
ExCALIBUR

1-D and 2-D Particle Models

M4c.1 Version 1.00
Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M4c.1. It describes 1-D and 2-D particle models with up to 3 velocity-
space dimensions specifically the algorithms, and the methodology applied
to assess the correctness and validity of our implementations. We devel-
oped of a SYCL-based particle framework, NESO-Particles, to represent
particle data and motion on unstructured meshes, consistent with a paral-
lelisation strategy based on domain decomposition and utilising MPI. Par-
ticle data is projected onto 2-D finite element representations within the
Nektar++ software ecosystem, thereby completing a two-way coupling be-
tween Nektar++ and our in-house developed NESO-Particles library. First
we set out the details of the Particle-In-Cell (PIC) algorithm needed for
NEPTUNE, where the ‘cells’ correspond to finite elements. Thereafter we
demonstrate the ability of this approach to reproduce known physical re-
sults, namely, (1) growth rates of the two-stream instability, (2) the helical
particle trajectories expected in a uniform applied magnetic field, and in the
plasma context, (3) dispersion relations for warm Langmuir waves, elec-
trostatic cyclotron waves and Bernstein waves. We conclude with results
demonstrating parallel performance with a strong scaling.

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/EXCALIBUR-FMS/0070

Issue: 1.00
Date: December 23, 2022

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: James Cook N/A December 23, 2022

Will Saunders N/A December 23, 2022
Wayne Arter N/A December 23, 2022

BD

Reviewed By: Wayne Arter December 23, 2022

Project Technical Lead

1

1 Introduction

1.1 Electrostatic Particle-In-Cell

Particle-In-Cell (PIC) is a simulation approach whereN computational particles represent a species
of interest in a simulation domain Ω ⊂ Rd. Each particle i holds a position r⃗i ∈ Ω and carries a
velocity v⃗i ∈ Rdv . We consider the case where d ≤ dv, ie. the velocity of the particle may be a point
in a higher dimensional space that the position component. For example we consider the case
where there are 2 spatial dimensions and 3 velocity dimensions in a, so called, “2d3v” simulation.
In this report we assume that the first d dimensions of the dv velocity space are commensurate
with the simulation domain Ω, ie. if Ω has two dimensions labelled “x” and “y” then the first two
velocity components are in the x and y directions respectively.

Each computational particle carries a charge qi. We consider a system where charged particles
interact only though an electrostatic interaction and assume that there are no magnetic fields
induced by particle motion. There may exist a background magnetic field independent of the
particle system that influences the particle motion. Although the computational particles carry a
non-zero charge they will not interact directly through a pairwise Coulomb potential. Instead the
Electric potential ϕ is approximated on a computational mesh that covers the simulation domain
Ω. Such meshes are typically formed of “cells” which motivates the name of the method.

In this report the computational mesh is a collection of triangles and quadrilaterals on which a
Finite Element Method (FEM) is constructed. This unstructured approach is highly uncommon
among existing PIC implementations but allows the computational domain Ω to approximate a
physical system with more complex, and realistic, geometry. In each cell in the mesh, functions
such as the electric potential ϕ and charge density ρ are represented by an order p polynomial.
Typically, existing PIC implementations only represent quantities at the nodes of the computational
mesh resulting in a p = 0 representation. Our implementation uses the Nektar++ library[1, 2] as a
FEM implementation. We refer the reader to the Nektar++ documentation and supporting material
for details of the FEM method.

1.2 Particle Force Computation

If we assume, for the moment, that there is zero magnetic field then the force on particle i is given
by

F (r⃗i, t) = qiE(r⃗i(t)) (1)

where

E(r⃗) = −∇ϕ(r⃗) (2)

is the electric field. In our implementation we compute the field E by first computing the electric
potential ϕ then evaluating the derivative to obtain E. The potential ϕ is given as the solution of a
Poisson equation

∆ϕ(r⃗) = −ρ(r⃗) (3)

2

where ρ is the charge density given by

ρ(r⃗) =
∑
i

qiδ(r⃗ − r⃗i). (4)

Note that in Equation (4) the LHS is a quantity with a mesh based representation and the RHS is
a quantity stored on a collection of particles. In section 1.3 we describe exactly how this change
of representations is performed in our implementation. As described earlier, we use Nektar++
as a FEM implementation to solve Equation (3) in rectangular domains with periodic boundary
conditions. With periodic boundary conditions the potential ϕ is defined up to a constant. Although
this constant does not affect the dynamics of the particle system it does affect the potential energy
of the system and this potential energy is a useful diagnostic quantity.

