
ExCALIBUR

High-dimensional Models Complementary Ac-
tions 2

M4.3 Version 1.00

Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M4.3. Part involves a 2-D model of neutral gas and impurities with
critical physics and is relevant to work packages FM-WP2 and FM-WP3.
We provide an overview of the inter-species interactions that are expected
to occur in the SOL. We describe an extension to a particle implementation
that allows global communication of particle data within in the simulation.
We also describe results from 2-D (1d1v) experiments with Particle-in-Cell
algorithms.



UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0062

Issue: 1.00
Date: 18 March 2022

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Will Saunders N/A 18 March 2022

James Cook N/A 18 March 2022
Wayne Arter N/A 18 March 2022

BD

Reviewed By: Wayne Arter 18 March 2022

Project Technical Lead

1



1 Introduction

1.1 Critical Physics

A SOL simulation contains multiple different species with different physical properties. These
properties may be constant such as mass or varying such as degree of ionisation. The behaviour
of these species can be substantially different depending on the particular physical environment
these species are exposed to. For example a particular species may travel with such high velocities
that techniques such as time averaging must be utilised to capture and represent very short time
scale effects without resorting to severe time step constraints. Other species may move relatively
slowly but with a high rate of inter-particle collisions. These collisions are expensive to model
exactly but, depending on the corresponding distribution functions, may be approximated by a
fluid representation.

Multiple sources and sinks exist for each of the constituent species in a SOL simulation. The
plasma itself may consist of Deuterium and Tritium ions, and the corresponding electrons, that
form the fuel for the fusion reaction. The exhaust from a successful fusion interaction is a helium
ion, alternatively known as an Alpha particle, which is accompanied by a free neutron. These fuel
species are accompanied by ionised neutrals and molecules that exist in the plasma intentionally
and through impurities. Neutral species are introduced into the reaction vessel for the purposes of
heating, cooling, and diagnostics. Neutrals also impact with plasma facing surfaces. Furthermore,
plasma interactions with the vessel wall emit impurities into the reaction vessel known as “sputter”.

These species do not exist in isolation but continuously interact with each other throughout the
simulation. These inter-species interactions are responsible for the transfer of mass and energy
between the constituent species that form the simulation and should be accurately modelled such
that the simulation is representative of the underlying physical processes. A list of example inter-
species interactions typically found in the SOL is as follows:

Ionisation
A neutral species looses, or potentially gains, one or more electrons due to an interaction
with the plasma. The motion of this, now charged, species is influenced by the electric
and magnetic fields. In a simple model constructed with only plasma and neutral species,
ionisation is a source of plasma species and a sink of neutral species that together conserve
mass. Removing an electron from a species requires energy to extract the electron from the
electrostatic potential well of the host nucleus.

Recombination
In cooler regions of the plasma electrons may not carry enough energy to escape the elec-
trostatic potential well nearby to an ionic species. The free electron recombines with the
ionised species to form a neutral atom which is no longer influenced by the magnetic and
electrostatic fields. As the electron reattaches to the ion by falling down a potential well
energy is released as radiation.

Charge Exchange
Charge exchange is a process where a neutral species and ionic plasma species interact.
For example a fast moving ion could collide with a slower moving neutral. We could assume

2



that in the collision an electron is transferred from the neutral to the plasma species without
a loss in energy. If we further assume that the ion and neutral have nucleus of equal mass
then this charge exchange process can be considered as a transfer of momentum from
plasma species to neutral species. In highly collisional regions of the simulation these charge
exchange interactions are computationally expensive to model as particle species and may
be adequately approximated by a fluid representation as discussed by Borodin et al. [1].

Excitation
An electron attached to a neutral species may be excited into a higher energy state through
neutral-plasma interaction. This excitation requires energy which is provided by the plasma
and hence cools the plasma. When the electron falls returns to a lower energy state the
energy equal to the difference in electrostatic potential is emitted as radiation.

Radiation
Electromagnetic radiation occurs when a charge undergoes acceleration and this continu-
ously occurs in a magnetically confined plasma. The acceleration of plasma species due
to magnetic fields emits radiation known as cyclotron radiation. Furthermore, Coulomb in-
teractions between charged species emit bremsstrahlung radiation. Impurities cause en-
hanced bremsstrahlung radiation due to their higher ionic charge states in comparison to
fuel species. A more detailed description of radiation in plasmas is presented by Wesson et
al. in [2].

