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Abstract
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1 Introduction

The finite element method for solving PDEs is mature and encompasses many different variants,
for example there is a wide choice of basis functions and assignments of degrees of freedom, so
apparently a selection of methods capable of solving the same problem (see, for example, the
table of over fifty finite element types at [2]). In recent years, works such as [3] have provided
a unifying theory of the choice of finite element method that is appropriate, or most appropriate,
to a particular type of problem. This framework, going under the designation of finite element
exterior calculus (hereafter FEEC), has clarified the role of hitherto-discovered discretizations and
also has led to the discovery of novel element types; a pleasing distillation of these ideas is the
‘periodic table’ of the finite elements [4]. Another favourable aspect is that most of the constituent
element types have known order-p implementations and thus the path to exponential (spectral)
convergence, at least for smooth solutions, is straightforward.

These developments, which have been led by mathematicians and numerical analysts, stem from
a deep understanding of the underlying structure of both the continuum PDEs and their discrete
form. In particular, the geometrical nature of the dependent variable comes to the fore, with the
equations themselves being expressed in the language of exterior calculus, viz. differential forms
and the exterior derivative. These structures encode important aspects of the various problems,
such as topological invariants and conserved quantities, and, with the correct choice of discretiza-
tion, these properties are also manifest in the discretized system - for this reason, FEEC is referred
to as a ‘structure-preserving’, ‘mimetic’, or ‘compatible’, method. Note that the exterior calculus
encompasses the more familiar ‘fields’ of physics, e.g. a 0-form is simply a scalar field, a 1-form
is a (covariant) vector field, and a 2-form is an antisymmetric rank-2 covariant tensor of which a
good example is the Maxwell tensor of classical electrodynamics; higher-k forms correspond to
fully-antisymmetric tensors of higher rank.

One small cautionary note is that other, non-finite element, structure-preserving discretizations
exist, going under the wider banner of discrete exterior calculus (hereafter DEC). These may not
have elements satisfying all of the requirements of the Ciarlet definition ([5]) and they usually
involve a pair of spatial grids - the primal and the Voronoi dual. The prototypical example is the
Yee algorithm widely used in computational electromagnetics, in which the electric degrees of
freedom are associated to one spatial grid and the magnetic degrees of freedom the other.

To attempt an overview (which incorporates advice given in [6]), there are two main reasons to use
FEEC (or DEC): 1) they give naturally stable discretizations which do not need artificial numerical
dissipation (e.g. upwinding or least-squares) to remain stable; 2) they enable the construction of
discretizations with conserved quantities. In particular, FEEC / DEC has been used extensively
to provide stable discretizations for Maxwell’s equations, and structure-preserving methods for
electromagnetism coupled to particle methods have been shown to produce effective solvers for
the Vlasov-Poisson system. For NEPTUNE it is intended that structure-preserving methods are
incorporated into the Nektar++ PDE solver framework and this is currently under consideration
by the main developers of that code in conjunction with UKAEA NEPTUNE team members. The
integration of the families of finite elements used by FEEC into the Nektar++ framework in terms of
code structure and optimizations for efficient calculation is an area for further research, though this
would build on an existing body of knowledge (see e.g. [7] for efficient implementations of H(div)-
and H(curl)-conforming elements, and [8] for an application of the sum-factorization optimization
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technique to these element types). Some instructive examples of the utility of FEEC methods are
presented in Section 2 as a prelude to the implementation of similar techniques in NEPTUNE
software.

The spectral element framework Nektar++ is currently being modified such that it will form a library
supplying continuum field capabilities to higher-level NEPTUNE applications. The main work in
this direction is summarized in Section 3, and includes the removal of the need for an XML ses-
sion file, modifications to interface Nektar++ with the UKAEA in-house PIC code NESO-Particles,
preliminary implementation of Nvidia GPU kernels, modifications to the NekMesh mesh generator
aimed at producing meshes suited to fusion-relevant scenarios, and a comment on the amount of
memory used by Nektar++.

2 Finite element exterior calculus

Taken from [1] and associated papers, the examples presented here, which illustrate problems
where conventional FEM may perform poorly, focus on the Hodge Laplacian - a generalization
of the familiar r2 operator to include action on differential forms of order k = 0, 1, ..., D (in D

space dimensions). The k = 1 Hodge Laplacian is the familiar vector Laplacian and study of this
case is motivated by the appearance of this operator in the Navier-Stokes equations (equivalently,
the vector vorticity equation), the Maxwell equations in the frequency domain (which can give
eigenproblems of the type examined in Subsection 2.4), and the vector induction equation.

The exterior derivative operator d acts to convert differential forms between the space V
k of k-

forms and that V k+1 of (k + 1)-forms; the formal adjoint of d, denoted d
⇤, is given by � ⌘ ± ⇤ d ⇤,

where ⇤ is the Hodge star, and called the co-differential. The sign is fixed by the adjoint property
(see [1]); for this operator in two dimensions and acting on 0- and 1-forms, the negative sign
is appropriate. The Hodge Laplacian is then the unbounded operator from V

k ! V
k given by

L
k = d� + �d.

The Hodge Laplace problem

L
k
u = f � Phf, u ? H

k (1)

has a unique solution (in the appropriate space; see [1]) for any f 2 W
k. The possibility of a null

space (denoted H
k) for L

k (i.e. harmonics; see Subsection 2.4) is the reason for the condition
u ? H

k and the subtraction of the projection Phf of f onto this space.

