
ExCALIBUR

Selection of Techniques for Uncertainty Quan-
tification

M5.2 Version 1.00

Abstract
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1 Introduction

The main aim of this activity is to ensure that the UQ grantees (successful bidders to ITT T/AW085/21)
perform their work such as to bring maximum benefit to ExCALIBUR project NEPTUNE. Unfor-
tunately, despite the previous contractual agreement between UKAEA and UCL around the earlier
UQ and MOR ExCALIBUR grants, and although it was decided that UCL were the successful
bidders in early August, contractual negotiations were prolonged. Thanks to the delay, at the time
of writing (Mid-March 2022), grantee tasks have not been completed to the extent that many code
integration, acceptance and operation tasks have been possible.

It has been previously noted [1] that the grantees have tended to focus on specific aspects of
UQ, which although relevant to NEPTUNE, may not answer all the needs of the project. More-
over, little has been performed in the way of comparison of the proposed Gaussian Process (GP)
approach with older methods of producing surrogates, such as spline interpolation and neural
networks (NNs). Although interest in the latter approach has revived considerably of late, other
UKAEA and cross-cutting ExCALIBUR projects are currently examining it. If NNs can be shown
reliably to solve the basis-selection problem posed in [1, §5], ie. that they prove capable of say,
without supervision, selecting eigenfunction-type bases for adjoint operator equations and pseu-
dospectral bases [2] for non-normal operators, then NNs might take centre-stage as surrogates for
NEPTUNE. However, to be fit for UQ, currently major questions need to be answered relating to
the stability of the NN approach in extrapolation, and to the determination of their errors. Herein,
discussion of NNs is relegated to a brief comparison with GPs in an Annex Section A.

Thus this report mainly consists of a comparison between spline-based and GP approaches. Note
that as foreshadowed in ref [1, §1], the two approaches may anyway be complementary, in that
splines are capable of fitting large data-sets with sizes Nd of Petabytes and larger, whereas GPs
can only fit relatively small data-sets. As preliminaries, the next Section 2 establishes mathe-
matically why GPs are so costly, scaling as N3

d , and Section 3 provides an introduction to the
mathematics of splines, in particular of Multivariate adaptive regression splines (MARS). There-
after, Section 4 contains the details of the spline and GP comparison, and Section 5 provides a
summary.
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2 Scaling of Production of Gaussian Process Surrogates

Fundamentally the Gaussian Process (GP) is a stochastic interpolant between the sample data
points. The wikipedia entry [3] helpfully shows that for Gaussian statistics, the GP amounts to a
Brownian walk which takes in the sample points in turn. It will be seen why there is an optimal
mean square error (MSE), in that if the amplitude of the walk is too small, then the interpolant will
fail to change enough to go through consecutive points that have very different sample values, too
large an MSE and it is becomes increasingly improbable that the walk will ‘hit’ the points. It also
follows that it is vital to accurately characterise the statistics of the stochastic process as they are
integral to the interpolation. Ordinary Kriging assumes that the data has a constant mean at least
locally. There follows a description of universal Kriging that tries to fit a combination of stochastic
function and a deterministic functional form (typically a polynomial) through the sample point.

The most comprehensive work appears to be Sacks et al [4], who suppose that, although the
system under is deterministic (so that its output y at a sample point x should always be the same),
because of errors y(x) can be regarded as resulting from a random function aka stochastic process
as follows:

Y (x) = ΣM
m=1cmfm(x) + Z(x) = c · f(x) + Z(x) (1)

where the fm(x) are a basis that may be chosen by the modeller, cm are fitting parameters to be
determined, and Z(x) is a (separate) random process at every x with zero expected value. The
assumption represented by Equation (1) is referred to as universal Kriging, distinguishing it from
the simple Kriging described in ref [5, §2.3.1]. Further suppose that the experimental design, ie.
the set of samples, is

Experimental design S = (x1, x2, . . . , xN ) (2)

leading to observed values y = (y(x1), y(x2), . . . , y(xN )). If y is all the information known about
the system, then it is reasonable further to suppose that at any point x, y(x) may be predicted as
a linear combination of the observations

ỹ(x) = β(x) · y (3)

where the N -vector of coefficients β(x) is chosen to minimise the mean square-error

