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Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M6.2. It includes an application of the Nektar++ finite-element soft-
ware to the classic problem of vertical natural convection, showing concur-
rence with numerical results from a benchmark test case in the literature
and the replication of some outputs from a recent publication. A further
section contains details of a preliminary attempt to explore recent devel-
opments in the use of structure-preserving finite-element methods ie. dis-
crete exterior calculus, the vision being that such methods will enable finite-
element outputs to integrate reliably with developments in particle-based
codes within NEPTUNE.
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1 Introduction

High-order methods, which offer the potential for exponential improvement in accuracy given poly-
nomial increase in computation time, are seen as essential for maximizing the performance of
next-generation software intended to run on forthcoming exascale machines. One specific ex-
ample of such an approach is the spectral / hp finite element method [1], of which a modern,
open-source C++ implementation is the software Nektar++ [2] co-written and maintained by one
of the NEPTUNE grantees. The Nektar++ framework forms the basis for some of the core NEP-
TUNE proxyapps and is currently being augmented with capabilities to handle fusion-relevant
problems ([3], [4]) and also extension to allow optimized operation on a wider range of computa-
tional architectures. This involvement justifies continued investment of UKAEA time in verification
and validation of the framework, e.g. by comparison to published results, and, with a view to fu-
ture extensions, in understanding its operation. In view of its overarching focus on finite-element
methods, this deliverable relates primarily to Work Package FM-WP1 - Numerical Representation.

In Section 2, a comparison between Nektar++ outputs and a well-known benchmark result for
convective heat transfer is performed, and also some results from a recent paper on convection
modelling are replicated. This work extends fluid methods studied in the prequel [5] in terms of
comparison to results from the literature.

The simulation of the plasma edge will require models going beyond the purely fluid-mechanical
treatment in 2 in order to describe the physics in regions where collisionality is low. This kinetic
regime can be accessed by the use of particle methods, which literally attempt an atomistic dy-
namical simulation (though each computational particle may correspond to very many physical
particles). The current wisdom associated to the coupling of particles to continuum fields (e.g.
electromagnetism) harbingers deeper changes to the existing Nektar++ framework. Specifically,
numerical properties of the coupled particle-field solver are known to benefit greatly, for example
in terms of stability guarantees, from the use of structure-preserving methods, in which aspects
of the continuum physics survive the transition to a discrete representation. These techniques
go also under the name of ‘discrete exterior calculus’ or ‘finite-element exterior calculus’ as they
preserve some of the attributes of continuum exterior calculus. As a prelude to these expected
changes, a brief exposition of such a translation is given in Section 3 for a simple toy problem
using a method taken from the literature; the example is shown to achieve spectral convergence
(via the use of a small stand-alone code).

The test problems treated herein are sufficiently small so as not to benefit much from execution on
HPC hardware, and the results were obtained using only a modest desktop PC. The at-scale capa-
bility of the Nektar++ framework is the subject of current study and future work by the developers
of that code and is beyond the ambit of this report.
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2 Vertical natural convection in Nektar++

2.1 Introduction

This work follows-on from the investigation described in the previous report [5], which treated the
problem of heat transport in vertical natural convection (for an illustration of the relevance of such
problems to the fusion use case, see [6]). One new aspect of the current work is the replication of
numerical results published in the literature.

In vertical natural convection an upright cavity has a hot side and a cold side and is filled with a
fluid that experiences a vertical buoyancy force when heated. The strength of this force then leads
to different regimes of flow and heat transport. When the force is negligible, heat is transferred
diffusively from the hot surface to the cold one, in rough analogy with classical transport. Greater
buoyancy leads to fluid moving up the hot side, across the top of the cell, and down the cold side,
creating a steady (laminar, or ‘classical’) circulation and transporting heat by advection. As the
force is increased, the vertical flow becomes increasingly confined to a velocity boundary layer
near the vertical walls; likewise, the temperature gradients are increasingly restricted to a thermal
boundary layer near the vertical walls. Further increasing the force, one finds that the sheared flow
near the vertical boundaries leads to an instability of Kelvin-Helmholtz type that takes the form of
waves that co-move with the convective flow, and which are chaotic in nature; these boundary
effects also lead ultimately to complicated, also-chaotic, time-dependent flow structures in the
bulk - turbulent flow. As in the previous report, the simulations are two dimensional and thus truly
three-dimensional effects - including expected instabilities - are excluded a priori.