In this report we shall enforce that ∫
Ω
ρdx⃗ = 0 (5)

though the addition of a constant offset over the entire domain. We shall then choose a constant
offset to the computed electric potential such that∫

Ω
ϕdx⃗ = 0. (6)

This approach computes a physically realistic and unique solution to Equation (3).

1.3 Charge Deposition

In PIC literature “charge deposition” refers to the process of converting a particle representation
of charge density into a mesh based representation of charge density. In our implementation the
mesh representation is a scalar valued function that is a member of a finite element function space.
We consider Continuous Galerkin function spaces of polynomial order p. In this FEM formulation
a scalar valued function u defined over Ω is represented by a set of coefficients αj such that

u =
∑
j=1

αjψj (7)

where ψj is the jth basis function. These basis functions are chosen, by the FEM implemen-
tation, to span the desired function space. The output of the deposition method we describe is
independent of the exact basis functions used by the underlying FEM implementation.

To deposit a scalar valued quantity we apply an L2 Galerkin projection to approximate the “true”
function û by a finite element function u. In this report the original function is the charge density
described by particle data as

ρ̂(r⃗) =
∑
i

qiδ(r⃗ − r⃗i) (8)

and we seek a function ρ such that
ρ(r⃗) =

∑
j=1

αjψj (9)

3

and
⟨ρ− ρ̂, ψj⟩ = 0 ∀ j (10)

where ⟨f, g⟩ denotes the inner product of f and g. Equation (10) is equivalent to enforcing that
the projection error is in the null space of the finite element function space and hence is “optimal”
in some sense. Rearranging Equation (10) gives a linear system of equations to solve for the
coefficients αj that describe the approximation ρ,

Mα⃗ = Ψ⃗, (11)

where M is the mass matrix such that Mij = ⟨ψi, ψj⟩ and (Ψ⃗)j = ⟨ρ̂, ψj⟩. As our particle shape
function is a Dirac delta the evaluation of the RHS of Equation (11) can be simplified as

(Ψ⃗)j = ⟨ρ̂, ψj⟩ (12)

=
∑
i

qi

∫
Ω
δ(r⃗ − r⃗i)ψjdx⃗ (13)

=
∑
i

qiψj(r⃗i) (14)

which can be evaluated without performing quadrature. Once the RHS of Equation (11) is com-
puted, the system is solved for the coefficients α⃗ by calling the FEM library methods for solving
mass matrix system. These coefficients α⃗ then represent the function ρ which forms the RHS of
the Poisson Equation (3) after a neutralising contribution has been added.

In this report we assume that the FEM library provides methods that allow functions to be evalu-
ated at arbitrary points in the domain, ie. the computation of ϕ(r⃗i), ∂ϕ(r⃗i)/∂x and ∂ϕ(r⃗i)/∂y are
performed by provided functions. In practice our implementation performs optimisations such as
caching reference coordinates to accelerate function evaluations in comparison to naively calling
the FEM library methods.

1.4 Time Integration

Various numerical methods exists to advance particle positions and velocities forward in time from
an initial state. For example with a non-zero magnetic field the Boris method [3] is popular. With
no magnetic field the Velocity Verlet scheme provides second order accuracy in time, is symplectic
and is a three stage process as described in Algorithm 1.

for timestep n = 1, . . . , nmax do
For all particles i: v⃗i 7→ v⃗i +

δt
2mi

F⃗i, r⃗i 7→ r⃗i + δtv⃗i
Construct ρ as described in Section 1.3 and solve the Poisson Equation (3)
For all particles i: v⃗i 7→ v⃗i +

δt
2mi

F⃗i

end
Algorithm 1: Velocity Verlet integrator. A time step of size δt is used to integrate forward in
time until the final time T = nmaxδt.