MSE (ỹ(x)) = E[(β(x) · y − Y (x))2] (4)

subject to the constraint
E[(β(x) · y − Y (x))] = 0 (5)

Substituting Equation (1) in the argument of Equation (5) gives

β(x) · y − Y (x) = ΣN
n=1βn(x) (c · f(xn) + Z(xn))− (c · f(x) + Z(x)) (6)

giving
E[(β(x) · y − Y (x))] = E[c · ΣN

n=1 (βn(x)f(xn)− f(x))] (7)

since E[Z(x)] = 0 at each value of x. Thus the constraint Equation (5) implies

ΣN
n=1βn(x)f(xn) = f(x) (8)
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which may be written in matrix-vector form as

F Tβ(x) = f(x) (9)

where the size N ×M matrix

F =


f1(x1) f2(x1) . . . fM (x1)
f1(x2) f2(x2) . . . fM (x2)

. . .
f1(xN ) f2(xN ) . . . fM (xN )

 (10)

Substituting Equation (8) in (β(x) · y − Y (x))2, all that remains are the terms in Z, so

MSE (ỹ(x)) = E[(Σn
s=1βs(x)Z(xs)− Z(x))2] (11)

= E[
(
Σn
s=1βs(x)Z(xs).Σ

n
q=1βq(x)Z(xq)− 2Σn

s=1βs(x)Z(xs).Z(x) + Z(x)2
)
](12)

Define the (normalised) correlation matrix by

E[Z(xi)Z(xj)] = σ2R(xi, xj) (13)

so that its entries Rij are symmetric by construction, and the vector

r(x) = (R(x1, x), R(x2, x), . . . , R(xn, x)) (14)

then
MSE (ỹ(x)) = σ2 (1 + β(x)Rβ(x)− 2β(x) · r(x)) (15)

which must be a minimum as a function(al) of β subject to the constraint system Equation (9).
Introducing λ(x) as a M -vector of Lagrange multipliers corresponding to the constraint, it follows
(since varying Equation (9) gives rise simply to a term F T ) that

Rβ(x)− r(x) + Fλ(x) = 0 (16)

thus to obtain β(x) requires solving the coupled system(
0 F T

F R

)(
λ(x)
β(x)

)
=

(
f(x)
r(x)

)
(17)

which it is convenient to rearrange as(
R F
F T 0

)(
β(x)
λ(x)

)
=

(
r(x)
f(x)

)
(18)

and once a solution (β(x),λ(x)) has been obtained then substituting for Rβ from Equation (16) in
Equation (15) and using Equation (9) gives

MSE (ỹ(x)) = σ2 (1− β(x) · r(x)− λ(x) · f(x)) (19)

The theory of block matrices in Section B specifically Equation (47), gives the solution to Equa-
tion (18) in terms of a negative inverse Schur complement S = −S−1C = (F TR−1F )−1 as(

β(x)
λ(x)

)
=

(
R−1 −R−1FSF TR−1 R−1FS

SF TR−1 −S

)(
r(x)
f(x)

)
=

(
R−1 − F+TS−1F+ F+T

F+ −S

)(
r(x)
f(x)

)
(20)
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where the right pseudo-inverse of F , F+ = SF TR−1 (note SF TR−1.F = I) has been inroduced.
It is also worth noting that S only exists if N ≥M and it is then symmetric.

The formulae in the Sacks et al paper then follow from the solution

β(x) = (I −R−1FSF T )R−1r +R−1FSf = (R−1 − F+TS−1F+)r + F+T f (21)
λ(x) = SF TR−1r− Sf = F+r− Sf (22)

upon introducing
c̃ = SF TR−1y = F+y (23)

and using the fact that for a general matrix F is symmetric, then for arbitrary vectors x and z,
F Tx · z = x · Fz = xFz, so that Equation (21) yields

ỹ = β · y = c̃ · f +R−1r · (y − F c̃) (24)

Setting c̃ = 0 recovers simple Kriging.

Another formula is

MSE (ỹ(x)) = σ2
(
1− r(R−1 − F+TS−1F+)r− 2rF+f + fSf

)
(25)

3 Spline theory

This section consists of background material for splines based on wikipedia entries [6, 7, 8].

