
ExCALIBUR

2-D Model of Neutral Gas and Impurities

M4.2

Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M4.2. The task of representing neutral gas and impurities is a sub-
problem of the more general task of implementing particle descriptions and
algorithms. In this report we discuss a DSL and implementation for describ-
ing particle-based algorithms that is performance portable. This DSL aims
to be sufficient for both the particle component of a PIC algorithm and the
description of neutral species represented by particles.

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0061

Issue: 1.00
Date: December 17, 2021

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Will Saunders N/A December 17, 2021

James Cook N/A December 17, 2021
Wayne Arter N/A December 17, 2021

BD

Reviewed By: Rob Akers December 17, 2021

Advanced Computing
Dept. Manager

1

1 Introduction

1.1 Overview

The NEPTUNE software is expected to model both plasma and neutral species. The distribution
functions for these species may not be well approximated by Maxwell-Boltzmann distributions in
critical regions of an edge simulation. In these regions a “kinetic” description is required. We
consider kinetic representations formed as a collection of individual particles and in particular
the implementation of these particle-based representations. These particles transport quantities
of interest, such as charge and mass, throughout the simulation domain. In a Particle-in-Cell
(PIC) simulation the motion of charged particles is tightly coupled to the evolution of electric and
magnetic fields which are represented by a finite element or finite difference approximation.

Efficient implementation of the PIC algorithm requires a tight coupling between the particles and
the continuum implementations of the fields. Furthermore efficient implementation of both particle-
and finite element-based algorithms is architecture dependent. By implementing a separation
of concerns approach the description of particle-based algorithms is separated from the actual
implementation which performs the operations. The separation allows an algorithm to be writ-
ten independently of the runtime hardware which allows an algorithm to be written with minimal
knowledge of the hardware. Secondly the underlying framework may be extended and optimised
for new hardware types without modifying or reimplementing algorithms written by users at the
higher level.

A Domain Specific Language (DSL) provides an abstraction layer that performs the actual separa-
tion of concerns. We describe a proof-of-concept DSL based on an existing DSL for performance
portable atomistic simulations. This DSL is embedded in Julia programming language such that
we may evaluate our relatively new language in the context of the NEPTUNE use case. The Julia
language is designed in particular for use in numerical computing and aims to exist as a language
which is both high level and performant.

We target CPU and GPU hardware in a portable manner by utilising packages from the Julia
ecosystem that provide abstractions for parallel looping operations at a higher level than the vendor
provided API. Furthermore we implement distributed memory parallelism using MPI such that this
Julia implementation will compose with existing MPI applications and libraries.

2

2 Representations of Distribution Functions

Plasma and neutral species are both described by a time dependent distribution function fs(~r,~v, t)
where ~r is a point in space, ~v is a point in velocity space, t is time and s is the species this
distribution function refers to. The direct sum of the space of positions and the space of velocities
is called the phase space and this distribution function describes the density of a particular species
at each point in the phase space.

If we assume that a particular species is well described as an ideal gas and if we assume that
within a region of space that the species is at thermal equilibrium then it is known that the velocity
distribution of the species is a Maxwell-Boltzmann distribution. If it is known that a Maxwell-
Boltzmann distribution is a good approximation for the plasma or neutral species in a region of
space then it may be appropriate to model that particular species in that region of space as a fluid.
In a fluid representation of a species s the distribution function fs(~r, t) is only a function of position
in space and time. The equations of state that describe the time evolution of the system also make
the assumption that a fluid description is appropriate.

If the velocity component of the distribution function is not well described by a Maxwell-Boltzmann
distribution then a fluid description may well be insufficient to describe the behaviour of the species.
In this scenario the representation of the distribution function must be extended to not only be a
function of a point in physical space but also a point in velocity space. In this case the represen-
tation is referred to as “kinetic”. Representing functions defined over a physical space is typically
easier than a velocity space due to the constraints imposed by the particular problem of interest.
Typically the physical space a simulation is concerned with is a finite and often fixed region of
space that can be decomposed into cells. The union of these cells forms a mesh and meshes of
this form are applied in finite element simulations. The finite element method (FEM) defines a set
of basis functions in each cell which are subsequently used to approximate quantities of interest.
The accuracy of these approximations is governed by the size of the cells itself and the polynomial
order of the basis functions.

