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Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M6c.1. It collates technical material used to inform the preparation
of Calls Contract T/AW085/22 and Contract T/AW086/22. The material is
better presented with that relating the latter contract appearing first, so the
report can examine the challenges for computational physics before the
specifics of spectral finite elements. Regarding T/AW086/22 (“Advanced
referent model procurement”), there is a refresher of the time and spatial
scales involved in (i) classical fluid dynamics, (ii) neutral species from the
kinetic standpoint, and (iii) tokamak plasma. Drawbacks of three different
variational approaches to fluid dynamics are also described. Regarding
T/AW085/22 (“Spectral element procurement”), in order to clarify the scope
of future work, attention is given to accurate description of what is currently
available within the code, specifically (i) the current status with respect to
usage on HPC, (ii) meshing, (iii) finite element capability with respect to
possible FEEC usage. A modal discontinuous Galerkin approach to elec-
tromagnetics is described in an appendix.
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1 Introduction

This report provides a literature review designed to inform the production of Calls T/AW085/22
“Spectral element procurement” and T/AW086/22 “Advanced referent model procurement”. Ide-
ally the physical model of the plasma should be derived with a view to efficient numerical imple-
mentation in general and at Exascale in particular. Such treatment is a key part of the role of the
computational physicist, see Section 2. In practice, there is a need to demonstrate as rapidly as
possible that the drift kinetic model proposed by Parra et al [1] is feasible. This has meant use
of a numerical approach with which the Oxford group is comfortable, namely a Chebyshev spec-
tral finite element implementation in Julia rather than the spectral/hp elements used in Nektar++,
where developments are proceeding almost independently.

Generally the Parra et al model with Oxford’s numerics have performed successfully, to the extent
that the Advanced referent model procurement needs comparatively little direct input. However, a
hopefully minor numerical difficulty has been encountered, see Section 2.2 The report continues
by highlighting typical challenges presented by the key physics to be modelled, starting with an
appreciation of neutral particles in Section 3.1, then moving onto issues raised by the need to
model tokamak plasma in Section 3.2 from plasma core to wall, notably the sizes of the electric
field. Section 3.3 examines whether the model equations might be better expressed as a vari-
ational principle, but concludes that this unlikely to be helpful. These latter two sections play a
largely confirmatory role for Parra et al’s approach.

Section 4 discusses material relevant to the spectral element procurement. The main considera-
tion is the production of a 2d3v proxyapp, involving libraries of spectral elements including meshing
capabilities. The work is summarized in Section 5.
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2 Challenges for Computational Physics

2.1 General

Knowledge of the smallest length and timescales that could be important in a model is in general
critical for a reliable determination of its properties. Typically the model is a nonlinear partial
differential equation and the properties that are sought, are its solutions. It is known, see eg.
ref [2, 3] that failure to represent the smallest scales adequately can lead to catastrophic code
failure, and that even when for example numerical dissipation is added to suppress these failures,
properties such as wave propagation speed will be subject to large errors unless the wavelength is
adequately represented by the discretisation. Almost regardless of whether machine is Exascale
or not, it is helpful to be able to work with the most economical discrete representation of a field,
which might simply be a function of position or depend on velocity-space coordinates also. It will
be assumed that already for example a solenoidal 2-D vector field has been reduced to a scalar
representation in terms of the flux as say a function of Cartesian coordinates f2D(x, y).

A discrete representation implies point samples, in the simplest case merely values of a scalar
field f at different points in space. To model interaction with other fields or calculate derivatives
of f , it is necessary to interpolate to evaluate f at other locations. Interpolation requires knowledge
about the likely behaviour of f at other points. The information available is that f relates to a
solution of an advection-diffusion problem in n space dimensions and time, where n is up to 6 as
Vlasov and Fokker-Planck type equations are allowed. Sources are an additional complication.

Considering the limit where diffusion vanishes, it is evident that it is not always adequate to assume
that f is continuous, since information about f propagates along streamlines, eg. f(x, y, t) =
f(x−vt, y, 0) in the simple case of a 1-D flow v in the x-direction. In the absence of viscosity there is
perfect memory of initial conditions, so the discontinuities propagate unmodified. Fortunately even
a small number of collisions eventually smoothes away discontinuities, however it should already
be apparent that different interpolation strategies will be optimal in different locations depending
on initial conditions.

Classical fluid dynamical problems are of two sorts, loosely speaking depending on whether they
are produced by mechanical action such as pumping and aerofoil motion, or by body forces such
as buoyancy. The former, properly characterised by the generation of fluid vorticity at material
boundaries are of limited application to NEPTUNE. In both sorts, but particularly the latter, there
is a flow start-up phase in which a linearised treatment is insightful. In this phase, the optimal
representation will often consist of just one or two coefficients of the most unstable eigenmodes
which may have a simple trigonometric function dependence on one or more spatial coordinates,
eg. refs [4, 5]. As solutions tend to (quasi-)steady-state, particularly when the viscosity is relatively
small, gradients tend once more to steepen due now to non-linear effects. Converging advective
flows frequently form shocks, although the physics suggests that such discontinuities will be iso-
lated from one another.

