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stone M4c.2. An integrated particle and continuum model has been de-
veloped in 2d3v, where 2d3v implies that there is variation in two space
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1 Introduction

The reach of this milestone is to create a proxyapp that combines at least one complex element
from several aspects of exhaust physics. This 2d3v proxyapp is based on an advection-diffusion-
reaction (ADR) equation system where the source terms arise from the ionisation of neutral parti-
cles which are treated as Lagrangian markers.

The system of three coupled fluid equations for number density, velocity and energy, encapsulated
in a state vector ~ς and expressed in a form familiar to the area of CFD and specifically Finite Volume
formulations as

∂~ς

∂t
+∇ · (F(~ς)) = ∇ ·G(~ς,∇~ς) + S(~ς), (1)

where F represents the spatial component of a general hyperbolic conservation law, G denotes
the diffusion terms and S(~ς) is the source term for the components of the state vector. We provide
the particular system of equations of interest in Section 2.1.1.

In this report we present details of the implementation and present initial results of an exhaust
relevant ADR solver constructed from NEKTAR++ and NESO-PARTICLES(NP) and realised as part
of the NESO framework. The targeted real-world scenario is the scrape-off-layer (SOL) which
connects the tokamak divertor (heat sink) to the bulk plasma at the outer mid-plane edge (heat
source). Furthermore the plasma is coupled to a system of neutral particles. The fluid species
exists as a finite element representation provided by the NEKTAR++ library. The neutral particle
species is implemented using the NP framework. Within NESO there exists a tight coupling
between finite element functions within NEKTAR++ and particles in NP.

The computationally challenging dynamics are largely aligned to the magnetic field, which pred-
icates the use of a long, thin computational domain also aligned with the magnetic field. In this
domain, the plasma source is located in the middle and the upper and lower divertors are located
at the ends. This proxyapp implements a system with an element of complexity from many areas
of the parameter space: advection-diffusion in NEKTAR++, performance portable particles via NP,
domain decomposition via MPI, mixed boundary conditions, tight coupling of fluids and particles,
IO, visualisation, and crucially 2 spatial dimensions and 3 velocity dimensions. The final element
of complexity is critical for providing functionality to the tokamak edge modelling community who
wish to calculate the heat fluxes required for so-called mean field equations in 2-D with neutral
physics via particles with all three velocity components.

The structure of the rest of the report is as follows. In Section 2 we describe the technical work
done for this report and describe the equations that are solved for the fluid dynamics and particles,
how they are coupled and the how the ionisation rates are obtained. We also present an exposition
of the ionisation algorithm. We provide a description of the basis functions in NEKTAR++ and
their efficient evaluation in NESO via SYCL. In Section 3, we summarise and give context to two
associated grantee reports on this topic. The final section provides a summary of this work.
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2 Task Work

2.1 Plasma, particle and ionisation equations

The plasma exhaust is modelled in 2-D in a long and thin domain, where the centre represents
the outer mid-plane edge of the plasma, ie. broadly where the hot plasma enters the scrape off
layer domain, and the ends represent the divertor, ie. the plasma from the centre travels along the
domain in both directions towards the exhaust region. Critical to fusion power plant design is the
concept of a detached plasma whereby a region of ionisation and recombination exists between
the plasma and the divertor. This detached state is beneficial as the divertor is in contact with
merely a hot gas rather than a plasma carrying orders of magnitudes larger heat fluxes.

The region of ionisation and heat flux near the ends of this long and thin 2-D domain is represented
in this mini-app as locations of neutral particle sources (whose presence in a real tokamak would
arise via gas puffs, recycling from the wall and the processes of ionisation and recombination
between the neutral gas and the detached plasma). In this instance, we focus on ionisation only
and leave recombination as an item of further work. The following sections describe the fluid and
particle dynamical equations and the origin of the ionisation rates.