Representation of a function defined on a velocity space is less obvious. Like physical space, the
bounds on the domain are well defined as nothing can travel faster than the speed of light c in
any direction. However it is unrealistic to mesh this domain in a similar manner as physical space
and thus techniques that represent the velocity space via a mesh must take particular care to
discretise the space in a manner that is both accurate and computationally sensible. The focus of
this report is an alternative approach where “particles” are used to provide the kinetic description.
In this report a particle is a discrete object that exists at a point in physical space, i.e. particle i
exists at a point ~ri ∈ Ω for some simulation domain Ω that describes the region of physical space
where particles exist.

Each particle stores properties, in addition to position, that are used approximate quantities of
interest. For example, particles that represent constituent species of the plasma would carry a
quantity that holds the net charge of the particle. Furthermore, neutral species could be expected
to have properties that indicated the species type. All moving particles would carry a property that
represents the velocity of that particle and these particle velocities allow the particle description
to provide a kinetic representation. Although the particle exists at a point in space, particles may
have properties that describe shape and orientation. In this report we shall assume that particles

3

are Dirac deltas in both physical and velocity space. With this shape function the distribution fs is
approximated as

fs(~r,~v) ≈
N∑
i=1

δ(~r − ~ri)δ(~v − ~vi) (1)

where N is the number of particles and ~vi is the velocity of particle i. In general particle shape is
not restricted to Dirac deltas and alternatives such as B-splines exist. As the RHS of Equation (1)
has empty support quantities are estimated at point in space by averaging over particles within a
ball near the point of interest. For example, the approximation of a quantity q stored on particles
would be approximated by

q(~r) =

∫
~v
q(~r,~v)fs(~r,~v)d~v ≈ 1

NB(~r,ε)

∑
i∈B(~r,ε)

qi (2)

where B(~r, ε) is a ball of radius ε around point ~r, NB(~r,ε) is the number of particles within this ball
and qi is the quantity q stored on particle i. As the approximation is computed as an average over
particles the computation of a good approximation requires a statistically significant particle count
at the evaluation point. Other weighting functions than the uniform one represented by a simple
sum in Equation (2) may be needed, eg. functions that are biased towards the location of ~r.

3 Domain Specific Language

Domain Specific Languages (DSLs) allow description of algorithms and processes within a lan-
guage specifically designed for a particular domain. Complex implementations often involve a
hierarchy of DSLs that ultimately abstract low-level implementation details from the high-level de-
scription of a simulation. In this report we discuss a DSL for the description of particle-based data
and operations.

This high-level particle description is required to be able to describe physical processes that in-
volve both charged and neutral species. Furthermore the NEPTUNE project could employ a
particle in cell (PIC) technique to model the evolution of the plasma. As the name indicates, this
approach requires specification of particle data and operations to manipulate particle data. We
now outline a DSL for particle-based operations designed to meet the requirements of neutral
species modelling and PIC algorithms.

3.1 Particle DSL

We describe an initial abstraction and a DSL inspired by and based on the PPMD framework
[1]. The PPMD abstraction is suitable for describing groups of particles with per-particle proper-
ties. Global data can also be described within the abstraction. The abstraction defines looping
operations, originally designed for molecular dynamics, that loop over particles and pairs of parti-
cles. This abstraction creates a separation of concerns where particle-based data structures and
looping operations are described independently of the hardware that performs the computation or

4

stores the data. In the original PPMD implementation the abstraction is realised as a DSL embed-
ded in the Python programming language. This Python implementation uses a code generation
approach to produce C/C++ code for CPUs and GPUs at runtime for the particular operations
defined by the user. A code generation approach is a method to achieve performance portability
which is an important property of a successful NEPTUNE implementation.