In dimensionless form, the system of equations describing vertical natural convection is, for fluid
velocity u, temperature T and pressure p, for a system coordinatized such that the vertical, gravity-
opposing direction is ŷ,

1

Pr

(
∂u

∂t
+ u · ∇u

)
= −∇p+Ra T ŷ +∇2u, (1)(

∂T

∂t
+ u · ∇T

)
= ∇2T, (2)

∇ · u = 0. (3)

The Boussinesq approximation is assumed, with the density fluctuation entering only as a temperature-
dependent buoyancy force (hence the incompressibility condition) - for this reason, the system is
simulated using the incompressible Navier-Stokes solver of Nektar++. Dirichlet boundary condi-
tions were used for the vertical wall temperatures (T = 1 on the left and T = 0 on the right) and
zero Neumann conditions (i.e. no heat flux) on the horizontal walls (top and bottom). The ve-
locity boundary conditions were no-slip / no-penetration and the pressure used a zero Neumann
condition, for all walls.

The dimensionless parameters are the Rayleigh number, where β is the thermal expansion coef-
ficient, ∆T the temperature difference across cavity width L,
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Ra =
βg∆TL3

κν
(4)

and the Prandtl number: the ratio of kinematic viscosity ν to thermal diffusivity κ (a property of the
fluid filling the cavity; in these simulations, the value 0.71, appropriate to air, was used),

Pr =
ν

κ
. (5)

The other relevant parameter is the aspect ratio λ = L/H of the cavity (width L, height H).

The heat flux the spatial-averaged Nusselt number defined as

Nu =

∫ H
0 −∂/∂xT (x0, y) + ∂/∂xT (x1, y)dy∫ H

0 −∂/∂xT (x0, y) + ∂/∂xT (x1, y)dy|Ra=0

. (6)

Computational parameters enter as the mesh resolution (for simplicity, meshes comprising uniform
squares are used for this study, with h denoting the size of a single element) and the global order
p (a natural number) of the spectral elements, with the lowest allowed value (p = 1) meaning
that linear intra-element basis functions are used, and greater p corresponding to higher-order
Lagrange polynomials. For reference, a continuous Galerkin formulation was employed.

2.2 New numerical results

Verification of the incompressible Navier-Stokes solver of Nektar++ was performed for the case
of two convective flows. The first of these, which will be the main focus, is identical to the MIT
benchmark [7] and uses a Rayleigh number Ra of 3.4 × 105, giving a steady flow with a time-
periodic flow instability. The second differs only in using a larger value of Ra, 5.5 × 105, at which
the flow instability is no longer periodic (see Figs. 1 and 2), probably due to the operation of
multiple linear instability modes of incommensurate period. The setup involves a computational
domain with aspect ratio 8 : 1 i.e. a tall narrow tank of fluid. The MIT benchmark was established
in order to identify the time-dependent solution for the cavity described above, to find the critical
Rayleigh number for the onset of flow instability, and to identify computational methods capable
of providing these results. Two of the quantities of interest in the study are the time-averaged,
spatially-averaged Nusselt number and the time series of the temperature at the point (x, y) =
(0.181, 7.37). The former is presented in a table of results obtained by various authors, while the
latter is available for download, both at [7].

A uniform grid of 800 p = 10 spectral elements was used, unlike the MIT benchmark which uses
computational meshes that are refined near the boundaries to better resolve the boundary layers
(note that the paper [8], which appears to use a uniform mesh, contains evidence that the reso-
lution used herein is sufficient to resolve relevant physics of both flows). Timestep sizes were set
(by trial-and-error) to be close to but not in violation of the stability limit on the maximum allowed
timestep. Regarding computational resources, the simulations are not particularly onerous, with
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Figure 1: Temperature fields for Ra of 3.4 × 105 (left) and 5.5 × 105 (right). Note the appearance
of the ‘wall waves’ in the larger-Ra case, in which the steady configuration is replaced by a time-
dependent quasi-steady state.
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Figure 2: Field-at-point outputs showing Nektar++ and MIT benchmark data. Temperature field
recorded at point ‘1’ described in [7] i.e. (x, y) = (0.181, 7.37). Note absence of periodicity of the
flow instability in the higher-Ra case.

ten periods of the lower-Ra example taking approx. 30mins to run on a single Core-i7-10700KF
3.8GHz PC (the higher-Ra case is somewhat slower due to the use of a smaller timestep).

The Nusselt number was computed as a time series using a customized Nektar++ filter, described
in [5] and representing the sole modification of the existing code base for the work described in this
section. The mean value of the time series data was evaluated as the average of the maximum
and minimum of the time series (using a small timestep for all simulations meant that this approach
was sufficiently accurate).

The most accurate of the Nusselt number results reported in [7] for the Ra = 3.4×105 flow appears
to be that obtained by le Quéré, with a value of 4.57946. This is 0.002% different from the converged
value obtained from Nektar++ and presented in the table 1 (note these results all used the same
timestep size). This level of agreement falls slightly short of the exact (to 6 sf) concurrence shown
in [8] - this minor discrepancy may be down to details of the solver implementation, or perhaps
the method used for the time-averaging. The value of the time-averaged Nusselt number obtained
from Nektar++ can also be seen, in the figure 4, to converge spectrally with the element order p.
Note also the wall-clock run times tabulated in Table 1, which indicate that the computation is not
bound by arithmetic; the number of degrees of freedom scales as (p + 1)2 and these execution
times obviously do not scale even nearly as strongly as p2.