Two weak formulations (used because they are numerically convenient and allow existence proofs
of well-behaved solutions) of this problem are the primal weak formulation

hdu, dvi+ hd⇤u, d⇤vi = hf � PHf, vi (2)

where u is a trial function and v is a test function (in a Galerkin approximation, taken from the
same finite-dimensional function spaces), and the mixed weak formulation, in which � ⌘ d

⇤
u (note

the adjoint) and p = PHf
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h�, ⌧i � hu, d⌧i = 0, (3)
hd�, vi+ hdu, dvi+ hp, vi = hf, vi,

hu, qi = 0.

According to [1], there are four possible ‘good’ choices of (pairs of) discrete spaces for this problem
(though some may in practice be equivalent), which are (V k

h denotes the function space used
to discretize the space of k-forms; Th represents a simplicial triangulation of the domain; Pr⇤k

denotes the complete space of piecewise polynomial k-forms of polynomial order at most r over
the domain and P�

r ⇤k denotes a similar but slightly smaller space of polynomial k-forms, called
the trimmed space):

V
k�1
h =

8
><

>:

Pr⇤k�1(Th),
or

P�
r ⇤k�1(Th)

and

V
k
h =

8
><

>:

P�
r ⇤k(Th),
or

Pr�1⇤k(Th) (if r > 1).

This is the notation of the ‘periodic table’ of the finite elements [4]. Elements of these types
are implemented in the Firedrake PDE solver framework ([9], and see Appendix A) and so it is
straightforward to explore these methods using that code. It is worth a brief note to say that
Nektar++ has a narrower range of element types and is currently restricted to ‘scalar’ elements
(the framework currently treats vector quantities on a scalar-per-component basis). Changes to
this situation are currently being considered by the Nektar++ development team.

2.1 Simple one-dimensional example of an unstable discretization

Section 1.1 of [3] contains a particularly straightforward demonstration of the need for a numerically-
stable method in the case of a very simple ODE. A yet more straightforward example is found in
the reference in the same paper to work by Brezzi and Bathe ([10], of which p.49 in particular), in
which the ODE is

�d
2
u

dx2
= f (4)

on the interval [�1 : 1] with homogeneous Dirichlet conditions at the endpoints, with forcing term
f = 1; the solution is trivially u = 1

2(1� x
2).
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Figure 1: Plots of the derivative for the example from [3] showing sensible output for a linear
discretization of the derivative and clear nonsense in the quadratic case.

A mixed formulation is used with the auxiliary variable � ⌘ �u
0, giving the weak form obeyed by

the discrete approximation �h and uh:

Z 1

�1
�h⌧ dx =

Z 1

�1
uh⌧

0
dx, (5)

Z 1

�1
�
0
hv dx =

Z 1

�1
v dx. (6)

Consider a discretization into N equal finite elements with u represented by (discontinuous) piece-
wise constants and � by continuous piecewise quadratics. It is not difficult to show that the L

2-
norm of the error �h � � is

||�h � �||20 =
5

9

✓
4� 1

N2

◆
. (7)

The point here is that this error tends to a constant as N ! 1 i.e. the numerical solution never
converges to the analytic one.

This example corresponds to the script unstable 1d interval laplacian.py in the repository
[11]. That reference demonstrates that a linear space for � is stable but that enriching this space to
include quadratic functions gives the problem indicated above; the script includes also the example
from [3] which has a slightly less trivial cosine forcing term and which produces the output in Fig.1.
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2.2 k = 2 Hodge Laplacian on square

Section 2.3 of [3] contains an example somewhat similar to the one in the preceding section, but
in two dimensions. This is a source problem on the square with homogeneous Dirichlet boundary
conditions; the equation is

r2
u = 2y(1� y) + 2x(1� x), (8)

with solution x(1� x)y(1� y).

Here u appears to be a scalar but it actually corresponds to a 2-form (which clearly has a single
component in two dimensions).

A mixed formulation is used with � ⌘ �grad u, giving

Z
� · ⌧ d

2
x =

Z
u div ⌧ d

2
x, (9)

Z
div � v d

2
x =

Z
fv d

2
x. (10)

In this case it is demonstrated that the combination of piecewise linear elements for (the com-
ponents of) � and piecewise constants for u is not numerically stable. A stable discretization is,
however, provided by choosing the lowest order Raviart-Thomas elements to represent � and a
DG Lagrange element to represent u. This choice of elements has the property that the divergence
operator maps the Raviart-Thomas basis functions onto the space of piecewise polynomials of one
order less ([12]); the Raviart-Thomas element therefore is a natural candidate for the discretization
of H(div) i.e. representing vectorial quantities which need to have their divergence taken. The
outputs in unstable and stable cases are shown in Fig.2.

This example corresponds to the script k equals 2 hodge laplacian square.py in [11].

2.3 k = 1 Hodge Laplacian, re-entrant corner

This example is taken from [1] (there Example 5.1). Consider the L-shaped domain consisting of
the region [�1 : 1] with the lower left quadrant removed. Further consider the 1-form forced Hodge
Laplacian problem on this domain

r2
u = (1, 0) , (11)

with f = (1, 0) and u · n = curl u = 0 on the boundary.

It is known that a re-entrant corner produces a singularity in the output, of the type |u| / r
�↵ with

↵ = 1 � 1
2�'0

⇡

for corner internal angle '0, so a r
� 1

3 singularity in this case (the worst case, for

a zero-degree interior angle, is ↵ = 1
2 ). The singularity causes problems for conventional FEM,
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Figure 2: Numerical solutions to Eq.8 obtained using the unstable (left) and stable (right) methods
explained in the text.

in particular the conventional FEM basis functions are unable to represent it as it lies without the
space of representable functions.