A successful separation of concerns for particles allows a domain specialist such as a plasma
physicist or engineer to describe particle-based operations without knowledge of the underlying
hardware. Furthermore the execution hardware can be utilised without a reimplementation of the
described algorithms. At the lower level optimisations and improvements can be investigated and
implemented that subsequently benefit all operations described using the DSL without rewriting
the higher level code.

As the original PPMD design was focussed on the MD use case we investigate modifications and
extensions to the abstraction and implementation that are more suited to the plasma modelling
use case. In particular a DSL for particles in NEPTUNE should be suited to describe both the
charged species within a PIC context and the neutral species that are important to capture the
correct physics in the tokamak edge plasma.

In recent years the Julia programming language [2] has been proposed as a solution to the two-
language problem in numerical computing. As Julia is a attractive alternative to Python for our
use case, we use this opportunity to embed our PPMD-inspired DSL within Julia for evaluation
purposes. The Julia JIT compilation approach allows code generation to occur at runtime in a sim-
ilar manner to the original PPMD approach. Furthermore the Julia package ecosystem includes
packages that target accelerator style hardware such as GPUs directly from Julia. Composition
with more traditional packages written in C/C++ using MPI is readily achievable as Julia supports
calling C functions directly and a functional MPI package exists within the ecosystem.

For mesh-based representations, we assume that there will exist a DSL that allows a user to inter-
face with an FEM library. In particular we assume that this DSL allows a function represented by
particle data to be approximated by a function in a suitable finite element function space. We also
assume that this interface allows a user to evaluate finite element functions at arbitrary locations.
In particular a user will wish to evaluate functions at particle locations.

3.2 Data Structures

We now describe a set of data structures designed to capture particle data and auxiliary objects
such as domains and global data. The performance of the PIC implementation is expected to be
dependent on how tight the coupling is between the particle and FEM frameworks. The parallel
scaling efficiency of an implementation is given by Amdahl’s law [3] which states that the maximum
possible parallel scaling is determined by the proportion of runtime that is sequentially executed.
In modern HPC facilities the time taken to communicate data between compute nodes, for both
arithmetic and bookkeeping purposes, is a significant contributor to this sequential runtime.

A technique to reduce inter-node communication is to employ parallel decomposition techniques
that take into consideration both the location of data and where that data is required for compu-
tation. It is desirable to exploit the structure of the underlying computational problem to achieve

5

such a decomposition. In the case of PIC methods we know a priori that data from particles in a
given mesh cell will be required by the FEM implementation to modify or evaluate FEM fields in
the same cell. Hence to maximise data locality we design an approach that uses the same mesh
and domain decomposition as the FEM implementation.

Efficient use of accelerator devices, such as GPUs, is sensitive to the time taken to prepare the
data required for a loop. For example, in a typical heterogeneous architecture the host system
memory is distinct from accelerator memory and explicit or implicit transfer of data must occur
before a kernel launch. If the frequency and timing of this transfer is not carefully managed, either
by the programmer or underlying implementation, the efficiency gains of using the accelerator
device can be significantly damaged. In our initial implementation we allow the user to specify
which device owns the particle data and assume that subsequent computation that uses this data
is performed on the same device. Our interface does allow an extension where the computation
device is not the same as the host device for the data.

3.2.1 Domain and Mesh

We assume that the computational domain is completely covered by a mesh and that this mesh
is potentially a high-order mesh. We also assume that the mesh was generated and decomposed
independently of the particle framework. Our initial implementation includes basic cuboid domains
with periodic boundary conditions for testing purposes. The spatial domain decomposition ap-
proach partitions the mesh into contiguous regions that are uniquely owned by an MPI rank.

In our implementation the MPI rank that owns a partition of the mesh also owns the particles that
reside in that mesh partition. We assume that the locally owned region of the mesh is surrounded
by a halo region of cells that are copy of mesh cells owned by neighbouring MPI ranks. When a
particle leaves the owned region the particle framework inspects the mesh halo to determine the
new owning rank of the particle. To implement this transfer of functionality the particle framework
must be able to map a position in space to an owning cell and map mesh cells to owning MPI
ranks.