There are multiple different forms of the Boris integration method that can be applied in systems
with magnetic fields. In Algorithm 2 we provide an overview of the Boris integration scheme applied
in this 2d3v report.

4

for timestep n = 1, . . . , nmax do
Construct ρ as described in Section 1.3 and solve the Poisson Equation (3)
for For all particles i do

Set t⃗ = B⃗(r⃗i)
qiδt
2mi

Set s⃗ = 2
1+||⃗t||22

t⃗

Set v⃗− = v⃗ + qiδt
2mi

E⃗(r⃗i)

Set v⃗′ = (v⃗− × t⃗) + v⃗−
Set v⃗+ = (v⃗′ × s⃗) + v⃗−
Set v⃗i = v⃗+ + qiδt

2mi
E⃗(r⃗i)

Set r⃗i = r⃗i + δtv⃗i
end

end
Algorithm 2: Boris integrator for systems with non-zero magnetic field B⃗. A time step of size
δt is used to integrate forward in time until the final time T = nmaxδt.

5

2 Task Work

2.1 Implementation

As described in the introduction this implementation involves both particles and finite elements. In
this implementation we realise a system where particles exist on, and are tracked over, the mesh
used for the finite element method. As part of the particle tracking, individual particles are assigned
to unique mesh cells when the particle positions are updated. Assigning particles to cells allows
the underlying implementation to determine which MPI rank owns the particle based on its current
position. Furthermore, for the charge deposition operation it is known a-priori that all particles that
contribute to the degrees of freedom (DOFs) of a mesh cell are owned, and exist on, the MPI
rank that owns the cell. This alignment of particle decomposition and mesh decomposition, along
with the δ particle shape, greatly reduced inter-process communication for the charge deposition
process.

Our particle implementation is the NESO-Particles (NP) [4] library which is specifically designed
for representing particle data on spatially decomposed unstructured meshes. NP approaches
the performance-portability challenge by implementing performance critical components in the
SYCL2020 language. SYCL enables developers to write memory allocations and parallel loops
in a language that is agnostic of the tool-chain which will ultimately compile the code for tar-
get hardware. For example the same source code could be compiled for an OpenMP runtime
though a standard C++ compiler or for Graphics Processing Units (GPUs) through a vendor spe-
cific compiler. Note that this transferability indicates portability but does not imply performance
on the end hardware. Creating performant SYCL source code is an active research area of the
NEPTUNE project.

NP is also designed to be agnostic of the particular unstructured mesh particles exist on. This in-
dependence allows NP to be a generic particle library without a requirement that an end user must
use a particular mesh implementation, eg. a Nektar++ mesh. For a given mesh implementation an
interface “shim” must be provided that enables NP to manage particles over that particular mesh.
This shim provides the map from physical space to mesh space that determines which cell owns a
particular point in space. Furthermore the shim describes the parallel decomposition of the mesh
such that when a particle departs an MPI rank the destination rank can be determined. This result
is a particle library that natively represents particles on a spatially decomposed Nektar++ mesh in
an efficient manner.

As previously alluded to, we offload all aspects of the FEM to the Nektar++ library. Within Nektar++
we construct two “fields” to store the solution and RHS of Equation (3). A Nektar++ field is a
function from the requested finite element function space. In this report our function space is
constructed from a Continuous Galerkin (CG) polynomial basis of order p and typically in the
presented examples 2 ≤ p ≤ 4. The periodic boundary conditions are enforced by the chosen
function space and we implemented a bespoke Nektar++ “solver” to solve Equation (3) in the
context of our particular forcing term.

The final implemented component we discuss is the projection operation that deposits the particle
charges onto the mesh. This projection operation reduces to evaluating each basis function at the
location of each particle and multiplying the result by the particle weight. As the support of a basis

6

function is the cell it is defined over, the computation of the Ψj values is a cell-wise operation we
make that observation that

Ψj =
∑
i

qiψj(r⃗i) (15)

=
∑
i∈Cj

qiψj(r⃗i) (16)

where Cj is the cell over which basis function j is defined. Hence the computation of the RHS of
Equation (11) is an operation that is local to each cell and requires no MPI communication for δ
shaped particles. For a CG function space, the mass-matrix solve that follows the construction of
the RHS is expected to involve communication.