The left-hand-side plots in Fig.3 show output generated using the primal weak formulation using
a vector CG discretization (note that this requires the imposition of a Dirichlet condition on the
normal component of u, which is straightforward in Firedrake only if the boundaries are all aligned
to Cartesian axes). The right-hand-side plots were generated using the mixed weak formulation
with a combination of elements that is known to give convergence to the correct solution. A lucid
explanation of why this primal weak formulation fails in this case is given in Section 5.1 of [1] and a
sketch of the argument may serve to enlighten here. The CG(N) elements are used to discretize
the space H

1(⌦) of functions which are themselves square-integrable (L2) over ⌦ and whose first
derivatives (i.e. gradients) are also L

2 - that is, the discrete subspace spanned by H
1
n contains

only functions which are contained within H
1. In the case of the re-entrant corner, the behaviour

of the vector function near the corner is as a singularity r
�↵ where ↵ was specified above and the

derivative of this function is not L2 - as a result, the output in this representation can never con-
verge to the true answer. (Note also that turning to DG elements is unlikely to yield nice results due
to the non-uniqueness of fields at element boundaries.) Consider instead discretizing the vector
field into a representation that is a subspace of H(curl) and recall that the mathematical definition
of a discrete curl is as a line integral over the element boundary divided by the element area. Now
the integrals of the singular functions along any given element boundary are actually finite (as an
illustration, consider

R 1
0

dxp
x
⌘ 2 despite the singularity of the integrand) and so elements contain-

ing functions in Hn(curl) are able to represent the corner singularity. Therefore, one is invited to
consider for the representation of the 1-form H(curl)-conforming elements, for which see the list at
[13], and note that the implementations on simplices in Firedrake are the Raviart-Thomas ‘edge’-
type (called RTE), also known as Nédélec curl elements of the first kind (N1curl) and also Whitney
elements; or the Brezzi-Douglas-Marini ‘edge’-type (called BDME), alternately known as Nédélec
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Figure 3: Outputs for the re-entrant corner problem treated using a standard Galerkin discretization
(left-hand-side plots) and a combination of Raviart-Thomas ‘edge’ elements for the 1-form and CG
elements for the divergence (right-hand-side). The colour maps (top) show the magnitude of the
1-form field and the lower plots are the streamlines. The scale in upper figures is identical (the
scale is meaningful because the problem is inhomogeneous). Note that the colour map for the
spurious solution on the left looks plausible - though the dominance of one Cartesian component
of the 1-form might raise suspicions.
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curl elements of the second kind (N2curl). The mixed variational form (Eq.4) is used (note there
are no nontrivial harmonics in this case as the domain is simply-connected).

It is found that clean and consistent-looking plots are obtained for both the above sets of spaces us-
ing the default solver parameters of Firedrake; see Fig.3. An implementation of the primal formu-
lation (which generates the spurious solution) can be found in the script re entrant corner primal.py,
and a working FEEC implementation in re entrant corner.py, both in [11].

2.4 The k = 1 Hodge Laplacian in non-trivial topologies

The de Rham cohomology space is that of solutions to the equations

du = 0, (12)
�u = 0

and subject to a boundary condition e.g. u · n = 0.

In the k = 1 case, the Eqs.13 mean respectively curl u = div u = 0 with the additional conditions
that the trace (here the normal component of u) vanishes on the boundary. It is clear that these
conditions together mean that any solutions lie in the kernel of the Hodge Laplacian operator and
are solutions to Eqs.4 with f = 0 (and no p or q needed). It is shown in [1] that the dimension of
the cohomology space is equal to the first Betti number of the manifold, which in two dimensions
means simply the number of holes in it; this gives the number of linearly-independent solutions.
The textbook [1] also explains that the harmonics give a representation of the k = 1 cohomology
of the domain and proves that the correct choice of discretization allows the discrete form to retain
the same (Theorem 5.1, isomorphism of cohomology).

In a domain with non-zero first Betti number, there are one or more zero-eigenvalue solutions to

r2
u = �u, (13)

because the harmonics are in the kernel of the Hodge Laplacian.

Some additional material on 2D harmonics is included in Appendix B.

2.4.1 Harmonics of doubly-connected regions

On a circular annular domain, there is one harmonic solution (up to multiplication by a constant)
which is the usual vortex (here written in familiar vector notation)

u =

✓
�y

x2 + y2
,

x

x2 + y2

◆
. (14)
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It is not currently straightforward to implement in Firedrake a primal formulation of this circular
annular vortex, due to the need to apply a Dirichlet boundary condition on the normal component
of the vector field at the boundaries (see [14]). It is thus easier to explore numerically the same
problem on a square annulus where the essential boundary condition is straightforwardly imposed
(note the solution has re-entrant corners but it will be seen at least that the FEEC method chosen
handles these correctly).

Consider attempting to use conventional FEM to find the vortex solution as the solution to the
eigenvalue problem defined by Eq.13. A standard primal discretization using a vector CG space
leads to the solution shown in the left-hand-side plots of Fig.4. Additionally, the primal weak for-
mulation gives the results shown in Table 1 for the lowest eigenvalue, the latter (as with other
eigenvalue computations in this section) obtained using the Scalable Library for Eigenvalue Prob-
lem Computations (SLEPc) developed at the Universitat Politècnica de València, Spain [15], which
is called from within Firedrake.

element order p �min

1 3.8877955
2 3.7499638
3 3.7083853
4 3.6880550
5 3.6761782
6 3.6684848
7 3.6631459
8 3.6592514

Table 1: Lowest eigenvalue for the k = 1 Hodge Laplacian problem on the square annulus, using
the primal weak formulation with CG Lagrange elements of order p. The result, though appearing
to converge, is completely spurious as the true lowest eigenvalue is exactly zero.