The mesh requirements of a PIC implementation are more involved than a traditional MD code
where typically the computational domain is a cuboid (potentially a cuboid undergoing a linear
transform to represent a skewed geometry). In MD a structured mesh is typically applied along with
a parallel decomposition that maps directly onto an MPI Cartesian communicator. This structured
approach greatly reduces the bookkeeping overhead required to transfer particles between MPI
ranks as a point in space can be easily mapped to an MPI rank.

The boundary conditions of a PIC code suitable for NEPTUNE are significantly more involved
than a MD code where typically periodic boundary conditions are applied. For PIC, the computa-
tional domain and mesh must include descriptions of the regions of space that act as sources and
sinks for different particle species. For example, on the core facing boundary particles represent-
ing plasma species could be created. On the outer wall facing boundary plasma species may be
converted to neutral species due to plasma-wall interactions.

There may also be volume, line and even point sources, possibly time-varying and controlled by
feedback from other outputs of the code. The particle framework must allow a user to describe

6

both how these processes occur and where in the domain they occur.

The simplest domain we consider is a hypercuboid in one to three dimensions. We apply periodic
boundary conditions to this domain. In Listing 1 we illustrate how to import the PPMD Julia package
and create a cuboid domain. This domain is automatically decomposed across all MPI ranks on
the communicator. We anticipate that in future the domain would be defined as the mesh that is
used for the FEM implementation.

Listing 1: Create a cuboid domain with periodic boundary conditions.
Import the PPMD package

using PPMD

Define the extents in x,y and z of a cuboid domain.

extents = (4.0, 2.0, 3.0)

Define the boundary condition.

boundary_condition = FullyPeriodicBoundary ()

Create the domain , default MPI_COMM_WORLD.

domain = StructuredCartesianDomain(boundary_condition , extents)

3.2.2 Particle Data

As in the original PPMD DSL, per-particle properties are specified with the ParticleDat data
structure. A ParticleDat is initialised with the number of components and a data type that will
be created and stored per particle. In atomistic simulations, particularly when using domain de-
composition, it is important to know exactly where each particle is in the simulation domain. To
indicate the particle positions to the underlying implementation the ParticleDat which stores the
particle positions is explicitly indicated.

A set of particles is defined as a collection of ParticleDats and is defined with a ParticleGroup

object. The ParticleGroup object combines one or more ParticleDats with a domain, such as
the domain described in Section 3.2.1, and a target device. The target device indicates the primary
storage location for the particle data which may be a CPU or GPU. In this initial implementation
we use the Julia array abstraction to create CPU and GPU arrays. In Listing 2 we illustrate how to
create a ParticleGroup with multiple ParticleDat instances.

Listing 2: Create a group of particles in a domain with the same per-particle properties. All particle
data is stored on the target device.
target_device = KACUDADevice ()

A = ParticleGroup(

The domain containing these particles.

domain ,

The per -particle properties.

Dict(

Create a property "P" of 3 components per particle (Float64)

and indicate these 3 components are positions.

"P" => ParticleDat (3, position=true),

3 Float64 components per particle labelled "B".

7

"B" => ParticleDat (3),

1 Int64 per particle labelled "C".

"C" => ParticleDat (1, Int64),

),

The device memory where the particle data is primarily stored.

target_device

)

3.2.3 Global Data

Typically scientific algorithms require global data in addition to particle data. Global data presents
additional challenges for a parallel framework as a parallel implementation must ensure that the
data access is correct and efficient. Reading from constant global data typically is straightforward
in comparison to writing to global data where write contention must be carefully considered.

For example, a user could wish to accumulate the kinetic energy of a set of particles which are
globally distributed. They may also wish to assemble array-based structures such as a histogram
or matrix. For this particle framework we shall assume that access to global data is either read only
or a write access involving a commutative operator. We provide the GobalArray data structure, as
illustrated in Listing 3, which represents global data consistently across MPI ranks.