3.1 Spline interpolation

Suppose we wish to fit a curve piecewise to a set of Nd + 1 data points {(xi, yi)}Nd
i=0, called knots,

using Nd functions, called splines, defined for each i = 1, . . . , Nd as y = qi(x) on the interval
[xi−1, xi]. We could do this with Nd linear functions defined on each of the intervals. However,
this will not generally give a smooth result at the knots. In order to have the freedom to set the
derivatives at the knots, we need to consider cubic (or higher-order) polynomials. These degrees
of freedom are determined by specifying that the splines must be C2-differentiable at the knots,

q′i(xi) = q′i+1(xi), q′′i (xi) = q′′i+1(xi), (26)

for i = 1, . . . , Nd.

The determination of spline coefficients in general is covered by de Boor [9]. In the cubic case, we
have Nd intervals each containing a cubic, we have 4n parameters to determine. At each of the
Nd − 1 interior knots, we have 4 equations,

qi(xi) = yi, (27)
qi+1(xi) = yi, (28)

q′i(xi) = q′i+1(xi), (29)
q′′i (xi) = q′′i+1(xi), (30)
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giving 4n− 4 conditions in total. At the edge knots, we only have

q0(x0) = y0, (31)
qNd

(xNd
) = yNd

, (32)

and so require only a further conditions to be able to determine all coefficients. There are different
options for doing this, but a common choice is the “natural conditions”

q′′0(x0) = 0, (33)
q′′Nd

(xNd
) = 0. (34)

Writing the system symmetrically, the problem becomes one of inverting a tridiagonal system, an
O(Nd) complexity procedure.

3.2 Spline smoothing

This determines a cubic spline fitting function to observed noisy data, Yi = f(xi) + εi, where εi is
additive noise, assumed to have zero mean. The fitting function is f̂ is the function that minimizes

Nd∑
i=1

(
Yi − f̂(xi)

)2
+ λ

∫
f̂ ′′(x)2 dx, (35)

over all twice differentiable functions.

Detailed inspection of ref [7] suggests that once again a tridiagonal matrix inversion is needed to
find the vector of values at the data points/knots, f̂(xi). These are then used as coefficient in the
expansion in spline function,

f̂(x) =

Nd∑
i=1

f̂(xi)fi(x), (36)

where fi(x) are the set of spline basis functions.

3.3 Adaptive spline fitting

Multivariate adaptive regression spline is also known as MARS. “It is a non-parametric regression
technique and can be seen as an extension of linear models that automatically models nonlinear-
ities and interactions between variables.”

The basic idea is to replace a linear regression model with a piecewise linear regression model,
using hinge functions,

max(0, x− c) or max(0, c− x) (37)

where constant c is called the knot. MARS model fits are sums of functions of three types:
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• a constant,

• a constant times a hinge function, and

• a constant times a product of hinge functions.

The overall number of terms, and the number of hinge functions that may be multiplied together
are parameters defined by the user; otherwise, the model is parameter-free.

f̂ =
∑
i

aiBi(x) = a0 +
∑
i

ai max(0, x− ci) (38)

3.3.1 Implementation

The python package SKLEARN provides an implementation of MARS. MARS is itself a trademark,
so the implementation of the MARS model is instead called EARTH, in Python PY-EARTH [10]..

3.3.2 Smoothness

MARS differs from spline fitting in that MARS splines are not smooth. This is potentially attractive,
for many solutions to fluid dynamical problems exhibit shocks or at least internal/boundary layer
behaviour where the flow solution exhibits local rapid variation that is hard to capture in detail,
hence resembles discontinuity.

Nonetheless, SKLEARN offers a parameter called “smooth” that produces a differentiable fit, fol-
lowing [11, §3.7]. That paper is interesting on the need to make smooth fits:

If the intent is accurate estimation of the function (as opposed to its derivatives of
various orders), then there is little to be gained by imposing continuity beyond that
of the function itself. If the true underlying function nowhere has a very large local
second derivative, then a small additional increase in accuracy can be achieved by
imposing continuous first derivatives. Also, continuous (first) derivative approximations
have considerably more cosmetic appeal. There is, however, little to be gained and in
fact much to lose, by imposing continuity beyond that of the first derivative, especially
in high dimensional settings.