It is known that the true lowest eigenmode must have an eigenvalue of exactly zero and hence the
eigenmode found here is a numerical artifact. A contrasting implementation that finds the harmonic
correctly, using a mixed formulation with Raviart-Thomas ‘edge’ elements to represent the 1-form
and CG elements to represent the divergence, can be found in eigenvalue problem square vortex.py

at [11]; the primal formulation is eigenvalue problem square vortex primal.py.

Note that it is possible to obtain these solutions by conventional methods (no FEEC) by combining
a known vortex solution (e.g. Eq.18) and a scalar Laplacian problem. The trick is to realize
that, unless the solution topology changes, two (harmonic!) solutions of the Hodge Laplacian
problem on two domains are related by a gradient; the resulting flow will automatically satisfy the
zero-curl equation (because the curl of a gradient vanishes) and also the zero-div condition if the
scalar obeys the scalar Laplace equation. The boundary conditions are patched up by applying
a Neumann condition to remove unwanted normal components at the boundaries. The scalar
Laplacian problem avoids the problems associated to harmonics (as long as the null space of
constants is dealt with) and also the non-L2 issue because the scalar problem does not have
corner divergences (they appear in the gradient of the scalar). This technique is demonstrated in
the script square vortex cohomology alternate.py in [11].
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Figure 4: Lowest eigenmode for the square annulus obtained using a primal CG discretization
(left) and using a mixed discretization with Raviart-Thomas ‘edge’ elements to represent the 1-
form (right). Note that the overall scale is meaningless for this homogeneous problem.
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2.4.2 Harmonics of triply- and higher-connected regions

The triply-connected region considered here is defined as a bounded or unbounded region of the
plane with two circular discs removed. Because the dimension of the cohomology space is equal
to the first Betti number of the manifold, two harmonics are expected. For an unbounded plane
domain, one of these is the counter-rotating vortex pair solution

u =

✓
�2xy

(x2 + y2)2 + a4 + 2a2(y2 � x2)
,

x
2 � y

2 � a
2

(x2 + y2)2 + a4 + 2a2(y2 � x2)

◆
. (15)

This is in fact just the gradient of the multiple-valued coordinate � in the bipolar coordinate system
([16]) (cf. the single circular vortex, which is the gradient of the polar angle).

Cohomology theory means there must be a second solution and a co-rotating vortex solution
(possessing non-circular inner boundaries) is easily found by considering the streamfunction for
two same-sense vortices, and is given by (see, for example, [17])

u =

✓
�y(x2 + y

2 + a
2)

(x2 + y2)2 + a4 + 2a2(y2 � x2)
,

x(x2 + y
2 � a

2)

(x2 + y2)2 + a4 + 2a2(y2 � x2)

◆
. (16)

It is straightforward to map this co-rotating vortex pair back onto the domain with two circles re-
moved, and also to incorporate an outer boundary, using the ‘adding a gradient’ technique men-
tioned earlier. These solutions are exhibited in Fig.5 for a domain with a square outer boundary.
The necessary gradient can be obtained using Firedrake, or alternatively using the advection-
diffusion-reaction solver of Nektar++ and post-processing in ParaView (i.e. calculating gradient
and adding back the analytic solution) - see the script double vortex cohomology alternate.py

at [11] for the former. Note also that the higher-order geometry element of Nektar++ can be used
to improve the accuracy of the gradient solution; for this, the second-order element geometry
capability of Gmsh can be used for the curved boundaries when generating the mesh (meshing
command: gmsh -2 filename.geo -format msh2 -order 2).

The technique using FEEC is exhibited in the script eigenvalue problem double vortex.py at
[11]. Note that the eigenstates found by SLEPc do not correspond exactly to the counter- and
co-rotating vortex solutions discussed above but rather to two mutually-orthogonal linear com-
binations of them (also, the symmetry of the two-vortex example above invited classification of
the states by symmetry but a more general logic is to take a Lagrange-like basis where for each
eigenstate the flow circulation vanishes for all but one domain hole). A more complex example,
consisting of a square domain with eight holes and cohomology space of corresponding dimen-
sion, is exhibited in Fig.6. I n this Firedrake example, the SLEPc solver finds eight zero-eigenvalue
eigenstates in a few seconds and again they seem to be rather arbitrary in terms of basis choice.

2.4.3 Source problems in the presence of harmonics

Source problems on domains with non-trivial cohomologies also encounter problems associated
with the presence of harmonics. An example, taken from [1], is
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Figure 5: Streamlines of 1-form harmonics on the square with two circles removed. These plots
were created using the semi-analytic technique outlined in the text in order to obtain pure counter-
(left) and co-rotating (right) vortex pair solutions.

r2
u = (0, x) (17)

on the annulus 1p
2


p
x2 + y2 

p
2 and subject to the boundary conditions u·n = (curl u)·n = 0.