Listing 3: Create a GlobalArray to hold elements that are acessible in looping operations and in
Julia.
target_device = KACUDADevice ()

kinetic_energy = GlobalArray (1, target_device)

As with particle data, the constructor of the GlobalArray describes the target device for the data.
This indicates where the data will be required which in turn determines the algorithm that should
be applied to access the data. For example, the implementation could use a different pattern to
perform elementwise reduction operations on CPUs than on GPUs. These architecture specific
implementations are particularly important for efficiency on modern hardware.

3.2.4 Adding and Removing Particles

In a NEPTUNE simulation, particles will be created and destroyed through physical processes
such as boundary conditions and interaction terms. Large particles may also be subdivided into
smaller particles. PPMD provides methods add_particles and remove_particles that add par-
ticles to and remove particles from a ParticleGroup. In Listing 4 we demonstrate adding and
removing particles. The add_particles function is collective on the passed ParticleGroup as
this function assumes that the new particles may be located anywhere in the simulation domain.
When an input particle is not owned by the MPI rank the particle was created on then communi-
cation must occur to transfer the particle to the correct MPI rank. A future extension, likely to be
useful for the plasma use case, would be a function that allows users to create particles on the
local domain such that global synchronisation is not required.

8

Listing 4: Add and remove particles from a ParticleGroup.
Import the PPMD package and MPI

using PPMD

using MPI

choose a target device

target_device = KACPU()

Create a boundary condition and domain

extents = (1.0, 1.0)

boundary_condition = FullyPeriodicBoundary ()

domain = StructuredCartesianDomain(boundary_condition , extents)

Create a ParticleGroup with particle properties "P" for positions

and "A" an arbitrary property.

A = ParticleGroup(

domain ,

Dict(

"P" => ParticleDat (2, position=true),

"A" => ParticleDat (1),

),

target_device

)

On MPI rank 0 add 10 particles. The "A" property is not specified

and will be initialised to 0.

if MPI.Comm_rank(domain.comm) == 0

N = 10

add_particles(

A,

Dict(

"P" => rand_within_extents(N, domain.extent),

)

)

else

add_particles(A)

end

On each MPI rank remove the first particle from the ParticleGroup.

if A.npart_local > 0

remove_particles(A, [1,])

end

9

3.3 Looping Operations

We have described data structures for particle and global data in a flexible and portable manner.
Efficiently operating on this data requires looping operations which are performance portable.
The original PPMD DSL included operations for looping over particles and looping over pairs
of particles. The pairwise particle operation in the original PPMD is designed for inter-particle
interactions such as the inter-atomic potentials in MD simulations. Such interactions, commonly
involving neutral species, will require treatment by NEPTUNE software, as will interactions with a
background density of other species. However, we currently do not consider operations that can
be expressed in a pairwise manner and focus on a loop over particles.

3.3.1 Particle Loop

As alluded to, a ParticleLoop is a loop over all particles in a ParticleGroup. The loop can read
and write to the data stored on each particle in ParticleDats and can read or modify global
data stored in GlobalArrays. A ParticleLoop is constructed with a kernel and a set of access
descriptors. The kernel describes the particular operation that this loop will perform for each
particle and takes the form of a Julia string literal that contains the Julia source code for the
kernel.

The access descriptors map the symbols in the source code for the kernel to the matching data
structures. Crucially the access descriptors describe exactly how the kernel accesses the data.
The implementation inspects the access descriptors and uses the information to generate efficient
code at runtime for the access type. This information is required by the framework to correctly and
efficiently execute the ParticleLoop on the target hardware. In Listing 5 we illustrate how a user
would create and execute a ParticleLoop that operations on both particle and global data.

Listing 5: Create and execute a ParticleLoop.