Good agreement with the point temperature was also obtained for the lower Ra-value case (Fig.2),
in which the MIT benchmark data is available for download from [7] - amplitude and period can be
seen to match. The higher-Ra value generates a time series that is chaotic and thus the compari-
son is less straightforward since only its statistical properties can meaningfully be compared (not
done here).

The lower-Ra simulation contains a periodic perturbation, the flow field of which can be visualized
and compared to Figs.5-7 of [8]. Excellent visual agreement with those figures is obtained in Nek-
tar++ outputs (note the amplitude of the perturbation is not meaningful as the phase is not quoted
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Element order p time-av. Nusselt number Nu Execution time / s (16 logical cores)
1 3.66566 38
2 4.95898 97
3 4.62167 171
4 4.54045 336
5 4.56850 601
6 4.57956 799
7 4.57977 1047
8 4.57943 1627
9 4.57936 1903
10 4.57935 2466
11 4.57935 3029

Table 1: Table of time-averaged Nusselt number values for Ra = 3.4×105 obtained from Nektar++.

in the paper). The procedure for extracting these plots from Nektar++ involves identification of the
time-dependent parts of the solution (see e.g. Fig.5 of [8]) in a relatively large-amplitude steady-
state background - the laminar convective cell - which needs to be subtracted. This is done using
the Nektar++ time-averaged field filter to compute the time-averaged background field, and then
processing the outputs to subtract the background using the FieldConvert postprocessing utility of
Nektar++ (the command is fieldconvert -m addfld:fromfld=MIT Ra 3pt4e5 averaged.fld:scale=-1

MIT Ra 3pt4e5.xml MIT Ra 3pt4e5.fld

MIT Ra 3pt4e5 fluctuation.fld) (See Fig.3 for Nektar++ output).

Note a couple of points: the Nektar++ simulations use a differently-scaled time variable: to convert
from that used in Nektar++ to that used in [8] and [7], multiply by

√
RaPr (Pr is the Prandtl number,

0.71 for both cases). Also note that [7] uses a temperature of 0.5 on the hot side and −0.5 on the
cold side, while [8] and the Nektar++ files use values of 1 and 0 respectively - conversion trivial.

In summary, very good agreement between published results and Nektar++ simulation results is
shown for averaged Nusselt numbers computed close to but on either side of the critical Rayleigh
number, and linear perturbations to flow-field profiles in time and space just beneath the critical
value of the Rayleigh number. Note that these Rayleigh number values fall rather short of resulting
in a truly turbulent overall flow of the sort reported in [5].

3 Preliminary study of discrete exterior calculus

3.1 Introduction

In recent years, structure-preserving methods have been applied to finite-element methods. In
short, these techniques ensure that certain important properties of the continuum system (e.g.
local conservation laws) are preserved in the discretized version (i.e. the action of discretization
commutes with certain operations, such as forming curls or divergences). There is a growing
literature on the advantages of such methods as relevant to e.g. stability and charge conservation
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Figure 3: Nektar++ fluctuation fields for T , v, u (respectively temperature, vertical velocity, hor-
izontal velocity), corresponding to Figs.5-7 of [8], computed by subtracting fields averaged over
one period of Ra = 3.4 × 105 case. Scales are excluded as phase does not correspond to that
used in figures from the reference.
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Figure 4: Demonstration of spectral convergence for the Nusselt numbers displayed in Table 1.

[9], often using a discretization of Whitney type [10, 11, 12].

Complete understanding of the literature on this subject is something of a challenge for the non-
specialist; however, a clear presentation can be found in [13] for the case of a globally-spectral
implementation of discrete exterior calculus. The formalism there described is here used to treat a
simple toy problem, allowing a transparent, elementary presentation of the recipe including such
relevant actors as the mesh, discrete exterior derivative operator, and discrete Hodge star - and
the duals of all three of the aforementioned. The reference [13] should be consulted for details
of various attractive properties that make the formulation work as the presentation here concerns
itself only with the basics.

3.2 A simple problem solved using discrete exterior calculus

The problem treated is a one-dimensional ordinary differential equation of Helmholtz type,

d2u(x)

dx2
+
u(x)

π
= f(x). (7)

The domain of interest is taken to be the interval [0, 2π] with a periodic boundary condition. It is
clear that the choice of a periodic domain avoids complications with what to do with the mesh and
dual mesh at the end points.

