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Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M4.1. It collates technical material to prepare call for high-dimensional
procurement. In particular, it contains a description of a simple 1d1v kinetic
solver implemented within the Nektar++ spectral / hp element framework
and the application of this solver to the textbook problem of the two-stream
instability, work which is intended to prepare the ground for anticipated up-
grades to Nektar++ and also to deepen UKAEA knowledge of the workings
of the Nektar++ code.
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1 Introduction

Future extensions of the spectral / hp method used in the Nektar++ framework for the fusion use
case will need to target kinetic models ie. solutions for matter that is not accurately treatable by
fluid dynamics as in eg. [1]). The extension of the framework to handle such models (physically,
Boltzmann-type equations) in some generality is the subject of NEPTUNE grant T/AW084/21. In
anticipation of the latter, and having collateral benefits in terms of learning Nektar++, a simple
proxyapp to handle a 1d1v case has been prototyped, as described herein. This is applied to a
classic kinetic problem in plasma physics: the two-stream instability in a system of collisionless
charged matter. Analytic results for instability linear growth rates are seen to be replicated by this
code (giving a non-trivial benchmark that can be applied immediately to the anticipated outputs of
the aforementioned grant). In addition, the nonlinear evolution of the system is demonstrated. By
virtue of the implementation of a model incorporating velocity-space effects, this report is relevant
to Work Package FM-WP2 - Plasma Multiphysics Model.
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2 A spectral/hp Vlasov-Poisson solver in Nektar++

2.1 Introduction

This work anticipates the outputs of grant T/AW084/21, which are explicitly to provide a framework
for solving continuum kinetic problems within Nektar++ and also a proxyapp capable of solving
1d1v and 1D-3V systems. Briefly, the plan involves adding a new library module TensorRegions

which will involve the inclusion of a separate computational mesh for handling the velocity compo-
nents of phase space. The results of this section, which are obtained with a simple modification
to the existing Nektar++ code, will provide a ready-made benchmark for the expected proxyapp
outputs of the aforementioned grant. This work is, to the authors’ knowledge, the first application
of the Nektar++ framework to a kinetic problem.

2.2 Theoretical background

The kinetic equation treated is the 1d1v Vlasov-Poisson system, in the phase-space coordinatized
by (x, v),

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0. (1)

Here E = −∂φ
∂x is the electric field, depending only on x (not v), with the electrostatic potential φ

found from the Poisson equation

∂2φ

∂x2
= ω2

P

(∫
f
dv

v0
− 1

)
, (2)

where the plasma frequency ωP is the only physical parameter in the problem.

The subtracted term adds a uniform (in x and v) neutralizing background; v0 is chosen so as to
give global neutrality. The system may be interpreted as electrons moving in a background of
much heavier, i.e. effectively stationary, ions. More broadly, this model is a statistical, continuum
representation of charged matter in the non-relativistic limit - the particle dynamics are Newtonian
and electrodynamics reduces to electrostatics. It is possible to include additional physics by insert-
ing collision terms on the right-hand-side but that is left for future work, as classic and nontrivial
results can be obtained in the collisionless limit. The definitions are as in [2]; note the electric field
in the equations is rescaled by a factor of e

m relative to the physical value. It is worth noting that
the matter density function comes with the interpretation of something that is positive; f(x, v) ≥ 0.

2.3 Nektar++ implementation

The implementation is made possible within the existing Nektar++ framework by realizing that the
system 1 has the form of a two-dimensional advection problem.
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The solver derives from the class AdvectionSystem and the advection velocity is simply vadv =
(v,E). In fact the new solver was based on nektar-driftwave provided to the NEPTUNE com-
munity by the developers of Nektar and available at [3]. Most of the work involves writing the
method ExplicitTimeInt (which in the implementation discussed here includes also the solu-
tion of the Poisson problem). The advection part of the problem is solved using a discontinuous
Galerkin formulation with an upwind numerical flux.

The Poisson problem is solved using the API function HelmSolve (with zero Helmholtz constant);
note that a continuous field is always used for the electric potential, as is the case in nektar-driftwave.
During a prototyping phase, the Poisson problem was solved using a simple finite difference solver
before being upgraded to the full spectral/hp method. Note that having all the fields in the proper
spectral/hp form enables use of Nektar++ API functionality to provide diagnostics of e.g. elec-
trostatic field energy and matter kinetic energy using the Integral method to perform numerical
quadrature accurate to the spectral order of the code.