The obvious problem with this is the ill-posedness: any multiple of the vortex solution can be
added to a solution and the problem is still satisfied (indeed, a naive implementation in Firedrake
produces obviously-nonsensical output). This difficulty can be removed using the nullspace fea-
ture of Firedrake - the software is given the harmonic(s) as the basis for the null space. However,
a standard primal Galerkin discretization of the problem still fails, for the reason that the solution
obtained is polluted by some multiple of the harmonic, even though the solver has been informed
of the harmonic mode. Results from the standard method (using per-component order-6 CG ele-
ments) can be seen in the left-hand plots of Fig.7. On the right-hand side of the same figure are
the outputs from a FEEC discretization that preserves the cohomology of the continuum problem,
in this case order-2 Brezzi-Douglas-Marini ‘edge’ elements for the 1-form and order-3 CG elements
for the divergence. These outputs can be compared with the very similar results in Figs. 5.1 of [1]
and 2.4 of [3].

The numerical outputs, as well as an analytic solution derived starting from the scalar vorticity
equation r2⌦ = 1, are produced by the script source problem on annulus.py in [11].

3 Nektar++ developments

It is an ongoing goal of NEPTUNE to shape a version of Nektar++ into a library to provide finite-
element capabilities tailored to the needs of the project. There have been a number of develop-
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Figure 6: The 1-cohomology of a domain containing eight holes, as calculated by Firedrake; plots
show flow streamlines. The calculation uses order-3 Raviart-Thomas ‘edge’ elements to represent
u and order-3 CG Lagrange elements for the divergence � and finds all eight representatives in a
few seconds on a laptop.
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Figure 7: Outputs for the source problem on annulus described in the text using a primal CG
discretization (left) and using a mixed discretization with order-2 Brezzi-Douglas-Marini ‘edge’ el-
ements to represent the 1-form and order-3 CG elements for the divergence (right). The primal
formulation gives a solution dominated by the harmonic vortex solution (the amplitude is many
orders of magnitude larger than that of the true solution). The analytic solution to this inhomoge-
neous problem is visually identical to and matches in scale the FEEC numerical solution except
that it avoids the artifacts at the facet boundaries visible in the numerical solution (curved-sided
elements in Firedrake are not currently as straightforward as they are in Nektar++). Note the exis-
tence of four stagnation points on each boundary of the true solution.
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ments during the period covered by this report, by UKAEA personnel and by the developers of
Nektar++ and brief descriptions of these follow.

3.1 Removal of XML session file

One factor that complicates the integration of Nektar++ functionality in NEPTUNE is the require-
ment that configuration options be specified in XML ‘session’ files. Running multiple solver in-
stances over the course of a NEPTUNE calculation, therefore, would mean keeping track of
several external files and/or manipulating their contents on-the-fly.

To address this, a number of changes to the Nektar++ core libraries have been made, separating
out code that defines a Session object from code that parses XML. This allows runtime options
to be supplied programmatically instead, significantly simplifying the process of using Nektar++
as a library in NEPTUNE. The ‘Session’ class now contains only core member variables, getter
and setter functions, with all XML-based functionality moved into a subclass, called ‘SessionXml-
Reader’. To set up a Nektar++ solver from calling code, it is now possible to instantiate a ‘Session’
object using a constructor that accepts various C++ standard template library containers as argu-
ments. For instance, fluid field names can be supplied as a vector of strings and solver options
as a string-to-string map. The mesh can either be read from XML, as before, or instantiated
programmatically by supplying vertex positions and vectors of vertex indices that determine the
shape of each element. Finally, some example code that demonstrates programmatic solver set
up for 1D and 2D problems has been added. The two examples double as regression tests for the
framework, ensuring that it continues to work as intended as the Nektar++ code base evolves.

A merge request has been created and is currently under review by the Nektar++ core develop-
ment team; the changes are expected to be incorporated into a release of the software in the near
future.

3.2 Interfacing with particles

NESO (NEPTUNE Exploratory SOftware) is a UKAEA-developed proxyapp coupling particles and
finite element methods. It is expected to form the core of a more developed NEPTUNE code.

The particles aspect of NESO is called NESO-Particles (repository at [18]); it is written in an
abstract manner that is independent of the choice of FEM library. The interface layer that sits
between Nektar++ and NESO-Particles has been written. Fundamentally this layer allows particles
to logically exist on and traverse 2D linear Nektar++ meshes. The interface layer uses functionality
to copy Nektar++ geometry objects between MPI ranks. By copying relevant geometry objects
between the subdomains that result from the mesh decomposition process, this interface layer
builds the halo regions that are required in order to map positions in space to Nektar++ geometry
objects.

The following subsections contain additional relevant details.
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3.2.1 Projection

The functionality to convert a particle representation to a continuum representation proceeds via
an L

2 Galerkin projection. This projection interface is expected to be on the critical path of the
simulation and should be implemented with computational efficiency in mind. Consider a source
point cloud of particles where each particle p has a position xp, quantity (scalar or vector) qp (e.g.
electric charge, current) and a Dirac-delta shape �(x�xp). This point cloud can be represented in
the FEM function space via an L

2 Galerkin projection to produce a function q(x) = ci�i(x), (scalar
or vector valued, where �i is the i

th basis function, here with coefficient ci), which may be used
as a source or coefficient term in some other equations. The projection takes the form (using the
Einstein convention; i is the free index)

Z

V
�i�j dV cj ⌘ Mijcj =

X

p

qp

Z

V
�(x� xp)�i dV ⌘

X

p

qp�i(xp).