The challenge in fluid dynamical modelling is not therefore merely to produce optimal approxima-
tions, but to maintain optimality as the flow structure evolves in some typically nonlinear way. This
is one of the key challenges addressed by computational fluid dynamics CFD. Use of high order
approximations adds to the complexity, see the books by Boyd [6] and more comprehensively
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Karniadakis and Sherwin [7] who describe the spectral/hp element method whereby finite element
size h and local order of polynomial representation p are allowed to vary in pursuit of optimality.

2.2 Numerical Problems in Work of T/NA085/20

Problems of grid-scale oscillation have been encountered when outflow boundary conditions rather
than periodic conditions are imposed on solutions of the kinetic equations. The appearance of the
problem may be related to use of a coordinate system in velocity space which is in translation at
the drift speed relative to laboratory coordinates. Thus at the wall the boundary, ie. where the
density function has to vanish, is (in the present formulation) not fixed. This leads to a situation
where there is a physically very rapidly variation of density potentially causing difficulties as above.
However, there are other possibilities, although the above seems best to explain why the issue
arises in certain cases and not others.

3 Physics Challenges

3.1 Neutrals

For the case of neutral particle modelling, estimates of scales based on the mean free path (mfp) λ
and collision time τ (or alternatively average speed 〈v〉) are frequently adequate. Indeed, taking
mesh-size h = O(λ) may well be excessively conservative.

To see this, note that the viscosity D (and indeed any transport coefficient expressed as a diffu-
sivity) is of order λ〈v〉 [8, §9] so that the mesh Reynolds (Peclet) number is

Reh =
Uh

D
=

U

〈v〉
h

λ
(1)

Since temperature T by definition satisfies 1
2m〈v

2〉 = 3
2kT , 〈v〉 may be estimated as O(

√
kT ), ie.

the sound speed, thus

Reh = MA
h

λ
(2)

where MA is the Mach number and so provided the fluid model is adequate, it is only necessary
that

h < λ/MA (3)

Further, for neutrals, λ may be estimated in terms of the diameter of the sphere of influence d as

λ =
1√

2πNd2
(4)

where N is the number density and a Maxwellian distribution of particle speeds is assumed. The
diameter d is defined as the average of the diameters of the particles involved in the collision.
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3.2 Plasma in a tokamak

Unfortunately estimating smallest length and timescales when charged particles are present is
more involved. For the case of a fully ionised plasma of a single particle species, textbooks give
three timescales for equilibration, for ions to thermalise, electrons to thermalise, and the longest
timescale is for ions and electrons to reach the same temperature. The smallest lengthscale that
should be considered is the Debye length. These points are described very nicely in the early
chapters of the textbook by Helander and Sigmar [9].

From the numerical point-of-view, models to treat species which are far from thermal equilibrium
must account for the non-Maxwellian distribution of particle velocity, either by use of (super)-
particle sampling or by introducing extra dimensions to represent the variation of particle density in
velocity as well as position space. Plasma species closer to Maxwellian may be treated more like
classical fluids but with additional terms to represent deviations from the normal distribution which
have been averaged over velocity space. CFD techniques for classical fluids may be considered
in these circumstances.

The greater duration of the time taken for the ions and electron to achieve a common temperature
means that it is frequently appropriate to treat each species as a separate fluid with a different
mean velocity and temperature. Many of the effects due to inter-species interactions produce
terms resembling viscosity and thermal conduction, so that classical CFD techniques become
even more appropriate, as only the energy equipartition term is without some kind of classical
counterpart, and to a first approximation, these plasmas obey a pointwise Ohm’s Law, ie. current
density proportional to electric field expressed as J = σEE, where from [10], assuming Te is
measured in eV , then

σE = 0.0239 · (Te)
3/2

ZΛ
m2s−1 (5)

However, the two-fluid equations are stiff in several senses [11]. Not only is it the case that the
momentum equations for ue and ui have timescales in the ratio mi/me ≈ 1836 even for Hydro-
gen ions, but also the electrostatic forces are relatively enormous. The latter may be seen from
Coulomb’s Law if the electrostatic potential is introduced so that E = −∇φ, then the ratio

ρc
εo∇ ·E

=
L2
n

∑
s qsns

εo∆φo
(6)

where ∆φo is a typical fluctuation level in the potential, assumed to have a length-scale Ln com-
parable to the width of the SOL. Writing

∑
s qsns = eno∆n, Equation (6) can be reexpressed as

ρc
εo∇ ·E

=
noe

2

εome

L2
n∆n

(e∆φo/me)
= ω2

pe

L2
n∆n

(12v
2
o)
. (7)

The quantity ωpe is the plasma frequency, which for a reference density no = 1020m−3 is 5.6 ×
1011s−1. If the speed vo is identified with the electron sound speed vthe then ωpe/vthe = 1/λD,
where λD is known as the Debye length, and since clearly λD << 1, it follows since all three
ratios in Equation (7) must be unity, that tokamak plasmas are forced by the electric field to be
quasi-neutral, meaning ∆n << 1.

The consistent treatment of the electric field is a major issue for models which seek to model
significant regions of the core plasma. This is most graphically seen when the Braginskii electrical
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conductivity is evaluated for parameters representative of a reactor plasma core, viz. Te = 25 keV,
n = 1020 m3, eg. by using the SMARDDA-MISC software [12], whence an estimate σE = 5 ×
109 Ω−1m−1. Assuming currents of order several MA in a cross-sectional area of order square
metres, ie. current densities of 106 MAm−2, implies an electric field of order 10−3 Vm−1. Thanks
to the strong temperature dependence in Equation (5), the electrical conductivity is much lower
when the plasma temperature falls towards the values of 10 eV found in the edge regions, so the
central electric field is tiny compared to the experimentally measured electric fields in the SOL of
order 10+3 Vm−1.