In exterior calculus language, the equation is expressed as

∗ d ∗ du+
u

π
= f (8)

for 0-forms u and f , exterior derivative d and Hodge star ∗. The composite ∗d ∗ d is referred to
as the Laplace-Beltrami operator in the literature (in this simple case it represents the Laplacian
operating on a scalar).
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It is clear that the equation is self-consistent in the pattern of forms, i.e. u is a 0-form, du a 1-form,
∗du a 0-form, and so forth.

The basis functions taken from [13] are

αN (x) =
1

N

{
cot x2 sin Nx

2 (N even)
cosecx2 sin Nx

2 (N odd)
(9)

βN (x) =

 1
2π −

1
4 cos Nx2 + 1

N

∑N
2
n=1

n cosnx
sinnπN (N even)

1
2π

∑N−1
2

n=1
n cosnx
sinnπN (N odd)

(10)

Further definitions are αN,n(x) ≡ αN (x− nh) and βN,n(x) ≡ βN (x− nh), for h ≡ 2πN .

Note that these functions have the properties αN,n(xm) = δmn and
∫ xm+h

2

xm−h
2

βN,n(x)dx = δmn.

The basis functions for the primal forms, defined on a primal mesh of N evenly-spaced nodes in
the interval [0, 2π], are then

φ0N,n(x) = αN,n(x) (11)

and

φ1N,n(x) = βN,n+ 1
2
(x) dx. (12)

The corresponding dual forms, described on the Voronoi dual mesh which has nodes half-way
between those of the primal mesh, are

φ̃0N,n(x) = αN,n+ 1
2
(x) (13)

(noting that a tilde is used to denote a dual quantity in the discrete representation) and

φ̃1N,n(x) = βN,n(x) dx. (14)

Examination of the equation 8 makes it clear that an expression for the discrete Hodge star acting
on a 1-form is required. This is obtained from

Hk
ij =

∫
σ̃n−k
i

∗φkj , (15)

and for the dual Hodge star operator

H̃k
ij =

∫
σn−k
i

∗φ̃kj , (16)
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with n = 1 and k = 1 in both cases (note that in this problem, the α functions are used only to plot
the solution, and the β functions are only used in evaluating the discrete Hodge operators).

The final pieces are the discrete exterior derivative operators on the primal and dual meshes.
These have the expected form though one subtlety is that the primal mesh operator is a forward
difference while the dual is a backward difference; explicitly, in a small example (N = 4)

D =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 (17)

for the primal and

D̃ =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 (18)

for the dual.

Having assembled these matrices, the method can be applied and tested. The matrix equation is

H̃1D̃H1Du+
1

π
u = f. (19)

The matrix multiplication and inversion routines included in Intel Math Kernel Library (MKL) [14]
were used; the system is small enough that a direct solver, based on a LU decomposition, is
effective. Note that the inclusion of the reaction term u

π in the equation removes from the com-
plementary function a constant term and a general solution with periodicity 2π (were this not the
case, the matrix obtained would be expected to be singular); this difficulty can also be avoided
by abandoning the periodic boundary condition. Analytic solutions of the differential equation 7
are easily generated using the method of manufactured solutions, in this case by evaluating the
right-hand-side (f(x)) corresponding to the periodic solution u = e3 sin 2x. A graph of the conver-
gence with N of the resulting numerical problem is shown in Fig. 5. Note the Linf error (assessed
against the analytic solution) was used as the basis for this assessment, as is the case in [13].
The exponential convergence seen here can be compared to that obtained by more elementary
approaches such as second-order finite-difference for which the convergence would be polynomial
(error ∝ h2).

In conclusion, a spectral method using the machinery of discrete exterior calculus has been de-
scribed and used to solve a simple problem. These methods have much potential for solving
more interesting systems, potential that is achieved at the expense of more involved mathematics
than that outlined here. It is anticipated that the implementation chosen for NEPTUNE will be a
spectral / hp method rather than the globally-spectral method illustrated here.
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Figure 5: Exponential convergence of the discrete exterior calculus implementation explained in
the main text (left). Solution curve for N = 40 shown to right.
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4 Summary

This report has provided further numerical results using the Nektar++ framework, continuing in-
vestigations started in [5]. Explicit numerical agreement between Nektar++ simulations of vertical
natural convection and corresponding results from the literature was demonstrated.

Additionally, a simple application of discrete exterior calculus to a toy problem, exhibiting spectral
convergence, was shown using a simple code written by the author. It is apparent that the exten-
sion of the Nektar++ framework to support less elementary implementations will entail a significant
amount of effort in order to understand the theory of higher-order discrete exterior calculus and to
incorporate this within the framework in a modular and sustainable way.

The author would like to thank the developers of Nektar++ for useful discussions.
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