The only non-API functionality that was necessary is for the code to integrate f over one dimension
(v) in order to obtain the spatial charge density (Nektar++ does not currently provide this capability
- [4] - it can integrate along element boundaries but not along a line cutting through an element).
This was done using Gauss-Legendre quadrature (see, for example, [5]) and involved use of the
Nektar++ API functions to obtain field values at the quadrature points. Given nG such points over a
(one-dimensional) element, polynomials up to order 2nG−1 are integrated exactly; it is thus simple
to ensure that the integrals are exact up to a given finite element order. The Gaussian integrals
are done on a per-element basis so there is no question of inaccuracies due to attempting to
integrate over the field discontinuities of the discontinuous Galerkin method; also, since the Gauss
quadrature points lie strictly within the elements, there is no issue with the ambiguity associated to
non-unique field values at element boundaries. Collectively, the integrals form a one-dimensional
array indexed by the node positions along the x-direction; these values are converted to a two-
dimensional array over the entire (x, v) domain in order to provide an appropriate right-hand-side
for the HelmSolve function.

The spatial dimension is taken as periodic in the range [−1, 1] with a periodic boundary condi-
tion. The velocity space is taken to be in the range [−4, 4] with homogeneous Dirichlet boundary
conditions on f and homogeneous Neumann conditions on φ. Note initial tests used a periodic
boundary condition in v, which worked due to the density vanishing at that boundary, but which
caused a crash when used with MPI (possibly a bug).

The solution was made compatible with the MPI support in Nektar++ by using the shared array
class Nektar::Array. The possibility of more than one thread contributing to the v-integral at a
given x-point was countered by performing a ‘minimum’ reduction operation after the evaluation
of the set of v-integrals. In addition, vector arithmetic API functions for operating on the shared
arrays were utilized, e.g. Vmath::Vvtvp which is ‘vector times vector plus vector’. Note that the
API contains MPI reduction commands for summation, maximum, and minimum (e.g. the latter
is AllReduce(Array, LibUtilities::ReduceMax)); this knowledge means that the temperature-
maximum filter in [1] can now be made MPI-compatible.

There are a number of properties about this implementation that are non-optimal from the point of
view of efficiency: the Poisson problem is solved in two dimensions when it only depends on one
of those dimensions; the electric field energy integral is done over two dimensions when again the
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electric field only varies in one dimension. Note that these (and other) performance concerns in
Nektar++ will be addressed by the outputs of Call T/AW084/21.

The (entirely C++) code was written and debugged using the Microsoft Visual Studio 2019 Com-
munity Edition IDE [6] running under Microsoft Windows (note that the author’s experience with the
Nektar++ community suggests that Windows users are in something of a minority). It is intended
that the new solver will be made available to the NEPTUNE community soon, though there are
areas of incompleteness e.g. dependencies on the particular mesh (the problems treated in this
section all used the same regular computational mesh, which comprised 1600 squares of side
0.1).

2.4 Two-stream instability

A classic test case for the system 1 is the case of two counter-propagating beams of like-charged
particles (in a static uniform neutralizing background) interacting via electrostatic forces only. The
initial condition is spatially-homogeneous and has zero electrostatic field - such a configuration
is trivially seen to be a time-independent solution of Eq.1 - and the question is the stability and
subsequent time-evolution of the system.

This problem has a long history of study. The paper [2] is an early (1967) numerical investigation
using the contour dynamics technique to track the time-evolution of boundaries between f = 1
and f = 0 regions of phase space, thereby reducing the dimensionality of the problem by one and
making it tractable on ’60s computers; the limitation is that only values of 1, 0 are allowed for f . The
latter is rather complementary to the spectral/hp method, which, without special modifications, is
not expected to work well for non-smooth functions (this is a general feature of spectral methods;
basically, the efficacy of the method results from the presupposition that the solution is smooth,
and if this is not the case then numerical problems arise via Gibbs / Runge phenomena). A basic
synopsis of the results in [2] is that the initial condition is not stable and the system evolves in
phase space to a distinctive form, for which a subjective justification is now given.

In view of the spatial periodicity of the system, it seems reasonable to expand the electric field
in a Fourier series. In fact, some insight into the steady-state solution can be found by keeping
only the leading term i.e. E(x) = E0 cos(πx). Changing variables, one finds that steady solutions
are given by functions of the local particle energy density, E ≡ E0

sin(πx)
π + 1

2v
2. Plotting contours

of constant E (Fig.1) is certainly suggestive of the numerical solutions exhibited in the sequel.
Note the exact evolution of f is determined by the initial data and the value of ω2

P - some setups
give more than two of the equilbrium points that are now described. Note the two-equilibrium
cosine electric field presented here gives a mathematical problem equivalent to a rigid pendulum
in a uniform gravitational field with the solution given in terms of an elliptic integral; the stable
equilibrium point corresponds to the pendulum bob at the minimum height and the unstable point
has the bob at the maximum. The two equilibrium points - zeros of the electric field - correspond
to a phase-space attractor and a repeller (near these respective points, the governing equation is
locally ∂f

∂t + v ∂f∂x ∓ x
∂f
∂t = 0, with the negative sign case representing simple harmonic motion).

