrated using moments of the full kinetic
equation. Before we start taking moments, we explain what we mean by full kinetic
distribution function and full kinetic equation in this report, and how they compare to
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the drift kinetic distribution function and kinetic equation that we have used so far.
Importantly, what follows does not apply to the neutral distribution function and kinetic
equation as we have not reduced them using the drift kinetic approximation in previous
reports.

We denote the ion and electron full distribution functions by gs(r, z,v, t), where the
velocity is given by

v = v‖b̂ + v⊥ = v‖b̂ + v⊥(cosϕ r̂ + sinϕ b̂× r̂), (4.1)

Here v‖ is the velocity parallel to the magnetic field, b̂ := B/B is the unit vector in the
direction to the magnetic field, and the velocity perpendicular to the magnetic field v⊥
is described by its magnitude v⊥ and its direction, given by the gyrophase ϕ. The full
kinetic distribution functions for ions and electrons, gi and ge, satisfy the full kinetic
equations

∂gi
∂t

+∇ · (vgi) +∇v ·
[
e

mi
(−∇φ+ v ×B) gi

]
= Cii + Cin + Cie + Ci,ion +Qi (4.2)

and

∂ge
∂t

+∇· (vge) +∇v ·
[
− e

me
(−∇φ+ v ×B) ge

]
= Cee +Cen +Cei +Ce,ion +Qe. (4.3)

Note that we have included like-particle collisions, electron-ion collisions, collisions with
neutrals and ionization collisions. The sources Qe represent the particle, momentum and
energy input into the plasma.

The drift kinetic ion and electron distribution functions fi and fe that we used in
previous reports are gyroaverages of the full distribution functions,

fs(r, z, v‖, v⊥, t) :=
1

2π

∫ 2π

0

gs(r, z,v(v‖, v⊥, ϕ), t) dϕ. (4.4)

(Correspondingly, the sources Ss that we used are the gyoraverage of the full sources
Qs.) For ρi/Lr � 1, the distribution functions gs and fs are almost identical, gs ' fs
(Hazeltine 1973). The difference between these distribution functions, of order ρi/Lr � 1,
was negligible in the case with wall boundary conditions, but it will be important with
periodic boundary conditions. Thus, we write

gs = fs + gs1 + . . . , (4.5)

where, neglecting the ion-neutral, electron-neutral and ionization collisions to lowest
order (recall equation (2.9)),

gs1 = sinϕ

(
v⊥
Ωs

∂fs
∂r
− 1

B

∂φ

∂r

∂fs
∂v⊥

)
∼ ρs
Lr
fs. (4.6)

Here Ωs := ZseB/ms is the gyrofrequency of species s, and Zs is the charge number (1
for ions and −1 for electrons). Using equation (4.5), we can calculate the perpendicular
average velocity of ions and electrons,

us⊥ :=
1

ns

∫
v⊥gs d3v ' 1

ns

∫
v⊥gs1 d3v = b̂× r̂

(
1

ZsensB

∂ps⊥
∂r

+
1

B

∂φ

∂r

)
∼ ρi
Lr
vti,

(4.7)
where ps⊥ :=

∫
(msv

2
⊥/2)fs d3v is the perpendicular pressure of species s. Note that since

the average of v⊥ over the gyrophase vanishes, us⊥ is only due to the small correction
gs1. Thus, us⊥ is small. Note that this is a consequence of our assumption φ ∼ Ti/e. A
larger φ would have led to a larger average velocity.



2D drift kinetic model with periodic boundary conditions 5

After this brief introduction to the full distribution functions gs, we can use moments
of these distribution functions to impose current conservation following the procedure
proposed by Parra & Catto (2009). Current conservation can be written as

∇ ·
[
eni(ui‖ − ue‖)b̂

]
+∇ · J⊥ = 0, (4.8)

where J⊥ is the component of the current density perpendicular to the magnetic field.
In report 2047357-TN-07-02 we could neglect the term ∇ · J⊥ because it is small in
Lr/Lz � 1. We cannot neglect it any longer, as we need it to determine φ(r, 0, t).
Equation (4.8) can be written as

∂

∂z

[
eniBz
B

(ui‖ − ue‖) + J⊥ · ẑ
]

+
1

r

∂

∂r
(rJ⊥ · r̂) = 0. (4.9)

Due to the periodic boundary conditions, the large parallel current term can be eliminated
by integrating in z,

∂

∂r

(∫ Lz

0

J⊥ · r̂ dz

)
= 0, (4.10)

where we have also used the fact that r ' r0 is almost constant. Condition (4.10) deter-
mines φ(r, 0, t).