3.3 Variational principles

Finite element equations are easily expressed if there is a variational principle governing the sys-
tem dynamics. For non-dissipative discrete physical systems, this is usually the case, so that there
are variational principles available for the corresponding continuum models such as the Vlasov
equation and inviscid fluid dynamics. In the continuum case, where there is bulk flow, there are a
number of possibilities, Larsson [13, §1] recognises three, namely

1. A straightforward generalisation of the Lagrangian from the discrete system

2. A ‘constrained’ Lagrangian approach, whereby mass and energy conservation are imposed
as constraints on the variation.

3. A Lagrangian approach whereby only mass and energy variations consistent with the flow
perturbations are allowed.

Possibility 1 leads to a variation conducted in coordinates moving with the flow (Lagrangian co-
ordinates), rather than the more convenient coordinates fixed in the laboratory frame (Eulerian
coordinates). Introducing Eulerian coordinates via the constraints, Possibility 2 gives rise to the
‘Lin’ variables which many find somewhat mysterious, but in any event their introduction doubles
the number of variables in the system to be solved for, ruling out the approach on grounds of cost.
Possibility 3 is typically approached using the machinery of Lie derivatives which is found exces-
sively mathematical by many, thereby putting them off. However, P3 appears less formidable when
it is understood that this machinery was introduced by Lie precisely to deal with flow problems,
and in any event as well as Larsson [13], there are textbooks [14, 15] which provide translation
to more familiar vector notation. Simply stated and unsurprisingly in the light of their manner of
introduction, allowed variations are constrained to take the form of Lie derivatives [16, §7].

Possibility 3 may be made explicit by introducing the Lagrangian density ` which is a functional of
a vector field v and a scalar field s, giving an action

L =

∫
`(v, s)dxdt (8)

The resulting variational principle δL = 0 is

δL =

∫ (
δ`

δv
· δv +

δ`

δs
δs

)
dxdt = 0 (9)
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This must hold for variations η(r, t) in position r(t) of the fluid elements, which are arbitrary except
that they must vanish at the endpoints of the time interval. Suppose the perturbations emerge as
parameter ε increases from zero, as

∂r

∂ε
= η(r, t, ε) (10)

∂r

∂t
= v(r, t, ε) (11)

Assuming r(t, ε) and using Equations(10) and (11), the velocity variations are found to be con-
strained by

δv =
∂η

∂t
+ Lv(η), (12)

and correspondingly scalar variations by

δs = −Lη(s) (13)

where the Lie derivative of vector w is

Lv(w) = −v · ∇w + w · ∇v = [v,w] (Lie bracket) (14)

and the Lie scalar derivative is
Lη(s) = η · ∇s (15)

A point to note is that should variation involve changes to a pseudsoscalar such as magnetic
field B or a pseudoscalar such as density ρ, then different definitions of Lie derivative apply, viz.

L2η(B) = +η∇ ·B−∇× (η ×B) (16)

L3η(ρ) = ∇ · (ηρ) (17)

There is unfortunately the restriction to models of magnetic field and thermodynamic evolution
which are non-dissipative. Although for example, Salmon [17] points out that dissipative effects
can also be treated within a variational framework, albeit at the expense of solving for additional
field variables, it is unclear how this might be used here, except as a guide as to the effects might
best be discretised.

However, it seems the above variational principle provides little useful guidance as to how the non-
dissipative effects might be discretised. The natural approach to the discretisation of Equation (9)
would be to assume that the variations are specified by weighted sums of elements of a basis
function space say φpqr, so that Equation (9) yields a set of equations, one for each member of the
function space. The problem arises from the need to have a Lagrangian density ` = 1

2ρv
2 to model

compressible flow. Evidently, the variational equation contains separate terms corresponding to
variation of v and ρ respectively, namely

δL =

∫ (
ρv · δv +

1

2
v2δρ

)
dxdt = 0 (18)

Substituting for v using Equation (12) and δρ = −L3η(ρ) (Equation (17)) it is evident that the two
separate terms in Equation (18) have to partially cancel analytically in order to give the expected
ρv · ∇v term. Thus unless care is taken, the natural approach to discretisation may give rise to

7



additional spurious terms. If the standard analytic manipulations are pursued, the result is the
usual ideal fluid evolution equations weighted by η integrated over time and space. It is interesting
that the implied time weight function has to vanishes at the end-points of the range of integration,
but really nothing useful for discretisation appears to arise from variational approaches, and it
seems preferable to continue to discretise the hydrodynamic equations directly.

4 Modelling with spectral elements

This section contains material relevant to the ongoing re-shaping of Nektar++ into a FEM li-
brary designed to suit NEPTUNE requirements, particularly regarding interfacing with UKAEA-
developed particle codes. In order to clarify the scope of future work, some attention is given to
accurate description of what is currently available within the code.