As NP natively stores particle on a per-cell basis it is straightforward to loop over all particles con-
tained within each mesh cell. This cell-wise ordering can be exploited to avoid write contention
when constructing the Ψj values. In particular this structure promotes a high arithmetic intensity,
and computationally efficient, algorithm to compute the Ψj values for each cell. Efficient imple-
mentation of the Ψj values is considered future work and in this report we consider the correctness
and viability of the algorithms we describe rather than the implementation efficiency.

2.2 Two-Stream Instability

The Two-Stream (TS) instability is a common test case for implementations of charged particles
that interact through an electrostatic potential and, in this case, zero magnetic field. The model
constructs two “streams” of identically charged particles, with an isotropic neutralising background
field, that are initially travelling in opposite directions. In the limit of an infinite number of compu-
tational particles the charge density ρ is zero everywhere in the domain at the initial time t = 0.
Hence ϕ(t = 0) = 0 and E⃗(t = 0) = 0 and the particles experience no perturbing force from their
initial velocities. The initial condition is created for N particles by applying Algorithm 3.

Note that there exists a distinction between computational particles and physical particles. The
desired number of physical particles is many orders of magnitude more than the number of com-
putational particles which can feasibly be represented on a computer. Hence each computational
particle, ie. particles that exist in NESO-Particles, represent many physical particles which are
characterised by assigning each computational particle a “weight”. This weight allows conver-
sion between the density of computational particles and the density of physical particles that the
computational particles represent.

7

for For all particles i do
Sample r⃗i from 2-D Sobol[5] distribution scaled to fit Ω.
Set qi = q
Set mi = m
Set wi = w
Sample ξ = uniform(0, 1)
if ξ < 1/2 then

Set v⃗i = (vb, 0, 0)
T

else
Set v⃗i = (−vb, 0, 0)T

end
end

Algorithm 3: Initial condition for two-stream instability constructed with N computational par-
ticles. Computational domain Ω = [0, Lx] × [0, Ly]. Particle charge q, mass m and weight w.
Particle velocities are drawn from {−vb, vb} for some fixed velocity vb ∈ R.

This equilibrium is unstable as due to numerical and algorithmic inaccuracies the charge density
and potential fields will not be exactly zero everywhere in the domain resulting in a net force on
particles that perturbs the particle distribution away from the initial condition. Once this pertur-
bation is initiated the potential energy of the overall system grows at an exponential rate which
can be estimated from the linear dispersion relation for a plasma. This theoretical growth rate is
compared with the observed growth rate in the simulation to assess implementation correctness.

To compute the theoretical growth rate we first consider the linear electrostatic plasma dispersion
relation

1 + Σs

ω2
ps

k∥

∫ ∞

−∞

∂fs(v∥)

∂v∥

1

ω − k∥v∥
dv∥ = 0 (17)

where, in SI units:

ωps =
√

q2n
mϵ0

The plasma frequency of species s.

q Is the charge of the physical particle (ie. not the computational macro-particle) of species s.

m Is the mass of the physical particle species s.

n Number density of the species.

ϵ0 Is the electric permittivity.

ω Is a complex frequency.

v∥ Is the one-dimensional velocity coordinate (v∥ = v⃗x in our simulations).

fs(v∥) The distribution function of species s and is normalised such that
∫∞
−∞ fs(v∥)dv∥ = 1.

k∥ The wavenumber parallel to the velocity v∥ (and also parallel the magnetic field, which other-
wise does not feature here; the problem should be considered ”1d1v” and B⃗ = 0).