The difficulty with higher order regression splines centers on so called end effects.
The largest contribution to the average approximation error (2), (3) emanates from
locations x near the boundaries of the domain. This phenomenon is well known even
in univariate smoothing (Nd = 1) and is especially severe in higher dimensions. As
the dimension of the covariate space increases, the fraction of the data points near
a boundary increases rapidly. Fitting high degree polynomials (associated with high
degree regression splines) in these regions leads to very high variance of the function
estimate there. This is mainly due to the lack of constraints on the fit at the boundaries

7



This implies that piecewise-linear models should be adequate in higher dimensions, however it is
not clear “how high is high”. It seems likely that an ordinary 2-D or 3-D flow field will benefit from
higher order, and possible that a kinetic (5-D or 6-D) representation will also benefit.

A smooth fit could be achieved by using higher-order hinge functions,

bq(x− t) = max(0, (x− t)q) = (x− t)q+, (39)

with the lowest-order smooth fit being quadratic, q = 2. However, this suffers from the end effects
mentioned above. Therefore instead, MARS uses a modified basis set with formulae that appear
complicated but in fact which are essentially hinge functions with the corner smoothed over using
cubic polynomials. These basis functions are denoted C(x|s = ±1, t−, t, t+), where s corresponds
to the sidedness of the function (the sign in usual hinge functions). Instead of being characterised
by a single knot, t, these are characterised by three knots, t−, t, and t+. They are continuous and
smooth, but have discontinuities in the second derivative at t±. Central knots t are placed in the
same location as in the piecewise linear case. The side knots t± are positioned midway between
the central knots.

4 Comparison of MARS and GPs

Here, the quality of approximate function fits to data from MARS and Gaussian Processes are
compared. Data drawn from a smooth function is considered in Section 4.1, while data drawn
from the same function with additional Gaussian noise is considered in Section 4.2. Non-smooth
continous functions and discontinuous functions will be discussed in future reports.

The tests described are implemented in Python using the SKLEARN packages [12] for Gaussian
Processes and py-earth [10] (a contributed SKLEARN package) for MARS. The latter implements
the MARS algorithm as described by Friedman [11].

4.1 Fitting a noise-free smooth function

The first test function is

f(x) = x sin(x) (40)

The function f(x) is discretized on a uniform grid of 1000 points, and MARS and GPs are used to
create fits for this function using a data sample of Nd � 1000 random training points. The seed
of the random number generator is fixed so that both methods use the same training points, and
moreover that the set of Nd + 1 training points is the same as the set of Nd training points with one
additional point.

4.1.1 MARS

MARS fits to the function (40) are shown in Figure 1 for various Nd. These are generated using the
smoothed hinge basis functions C(x|s), allowing up to 100 summed terms, and for each term to
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Figure 1: MARS fits to the function f(x) = x sin(x) for training sets of various sizes, n = Nd.

contain the product of up to 100 basis functions. This generates smoother fitting functions without
a noticeable increase in computational cost.

The fits produced by MARS require at least Nd = 10 data points to be reasonable, but many more
points (Nd around 50) to be numerically accurate. Even with many overall data points, regions of
the domain with no data may be fitted poorly: see around x = 2 in the Nd = 50 plot, Figure 1d.

The error in the fit and run time of the code are shown for MARS as the blue line in Figure 2. To pro-
duce the error, the MARS model is generated using a training set TNd

of Nd point, fMARS(x|TNd
),

and evaluated on the full grid of 1000 points. The absolute error |f(x)− fMARS(x|TNd
)| is plotted

as a function of Nd. The relative error |f(x) − fMARS(x|TNd
)|/|f(x)| is not used, as f(x) is near

zero in many places, making this metric uninformative. The error in Figure 2a decreases with
increasing Nd until reaching a plateau at around Nd = 50. That is, using a larger training set than
Nd = 50 is not worthwhile, as the model fit does not improve.