4.1 Refactoring and extension of Nektar++

Efforts to prepare Nektar++ for the Exascale are vital for NEPTUNE purposes and currently con-
stitute an effort to make the code compatible, in terms of performance and scalability, with large
GPU-based systems (there is clearly strong developer motivation for this modification as well,
given that the full DNS CFD simulation of a realistic system of industrial interest is often an exas-
cale problem). Much of the current Nektar++ code base was written using a coarse-grained MPI
parallelism paradigm without support for vectorized arithmetic. GPU support is presently limited
to specific code kernels and as such involves significant data transfer workload on and off the
GPU and also run-time reconfiguration of data structures. A unifying strategy for an efficient GPU
implementation involves separation of the data storage from the operators; hence, the current
ExpList class is intended to transition to a pure storage object, called FieldStorage (NB. more
recently renamed to just Field), which will be device-aware and capable of supporting a range
of data layouts (and which may ultimately use a SYCL buffer). In addition, core operators will
support CPUs (x86 and ARM, along with AVX2 / AVX512 and equivalents) and GPUs. There are
many other details in the ongoing development plan eg. ensuring data locality in discontinuous
Galerkin implementations, avoiding retaining in-memory unnecessary objects such as pre-static-
condensation version of system matrices, and avoiding the use of shared pointers for small objects
(which wastes execution time). These refactoring plans are in tandem with a migration to C++17.

The Nektar++ Python interface is also being upgraded in scope from a workflow automation utility
to a more general interface, leveraging the suitability of Python as a ‘glue’ language. Functionality
will include the programmatic specification of simulations (bypassing the current requirement for
an XML session file) and wrapping sufficient API functionality to facilitate solver integration with
other software (note the ubiquity of Python in user interfaces) and also enable the construction of
new solvers within Python in a DSL-like manner that avoids the need to recompile the library to
generate a solver (ie. the ‘outer loop’ can be Python) or implement a novel operator.

The use of implicit time-stepping techniques has been noted as an area of great relevance for
NEPTUNE. It has been noted that some Nektar++ incompressible Navier-Stokes simulations are
constrained by stability to use a time step that may be up to two orders of magnitude below that
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needed to resolve the physics of interest - this is a problem that becomes worse the smaller the
element size in the mesh. Recent developments in implementing a fully-implicit scheme (based on
[18]) were presented at the recent Nektar++ Workshop 2022 and showed promising initial results
with an order of magnitude increase in stable time step size. Note that the current scheme is
mixed with the diffusion treated implicitly and the advection explicitly in an IMEX time-advancing
scheme; the explicit advection means that the code is subject to a maximum stable time step size
from the CFL criterion. This work has the potential to speed up the simulations of convective heat
transfer reported in [19] and may apply more generally to future NEPTUNE simulations.

4.2 Meshing

A number of additions have been made to the 2-D meshing capabilities of NekMesh under the
programme of work in grant T/NA078/20. These include the ability to perform r- and h-refinement,
or the generation of a quadrilateral-meshed ‘boundary layer’ region, local to a particular CAD-exact
curve bounding the mesh in order to achieve a higher numerical resolution in the neighbourhood of
a particular magnetic field surface. The magnetic field surfaces in a tokamak are three-dimensional
so it will be necessary to provide similar capabilities in three-dimensional meshes, initially in the
case of axisymmetric geometries.

Another meshing issue, which arises from the need to integrate Nektar++ with a particle-in-cell
code, is the need to generate non-physical ‘halo’ (aka ‘guard’) cells surrounding the sub-meshes
that are generated when a large computational mesh is distributed over potentially a large number
of MPI ranks. These ‘halo’ cells are necessary for keeping track of particles transitioning between
MPI ranks. It is envisaged that this functionality will be added to NekMesh.

A final note concerns the higher-dimensional representation of non-equilibrium continuum fields,
which is an alternate choice to a particle-based scheme. This involves meshes in up to three
additional dimensions (velocity-space). It has become clear that the meshing of velocity space is
non-trivial because of the existence of eg. outflow boundary conditions in the Parra et al formula-
tion [1] and so it is not possible in all cases to mesh velocity space with a uniform grid.

4.3 Incorporation of finite element exterior calculus (FEEC) in Nektar++

The use of techniques from finite element exterior calculus (for which see [20]) is seen as one
of the main pathways to an effective code that couples particles to an electromagnetic field. The
necessary element types (here called ‘conforming’) and mathematical framework (for example,
the weak mixed formulation of a partial differential equation) are not yet implemented within Nek-
tar++. (Note, however, that the developers have considered the appropriateness of the numerical
schemes where necessary eg. in the incompressible Navier-Stokes solver it is possible to specify
a Taylor-Hood scheme known to give a stable discretization, in which the velocity components are
discretized with a polynomial space one order higher than that used for the pressure.)

The classes of finite element currently implemented in Nektar++ are listed below (and see p.50
onward of [7]), in which the nomenclature is as in a Nektar++ session file. The bases divide into
two types: modal, and nodal. The elements are generically implemented by mapping the physical
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element to a reference element, which is typically defined on the coordinate interval [−1, 1] per
dimension. All elements store scalar degrees of freedom and there is currently no model for
vector or tensor quantities within the core Nektar++ libraries.

• MODIFIED: a modified orthogonal polynomial basis, with only two modes per dimension being
non-zero on the element boundaries. Aside from this criterion, which reduces the density
of the coupling between finite elements, the basis functions are not localized to particular
nodes. The basis is hierarchical, meaning that increasing order p − 1 to p requires only the
addition of order-p modes rather than the reassignment of the entire basis and that lower-
order computations are a subset of a given order. The basis functions in one dimension are,
for order p and ξ ∈ [−1, 1],

ψn(ξ) =


1−ξ
2 (n = 0),(
1−ξ
2

)(
1−ξ
2

)
P 1,1
n−1(ξ), n = 1, . . . , p− 1

1+ξ
2 (n = p).