This is an Ax = b problem where A corresponds to the mass matrix with components Mij , x to
the vector of DOFs cj , and b to

P
p qp�i(xp), i.e. the vector where the i

th component is the sum of
the values of the i

th basis function �i evaluated at each and every particle’s position xp.

The interface and implementation may be written to assume or require that the particles that form
the point cloud are already binned into mesh cells, i.e. particles may be stored on a per-cell basis,
or a map between cell identifiers to particle indices may exist. Furthermore, as part of the cell
binning process, the reference position of the points in the mesh cell may be known by the calling
implementation and reused by the Nektar++ implementation.

For future consideration, note that simulations could involve fast-moving particles that are treated
in a time-averaged manner where the particle shape function and weight is a trajectory over a time
step, e.g. the contribution from a particle exists over a line through space rather than a single point
and quadrature along these trajectories will be required.

3.2.2 Evaluation

Considering a source field in Nektar++, the evaluation interface should evaluate the function at a
set of arbitrary points. As in the projection case, these arbitrary points may already be binned into
mesh cells and the reference coordinates known. Also as in the projection case, this function will
be called at every time step for every particle and hence is expected to be performance-critical.

3.2.3 Mesh augmentation (halos)

The NESO/NESO-Particles implementation duplicates mesh objects to enable the transfer of par-
ticle data over the globally decomposed mesh - this mesh augmentation is critical to how NESO
determines where to send particles. The details of which mesh objects are duplicated and where is
currently determined by NESO by using serialization/de-serialization also implemented in NESO.
Exactly which mesh elements are duplicated and why is a PIC-specific choice and so this logic
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may not sit naturally within a native FEM code base. Regardless of who retains ownership of this
portion of code, certain functions to handle Nektar++ mesh objects are needed:

1. (De)Serialization of mesh objects. NESO (or any other implementation) can currently inspect
the geometric properties of Nektar++ mesh objects and use this geometric information to deter-
mine which objects are to be communicated between MPI ranks. Helper methods to serialize an
existing object (into bytes) and reconstruct the object from bytes would abstract user codes (i.e.
NESO) from the exact details of each type of geometry object.

2. Construction of Nektar++ tree data structures for geometry objects. The primary use of these
duplicated geometry objects is to map a point in space to a geometry object (and as a by-product
compute the reference coordinates for use in projection/evaluation) which determines the owning
MPI rank. If Nektar++ has data structures that already facilitate mapping points to geometry
objects (e.g. R-trees) then it would be advantageous to be able to construct these data structures
using the duplicated objects.

3. Future time stepping methods in NEPTUNE / NESO may be (semi-)implicit and iteratively
compute new particle positions via a sub-stepping process that proposes new particle positions
which may not be final. In this scenario it is advantageous to be able to evaluate Nektar++ fields
from cells in the halo region on each rank. This halo evaluation allows particles to be stepped into
the final position for each (full) time step before particles are transferred between MPI ranks.

3.3 GPU kernels

Nektar++ has been augmented with the capability to run selected kernels (e.g. transforms between
mode coefficient and spatial value, Helmholtz operator, derivative evaluations) on an NVIDIA GPU,
via kernel implementations in CUDA. The implementation includes a diagnostic of the performance
achieved (in GFLOPS). One restriction of these kernels is that the polynomial element order is
currently capped at a maximum of 11.

This capability is to be seen as a stepping-stone to a longer-term goal of making the entire Nek-
tar++ framework concordant with modern approaches to performance portability, especially effi-
cient operation on current and forthcoming GPU-dominated systems from AMD, Intel, and Nvidia.

3.4 Python interface and h- and r-adaptation for curves

Deliverable 1.4 of Grant T/NA078/20 specifies a Python interface, documentation and CI for the
new additions the the NekMesh mesh generator. The code can be found at [19]. Briefly, this new
code is capable of local h-refinement in the vicinity of a specified CAD curve (shown in Fig.8)
and also anisotropic r-refinement meaning moving mesh nodes closer to a specified CAD curve
(Fig.9), the curves here being proxies for magnetic field lines. These features are demonstrated in
the figures and can be generated by running the script run-adaption.py. Note that the example
includes a simple illustration of a higher-order (curved-sided) geometry for the representation of
the embedded circle.

19



Figure 8: h-refinements of a simple 2D mesh consisting of a circle embedded in a square domain.
The left-most plot shows the mesh prior to local h-refinement in the vicinity of the circle. To the
right are plots h-refined locally to the circle using � parameters of 0.0035 and 0.0015 respectively.

Figure 9: r-refinements of a simple 2D mesh consisting of a circle embedded in a square domain.
The left-most plot shows the mesh prior to local r-refinement in the vicinity of the circle. To the
right are plots r-refined with radaptscale parameters of 0.7 and 0.4 respectively such that the
mesh nodes are displaced toward the circle without alteration to the mesh connectivity.
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It is also possible to use the Python interface to generate simple structured meshes of quadrilat-
erals or triangles; see the script gen mesh.py in the repository [20].

3.5 Memory use in Nektar++

It has been determined ([21]) that the incompressible Navier-Stokes solver of Nektar++ retains
in memory two copies of the system matrix - pre- and post-static condensation versions of the
same object. Only one is strictly needed for the computation. This results in larger-than-expected
memory use by this solver; modifications are being considered by the developers.