The run time in Figure 2b is generated using Python internal timers to measure the fitting stage
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Figure 2: The errors (a) and run times (b) for MARS (blue), Gaussian Processes (red) and Gauss-
ian Processes with adaptive sampling (green). (n = Nd of text.)

of the algorithm only – the timings do not include sampling or function evaluations. Moreover,
each Nd is treated as a separate case. In principle, as the training sets are nested it is possible to
leverage information from previous runs to reduce the cost of fitting, but that is not done here.

The cost of MARS increases roughly linearly in the range 3 ≤ Nd ≤ 30, before increasing roughly
like N1/3

d for Nd ≥ 30. This compares favourably with the theoretical O(Nd) scaling.

4.1.2 Gaussian Processes

Gaussian Processes fits to the function (40) are shown in Figure 3 for various n = Nd. In this
noise-free case these are generated by interpolating data points using the RBF kernel, which is a
distribution with squared exponential form (not a radial basis function). Along with the predicted
function value, the GP fit also generates a standard deviation for the fit, from which confidence
intervals can be produced: 95% confidence intervals are also shown as the shaded regions in
Figure 3.

GPs produces meaningful results with as few as three data points (see Figure 3b). The fits become
extremely accurate for Nd ≥ 8 when interpolating within the training set (see Figure 3c), and are
essentially perfect fits by eye by Nd = 10 (Figure 3d).

The absolute error of the GP fit is plotted as the red line in Figure 2a. The error drops off extremely
rapidly in the range 8 ≤ Nd ≤ 15 before settling at a small plateau. The decay in error is much
faster than that achieved by MARS (blue), and the final plateau reached is five orders of magnitude
smaller.

In the range where the error decays, there are large discrete jumps where the error decreases
dramatically from Nd to Nd + 1. These occur when the new training point added is outside the
range of the existing training set. This means that the GPs are (accurately) interpolating over a
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Figure 3: GP fits to the function f(x) = x sin(x) for training sets of various sizes, n = Nd.

larger range of the domain and (less accurately) extrapolating over a smaller range. The error is
therefore much reduced.

The run time for GPs is plotted as the red line in Figure 2b. Each case takes around ten times
longer than a MARS fit, but for Nd . 200 requires less than 1 second. Moreover, the observed
scaling is noticeably more favourable than the theoretical scaling of O(N3

d ), even at the largest
values of Nd considered.

4.1.3 Adaptive sampling with GPs

So far, randomly selected training sets have been used. However, it has been observed that some
regions of the domain are fitted better than others – in particular interpolation within the training
set is more accurate than extrapolation. This raises the prospect that faster convergence could be
achieved, if the training points could be placed where needed.
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Figure 4: GP fits to the function f(x) = x sin(x) for adaptively sampled training sets of various
sizes, Nd.

To achieve this, the confidence intervals produced by the Gaussian Process routine are used. To
go from the training set TNd

to the set TNd+1, the new point is added at the position where the
confidence interval is widest. T1 is chosen as a random point.

An example of this is shown in Figure 4 where fits for the cases Nd = 7 to Nd = 10 are given. In
each plot, the red circle shows the function value at the position where the confidence interval is
widest. That point is added to the training set and used in the fit for Nd + 1. Note that the new
data point dramatically improves the function fit near that point, but also generally improves the
fit across the whole domain. For example, comparing Figures 4a and 4b, the new point at x = 4
dramatically reduces the error near x = 4, but also reduces the error around x = 2 and x ∈ [5, 8].

Note also that by Nd = 7 (Figure 4a), the extrema of the grid x = 0 and x = 10 have already been
added to the training set. One property of this sampling algorithm is that it tends to immediately
add the grid end-points so that there is no extrapolation.

12



The absolute error of this approach is plotted as the green line in Figure 2a. After some initial
noise, the error is smaller than that for randomly-sampled GPs (red) and reaches the minimum
error plateau sooner. This is not a dramatic improvement however, as the GP fit to a smooth
function is already very good. Preliminary work suggests that adaptive sampling becomes more
important when treating non-smooth or discontinuous functions.

The run time is plotted as the green line in Figure 2b. As the time only includes the GP fit and
not the sampling, the behaviour is the same as that for GPs to within timing noise. Note that the
adaptive sampling itself is cheap, amounting to finding the maximum value in a length 1000 vector
that is produced automatically by the GP routine.