(19)

The Pα,βm (ξ) denotes the order-m Jacobi polynomial (the case α = β = 0 corresponds to the
familiar Legendre polynomials and the α = β = 1 case used here to their derivatives). This
choice maintains a high degree of orthogonality, for example the elemental mass matrix has
a mostly tri-diagonal structure and the Laplacian matrix has, except for the boundary modes,
a diagonal structure.

• GLL LAGRANGE: an interpolatory and therefore nodal basis in which a Gauss-Lobatto-Legendre
(GLL) quadrature rule with p+2 points is used, giving an exact integration of the mass matrix,
which is full.

• GLL LAGRANGE SEM: an interpolatory and therefore nodal basis in which a reduced GLL quadra-
ture rule with p + 1 points is used; the quadrature points are collocated with the Lagrange
nodes. Without lumping, this results in a diagonal mass matrix with entries that are the
quadrature weights. This is the ‘classical’ spectral element method.

Both GLL schemes are nodal bases in which the Lagrange polynomials are defined with points at
the zeros of the Gauss-Lobatto polynomials. The only difference lies in the quadrature rule: a GLL
quadrature with p+ 1 points is exact only up to and including polynomials of order 2p− 1 whereas
the mass matrix, being bilinear in the basis functions, contains integrals of polynomials of order
2p. Section 2.3 of ref [7] indicates that the error in the inexact diagonal lumped mass matrix is of
the same order as the approximation error of the expansion.

The above elements are implemented in continuous Galerkin on 2-D quadrilaterals and 3-D hex-
ahedra and also, with some exceptions, simplices (2-D triangles, 3-D tetrahedra); discontinuous
Galerkin is available with the MODIFIED basis for all shape types but only quads / hexes for the
nodal bases [21]. In addition, it is possible to specify different polynomial orders in different dimen-
sions for tensor product elements as well as different point sets for the locations of pointwise field
values.

Some of the important element types used in FEEC store vectorial degrees of freedom of various
types (eg. the H(div)-conforming elements have degrees of freedom corresponding to the vector
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field component normal to the element boundaries, and the H(curl)-conforming elements store
components tangent to element edges). Nektar++ currently represents vectors on a scalar-per-
Cartesian component basis and so it seems that the vectorial element classes may bring additional
benefit in terms of the amount of data stored (viz. store the component along an edge, rather than
three independent Cartesian components). It is not known to the author whether eg. the reduced
quadrature technique of classical spectral elements can be applied to the finite element types
used in FEEC.

4.3.1 Transformation from reference element

One particular issue in implementing conforming discretizations (eg. the Raviart-Thomas elements
[22], which discretize H(div)) in Nektar++ lies with the strategy of mapping quantities from a ref-
erence element onto the general finite element in the mesh. This technique enables the precom-
putation of quadratures in the reference space (ie. once) in order to construct element matrices
which are then mapped to each of the ‘physical’ finite elements. A lucid presentation is found in
[23] in which is discussed assembly of H(div) and H(curl) finite elements, in the context of the
FEniCS project [24].

For scalar quantities the transformation law applicable to the evaluation of an integral over a finite
element is trivial:

F scalar(Φ) = Φ ◦ F−1. (20)

the content of which may be illustrated as follows. The mapping F of coordinates, for a simplex in
two dimensions, where the target triangle has vertex coordinates (xi, yi) for i = 1, 2, 3, in the affine
case is given by

x = r(x2 − x1) + s(x3 − x1), (21)
y = r(y2 − y1) + s(y3 − y1) (22)

Thus another way of regarding Equation (20) is that on the left, is the scalar function Φ as a
function of ‘real’ space coordinates (x, y) and on the right as a function of local coordinates (r, s),
so that F scalar(Φ) = Φ(x(r, s), y(r, s)).

The Jacobian matrix of F is simply

J =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
. (23)

It is apparent that the above transformation law does not in general preserve the continuity of nor-
mal or tangential traces that would be necessary for a continuous mapping of vector divergences or
vector curls, otherwise respectively, H(div,Ω0) → H(div,Ω) or H(curl,Ω0) → H(curl,Ω) (where
Ω0 denotes the reference element and Ω the physical element). The normal trace continuity is
preserved by the contravariant Piola mapping

Fdiv(Φ) =
1

det(J)
JΦ ◦ F−1, (24)
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while the tangent trace continuity is preserved by the covariant Piola mapping

Fcurl(Φ) = J−TΦ ◦ F−1. (25)

Note that in two dimensions, the contravariant and covariant Piola transforms are equivalent in the
case of a conformal, orientation-preserving map, which is easily shown using the Cauchy-Riemann
equations to equate components in the following:

1

det(J)
J =

1

det(J)

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
(26)

and

J−T =
1

det(J)

(
∂v
∂y − ∂v

∂x

−∂u
∂y

∂u
∂x

)
. (27)

It would be necessary to write implementations of the transformations (24), 25 in order to provide
Nektar++ implementations of the relevant elements. An initial version could support a restricted
range of operators, avoiding some of the complexity of a flexible form language implementation as
in [23].