8

Two oppositely travelling streams exhibit a velocity distribution function of f(v∥) = δ(v∥ ± vb). We
proceed by evaluating the integral in Equation (17) for this particular velocity distribution. Starting
by integration by parts we obtain

1 + Σs

ω2
ps

k∥

∫ ∞

−∞

∂fs(v∥)

∂v∥

1

ω − k∥v∥
dv∥ = 1− Σs

ω2
ps

k∥

∫ ∞

−∞
fs(v∥)

∂

∂v∥

(
1

ω − k∥v∥

)
dv∥ (18)

where observing that

∂

∂v∥

(
1

ω − k∥v∥

)
=

k∥

(ω − k∥v∥)2
(19)

gives

1− Σsω
2
ps

∫ ∞

−∞
fs(v∥)

1

(ω − k∥v∥)2
dv∥ = 0. (20)

We now substitute the general distribution function fs for the two-stream distribution function
f(v∥) = δ(v∥ ± vb) to obtain

1−
ω2
ps

(ω − k∥vb)2
−

ω2
ps

(ω + k∥vb)2
= 0. (21)

We seek the fastest growing waves that satisfy Equation (21). First we create non-dimensional
variables x = ω/ωps and u = vbk∥/ωps and rewrite Equation (21) as

1− 1

(x− u)2
− 1

(x+ u)2
= 0 (22)

which is a quartic equation with solution

x = ±
√
u2 + 1±

√
4u2 + 1. (23)

For the fastest growing mode ∂x
∂u = 0 which corresponds to u =

√
3
2 and four solutions for x, two

real x = ±
√
15
2 and two imaginary x = ± i

2 .

All these solutions share u =
√
3
2 for which vbk∥,max =

√
3
2 ωps. If the wavenumber of the fastest

growing mode is resolved by the PIC code, the nonlinear self-consistent solution will be dominated
by the dynamics of the fastest growing mode and exhibit its growth rate, γmax =

ωps

2 (where γ is
typically used in this context to represent the imaginary component of the complex frequency).
Note that the unstable solutions have zero real frequency.

Employing periodic boundary conditions and tuning the parameters such that exactly M modes of
the fastest growing mode fit in the box in the direction of v∥ of length L, (k∥,max =M 2π

L), we arrive
at:

γmax =
ωps

2
= vbM

2π

L
√
3
, ωps = vbM

4π√
3L
, n = v2bM

2mϵ0
q2

16π2

3L2
(24)

Hence if we initialise all particles as the same species (not two distinct species that differ by sign of
drift speed) and randomly assign one of half of them with +vb and the other half with −vb, we get

9

the case where the particle weight is controlled by the number of particles and the total number
density nT = 2n. Hence particle weight w =

nTLxLy

Ncomp,part
where Lx = 1, Ly = 1 and Ncomp,part are

the lengths of the domain in x and y (both set to unity) and the total number of computational
macro-particles used in the simulation, respectively.

In general the particle weight is

w =
2nLxLy

Ncomp,part
= v2bM

2mϵ0
q2

16π2

3L2

2LxLy

Ncomp,part
(25)

to squeeze an integral number of maximally unstable modes into the simulation domain. So for
vb =M = m = q = ϵ0 = Lx = Ly = 1

• γmax =
ωps

2 =
ωpT

2
√
2
= 2π√

3

• nT = 32π2

3

• w = 32π2

3Ncomp,part

• ωpT =
√∑

s=l,r ω
2
ps = ωps

√
2

s the linear theory assumes that the simulation domain is 1-D, we created a 2-D rectangular
mesh with a 100:1 aspect ratio between the x extent Lx = 1 and the y extent Ly = 0.01. The
mesh is a structured mesh of quadrilaterals with 1 element in the y direction and 20 elements
in the x direction. A CG function space is constructed with degree 4 polynomials and periodic
boundary conditions. A total of 500 000 computational particles are initialised via Algorithm 3. The
simulation is integrated forward in time via the Velocity Verlet integrator in Algorithm 1 with a non-
dimensionalised time step δt = 0.001 for 3000 time steps. The implementation of this two-stream
setup we describe is available as an example solver in the NESO framework [6].

In Figure 1 we plot the potential and kinetic energy of the particle system as a function of time.
We observe that at the initial time t = 0 the vast majority of the energy is kinetic with little potential
energy. Furthermore we observe that as time progresses energy is transferred between kinetic
and potential forms as expected.