2.1.1 Dynamics equations

The plasma exhaust relevant fluid equations, in the form of an advection-diffusion-reaction (ADR)
equation, are expressed in 2-D by Eulerian methods, where the source terms in the fluid equa-
tions arise from the ionisation of neutral particles. We treat these neutral particles as Lagrangian
markers. We describe the time evolution of number density n, velocity ~u and double energy
E = (g − 2)nT + nu2 as

Ur
∂

∂t
n = −∇ · (n~u) + Sn, (2)

Ur
∂

∂t
n~u = −∇ · (n~u⊗ ~u+ nT ~I) + Su, (3)

Ur
∂

∂t
(n((g − 2)T + u2)) = −∇ · (n~u(gT + u2))− κd∇2T + SE , (4)

where T and g are the plasma temperature and equation of state constant respectively and Si

is the source term for variable i arising from the ionisation of neutral particles. The neutral com-
putational macroparticles follow straight trajectories from birth until either loss due to complete
ionisation or because they have travelled past the ends of the domain in the long direction ie. hit
the divertor target.

We sample initial neutral particle properties from a fixed density and temperature profile. We ad-
vect each neutral particle collisionlessly, ie. without external forces or inter-particle interaction, and
at each time step perform an ionisation procedure. This ionisation procedure requires evaluation
of the plasma density and temperature at the location of each particle to calculate an ionisation
rate. The ionisation rate determines the proportion of the weight of each neutral particle which will
be deposited onto the grid as plasma.
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The deposition of newly ionised plasma takes the form of source terms in the plasma density, mo-
mentum density and energy density equation. For conservation of mass, momentum and energy,
the source terms in the plasma equations must be commensurate with the loss of neutral density,
momentum and kinetic energy from particles. We weakly equate particle and finite element repre-
sentations of a quantity via a L2 Galerkin projection. We describe the ionisation algorithm below
and describe the ionisation rate calculation the next section.

for particle ∈ species do
x← position(particle)
w ← weight(particle)
u← velocity(particle)
n← density(x)
T ← temperature(x)
r ← rate(T )
∆w ← −rnw∆t
remove← 0
if w + ∆w < 0 then

∆w ← −w
remove← 1

end if
w ← w + ∆w
nS ← nS −∆wu
uE ← uE −∆wmu2/2

end for

2.1.2 Ionisation rates

We use the following formula, taken from Ref. [1], as the ionisation cross section

σ =

N∑
i=1

aiqi
ln
(
E
Ei

)
EEi

[1− bie
−ci
(

E
Ei
−1
)

] (5)

where E is the energy of the impacting electron, Ei is the binding energy of electrons in subshell
i and qi is the number of electrons in the i-th subshell. The constants ai, bi and ci are to be
determined from theory or experiment. Note that for hydrogen and Helium like ions N = 1. In the
following table we list the reference values presented in [1] for hydrogen and i = 1.

Parameter Value
a1 4x10−14cm2(eV )2

b1 0.6
c1 0.56
E1 13.6 eV
q1 1

4



Figure 1: Cross section plotted against electron energy.

Figure 1 plots this approximation for the cross section against the data from Freeman and Jones [2].
We use the cross section applied to a Maxwellian electron distribution at temperature T to generate
the ionisation rate in units of cm3/s (see Ref. [1]),

S = 6.7x107
N∑
i=1

aiqi

T
3
2

{
T

Ei

∫ ∞
Ei
T

e−x

x
dx− bie

ci

Ei
T + ci

∫ ∞
Ei
T

+ci

e−y

y
dy

}

= −6.7x107
N∑
i=1

aiqi

T
3
2

{
T

Ei
Ei
(
− Ei
T

)
− bie

ci

Ei
T + ci

Ei
(
− Ei
T
− ci

)} (6)

where T is in eV. Figure 2 compares the approximation against ADAS provided data. We assess
that the approximation is adequate for this report. Furthermore we use the closed form approxi-
mation to the exponential integral by Barry et al. [3].
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Figure 2: Comparison between ADAS data and approximation plotted against electron energy.

2.2 NEKTAR++

Although NEKTAR++ includes implementations of the prerequisite algorithms required by NESO to
project particle data onto finite element functions and evaluate these functions at particle locations
these methods are not efficiently implemented for the particle use case. The original implementa-
tions in NEKTAR++ are adequately implemented for use in the setup phase of a simulation where
small inefficiencies are amortised by the cost of the time stepping loop or main solve.