Standard initialisation that creates target device and domain

using PPMD

using MPI

target_device could also be KACUDADevice ()

target_device = KACPU()

extents = (1.0, 1.0)

boundary_condition = FullyPeriodicBoundary ()

domain = StructuredCartesianDomain(boundary_condition , extents)

Create a ParticleGroup with positions "P" and velocities "V".

A = ParticleGroup(

domain ,

Dict(

"P" => ParticleDat (2, position=true),

"V" => ParticleDat (2),

),

10

target_device

)

Add particles to the domain with random positions and velocities.

if MPI.Comm_rank(domain.comm) == 0

N = 10

add_particles(

A,

Dict(

"P" => rand_within_extents(N, domain.extent),

"V" => rand(Float64 , N, 2),

)

)

else

add_particles(A)

end

Create global storage to store the kinetic energy.

kinetic_energy = GlobalArray (1, target_device)

Create a kernel for a ParticleLoop that

1) Modifies the position of the particle

2) Increments the kinetic energy with the contribution from this

particle.

Runtime constants can be placed into the kernel as literals.

dt = 0.01

move_kernel = Kernel(

Arbitrary name to identify this kernel in say profiling.

"move_kernel",

Kernel code

"""

Access the first and second components of positions and

velocities

P[1] += $dt * V[1]

P[2] += $dt * V[2]

Increment the GlobalArray storing kinetic energy.

KE[1] += V[1] * V[1] + V[2] * V[2]

"""

)

Create the loop

move_loop = ParticleLoop(

Target device for execution , in theory this could be different

to the device storing the particles.

11

target_device ,

Our compute kernel defined above.

move_kernel ,

This dictionary maps from symbols in the kernels to Julia objects

and lists the access descriptor for each object.

Dict(

"P" => (A["P"], WRITE),

"V" => (A["V"], READ),

"KE" => (kinetic_energy , INC),

)

)

execute the ParticleLoop

execute(move_loop)

print to stdout the computed kinetic energy. The reduction across

MPI ranks is automatic.

@show kinetic_energy [1]

The example in Listing 5 demonstrates both the separation of concerns and portability of this ap-
proach. A user can target multiple hardware architectures at the DSL level by changing the target
device. Furthermore the user can utilise distributed memory parallelism with minimal knowledge
of MPI. In section 4 we give an overview of the underlying implementation and how this approach
gives performance in addition to portability.

3.3.2 Potential Extensions

We currently describe a loop over particles that visits all particles within a ParticleGroup which is
applicable to the looping operations we expect to find in the core of a PIC code. In addition to the
core operations that evolve a PIC simulation it is expected that there will be auxiliary loops that do
not need to visit each particle in the ParticleGroup. These partial loops will arise in the case of
user defined diagnostic loops that compute quantities of interest from a subset of the global set of
particles.

For example, consider a diagnostic that computes the flux of particles through a surface. We
assume that the user holds an algorithm that can identify which side of the surface a given particle
exists on. Hence the user can identify when a particle has passed through the surface by storing
the previous side index on each particle in a ParticleDat and comparing at each time step. In
principle the ParticleLoop we describe in Section 3.3.1 is sufficient for finding all particles that
passed through the surface in the last time step as all particles are visited by the loop. However
the surface may cover a relatively small portion of the simulation domain and hence visiting all
particles in the simulation domain would be inefficient.

A more efficient approach would only loop over particles that were close to the surface. If we
assume the user holds a method to identify particles close to the surface for a certain number
of time steps then this method can be applied to reduce the number of visited particles for the

12

diagnostic loop. The ability to reuse the set of identified particles would be crucial to amortise the
setup cost and provide an increase in efficiency.

4 Implementation

The implementation is required to store data and execute user defined loops on the target device
requested by the user. The Julia language provides an array type that stores data on a host system
in a manner that is familiar to users of MATLAB and NumPy. This array type is typically extended
by the packages which provide support for accelerator devices. For example, the standard Julia
array type is Array and the CUDA array type is CuArray and a user may use a CuArray in a highly
similar manner to the host array type with the exception that the CUDA variant is stored in device
memory. Using this array abstraction the implementation selects the target device that should
store an array by simply choosing the array type that corresponds to that device. Hence this array
abstraction allows the particle implementation to choose where memory is allocated in a manner
that is transparent to the user.