We note that the error in total energy remains bounded throughout the simulation at approximately
5 significant figures which is very acceptable for a simulation of this type. At t = 0 we observe that
the initial condition exhibits approximately zero potential energy which indicates that the initialisa-
tion of particle positions via the Sobol method is sufficiently uniform.

In Figure 2 we plot the potential energy measured particle wise as in Figure 1 and additionally
field wise by evaluating

∫
Ω ϕ

2dx⃗. These two measurements are not expected to be exactly equal,
however both should grow in magnitude according to the theory we introduced earlier in this sec-
tion. In Figure 2 we plot this theoretical growth rate along with the growth rate measured from the
simulation. We observe good correspondence between the fitted and theoretical growth rates.

10

Figure 1: Variation in Potential energy EU (plotted in dash-dot indigo), variation in kinetic energy
EK (plotted in solid red) and total energy E (plotted in dotted black) against simulation time. Po-
tential and kinetic energy are plotted relative to the initial total energy E(0).

Figure 2: Potential energy measured particle-wise (plotted in dash-dot indigo) and measured field-
wise (plotted in solid blue) against simulation time. Measured growth rate (plotted in dashed red)
is compared with theoretical growth rate (plotted in dotted black).

11

Figure 3: z-component of velocity of 200 particles plotted against simulation time. Line colour
indicates the y-component of velocity the particle was initialised with.

2.3 Helical Trajectory along x-axis

To test motion in the third velocity dimension we investigated charged particle motion under the
influence of only a magnetic field, ie. E⃗ = 0 for this experiment. We shall set B⃗ = (1, 0, 0)T to
create circular particle orbits in the y − x plane. The particle distribution is initialised by following
Algorithm 4 and is integrated forward in time via the Boris integrator in Algorithm 2.

for For all particles i do
Sample r⃗i from 2-D Sobol[5] distribution scaled to fit Ω.
Set v⃗(x)i = 1

Set v⃗(y)i = uniform(1, 2)

Set v⃗(z)i = 0
Set mi = 1
Set qi = 1

end
Algorithm 4: Initial condition for helical particle trajectories.

In Figure 3 we plot the z-component of velocity for 200 particles and observe the expected sinu-
soidal pattern of motion. In Figure 4 we plot the z-component of velocity against the y-component
of velocity and observe the expected circular orbit in the zy plane.

12

Figure 4: z-component of velocity of 200 particles plotted against y-component of velocity. Line
colour indicates the y-component of velocity the particle was initialised with.

13

2.4 Warm Langmuir waves

The warm Langmuir wave is an electrostatic oscillation at the plasma frequency in the long wave-
length limit. At short wavelengths it is damped, but rises quadratically in wavenumber for interme-
diate wavenumbers;

ω ≈ ωpe

(
1 +

3

2
λ2Dk

2

)
(26)

where ωpe is the plasma frequency, vth is the thermal velocity of the particles and λD = vth/ωpe is
the Debye length. The use of the word warm here comes from the origin of the quadratic term; the
plasma model with knowledge of the bulk thermal velocity. The PIC code is fully kinetic where the
particle velocities are drawn from a distribution characterised by the thermal velocity. Hence the
kinetic PIC code captures the warm physics.

Figure 5 is created from a 2d3v implementation of the Poisson-Lorentz set of equations using
Nektar++, NESO, and NESO-Particles combined to create an 2d3v electrostatic PIC code. This
figure shows that the continuous Galerkin technology of Nektar++ works with the SYCL particle
technology and indicates a huge leap forwards in capability.

Figure 5: The power spectral density as function of frequency and wavenumber showing the warm
plasma dispersion relation. The logarithm of the absolute value of the spatiotemporal Fourier
transform of the electric field component parallel to the magnetic field in time and the direction
parallel to the magnetic field. Yellow indicates regions of undamped normal modes and highlights
the dispersion relation of the warm Langmuir wave.