In the particle use case, these once setup only functions are called on a per-particle basis at every
time step of the simulation. This per particle and per time step regime places these functions on the
critical path of the simulation where small inefficiencies in each function call contribute significantly
to the overall runtime. Furthermore the implementations of these methods are provided only on
the CPU host hence particle data, which is stored on a compute device such as a GPU, must be
copied to and from the host to call these functions. To improve the performance and portability of
NESO we provide SYCL implementations of these critical algorithms.

2.2.1 Function Evaluation

NEKTAR++ considers two representations of a given function. The first representation in the func-
tion values at the quadrature points in the domain. The second representation is the classic finite
element degrees of freedom (DOFs) αj such that

u(~x) =
∑
j

αjψj(~ξ(~x)) (7)
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where u is the function represented by the αj , ψj is the jth basis function and ~ξ(~x) is the position
in the reference cell of the point ~x. Hence evaluating Equation (7) at a point ~x requires evaluating
all the individual basis functions at ~x. We note that in the case where a function u is evaluated at
all particle locations with a mesh cell there are two properties that are computationally beneficial
on modern architectures; firstly the DOFs αj are constant and identical for all evaluations in the
cell secondly the functional form of the basis functions is identical for all the evaluations within
the cell. The first property indicates that evaluating a function at all points within a cell as a
grouped operation should improve cache reuse and hence improve the arithmetic intensity of the
implementation. The second property indicates that the basis function evaluations for different
points in the cell can occur in adjacent lanes in vector computing architectures such as GPUs and
CPU SIMD units.

Until now we have indexed basis functions and DOFs with a single index j, in practice there exists
at least n basis function indices for an n dimensional space (in NEKTAR++). In this report we
consider 2-D space where the computational mesh is constructed as a collection of quadrilateral
and triangular elements. Functions defined over quadrilaterals and triangles are constructed as
the tensor product of a 1-D basis function in the first and second dimensions of the reference
element. For these two element types there are two 1-D basis functions defined in NEKTAR++; the
“modified A” and “modified B” basis which we label as ψap(z) and ψbp,q(z) respectively.

For n “modes” (polynomial degree plus one) the modified A basis ψap is defined as

ψap(z) =


1
2(1− z) if p = 0
1
2(1 + z) if p = 1
1
2(1− z)12(1 + z)P

(1,1)
p−2 (z) otherwise

 (8)

for all p such that 0 ≤ p < n. In this report P (α,β)
p (z) denotes the standard (α, β) Jacobi polynomials

of order p. The ψbp,q(z) basis is defined over a triangle number sized iteration set {(p, q) : 0 ≤ p <
n, 0 ≤ q < (n− p)} and is defined as

ψbp,q(z) =


ψaq (z) if p = 0(
1
2(1 + z)

)p if q = 0
1
2(1− z)

(
1
2(1 + z)

)p
P

(2p−1,1)
q−1 (z) otherwise.

 (9)

A scalar valued function u of n modes defined over a quadrilateral by coefficients α is evaluated
at a point ~x as the double sum

u(~x) =

n−1∑
i=0

n−1∑
j=0

αjn+iψ
a
i (~ξ(~x)0)ψ

a
j (~ξ(~x)1). (10)

We evaluate Equation (10) with O(n2) complexity by using the recursion relation of the Jacobi
polynomials to compute and store the values {ψai (~ξ(~x)0) ∀ i : 0 ≤ i < n} and {ψaj (~ξ(~x)1) ∀j :
0 ≤ j < n} each with O(n) complexity. These basis function evaluations are then reduced along
with the appropriate coefficient α to construct u(~x). This two stage approach places the code that
contains multiple conditionals into the O(n) basis evaluation stage and allows the O(n2) operation
to consist purely of a double loop and a reduction. We exploit the local memory feature of SYCL
to allocate temporary memory for the basis function evaluations in each dimension.
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The evaluation of a function u over a triangle follows the same structure with three modifications;
the modified B basis is applied in the second dimension, a correction is applied for the second
mode and the reference coordinate is converted into a collapsed coordinate prior to evaluation.
For triangular elements modes, and hence DOFs, are not indexed in a lexicographic manner but
are arranged such that

mode(p, q) = q +
∑

0<i≤p

 ∑
0≤j<(n−i)