Correct modelling of these inter-species processes is essential to capture and represent the cor-
rect physics present in the plasma. The exact implementation of the interactions depends on the
particular representation and method of evolution used for each species. For example highly col-
lisional species may be represented by a fluid approximation with time evolution described by a
set of coupled equations for mass, momentum and energy. In this fluid case the interactions exist
as source and sink terms in the corresponding equations. Alternatively a particle based kinetic
description may use inter-particle interactions to compute these processes.

In the next section of this report we discuss methods to efficiently implement the bookkeeping
operations of fast moving particles, such as neutrals, in a distributed memory computation. In the
final section of this report we describe results of 2-D (1d1v) Particle-in-Cell experiments

3



2 Neutral Particle Transport

2.1 Introduction

In particle simulations such as Molecular Dynamics (MD) it is common to assume that individual
particles move relatively slowly and that the mean flow is zero in the sense that particle motion is
normally distributed with zero mean flow in any dimension. MD codes that implement a domain
decomposition approach and assume that when a particle leaves a region of space owned by an
MPI rank that the destination rank is a neighbour of the MPI rank which owns the region of space
the particle is departing. This assumption of a local transfer of ownership permits a communication
pattern which is also local, ie. MPI ranks only have to exchange send and receive particle counts
and data with adjacent MPI ranks as opposed to all other MPI ranks.

In contrast to MD simulations of relatively cool bulk material, in particle simulations of plasma,
such as PIC, there may be considerable bulk flow of a particle species parallel to the magnetic
field lines and considerably less flow perpendicular to the magnetic field lines. This anisotropy in
the underlying physics will result in anisotropy of the communication pattern that transfers particles
between MPI ranks. In addition, neutral species are not confined by the magnetic field lines and
are free to propagate through the simulation domain until colliding with the domain geometry or a
physically relevant process occurs such as a collision with another particle.

The velocities of a neutral species may be highly directional such as in diagnostic cases where a
species of neutrals is injected into the plasma. Alternatively in regions of the simulation domain
with higher collision rates the neutral species may exhibit a much more isotropic and diffusive
velocity distribution. We also expect cases where neutral particles carry a very significant velocity
that allows an individual particle to cross the simulation domain in a small number of time steps.
As the neutral carries no charge and is unaffected by the magnetic field it is not known a priori
which direction this particle will travel.

If the MD approach we describe is implemented then the velocity of a particle would be limited to
the size of the subdomains owned by individual MPI ranks. This restriction would artificially trun-
cate the velocity distribution of a fast moving species which is undesirable and an implementation
induced limitation. Instead we investigate efficient mechanisms to allow the transfer of particle
ownership even in the case of fast moving particles.

In the remainder of this section we describe a two stage approach to transfer the ownership and
data of a particle between MPI ranks. In the first stage the new owning rank of a departing particle
is identified by inspection of the particle position. The second stage is a bookkeeping operation
that transfers the data of departing particles to the new owning ranks and receives the data for the
incoming particles.

2.2 Ownership Identification

We describe an approach that uses both the unstructured mesh provided by the finite element
library and an additional regular Cartesian mesh which is imposed over the entire domain. In
Figure 1 the FEM mesh is the unstructured mesh drawn in solid black and a single cell of the

4



?

Figure 1: Illustration of locally owned unstructured mesh (solid black) extended with a halo region
based on physical width (dashed black). Imposed Cartesian mesh indicated by a single cell (solid
blue). Purple dots and arrows represent particles and direction of motion respectively.

imposed Cartesian mesh is drawn in solid blue. The Cartesian mesh provides a simple method
to map a position in space to an MPI rank that either owns the destination location of a departing
particle or has the destination location in the halo region of the FEM mesh on that MPI rank. In
this report we proceed on the basis that a Cartesian grid structure is suitable to demonstrate and
assess this approach.

A more complex mesh, such as one that conforms to magnetic field structure or resolves small
features, may consist of cells which drastically vary in size. In this more complex scenario a single
regular Cartesian mesh would be unlikely to provide suitably sized cells over the whole domain.
Instead a multi-level approach such as an Octree style structure would allow adaptive refinement
in regions where a single large cell would impose unreasonably large halos on each MPI rank.