14

2.5 Electrostatic cyclotron waves

Electrostatic cyclotron waves oscillate at harmonics of the plasma frequency. Those with harmon-
ics greater than one are kinetic phenomena and can be visible in the Fourier transform of electric
field components perpendicular to the magnetic field. Figure 6 is such an example from a 2d3v
electrostatic PIC code written in julia.

Figure 6: Horizontal stripes show electrostatic cyclotron waves from a 2d3v electrostatic PIC
code written in julia for a single plasma species and a magnetic field in the plane. Colour indicates
the logarithm of the absolute value of the spatiotemporal Fourier transform of the electric field
component perpendicular to the magnetic field in time and the direction parallel to the magnetic
field. Yellow indicates regions of undamped normal modes.

2.6 Bernstein Waves

Bernstein waves are an electrostatic kinetic plasma phenomenon that can be reproduced numeri-
cally with a time stationary magnetic field and a single thermal electron population, characterised
by thermal velocity vth, in the presence of numerical neutralisation, with periodic boundary con-
ditions. These normal modes are supported by the interplay between the gyration of particles
around the magnetic field and their thermal motion, and they propagate perpendicular to the mag-
netic field.

The dispersion relation of Bernstein waves differs from cyclotron harmonics, ω = lΩe, where
Ωe is the electron cyclotron frequency and l is the integral harmonic number, as the ratio of the
plasma frequency to the cyclotron frequency, ωpe/Ωe increases. The distortion away from cyclotron

15

harmonics is particular visible at low frequencies and low wavenumbers in the power spectral
density of the supporting fields.

Random thermal noise serves to excite waves in frequency ω and wavenumber k space, but
perpendicular fluctuations are everywhere damped except where (ω, k⊥) represents that of the
Bernstein mode (or hybrid wave). The noise inherent in PIC codes suffices to highlight Bernstein
modes when plotting the power spectral density of the electrostatic potential; a heatmap of the
logarithm of the absolute value of its spatio-temporal Fourier transform.

The dispersion arises from the generating function Bessel identity at the foundation of linear kinetic
plasma theory,

exp(λ cos θ) =

∞∑
n=−∞

In(λ) exp(inθ), (27)

which describes the bunching the of particles around the gyro-orbit as a response to perturbations
and where λ =

v2thk
2
⊥

2Ω2
e

.

In the large k⊥ limit, the linear solution (Eq. 30.1 of Ref. [7]),

0 = 1−
ω2
pe

Ω2
e

exp(−λ)
λ

∞∑
n=−∞

n2In(λ)

ω2 − n2Ω2
e

. (28)

It is the sum, here, that causes zeros in the dispersion relation of Equation (28), whereby pairs
of harmonics determine the location of the root of the dispersion relation, which also prohibits a
Bernstein wave with ω < |Ωe|.

Figure 7 shows electrostatic cyclotron waves and Bernstein modes in the dispersion relation cre-
ated by a 1d2v PIC code written in julia where the spatial domain is aligned in x, the velocity
components in x and y and the magnetic field aligned with z.

16

Figure 7: Horizontal stripes show electrostatic cyclotron waves mixed in with dispersive Bernstein
waves from a 1d3v electrostatic PIC code written in julia for a single plasma species and a magnetic
field pointing orthogonal to the simulation domain. Colour indicates the logarithm of the absolute
value of the spatiotemporal Fourier transform of the electric field component perpendicular to the
magnetic field in time and the direction parallel to the magnetic field. Yellow indicates regions of
undamped normal modes.

2.7 Initial Strong Scaling Results

Although the implementation is at a very early stage we can start to assess the parallel perfor-
mance characteristics. We set up a strong scaling experiment based on the two-stream problem
with a modification such that domain Ω is a unit square and all other parameters are unmodified
except for the number of particles. We set the number of computational particles to 3 200 000 for
a smaller experiment and 25 600 000 for a larger experiment. A strong scaling experiment records
the time to solution for a fixed problem as the amount of computational resource is increased.

We perform this experiment on the CSD3 cluster with Intel Skylake nodes consisting of 32 cores
per node (Xeon Gold 6142). The complier for our implementation and all dependencies is Intel
OneAPI version 2022.1.0 and we used Intel MPI version 2021.7. The SYCL platform is the OneAPI
host target that places one computational thread per MPI rank, ie. the experiment is performed
with MPI only. In Figure 8 we plot the results of the strong scaling experiment for node counts
between 1 and 8.