One of the main motivations to investigate Julia for the NEPTUNE project is the capability of Julia
to solve the two-language problem. The two-language problem refers to the classical requirement
for a high-level user facing language to be used in conjunction with a low-level language for per-
formance. Julia employs a type analysis and JIT compilation approach to translate user written
code into optimised machine code at runtime. Portability to accelerator style compute devices, for
example GPUs, is performed through the Julia packages provided by the hardware vendors and
contributors. For example, a user could use the Julia CUDA package to implement CUDA kernel
that execute on the device without touching CUDA C/C++.

From PPMD developer perspective there is a reasonably flexible set of approaches that could
be employed. The abstraction and corresponding DSL form a separation of concerns between
a user that describes data structures and looping operations and how the underlying framework
actually provides the storage and looping implementation. The framework could implement a
custom set of looping implementations per architecture. This per architecture approach would be
computationally most efficient but would require loop implementations per architecture. Hence
from the maintenance and implementation cost point of view it would be beneficial to restrict the
number of looping types available in the DSL to minimise the per architecture implementation cost.

Clearly developers would prefer not to implement algorithms using a vendor specific API if a suit-
able alternative vendor agnostic approach is available. The KernelAbstractions.jl[4] Julia pack-
age can be thought of as the Julia analogue of SYCL and is a higher level interface than the vendor
specific APIs. The abstraction provided by KernelAbstractions.jl follows the now typical pattern
of defining a parallel loop as the combination of a compute kernel and an iteration set. We use
this KernelAbstractions.jl package to target CPU and GPU architectures directly from Julia. It
should be noted that like SYCL, KernelAbstractions.jl does not solve the problem that an algo-
rithm efficient on one architecture may well not be efficient on another. Reduction type operations
are an example of a common operation which requires an architecture specific implementation to
be efficient.

In the proof of concept Julia implementation of PPMD we implement the ParticleLoop operation

13

by generating secondary Julia source code that uses the KernelAbstractions.jl package. This
approach allows the implementation to exploit the JIT compilation offered by Julia at runtime whist
targeting two architectures directly from Julia. Alternatively the framework could generate C++
code using SYCL or Kokkos to provide an implementation for the ParticleLoop described in the
DSL.

14

5 Summary

Particle methods are a typical approach to the modelling of neutral and plasma species with a
kinetic description. Efficient implementation of particle methods is highly non-trivial and requires
specialist knowledge of the target hardware, hardware which is subject to change as technol-
ogy developes. Often users wish to describe particle-based methods independently of the HPC
hardware applied at runtime.

We described a DSL based on an existing abstraction for particle operations. This approach
creates a separation of concerns that benefits both the domain specialist and computational sci-
entist. We develop this DSL as an embedded DSL within the programming language Julia, which
has recently emerged as a solution to the two-language problem. By using a combination of code
generation and the KernelAbstractions.jl Julia package we target CPU and GPU architec-
tures directly from Julia. This approach does not exclude a future implementation that generates
SYCL/Kokkos code instead of Julia code.

In this report we describe the DSL for describing particle operations only. Future work should
describe the transfer of data to and from finite element-based descriptions. These transfer op-
erations are expected to be based around projection and evaluation and are essential for the
implementation of a PIC algorithm.

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] William Robert Saunders, James Grant, and Eike Hermann MÃijller. A domain specific lan-
guage for performance portable molecular dynamics algorithms. Computer Physics Commu-
nications, 224:119–135, 2018.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[3] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), page 483âĂŞ485, New York, NY, USA, 1967. Association for Computing
Machinery.

[4] KernelAbstractions.jl. https://github.com/JuliaGPU/KernelAbstractions.jl, 2021. [On-
line; accessed 16-December-2021].

15

https://github.com/JuliaGPU/KernelAbstractions.jl