Note that the transformations to reference element are more involved for the non-straight-sided el-
ements that are likely to occur when using meshes that conform to the first wall or to magnetic flux
surfaces, though the results that the Piola transformations preserve the stated trace continuities
still hold for smooth nondegenerate mappings where the Jacobian matrix is invertible.

4.3.2 Sum-factorization

The sum-factorization or tensor product technique was re-discovered by Orszag [25] and is con-
sidered to be the key to the efficiency of spectral methods. It relies on the expansions having
a tensor product decomposition. A description can be found on [7, p.179], in which the central
formula is

Uij =

p∑
r=1

p∑
s=1

frshirhjs ≡
p∑
r=1

hir

(
p∑
s=1

frshjs

)
, (28)

the key observation being that the bracket on the in the right-hand-side expression is independent
of i and so the bracket is computed once for each choice of r, j and then re.used for each i.
This reduces the O(p4) complexity of the double sum and the evaluations over i, j to two O(p3)
summations. The double sum in (28) is appropriate to 2-D reductions but recursive application
of the same principle leads to further efficiencies in higher dimensions; generally it is possible
to reduce the algorithmic complexity of operations such as the above from p2D to pD+1 where D
is the number of space dimensions. Note there must also be a tensor product structure in the
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computed quantity ie. it is labelled by i and j and there is no gain, for example, for the repeated
evaluation of a tensor-product field at a set of O(p) arbitrary points (in this case there is a δij on
both sides of the equation and the sums are already O(p3)).

There are a number of deployments of this tactic within Nektar++, for example the backward trans-
formation which corresponds to evaluation of the field at quadrature points starting from the coef-
ficients of the expansion basis (ie. a change of basis) and is called as BwdTrans in the API - see
implementations for various element types eg. Nektar::Collections::BwdTrans SumFac Tri,
Nektar::Collections::BwdTrans SumFac Hex (see [26]). The inner product is another example
(see eg. Nektar::Collections::IProductWRTBase SumFac Quad).

It is also obvious that the technique applies to the interpolation of field data onto a rectilinear
grid, perhaps for producing a visual display of the spatial field or a representation suitable for
data processing eg. spatial Fourier transform. The example in Appendix B shows a similar sort of
efficiency gain.

It will be essential to leverage this technique, wherever applicable, in any new code. The paper
[27] contains description of sum factorization on cuboid cells for H(div) and H(curl) conforming
elements within the Firedrake framework [28] . The potential applicability of sum factorization for
conforming element types on simplices is currently less clear; an initial implementation could be
restricted to regular meshes and slab geometries in NEPTUNE.
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5 Summary

Spectral element models implemented in the Nektar++ framework continue to be central to future
plans for NEPTUNE. There is clear evidence that the Nektar++ developers have designs to en-
sure that their code can continue to prosper in a GPU-dominated exascale era and also to improve
the user experience regarding adding new solvers and interfacing with other codes by means of
the Python interface. Material in this report has been written with the aim of indicating potential
issues in implementing finite element exterior calculus techniques in Nektar++ with reference to
publications by the developers of FEniCS / Firedrake. The extent to which these methods syn-
chronize with the existing efficiency optimizations of Nektar++ (chiefly, sum factorization) remains
to be fully explored.

As far as the overall project NEPTUNE is concerned, resolving the numerical difficulties encoun-
tered in the work of Grant T/NA085/20 ought to be the priority objective. There is a lack of detail
at present to how their root cause might be identified and the difficulties overcome, but assuming
the root cause to be the discontinuous nature of the distribution function at the effective wall, then
there are range of subgridding techniques, most notably artificial viscosities such as SVV, ‘Spec-
tral Vanishing Viscosity’ (Tadmor, as referenced in the textbook by Karniadakis and Sherwin [7])
to mollify the Gibbs’ phenomenon. However, other causes may necessitate the use of ideas from
moving boundary numerics, mappings, and/or immersing boundaries.
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A Extracts from External Grants for NEPTUNE Y4-6

A.1 Spectral element procurement

Spectral elements will form the core of the NEPTUNE software, and thus any usage thereof must
perform well at the Exascale. Moreover, the elements need to have non-planar surfaces in order to
represent more efficiently and accurately the first wall of the tokamak. The requirement for close
coupling with a high-dimensional representation of the plasma, such as either eg. by particles or by
gyro-averaged kinetic equations, represents a further challenge. A specific NEPTUNE objective
which must be supported as a priority is the production of a 2d3v proxyapp. to be helped by
completing Proxyapp 2-6 (described under number 6 in FM-WP2) following the plan set out in a
report to be produced under contract T/NA083/20 or otherwise.

There will therefore be an ongoing need throughout the remainder of the project, to support usage
and development of a library of spectral elements, such as Nektar++. Software development will be
necessary in order to accommodate efficient interaction with the high-dimensional representations,
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and likely be required in order to ensure efficient operation on new architectures, indeed for long
term code stability, it would be desirable to refactor the library to minimise dependencies on other
libraries. There will be a similar ongoing need to support usage and development of a mesher
geared to the production of non-planar high order finite elements, such as Nekmesh.