We do not investigate higher node counts as these results are from a very preliminary version of
NESO where we have already identified opportunities for significant performance improvements.
For example, many of the Nektar++ calls we make are to methods originally implemented as setup

17

Figure 8: Time per simulation step plotted against node counts for the strong scaling experiment.
Larger experiment plotted in dashed blue, Smaller experiment in solid red and ideal scaling in
dotted black. Top axis indicates computational particles per core for the smaller strong scaling
experiment. Number of particles per core for the larger experiment is eight times the smaller
experiment. Percentages indicate the parallel efficiency at the largest node count relative to one
node.

routines in the original FEM use case and hence are not optimised as much as is desirable for a
function called within a main loop. Secondly we have not applied improvements which we have
already identified and plan to implement in our particle transport implementation.

We observe that, for an initial implementation, Figure 8 demonstrates acceptable parallel scaling.
Note that in the strong scaling limit of the smaller experiment there are only O(10 000) particles per
CPU core which is relatively small for a PIC code. Now that we possess a parallel PIC code we
intend to continuously profile and optimise the implementation, a process for which these results
should be considered an initial point of reference.

18

3 Summary

In this report we described the overarching models and algorithms we applied to assess the cor-
rectness and validity of our methodology and implementations. This work involved the develop-
ment of a SYCL based particle framework, NESO-Particles, to represent particle data on unstruc-
tured meshes. This particle framework enables particle motion over these unstructured meshes in
conjunction with a domain decomposition based parallelisation strategy utilising MPI. The details
of exactly how particles are transferred between MPI ranks is described is the M4.3 report [8].

The M4.3 report also provides initial results from the L2 projection algorithm which is employed
to convert from particle to FEM based representations. In M4.3 initial viability of this approach
is explored, whilst in this report we demonstrate the ability of this approach to reproduce known
physical results. Production of these results required implementation of the projection approach
within the Nektar++ ecosystem. Furthermore we demonstrated initial implementations that utilise
Nektar++ as a FEM implementation coupled to our NESO-Particles library.

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged.

This work was performed using resources provided by the Cambridge Service for Data Driven Dis-
covery (CSD3) operated by the University of Cambridge Research Computing Service (www.csd3.cam.ac.uk),
provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences
Research Council (capital grant EP/T022159/1), and DiRAC funding from the Science and Tech-
nology Facilities Council (www.dirac.ac.uk).

References

[1] D. Moxey et al. Nektar++ website. https://www.nektar.info, 2020. Accessed: June 2020.

[2] G. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid dy-
namics 2nd Ed. Oxford University Press, 2005. https://doi.org/10.1093/acprof:oso/

9780198528692.001.0001.

[3] J.P. Boris. Relativistic plasma simulation-optimization of a hybrid code. Proceeding of Fourth
Conference on Numerical Simulations of Plasmas, November 1970.

[4] UKAEA. NESO-Particles. https://github.com/ExCALIBUR-NEPTUNE/NESO-Particles,
2022.

[5] S. Joe and F.Y. Kuo. Constructing Sobol sequences with better two-dimensional projections.
SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.

[6] UKAEA. NESO. https://github.com/ExCALIBUR-NEPTUNE/NESO, 2022.

19

https://www.nektar.info
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://github.com/ExCALIBUR-NEPTUNE/NESO-Particles
https://github.com/ExCALIBUR-NEPTUNE/NESO

[7] Marco Brambilla. Kinetic Theory of Plasma Waves: Homogeneous Plasmas. Clarendon Press,
Oxford, 1998.

[8] W. Saunders, J. Cook, and W. Arter. High-dimensional Models Complemen-
tary Actions 2. Technical Report CD/EXCALIBUR-FMS/0062-M4.3, UKAEA, 2022.
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_

reports/CD-EXCALIBUR-FMS0062-M4.3.pdf.

20

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0062-M4.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0062-M4.3.pdf