4.2 Fitting a smooth function with noise

In this second test, the same function f(x) = x sin(x) is considered but now with additional super-
imposed Gaussian noise with unit amplitude and standard deviations σ ∈ {0.01, 0.1, 1, 10}.

No modification is needed for MARS in this case, as it does not interpolate the training data. The
GP approach however must be modified: in the preceding case, GPs interpolated the data which
leads to overfitting and inaccurate models when the data is noisy. To deal with this, SKLEARN’s
GaussianProcessRegressor function is provided with the parameter α = σ2, which it interprets as
the variance of additional Gaussian measurement noise on the training observations. Note that in
a problem with real data, this step would entail making an estimate for the variance of the noise
σ2.

An example of a GP with Nd = 10 and α = σ2 = 1 is shown in Figure 5. Note that unlike in the
noise-free case, the mean prediction does not interpolate the observations, and the confidence
intervals do not vanish at the data points.

Otherwise, the behaviour of function fits is very similar to those shown in Figures 1, 3 and 4, and
so these are not reproduced. Likewise, the timing plot is very similar to that in Figure 2b.

The significant difference is in the error graph, plotted in Figure 6. The absolute error is plotted
against training set size n = Nd for MARS (blue), GPs (red) and adaptively-sampled GPs (green),
with different markers showing the value of σ. As in the noise-free case (Figure 2a), there is
generally a reduction in error with Nd, and then a plateau where the error does not reduce further.
As before, the error for GPs approaches decreases more quickly and, in the cases with smaller
σ, attain a lower error plateau than the MARS approach. However, there is now the significant
difference that by the very nature of having noisy data, there is a lower bound of the size of σ
that any model would be able to attain. This means that when the noise level is σ & 0.1, both
GPs and MARS produce models of the same accuracy, but MARS does so at around one-tenth
of the computational cost. In cases where the is less noise σ . 0.1, GPs still produce much more
accurate models.
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5 Summary

This report has compared MARS and GP fitting for smooth function both with and without added
Gaussian noise.

In the smooth, noise-free case, GPs converge very quickly to the test function, requiring only ∼ 10
training points. The computation is not expensive with each case running in less than a sec-
ond, and the observed scaling is rather weaker than the theoretical O(N3

d ). Using an adaptively-
sampled training set does increase the rate of convergence, but the improvement is not significant
for smooth functions where randomly-sampled points already provides very quick convergence.

In contrast to GPs, MARS converges more slowly, requiring ∼ 50 training points, and has quite a
high error plateau so that it never converges exactly to the test function. The MARS computation
is however around ten times faster than the GP computation, and the observed scaling is weaker
than the theoretical O(Nd).

The behaviour of the fits is not significantly altered by the addition of Gaussian noise to the test
function. The main difference is that the standard deviation of the random noise σ sets a lower
bound on the absolute error that any fitting algorithm can achieve. When the noise level is large
σ & 0.1, neither algorithm can attain a good fit, and so MARS is preferable as the cheaper ap-
proach. However, when the noise is small σ . 0.1, GPs are preferable as more accurate and still
relatively inexpensive.

5.0.1 Future work

This report has compared MARS and GPs approaches for fitting smooth functions with and without
imposed Gaussian noise. These functions might represent mean heat transport by each of a set of
a turbulent calculations. Regarding the structure of the turbulent flows themselves, it is of interest
as to how these approaches handle rapidly varying, effectively discontinuous functions. This will
be the subject of future reports, but preliminary work indicates the following:

• The quality of fits from all approaches deteriorates around discontinuities.

• To achieve good fits it is necessary to both use adaptively-sampled training sets, and to
divide the domain into disjoint regions on which the test function is smooth and continuous.

• As such, the ability to identify discontinuities in data will be very important.

The last point implies eg. that fluid calculations should record information about where techniques
such as shock-fitting have been employed to eliminate spurious oscillation, since these may in
effect constitute discontinuities.
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A Annex A: Comparison of GP and NN surrogates

Both Gaussian processes (GP) and neural networks (NN) are basically techniques for interpola-
tion, which may be shown to be very expensive to derive relative to spline-fitting.
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1. GP

(a) At each position/time x there is a Gaussian random variable. However

(b) the correlation between different x need not be Gaussian, and

(c) the correlation function R(x, x′) essentially defines how the interpolant is produced, at
N3 cost, N is number of samples.