4 Summary

The finite element exterior calculus approach offers advantages for numerical methods in providing
guarantees of stability and convergence. This was demonstrated in examples taken from the
literature, which were implemented in Firedrake due to the wide range of finite element types
implemented in that package. The scripts were committed to a public GitHub repository which is
intended as a pedagogical resource. The examples in this report focussed on the Hodge Laplacian
problem and demonstrated the need for FEEC in cases resistant to traditional approaches, for
several different reasons: problems where poorly-chosen combinations of finite elements gave
unstable discretizations, problems containing singular fields, and problems on domains with non-
trivial topology. For NEPTUNE, the desirable properties of FEEC as applied to coupled particle-
continuum systems are likely to be the main area of interest and will be the focus now that some
of the foundations of the theory are understood.

Developments to the Nektar++ code base intended to align it to use as a FEM library for NEP-
TUNE were exhibited; this is an area of ongoing work. In particular, the coupling to a PIC im-
plementation is progressing, via the UKAEA in-house NESO code, reinforcing the case for the
implementation of structure-preserving methods such as FEEC.

ET acknowledges assistance from Colin Cotter, Patrick Farrell, and other members of the Fire-
drake community.
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A Firedrake

Firedrake is a framework for the solution of PDEs. The mathematical problem is specified using
the Unified Form Language from the FEniCS Project ([22]), which represents a powerful domain-
specific language for expressing PDEs. The solvers themselves leverage PETSc ([23]).
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Figure 10: Temperature field of a convection problem in a unit square cavity with the right-hand
side maintained at unit temperature and the left at zero temperature, Rayleigh number 5 ⇥ 104

and Prandtl number 7.0. The left-hand plot is obtained from a steady-state solution in Firedrake
and the right-hand one from time-evolving to the steady state in the incompressible Navier-Stokes
solver of Nektar++. The outputs are visually identical.

Firedrake has major strengths in that the problem specification mirrors very closely the mathe-
matical notation for the weak form, and the approach of using such a DSL in conjunction with
behind-the-scenes code generation facilitates the implementation of a wide variety of problems,
which can be specified very economically by Python script. This is somewhat in contrast to Nek-
tar++, in which new solvers must be implemented in C++. Firedrake also implements geometrical
constructs such as vectorial function spaces, and supports a wide range of vector and scalar finite
element types. Conversely, known relative strengths of Nektar++ are tools for building curved ge-
ometry meshes and the ability to mix element geometries in the same mesh (e.g. hexahedra and
tetrahedra) where the hexahedra are often used to mesh boundary layers efficiently.

Another particular strength of Firedrake is the ability to handle equations with null spaces, a tech-
nique used in the script source problem on annulus.py in [11]. For scalar Neumann problems,
Nektar++ deals with this issue by fixing one particular value on the boundary but this approach
has in the past been seen to generate problems (see Appendix B of [24]).

Equivalent output generated by Firedrake and by Nektar++ is shown in Fig. 10. The Nektar++
data is generated by using the incompressible Navier-Stokes solver to time-evolve an initial con-
dition to a laminar convective steady state. The Firedrake example is essentially the same as the
example at [25] and performs a linear solve to obtain the steady state, using Taylor-Hood elements
which are known to provide a convergent solution. Close correspondence is seen in the resulting
temperature field outputs.
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B More on harmonics and vortices

B.1 Single vortex

The single-vortex solution on a circular annulus is

u =

✓
�y

x2 + y2
,

x

x2 + y2

◆
. (18)

It is a property of this solution, when viewed as a fluid flow, that the differential rotation (with radial
distance) causes a paddle-wheel probe to circulate the origin in such a way that its orientation
remains constant (this is the zero-curl property). It is worth noting that this is a stationary solution
to the Navier-Stokes equations of fluid mechanics that has zero viscous dissipation (even though
there is non-uniform velocity) and where the pressure gradient obeys the simple Newtonian law
|rp| = ⇢v2

r i.e. it provides the centripetal force. Note also that the zero-curl equation means that
the above vortex has zero vorticity except at the origin, where there is a singularity in the fluid
velocity, a difficulty that can be avoided by considering only annular domains which do not contain
the origin.

The solution can be seen to be the gradient of the polar angle ', but it is not an exact differential
form because ' is not single-valued on the domain. It is also the curl of the streamfunction given
by the familiar  = K

2⇡ ln r, where K is the vortex strength (and recall the Riemann surface for the
function w = ln z).

It is also possible to define the same problem with the alternate boundary condition that the angular
component of the velocity vanish on the boundaries. The solution to this is, up to overall sign, the
Poincaré dual of Eq.18 (apply the Hodge star!), under which the streamlines and equipotentials
are swapped, i.e.

u =

✓
�x

x2 + y2
,

�y

x2 + y2

◆
. (19)

This is the radial flow ‘draining bathtub’ solution (which finds interesting applications in the area of
fluid-mechanical black hole analogues); it is clearly curl-free and is divergence-free (radial velocity
/ 1

r ) except at the origin. As an aside, it has not yet proven possible to obtain the ‘draining
bathtub’ solutions directly in Firedrake (this problem is technically the ‘de Rham complex with
boundary conditions’; see [26] for a discussion)

B.2 Double vortex

The triply-connected region considered is defined as a bounded or unbounded region of the plane
with two circular discs removed; two harmonics are expected. For an unbounded plane domain,
one of these is easily found using the bipolar coordinate system [16] (in this and later, a is the
distance of each focus from the origin)
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ds
2 =

a
2

(cosh ⌧ � cos�)2
�
d⌧

2 + d�
2
�
. (20)

Writing down the curl and div equations in these coordinates, an obvious solution is (translated
to Cartesians) Eq.15, which is in fact just the gradient of the multiple-valued coordinate � (cf. the
single circular vortex).