Typically the parallel decomposition approaches of meshes for FEM only duplicate the mesh en-
tities which are shared between MPI ranks in the spatial decomposition. These mesh entities are
usually restricted to entities which hold degrees of freedom which are shared between multiple
cells as the parallel decomposition is performed along edges and vertices. Hence entire mesh
cells are not typically shared between adjacent MPI ranks. Furthermore simulation techniques
that extend the local representation of a mesh with a halo region typically add a halo region that is
constructed with a known fixed width given in terms of mesh connectivity. For example in a classic
finite difference formulation on a Cartesian mesh with a centred 3-point stencil only a single neigh-
bouring mesh cell is required. In the approach we describe the stencil must be large enough to at
least cover the region of the domain that is assigned to each MPI rank by the imposed Cartesian
mesh, ie. the area under the blue square in Figure 1.

Algorithm 1 describes the process that determines the destination rank of a departing particle.
The algorithm assumes that for each cell in the halo region the remote MPI rank that owns the
halo cell is known. In Section 2.3 we discuss how the halo regions facilitate a local communication
pattern between MPI ranks which own spatially close regions of the simulation domain. This local
communication pattern is used for departing particles where the destination rank is known exactly

5



by inspection of the halo cells. Particles which do not travel to a MPI rank determined by the halo
cells are considered to have global movement and are transferred via a global communication
pattern.

Algorithm 1 Determine destination ranks of departing particles through a global transfer mecha-
nism and halo regions.
Require: Global map from position to MPI rank using Cartesian grid G.
Require: Local map from position to MPI rank using halo cells H.

for departing particle i do
Let new owning rank Ri = −1 (undefined)
Let ~ri be the new position of particle i
if ~ri in halo then

Ri = H(~ri)
Mark i as a local move

else
Ri = G(~ri)
Mark i as a global move

end if
end for
Transfer particles to remote ranks using global communication pattern as described in Section
2.3
for newly received particle i from global transfer do

if i in halo then
Let new owning rank Ri = −1 (undefined)
Let ~ri be the new position of particle i
Ri = H(~ri)
Mark i as a local move

end if
end for
Transfer particles to remote ranks using local communication pattern as described in Section
2.3

As it is desirable to limit global communication in a distributed memory computation we consider
the depth of the halo region to be a tunable parameter. From a statistical standpoint a wider halo
region enables a larger number of particles to be transferred via the local communication pattern
which we expect to be advantageous in regions where there is a significant directional component
to the bulk flow. However regions with a lower particle density may benefit from a more narrow
halo to reduce unnecessary communication between MPI ranks.

2.3 Transfer of Particle Data

The global nature of the physical process of the fast moving particles motivates a requirement for
a global communication pattern. However global communication patterns are typically undesirable
in distributed computing due to the overhead of the communication and implicit or explicit synchro-
nisation that often occurs to ensure correctness. As discussed in the introductory Section 2.1 we

6



expect that a relatively small proportion of particles require a “anywhere to anywhere” communica-
tion pattern which we refer to as “global”. For the implementation discussed in this report we utilise
the MPI one-sided communication functionality which allows the programmer to define a so called
access epoch in which a MPI rank can send data to a remote rank without a matching receive
call on the remote rank. In our implementation this one-sided communication occurs between a
pair of barriers that provide the synchronisation and our implementation aims to minimise the time
spent between these barriers. An overview of this global communication approach is presented
in Algorithm 2 and an overview of the neighbour based communication approach is described in
Algorithm 3.

Algorithm 2 Overview of global move bookkeeping operation using one-sided MPI.
Require: On all ranks: MPI Window around buffer C ∈ N0 to count the number of remote MPI

ranks that will send to this rank.
Require: List of remote MPI ranks S that this rank will send particles to.

Let C = 0
MPI Barrier on C communicator
for remote rank s ∈ S do

Start access epoch for window C on rank s
Perform C = C + 1 atomically on s
End access epoch for window C on rank s

end for
MPI Barrier on C communicator
Simultaneously receive data from the C unique remote MPI ranks that hold particles to send to
this rank and send data to the ranks in S.
Perform communication with neighbour MPI ranks based on Halo as described in Algorithm 3.