It will be seen that these features are evident in the numerical solutions.

Initial data: the system was initialized with two spatially-uniform counter-propagating beams that
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Figure 1: Contours of constant energy assuming E(x) ∝ cos(πx), for one period of solution. Figure
generated by [7]. In terms of the phase-space attractor / repeller discussed in the main text, there
is an attractive point on the x-axis at x = −0.5 and a repeller at x = 0.5.
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were both Gaussian in velocity space: the function used was

1√
8πσ2

(
e−

(v−v0)
2

2σ2 + e−
(v+v0)

2

2σ2

)
, (3)

with σ = 0.2 chosen so the initial data is fairly smooth (recall it is expected that delta or step
function initial data will not work well with the spectral / hp element method) and v0 = 1. This
function is normalized to unity when integrated over v at any given x (by coincidence, it also
has maxima which are very close, but not equal to unity). Physically, σ2 may be taken as the
temperature for each of the non-interacting beams (and note the total energy of the two-beam
configuration is given by v20 +σ2). A small x-dependent initial perturbation was applied to the initial
data Eq.3 in the form of the multiplicative factor 1 + 0.01 sinπx in order to seed the instability.

Note that the periodic boundary conditions mean that the Poisson problem is not well-posed unless
the total charge within one period is zero (equivalently, the mean electrostatic field is zero).

For a modern study of this system see [8].

2.5 Numerical results for two-stream instability

The numerical performance of the solver was tested by running simulations on a 20 × 80 grid of
square elements with an element size of 0.1. The level of computational accuracy was varied
by using different global values for the number of modes (per dimension) per element - varied
from 2 (equivalent to using linear polynomials within each element) to 7. A standard four-stage
fourth-order Runge-Kutta (ClassicalRungeKutta4 in Nektar++) was used to perform explicit time-
stepping.

It is seen that the solution represented by the initial data Eq.3 is not stable, and that the time-
evolution leads to the formation of a distinctive phase-space pattern (Fig.5) similar to that seen in
[2]. Note it is indicated in that paper that the solution depends on the externally-applied periodic
boundary condition. The precise form of the solution is dependent on the value of ωP and the form
of the initial data - an exposition of this is given in the following subsection, for the linear regime.

Conservation of particle number - the amount of matter is quantified by
∫
f(x, v)dx dv. It was

found that, for all p > 1, the simulation conserved particle number to 2 × 10−13 (relative to unity)
over a period of 40 time units.

Positivity of f(x, v) - since this function is essentially a probability density, negative values are
unphysical (as well as liable to give difficulty when evaluating entropy, which involves forming ln f ).
Improvements can potentially be made using the techniques outlined in [9]. The table 1 gives the
magnitude of the most negative value at the end of a 40 time unit simulation - note that these do
not seem to reduce as the element order p is increased. The figure 4 shows, however, that the
negative values are confined to relatively small regions of phase space.

Energy conservation - energy conservation is exhibited, to a degree, but there is currently a growth
in the total energy with time (Fig.2). The expected scenario was a slow decay of the total energy
(because upwind DG schemes are known to be slightly dissipative - indeed, the lower-p sim-
ulations shown slightly suppressed energy growth, presumably for this reason). This is being
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Figure 2: Time-evolution of the total energy change for 5, 6, 7-mode solutions (based on a total
energy of approx. unity).

Figure 3: Change in electric and kinetic energy from start of simulation; data shown for 6-mode
and 7-mode solutions.
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Element order p Magnitude of most negative value f(x, v)

1 1.1× 10−1

2 2.0× 10−3

3 2.4× 10−3

4 4.1× 10−3

5 5.2× 10−3

7 8.1× 10−3

Table 1: Table of maximum negative values of f(x, v) from Nektar++ Vlasov-Poisson solver.

investigated at the time of writing. Note that the energy conservation problem seems to arise from
an imbalance between the kinetic energy lost and the electric field energy gained during the time
stepping: the latter is consistently larger than the former.

2.6 Dispersion relations and linear instability growth rates

Linear dispersion relations can be calculated for the growth rates of harmonic instabilities over
initial data that is uniform in position space and has a specified distribution in velocity space.
This is based on a linearized theory that can be found in e.g. [10]. Note all initial data here are
normalized to a total of unity (i.e. each beam is normalized to one half). The linear dispersion
relation for a single species can be expressed as

1 = ω2
P

∫ ∞
−∞

f(v) dv

(ω − kv)2
. (4)

The simplest initial data case is two delta functions in v, for which the dispersion relation is x2 =
1
2

(
1 + 2u2 ±

√
1 + 8u2

)
for x ≡ ω

ωP
, u ≡ kv0

ωP
.