The outputs will therefore be the core of an efficient spectral element mesher and a library or
package of libraries of spectral elements tuned for use at Exascale and the special needs of project
NEPTUNE, as represented by higher layer components corresponding to respectively a developer
DSL (in SYCL/C++) and an end-user DSL at the level of Python or Julia. The supporting Nektar++
library/ies must be demonstrated in particular to enable efficient solution for Proxyapp 2-6, for the
2d3v proxyapp, and for 3-D elliptic problems at Exascale. Proxyapps, to include Proxyapp 3-2,
should conform to emerging high standards for the production of NEPTUNE software.

A.2 Advanced Referent Model Procurement

The objective is to produce a gyro-averaged theoretical time dependent model of plasma suitable
for project NEPTUNE, meaning that it is of actionable accuracy in the outer pedestal, separatrix
region and scrape-off layers of a tokamak plasma. Building on the work of Grant T/NA085/20
or otherwise, such a generally 5-D model (3-D in space, 2-D in velocity space) is likely to have
the property of reducing to a fluid-like (5-moment, only spatial dependence) model in regions of
higher collisionality. Such a model is expected to require special treatments for the separatrix and
for the wall, in order to account for realistic magnetic equilibria and ensure accurate modelling
of the geometry. Non-axisymmetric electromagnetic field effects, and coupling between different
plasma species in addition to neutral components should also be considered.

The output will be theoretical models that include in the aforementioned effects, wherein the deriva-
tion of suitable collision operator will be of especial importance. The practicality of these models
should be demonstrated by suitable proxyapps, conforming to the emerging high NEPTUNE stan-
dard where appropriate.

B Note on a computationally-efficient discontinuous Galerkin method

In this section a simple example of a modal time-evolution code for Maxwell’s equations in two
dimensions is exhibited as an example showing the types of structure that can be exploited for
numerical optimizations. The implementation is a time-explicit upwinded discontinuous Galerkin
scheme; for more details, albeit with a focus on nodal methods, see [29]. The method shows re-
duction in algorithmic complexity (over a naive implementation) equivalent to that in the description
of sum-factorization in the main text.

For simplicity, assume a uniform grid of square elements. The mapping between the reference
elements and the physical element is a trivial rescaling. The hierarchical basis functions per
dimension are the Legendre polynomials ψn(ξ) = P 0,0

n (ξ) on the interval ξ ∈ [−1, 1] and the
normalization of the two-dimensional tensor product modes is such that
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∫ 1

−1

∫ 1

−1
ψm(x, y)ψn(x, y)d2x = δmn. (29)

This means that the element mass matrix is explicitly a multiple of the identity matrix.

Other matrices required for the DG scheme are the element stiffness matrices

(Sx)mn =

∫ 1

−1

∫ 1

−1
ψm(x, y)

∂

∂x
ψn(x, y)d2x, (30)

(Sy)mn =

∫ 1

−1

∫ 1

−1
ψm(x, y)

∂

∂y
ψn(x, y)d2x,

(31)

and the element face mass matrices are, for example

(Fy+)mn =

∫ 1

−1

∫ 1

−1
ψm(x, y)ψn(x, y)δ(y − 1)d2x. (32)

These need to be evaluated on the appropriate edge (ie. subspace of codimension one) ie. at a
fixed value of one of the coordinates as indicated by the delta function.

B.1 One-dimensional implementation

Maxwell’s equations in vacuo are, in natural units,

Ė = ∇×H, (33)
Ḣ = −∇× E. (34)

Specializing to one dimension (x), these become

Ėy = −∂xHz, (35)
Ḣz = −∂xEy. (36)

The computational mesh is the interval [0, 1] divided into N equal elements with a periodic condi-
tion at the interval ends. The basis is Legendre function per element and so the two lowest modes
are, on element labelled by n where n = 0, 1, ..., N − 1,

ψn0 (x) =
√
N (37)

ψn1 (x) =
√

12N3

(
x−

n+ 1
2

N

)
. (38)
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These are normalized such that
∫
n ψ

n
a (x)ψnb (x)dx = δab where

∫
n ≡

∫ n+1
N

n
N

ie. to give an identity
local (and global) mass matrix.

The element stiffness matrix has one non-zero component

(Sx)01 ≡
∫
n
ψn0 (x)

∂

∂x
ψn1 (x)dx =

√
12N. (39)

The edge mass matrices are computed as (integration over point is point evaluation)

(Fx−) = ψna (x)ψnb (x)|x= n
N
, (40)

(Fx+) = ψna (x)ψnb (x)|x=n+1
N
. (41)

Hence

(Fx−)00 = N, (42)

(Fx−)01 = −
√

3N, (43)

(Fx−)10 = −
√

3N, (44)
(Fx−)11 = 3N. (45)

(46)

and

(Fx+)00 = N, (47)

(Fx+)01 =
√

3N, (48)

(Fx+)10 =
√

3N, (49)
(Fx+)11 = 3N. (50)

(51)

The initial condition is a cosine standing wave

Ey = 0, (52)
Hz = cos 2πx. (53)

The required initial data are overlap integrals between this initial condition and the individual
modes.

The upwind numerical fluxes to be applied to Ėy and Ḣz respectively are
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(∆E − n(n ·∆E) + n×∆H

2
, (54)

(∆H − n(n ·∆H)− n×∆E

2
. (55)

The left-hand-side fluxes evaluate to

∆Ey + ∆Hz

2
, (56)

∆Hz + ∆Ey
2

, (57)

and the right-hand-side fluxes

∆Ey −∆Hz

2
, (58)

∆Hz −∆Ey
2

. (59)

The field differences eg. ∆Ey are always ‘outside minus inside’ with respect to the element in
question.