2.4 Performance Investigation

As described in Section 2.2, the width of the halo region is a parameter that may be tuned to
achieve lower communication times. Wider halos enable a wider range of particle velocities and
hence particle displacements to be handled using a local communication approach and also re-
duce time spent in an expensive global communication patter. To investigate the potential per-
formance improvement we create a communication bound benchmark that transports particles
across a 2-D square domain with periodic boundary conditions. The particle velocities are sam-
pled from a normal distribution in each dimension such that approximately 10% of particles have
a velocity greater than vcutoff = E/(4δt) where E is the domain edge length and δt is the time step
size. At each time step the position of each particle is simply updated using the carried velocity
and no interactions with either a field or other particles occur.

We apply a common domain decomposition approach where the MPI ranks are arranged in a
Cartesian grid known as a Cartesian communicator. This Cartesian grid is used as the imposed
global Cartesian mesh required to map a position in space to an owning MPI rank. Furthermore we
also use this Cartesian grid as a replacement for the unstructured mesh which would exist when
the particle system is coupled with a FEM library. Each time the number of MPI ranks is doubled
the number of inter-rank boundaries over which particles must be communicated also doubles.

7



Algorithm 3 Overview of neighbour based bookkeeping operation using halo information.
Require: List of remote MPI ranks S this rank could send particles to, ie. the owning ranks of cells

in the halo region on this rank.
Require: List of remote MPI ranks R that this rank could receive from, ie. remote ranks that

possess a halo cell owned by this rank.
for remote rank r ∈ R do

Start non-blocking receive from r for receive particle count.
end for
for remote rank s ∈ S do

Start non-blocking send to s to send particle count.
end for
Pack particle data to send to remote ranks.
Wait for all non-blocking receives to complete and allocate memory to receive.
for remote rank r ∈ R do

Start non-blocking receive from r for particle data.
end for
for remote rank s ∈ S do

Start non-blocking send to s to send particle data.
end for
Unpack received particle data and remove sent particle data.

Hence for a fixed global particle count the communication cost of the simulation increases linearly
with the number of MPI ranks. We assume that performance of the high performance interconnect
used in HPC facilities at best increases linearly with the number of MPI ranks.

In practice the message latency of such a network is unlikely to improve as the number of MPI
ranks and messages increases but, depending on the network topology, the total bandwidth may
improve as the number of ranks increases. For small message sizes, such as the data for an indi-
vidual particles, message latency is typically the dominant metric for communication performance.
Thus we expect that in the best case scenario the time taken to perform one time step of the
simulation is a constant.

We compare three different approaches that transfer particle data between MPI ranks. In the most
simple scenario we disable all halo cells and perform communication of particle data using only the
global method described in Algorithm 2. This global-only case represents a communication pattern
that does not attempt to exploit the problem structure to reduce global communication. In second
method we fix the halo region to have a width equal to one MPI rank which enables neighbour
based communication to the immediate neighbours (including in the diagonal direction) of each
rank. As the number of MPI ranks increases the physical width of this halo will reduce. Hence in
the strong scaling limit we expect the performance of this method to converge to the global-only
approach. In the final method we allow the halo region to grow in size as the number of MPI ranks
increases such that the width of the halo is at least vcutoffδt in all directions. Hence approximately
90% of particle data should be communicated via the neighbour based communication for any
number of MPI ranks.

In Figure 2 we present the time taken per simulation step against the number of MPI ranks. These

8



1/32 2/32 4/32 8/32 16/32 1 2 4 8

Node count

0

2

4

6

8

10

12

14

16

T
im

e
p

er
st

ep
(m

s)

0

1

A

1.0 · 105 5.0 · 104 2.5 · 104 1.2 · 104 6.2 · 103 3.1 · 103 1.6 · 103 7.8 · 102 3.9 · 102
Particles per core

Figure 2: Time per simulation step against node count with one MPI rank per cpu core. “0”
indicates the case without neighbour based communication. “1” indicates a halo of width 1 MPI
rank. “A” indicates an adaptive halo of width at least vcutoffδt. Grey region indicates intra-node
scaling.

9



1/4 2/4 1 2

Node count

0

2

4

6

8

10

T
im

e
p

er
st

ep
(m

s)

0

1

A

1.0 · 105 5.0 · 104 2.5 · 104 1.2 · 104
Particles per GPU

Figure 3: Time per simulation step against node count with one MPI rank per A100 GPU. “0”
indicates the case without neighbour based communication. “1” indicates a halo of width 1 MPI
rank. “A” indicates an adaptive halo of width at least vcutoffδt. Grey region indicates intra-node
scaling.