Unfortunately, equation (4.7) is not enough to compute J⊥ · r̂ to the sufficiently high
order needed to obtain φ(r, 0, t). The perpendicular current density can, however, be
calculated to very high order by taking moments of the full kinetic equations for ions
and electrons. Multiplying equations (4.2) and (4.3) by msv and integrating over velocity
space, we find the ion and electron total momentum equations,

∂

∂t
(nimiui) +∇ ·

(∫
mivvgi d3v

)
= −eni∇φ+ eniui ×B + Fin + Fie + Fi,ion + Fi,ext

(4.11)
and

∂

∂t
(nemeue) +∇ ·

(∫
mevvge d3v

)
= ene∇φ− eneue×B + Fen + Fei + Fe,ion + Fe,ext.

(4.12)
Here, Fα :=

∫
msvCα d3v is the force due to the collision operator Cα, and Fs,ext :=∫

msvQs d3v is the external momentum input. Summing equations (4.11) and (4.12),
using quasineutrality and Fie+Fei = 0, and neglecting the electron momentum compared
to the ion momentum, we find

J×B ' ∇·
(∫

mivvgi d3v +

∫
mevvge d3v

)
+
∂

∂t
(nimiui)−Fin−Fi,ion−Fext. (4.13)

where we have defined the total external force Fext := Fi,ext + Fe,ext. Multiplying equa-

tion (4.13) by (r̂× b̂)/B, we obtain the radial component of J⊥,

J⊥ · r̂ ' −
1

B
∇ ·
(∫

mivv · (b̂× r̂)gi d3v +

∫
mev · (b̂× r̂)ge d3v

)
+

1

B

∫
miv · ∇

(
b̂× r̂

)
· vgi d3v +

1

B

∫
mev · ∇

(
b̂× r̂

)
· vge d3v

− ∂

∂t

[nimi

B
ui · (b̂× r̂)

]
+

1

B
Fin · (b̂× r̂) +

1

B
Fi,ion · (b̂× r̂) +

1

B
Fext · (b̂× r̂),

(4.14)
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where

∇
(
b̂× r̂

)
= −

B2
ζ

B2

d

dr

(
Bz
Bζ

)
r̂b̂− BzBζ

rB2
b̂r̂ +

B2
z

rB2
(b̂× r̂)r̂ ∼ Bz

r0B
∼ ρi
Lr

1

Lz
. (4.15)

The term with the time derivative in the right side of equation (4.14) sets the size of the
equation. For ∂/∂t ∼ ρivti/LrLz, using the fact that |ui⊥| ∼ (ρi/Lr)vti, we find

∂

∂t

[nimi

B
ui · (b̂× r̂)

]
∼
(
ρi
Lr

)2
pi
BLz

. (4.16)

This estimate justifies the ordering (2.8). Also, estimate (4.16) sets the size of the terms

that we need to keep in the equation. For example, the integrals that contain ∇(b̂ × r̂)

are small because ∇(b̂ × r̂) is itself small in ρi/Lr and the integrals over velocity are
small by a factor of (ρi/Lr)

2, as can be checked using expression (4.6) for gi and ge.
Thus, integrating over z, using equation (4.7) for ui⊥ and employing the approximation
r ' r0, we find

∫ Lz

0

J⊥ · r̂ dz ' − ∂

∂t

[∫ Lz

0

nimi

B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

]

− 1

B

∂

∂r

[∫ Lz

0

(∫
miv · r̂(v × b̂) · r̂ gi d3v +

∫
mev · r̂(v × b̂) · r̂ ge d3v

)
dz

]

+

∫ Lz

0

[
1

B
Fin · (b̂× r̂) +

1

B
Fi,ion · (b̂× r̂) +

1

B
Fext · (b̂× r̂)

]
dz. (4.17)

The velocity integrals in equation (4.17) can be calculated using a moment of equa-

tions (4.2) and (4.3). Multiplying equation (4.2) by (m2
i /4eB)[(v · r̂)2 − ((v × b̂) · r̂)2]

and integrating in velocity space and z, we find

∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi

' 1

4Ωi

∂

∂t

[∫ Lz

0

dz

∫
d3vmi[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

+
1

4Ωi

∂

∂r

[∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

−
∫ Lz

0

nimi

2B2

[
∂φ

∂r

(
∂φ

∂z
+

1

eni

∂pi⊥
∂z

)
+
∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz

− 1

4Ωi

∫ Lz

0

dz

∫
d3vmi[(v · r̂)2 − ((v × b̂) · r̂)2]Cii, (4.18)

where we have neglected most collision operators due to our assumption (2.9). Due to the
integrals over the gyrophase, the terms with the time derivative and the ion-ion collision
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operator vanish to the order of interest, leaving∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi

' 1

4Ωi

∂

∂r

[∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

−
∫ Lz

0

nimi

2B2

[
∂φ

∂r

(
∂φ

∂z
+

1

eni

∂pi⊥
∂z

)
+
∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz. (4.19)

There is still another integral over velocity to be calculated. We can use the moment
(m2

i /3eB)[((v × b̂) · r̂)3 + 3(v · r̂)2(v × b̂) · r̂] of equation (4.2) to find∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi ' −

∫ Lz

0

2pi⊥
B

∂φ

∂z
dz. (4.20)

With this result and employing integration by parts in z to write

∂

∂r

[∫ Lz

0

2pi⊥
B

∂φ

∂z
dz

]
'
∫ Lz

0

2

B

(
∂pi⊥
∂r

∂φ

∂z
+ pi⊥

∂2φ

∂r∂z

)
dz

=

∫ Lz

0

2

B

(
∂pi⊥
∂r

∂φ

∂z
− ∂pi⊥

∂z

∂φ

∂r

)
dz, (4.21)

equation (4.19) simplifies to∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi = −

∫ Lz

0

nimi

B2

∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz. (4.22)

The electron integral in equation (4.17) can be calculated using the same procedure that
has led to equation (4.22), and it turns out to be negligible due to the smallness of
me/mi.

Substituting equation (4.22) into equation (4.17) and then equation (4.17) into equa-
tion (4.10), and using the same simplified ion-neutral and ionization collision operators
that we have used in previous reports,

Cin := −Rin(nngi − nifn), Ci,ion := neRionfn, (4.23)

we find the final equation for φ(r, 0, t),

∂

∂r

{
− ∂

∂t

∫ Lz

0

[
nimi

B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz

+
1

B

∂

∂r

[∫ Lz

0

nimi

B2

∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

]

−
∫ Lz

0

niminnRin
B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

+

∫ Lz

0

niminn(Rin +Rion)unz
B

dz +

∫ Lz

0

Fext · ẑ
B

dz

}
= 0. (4.24)

Note that in several places we have used the approximation b̂× r̂ ' ẑ.
Equation (4.24) is small by a factor of (ρi/Lr)2 compared to the parallel current term in

the current conservation equation (4.8), of order (ρi/Lr)(enevti/Lz). Thus, in principle,
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to keep these terms we would need to keep terms up to order (ρi/Lr)
3 in this equation.

Thankfully, we do not need to do that because we now have equation (4.24) in explicit
form. We can add equation (4.24) to our set of equations in a consistent manner.

We finish by relating equation (4.24) to momentum conservation, a connection that we

mentioned at the end of section 2. Equation (4.24) is a radial derivative of
∫ Lz

0
J⊥ · r̂ dz

(see equation (4.10)). Then, equation (4.24) can be integrated to show that
∫ Lz

0
J⊥ · r̂ dz

is a constant that we will call Ir, giving

∂

∂t

∫ Lz

0

nimiui⊥ · ẑ dz − ∂

∂r

(∫ Lz

0

nimi

B

∂φ

∂z
ui⊥ · ẑ dz

)
= −IrB

−
∫ Lz

0

niminnRin(ui⊥ · ẑ− unz) dz

+

∫ Lz

0

niminnRionunz dz +

∫ Lz

0

Fext · ẑ dz. (4.25)

Here we have used the ẑ projection of equation (4.7) to rewrite ∂φ/∂r as a function of
ui⊥ · ẑ. Equation (4.25) is the perpendicular momentum balance in the z direction, and
it includes the magnetic force due to the radial current Ir. This magnetic force is zero in
tokamaks, where the radial current vanishes.

5. Moment drift kinetics

The moment drift kinetic formulation of the problem with periodic boundary condi-
tions is thus the equations in report 2047357-TN-07-02 plus our new equation (4.24) for
φ(r, 0, t). The perpendicular pressure appearing in this equation can be calculated from
the normalized distribution function using the formula

ps⊥[ns, vts, Fs](r, z) := πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w
3
⊥Fs(r, z, w‖, w⊥, t). (5.1)

6. Discussion

Note that the addition of equation (4.24) has only been possible because we evolve the
densities of ions and electrons independently of their normalized distribution functions.
Had we proposed to evolve the unnormalized ion and electron distribution functions, it
would not have been possible to have an independent higher-order current conservation
equation because it would not be consistent with the density that arises from the time
evolution of the lowest order kinetic equations.

When implementing the equations proposed in this report, it is important to ensure
that there is z-variation of density, temperature and flows. Otherwise, the equations
become trivial. When connected to the open field line region (the topic of a future report),
the z-variation will arise naturally due to the wall boundary conditions. In the absence
of open field lines, one can use sources and sinks with that are not uniform in z (i.e.
excess ionization in the region close to the divertor, where most neutrals are).
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