A second example echoes [2] by using a background of two counterpropagating Heaviside func-
tions in velocity space, normalized to unity in total, centred on v0 and extending to ±σ. The
dispersion relation for this is x2 = 1

2

(
1 + 2u2 + 2s2 ±

√
16s2u2 + 8u2 + 1

)
, with the delta function

case recovered if s = 0.

The above simple cases are not directly useful as the spectral / hp implementation is not expected
to perform well with non-smooth initial data. It is, however, possible to obtain an analytic dispersion
relation for the initial data in Eq.3, as follows.

The NRL Plasma Formulary [11] gives

1√
π

∫ ∞
−∞

dt e−t
2

t− x
= e−x

2

(
i
√
π − 2

∫ x

0
dt e−t

2

)
. (5)

An expedient (non-rigorous, though it will be seen to give the correct answer) path to a closed-form
solution involves differentiating Eq.5, giving
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Figure 4: Negative values of f(x, v) in the 7-mode solution.
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Figure 5: Time-evolution of the bi-Gaussian initial data into a state showing an phase-space at-
tractor and a repeller (here ω2

P = 10). The simulation time interval between successive plots is 8.0
units. Compare Fig.1. Note the vertical axis is v and the horizontal x.

Figure 6: Time-evolution of the electric potential plotted as a function of x from the simulations
in Fig.5 - plots correspond to the same intervals. Note the closeness of the solution to a simple
harmonic wave.
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d

dx

1√
π

∫ ∞
−∞

dt e−t
2

t− x
=

1√
π

∫ ∞
−∞

dt e−t
2

(t− x)2
= −2

(
1 +
√
πxe−x

2
(i− erfi(x))

)
(6)

wh. erfi(x) ≡ 2√
π

∫ x
−∞ dt e

t2 .

Inserting Eq.3 into Eq.4 leads to quadratures of the above form and straightforwardly to the dis-
persion relation

1 = −
ω2
P

2σ2k2

(
2−
√
πAe−A

2
(erfi(A)− i)−

√
πA′e−A

′2
(erfi(A′)− i)

)
(7)

with A ≡ ω−kv0√
2σk

, A′ ≡ ω+kv0√
2σk

.

Note that the delta-function dispersion relation can be obtained from this in the limit σ → 0 and
using erfi(x) ∼ ex

2

√
π

(
1
x + 1

2x3

)
− i (keep the two leading terms and neglect the i as the exponential

dominates it).

This form of the dispersion relation does not seem invertible by analytic means. In practice, roots
are straightforwardly obtained by Newton’s method; it is found in the cases examined that the roots
lie on the imaginary axis i.e. the complex frequencies have zero real part. The open-source library
Fadeeva [12] was used to compute these functions (limited tests of this library were done e.g.
comparing outputs with those calculated via [7]). Note that it is computationally better to use the
Dawson function D(z) ≡

√
π
2 e
−z2erfi(z) than directly use the imaginary error function erfi(z).

Numerical results to compare with this theory were obtained using a small initial perturbation
amplitude, 1 + 10−7 sinnπx (n is the wavenumber of the perturbation), chosen in order to prolong
the duration of the linear regime. See Fig.8 for an illustration. Simulations were run long enough
that a linear growth region was seen to be established beyond the initial transient and the growth
rates were obtained by simple gradient measurement. The growth rates were assessed from the
integral of the electric field energy, for which the growth rate is twice the linear mode growth rate
on account of bilinearity. These simulations were found to be sufficiently accurate using only four
modes and the agreement between theory and numerics is good (Fig.7), with the instability type
concurring with the wavenumber used in the initial data perturbation.
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Figure 7: Theoretical predictions for the growth rates of modes n = 1 − 4 (spatial wavenumber
k = nπ) as a function of the plasma frequency ωP . Overlain are numerical results from the
Nektar++ implementation, showing good agreement.
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Figure 8: Linear growth of the electric field energy for ω2
P = 10 and the bi-Gaussian initial condition

Eq.3. The linear growth saturates at later times when the nonlinear dynamics dominates it.
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3 Summary

This report has provided further numerical results using the Nektar++ framework, in which an initial
attempt at a 1d1v kinetic solver has been implemented and tested. Qualitative agreement with the
nonlinear dynamics of the two-stream instability in the literature was shown. More quantitative
results were given for the growth rates of linear wave instabilities for the same system, which
exhibited good agreement with theory. The study justifies the altering of emphasis from particles
to finite elements in the high-dimensional procurement.

The author would like to thank the developers of Nektar++ for useful discussions and Dr James
Cook and Dr Joseph Parker of UKAEA for helpful discussions regarding kinetic methods.
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