(d) The correlation function has (hyper)parameters which may be calculated by optimisa-
tion - maximising the likelihood function over relatively small number of parameters, but
optimiser may not converge

(e) May do amazingly well as a consequence of the Central Limit Theorem

(f) Likely to be stable when extrapolating if R smooth

2. NN

(a) Defined by localised functions at nodes, in general functions of functions of . . . , where
the basic function usually has simple form

(b) Fitting by optimisation techniques for number of parameters ∝ number of nodes - tech-
niques rely on having many samples and optimiser may be slow to converge or overfit

(c) Theorems that NN approximation has resistance to “curse of dimensionality”

(d) Usually unstable when extrapolating

(e) Lack of routine estimates for error in surrogate

B Annex B: Advanced Results in Matrix Theory

The inverse of a block matrix, ie. a matrix written as

B =

(
A11 A12

A21 A22

)
structure

(
N ×N N ×M
M ×N M ×M

)
(41)

may be deduced from the formulae obtained using Gaussian elimination for 2 simultaneous linear
equations (expressed using the 2× 2 matrix A)

A

(
x
y

)
=

(
b1
b2

)
where A =

(
a11 a12
a21 a22

)
(42)

As is well-known, Gaussian elimination proceeds by scaling the x-coefficient of the first equation to
be equal to that a21 of the second, ie. by the factor a21a−111 and then subtracting the two equations.
This may be expressed as a matrix multiply, viz.(

1 0

−a21a−111 1

)(
a11 a12
a21 a22

)
=

(
a11 a12
0 sc

)
(43)

where the coefficient
sc = a22 − a21a−111 a12 (44)
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It follows that the inverse of A, provided sc 6= 0 is

A−1 =

(
1 a−121 a12
0 1

)(
a−111 0
0 s−1c

)(
1 0

−a21a−111 1

)
(45)

The Schur complement is the analogue of the sc factor for block matrices, viz.

SC = A22 −A21A
−1
11 A12 (46)

when writing Equation (45) with aij → Aij (sc → SC , invertible) gives the block factorisation.
Multiplying out the product gives

B−1 =

(
A−111 +A−111 A12S

−1
C A21A

−1
11 −A−111 A12S

−1
C

−S−1C A21A
−1
11 S−1C

)
(47)

B.1 Additional Results

Using the generalised Sherman-Morrison-Woodbury formula, the first entry simplifies. The for-
mula, from Golub & van Loan [13, Eq. (2.1.4)] is

(T + UV )−1 = T−1 − T−1U(I + V T−1U)−1V T−1 (48)

where T is an N ×N matrix, U is N ×M and V is M ×N (cf. use of V T in [13]). To apply, write
U = −WC−1, then

(T −WC−1V )−1 = T−1 + T−1W
[
C−1(I − V T−1WC−1)−1

]
V T−1 (49)

and observe that the term is square brackets simplifies on remembering that where inverses of
matrices Sj exist, S−11 S−12 = (S2S1)

−1, so that

(T −WC−1V )−1 = T−1 + T−1W
[
C − V T−1W )

]−1
V T−1 (50)

With the obvious substitutions, this implies

(A11 −A12A
−1
22 A21)

−1 = A−111 +A−111 A12[SC ]−1A21A
−1
11 (51)

Thus

B−1 =

(
(A11 −A12A

−1
22 A21)

−1 −A−111 A12S
−1
C

−S−1C A21A
−1
11 S−1C

)
(52)

There are results of the form

(T − UV −1W )−1UV −1 = T−1U(V −WT−1U)−1 (53)

perhaps more memorable as

(T−1 − UVW )−1UV −1 = TU(V −1 −WTU)−1 (54)

These are easily proven by multiplication by the terms in parenthesis, when (in the second case
Equation (54), two terms in UVWTU cancel. The importance of Equation (53) is that the off-
diagonal terms in S−1C in Equation (52) may be replaced by terms expressed using (A11−A12A

−1
22 A21)

−1.
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