If the system is zeroth-order, the situation is very simple. There is no stiffness matrix and the
semi-discrete equations take the form

Ėn =
N

2
(En+1 + En−1 − 2En +Hn−1 −Hn+1) , (60)

Ḣn =
N

2
(Hn+1 +Hn−1 − 2Hn + En−1 − En+1) .

where N appears where it is more usual to see 1/h. The first 3 terms may be recognised as the
simplest finite difference approximation to a diffusion term h∂2/∂x2. This is an example of a finite-
volume method (which here corresponds to zero-order DG; note that higher-order extensions of
finite-volume methods, eg. the Godunov scheme, do exist).

The 1-D code can be run with a choice of time stepper (a 14-stage 5th LSRK scheme noted for its
good stability properties is used [30]). Outputs from the code can be seen in Fig.1. Note that it is
expected that an upwind DG code is numerically dissipative, hence the loss of amplitude seen in
the figure (the dissipation diminishes spectrally as the order is increased).

B.2 Two-dimensional implementation

Computation of the relevant matrices makes clear the efficiency improvements of this scheme
over eg. a nodal scheme in which all the matrices are full. Note that basis in 2-D falls into the
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Figure 1: Output of the magnetic field from the one-dimensional DG code after one optical cycle,
after which the analytic solution has returned to the cosine initial condition. This is seen to be
approximately true for the numerical solutions, however, the 40-element zero-order code output
(blue curve) has decayed in amplitude due to the dissipative nature of the upwinded scheme. The
ten-element first-order code (orange curve) produces a much better answer. Note the evident field
discontinuities at element boundaries in both examples.
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familiar triangular binomial pattern (with the number of modes needed for order-p being the pth
triangular number); tiers in this triangle contain modes of equivalent aggregate polynomial order.
This is exhibited in Table 1 which shows the ten modes needed for p = 3 in 2-D; all are defined on
(x, y) ∈ [−1, 1]2. The equivalent basis in 3-D has a ‘trinomial’ structure (and the total number of
modes is a tetrahedal number).

mode number i tier mode num x mode num y mode ψi
0 0 0 0 1

2

1 1 1 0
√
3
2 x

2 1 0 1
√
3
2 y

3 2 2 0
√
5
4 (3x2 − 1)

4 2 1 1 3
2xy

5 2 0 2
√
5
4 (3y2 − 1)

6 3 3 0
√
7
4 (5x3 − 3x)

7 3 2 1
√
15
4 (3x2 − 1)y

8 3 1 2
√
15
4 x(3y2 − 1)

9 3 0 3
√
7
4 (5y3 − 3y)

Table 1: Table showing the lowest ten modes in 2-D.

The non-zero entries of the x-stiffness matrix, defined as

(Sx)ij ≡
∫ 1

−1
dx

∫ 1

−1
dy

(
ψi

∂ψj
∂x

)
(61)

are

(Sx)01 =
√

3 (62)

(Sx)06 =
√

7

(Sx)13 =
√

15

(Sx)24 =
√

3

(Sx)36 =
√

35

(Sx)47 =
√

15

(Sx)58 =
√

3

(63)

The matrix is sparse (7 non-zero entries out of a possible 100) and the entries are simply square
roots of odd numbers. Note that the higher-order modes function effectively as finite-volume as
there is no coupling between them from the stiffness matrices.

The edge mass matrices show a conspicuous pattern that allows a computational efficiency gain
(Fig.2). Modes associated to a particular polynomial order repeat the structure present at lower or-
ders, up to a multiplier, while adding one new row structure. The ‘repeated’ rows summed against

22



Figure 2: Repeating pattern in edge mass matrix for the top edge of a quadrilateral element where
the index i labels the row and j the column. Numbers shown here are the actual matrix entries
multiplied by two and then squared, in order to make the underlying structure clear; the shading
colour indicates rows in which the squared matrix components are related to the ‘first’ row of
a particular colour by multiplication by an odd integer. Note that the tiers (modes of common
polynomial order) have columns where the non-zero components correspond to odd entries of the
1, 3, 5, ... times tables.

the vector of field differences are computed simply by rescaling previously-computed sums. Possi-
bly the identity dPn(x)

dx = n
x2−1 (xPn(x)− Pn−1(x)) relating the derivative of a Legendre polynomial

to two Legendre polynomials, plays a role.

Note that in nodal DG, the numerical fluxes involve only the nodes that are localized at the element
boundary; however, the full mass matrix means involving all modes in the flux calculation.

B.2.1 Concluding remarks

The efficiencies shown here are yet more pronounced in three dimensions, as observed earlier in
the discussion on sum-factorization.

If it is necessary to include non-rectilinear features in the mesh, it is possible to mesh using a
mixture of simplices near boundaries and rectilinear elements in bulk regions. An example mesh
is shown in Fig.3. In this case, the strategy design pattern could be used to enable the run-time
selection of algorithm to compute the numerical flux depending on the types of elements involved
(discussion of numerical stability questions associated to such processes is omitted here).
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Figure 3: Example mesh using regular quadrilaterals in bulk regions and constrained Delaunay
triangulation local to non-axis-aligned geometry, in this case a D-shaped closed curve intended as
proxy for a half-cross-section of a tokamak first wall.
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