CPU scaling results were produced using the CSD3-Peta4 HPC facility where nodes consist of
two Intel Xeon Gold 6142 (16-core Skylake) CPUs and a Intel Omni-Path interconnect. We use
Julia 1.6.2 for all Julia code along with Intel MPI 2020.4. We observe that the global-only approach
is slower in all cases than the neighbour based approach with an adaptive halo width. We also
observe that as the number of MPI ranks increases the time taken per step for a fixed halo of width
one rank converges to the global-only method as expected. Between 1 and 8 nodes we observe
that the time per simulation step approximately doubles and we notice an expected increase in
time at the transition from one to two nodes.

Finally in Figure 3 we repeat the same communication experiment presented in Figure 2 with the
modification that the simulation is performed on GPU hardware. These results are produced from
the CSD3-Wilkes3 facility where nodes consist of two AMD EPYC 7763 (Zen 3 64-core) CPUS
and four Nvidia A100 GPUs. The CPU software environment was also used for these GPU results.
By using the DSL described in M4.2[3] the only modification required to execute the simulation on
GPU hardware, as opposed to CPU hardware, is a change of target device - essentially one line
of code. Particle data and particle based operations are then performed on the GPU device as
opposed to the CPU. The purpose of these timing results is to demonstrate the portability of the
DSL first introduced in M4.2 and the timing results should be considered preliminary as GPU

10



optimisations are yet to be implemented.

3 1d1v: Two Stream Instability

It is necessary to gain understanding of the confluence of PIC, FEM and semi-implicit methods. To
this end a toy PIC code was written to self-consistently solve for the electrostatic field using FFTs
whilst evolving the trajectories of Dirac delta function shaped particles. The charge deposition
of particle quantities to finite element basis functions and the ”opposite” operation, reading FEM
fields to particle positions, was the main learning point. The key is to ensure that the particle
quantity was apportioned proportional to the basis functions’ heights at the particle position and
ensuring that either the basis functions partition unity (or this is corrected for if they do not partition
unity).

Figure 4: Energy, momentum and associated errors plotted against time for the two stream insta-
bility test case.

In Figure 4 we plot the two stream instability results for the 1-D physical space 1-D velocity space
implementation. This figure shows that the two stream growth rate is accurately reproduced,
momentum and charge are conserved to machine precision, and energy is conserved adequately.

11



4 Summary

A representative simulation of the scrape off layer should incorporate a wide range of different
physical phenomena that require particular attention to be modelled both efficiently and ade-
quately. In this report we investigated two implementation details that are relevant to both the
plasma species and the neutral species. We demonstrated in Section 2 that combining a neigh-
bour based communication pattern with a long-range global communication method offers a sig-
nificant reduction in the time taken to communicate particles between MPI ranks. Optimisation of
inter-rank communication is critical to achieving good parallel scaling on modern HPC hardware
and hence it is important to consider these implementation details at the design stage of project
NEPTUNE. In Section 3 we demonstrated how we were able to look at interactions between
particles and FEM.

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

References

[1] Dmitriy V. Borodin, Friedrich Schluck, Sven Wiesen, D M Harting, Petra Boerner, Sebastijan
Brezinsek, Wouter Dekeyser, Stefano Carli, Maarten Blommaert, Wim Van Uytven, Martine
Baelmans, Bert Mortier, Giovanni Samaey, Yannick Marandet, Paul Genesio, Hugo Bufferand,
Egbert Westerhof, Jorge Gonzalez, Mathias Groth, Andreas Holm, Niels Horsten, and Huw
Leggate. Fluid, kinetic and hybrid approaches for neutral and trace ion edge transport mod-
elling in fusion devices. Nuclear Fusion, 2021.

[2] J.A. Wesson. Tokamaks, 3rd Edition. Clarendon Press, Oxford, 2003.

[3] W. Saunders, J. Cook, and W. Arter. 2-D Model of Neutral Gas and Impuri-
ties. Technical Report CD/EXCALIBUR-FMS/0061-M4.2, UKAEA, 2021. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0061-M4.2.pdf.

12

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0061-M4.2.pdf