It turns out that the streamlines and equipotentials of this solution correspond to the Apollonian
circles known since antiquity (these are the curves of constant � or ⌧ as defined in Eq.20). Phys-
ically, this solution corresponds to the flow associated to a pair of counter-rotating vortices in
uniform translation and possessing zero aggregate angular momentum; note this is also the so-
lution for the magnetic field lines surrounding two infinite wires carrying counter-flowing currents.
(A somewhat similar fluid flow with two counter-rotating vortices can be generated by dragging a
teaspoon in a cup of fluid but there the non-slip boundary conditions lead to additional dynamics.)

The circles corresponding to the streamlines are found by integrating the expression for the tangent
velocity,

dy

dx
=

�x
2 + y

2 + a
2

2xy
, (21)

a Bernoulli-type ODE with solution x
2 + y

2 + a
2 = cx for constant c.

Cohomology theory means there must be a second solution, though this is not naturally found
using the bipolar coordinates (the serendipitous Apollonian-circles property is not shared by this
other solution). A co-rotating vortex solution (possessing non-circular inner boundaries) is, how-
ever, easily found by considering the streamfunction  given by (see, for example, [17])

 = ln
p
(x+ a)2 + y2 + ln

p
(x� a)2 + y2 (22)

(which is obviously the superposition of two same-sense vortices in a Green’s function approach;
note that a similar formula, tanh = 2ax

a2+x2+y2 , can be used to define the Apollonian circles of the
counter-rotating case), giving the velocity field u = curl  (equivalent to �r?

 ⌘ �ez ⇥ r and
often called ‘rot  ’ in the literature) corresponding to Eq.16.

That the streamlines are not circles can be seen by solving the equation

dy

dx
= �x(x2 + y

2 � a
2)

y(x2 + y2 + a2)
(23)

to x
2 + y

2 + a
2 =

p
c+ a4 + 4a2x2 (in general, not a circle, and note c = �a

4 corresponds to the
circles of zero radius at the vortex cores). This solution represents two co-rotating vortices and
as such has zero linear momentum and a finite angular momentum (it is also the solution for the
magnetic field lines surrounding two infinite wires carrying co-flowing currents). The streamlines
close to the vortex cores at x = ±a, y = 0 are bound to their respective vortex, which further
out, the streamlines merge and encompass the pair; the boundary between the two classes of

24



Figure 11: Harmonics as in Fig.5 except for different boundary conditions corresponding to an
equal linear combination of the ‘vortex’- and ‘draining bathtub’-type solutions, showing streamlines
and equipotentials (for the left-hand plot derived from the counter-rotating vortex solution, one hole
is a source and the other is a sink, hence the existence of streamlines connecting the holes). The
choice of boundary condition is basically a choice of angle at which the streamlines meet the
boundaries and this angle is the same for all the curves.

streamline is demarcated by a separatrix. As mentioned in the main text, it is straightforward to
map the latter solution back to the domain with two removed circles by adding a gradient.

B.3 Generating 2D vector harmonics from functions of a complex variable

In two dimensions, there exists a simple method for generating divergence- and curl-free vector
fields. The Cauchy-Riemann equations of complex analysis are, for a holomorphic function w(z =
x+ iy) = u+ iv,

@u

@x
=

@v

@y
, (24)

@u

@y
= �@v

@x
. (25)

(26)

Note that if the sign of the y-derivative terms are flipped, the equations become respectively the
zero-divergence and zero-curl conditions for a 2D vector field with Cartesian components (u, v).
It follows that the real and imaginary parts of any antiholomorphic function form the x- and y-
components of a divergence- and curl-free two-dimensional vector field in the complex z-plane.
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In particular, the single vortex solution is given by w(z̄) = i
z̄ and the draining bathtub solution

by w(z̄) = �1
z̄ . The action of Poincaré duality is basically represented by multiplication by i -

repeated multiplications switch the solution between anticlockwise vortex, sink, clockwise vortex,
drain; more general pure phases e

i' give solutions with mixed vortex and drain character as shown
in Fig.11 for the two-vortex case. The counter- and (non-circular streamline) co-rotating vortex pair
solutions (15, 16) exhibited in the main text are given simply by

w(z̄) =
i

2a

✓
1

z̄ � a
⌥ 1

z̄ + a

◆
, (27)

in which the factor of 1
a means that the solution reduces to a point dipole in the limit a ! 0 (this

limit represents a double pole in the complex z-plane).

It is apparent that the vorticity corresponds to the residue of w(z̄) at its poles; in fact functions with
non-zero residues correspond to cohomology representatives of domains with ‘holes’ localized at
poles with nonzero residue. Functions lacking residues in the domain of interest correspond to
gradients (equivalently, exact 1-forms).

It is possible to illustrate additional vortex solutions simply by plotting the real and imaginary parts
of antiholomorphic functions, for example the function w(z̄) = i�(z̄) represents an infinite se-
quence of vortices of alternating sign located at z̄ = 0,�1,�2, ... and w(z̄) = i cosec(z̄) an infinite
sequence of vortices of alternating sign at Re(z) = ±n⇡ i.e. along the real axis for integer n; a
related solution corresponding to co-rotation is given by w(z̄) = i cot(z̄). A doubly-periodic lattice
of vortices can be generated from an elliptic function, e.g. w(z̄) = i sn(z̄, 2) which is a solution to
the pendulum equation w

00(z) = � sinw(z). These are shown in Fig.12.
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