1

 . (11)

Although the mode indexing appears convoluted, in actual code this results in an indexing that
increments by one in each iteration of the nested double loop. The function is readily evaluated as

u(~x) =

(n−1)∑
i=0

(n−i−1)∑
j=0

αmode(i,j)

[
δ1,mode(i,j) + (1− δ1,mode(i,j))ψ

a
i (~η(~x)0)

]
ψbi,j(~η(~x)1). (12)

where δa,b is the Kronecker delta. The middle square terms involving the Kronecker delta enclosed
by square brackets represents the correction applied internally by NEKTAR++ for the second mode.

The coordinate η refers to the reference coordinate in the collapsed coordinate space which is
applied to triangles in NEKTAR++. This collapsed mapping is defined from the reference space
~ξ(~x) to the collapsed space ~η(~ξ(~x)). Note that in Equation (12) we wrote ~η(~x) instead of ~η(~ξ(~x))
for brevity of notation. The mapping to collapsed coordinates is given by

~η(~ξ) =

[
2(1 + ~ξ0)/(1− ~ξ1)− 1

~ξ1

]
(13)

As in the quadrilateral case we create local arrays for the evaluations of ψai (~η0) and ψbi,j(~η1). These
basis function evaluations are then multiplied together and reduced in a double loop along with
the DOFs.

2.2.2 Barycentric Interpolation

The alternative function representation in NEKTAR++ is the function values at the quadrature points
across the entire mesh. These are referred to as the “physical values” and can be converted to
or computed from the DOFs. NEKTAR++ provides methods to compute derivatives from these
physical values and represents these derivatives again as quadrature point values (as opposed
to DOFs). As converting physical values to DOFs has a non-negligible cost it is beneficial for
NESO to also provide a SYCL implementation that evaluates a function defined by quadrature
point values at each particle location. Hence we provide a SYCL implementation to evaluate
NEKTAR++ functions via the Barycentric interpolation [4] approach. Note that this algorithm also
exhibitsO(n2) computational complexity for nmodes in 2-D but unlike the basis function evaluation
approach the critical path consists of O(n2) divisions.
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2.2.3 Projection onto Finite Element Functions

In Section 1.3 of report M4c [5] we describe the method we apply to convert a particle represen-
tation of a field to a weakly equivalent finite element representation via an L2 Galerkin projection.
This projection approach solves a linear system where the RHS is constructed by evaluating each
basis function at the location of each particle.

In prior versions of NESO these basis function evaluations were performed on the CPU host and
not in a SYCL parallel loop. With the SYCL implementation of the basis functions described in
Section 2.2.1, NESO now contains a performance portable implementation to compute the RHS
of Equation (11) in M4c [5]. The mass-matrix solve required to solve this linear system is however
still performed on the CPU host.

2.2.4 The Simple-SOL solver

The SIMPLE-SOL solver was developed initially as a NEPTUNE proxyapp in its own right [6] to
solve System 2–3 from the equations document [7].

While the simple SOL problem is only formulated in 1-D, it can be treated as a pseudo-2-D problem
by giving the ‘field line’ a finite width. This approach allows the fluid-particle coupling framework
to be tested on a 2-D domain whilst retaining access to existing, relatively simple 1-D analytical
solutions for validation. In the following sections, we use the terms ‘SOL axis’ and ‘cross-SOL axis’
as shorthand for directions parallel to the long and short sides of the domain respectively.

Ur
∂

∂t
n = −∇ · (n~u) + Sn, (14)

Ur
∂

∂t
n~u = −∇ · (n~u⊗ ~u+ nT ~I) + Su, (15)

Ur
∂

∂t
(n((g − 2)T + u2)) = −∇ · (n~u(gT + u2))− κd∇2T + SE , (16)

Starting from Equations (14)– (16), we set Ur = 1 and choose to neglect heat conduction (κd = 0).
We assume that the equation of state is that of an ideal gas with isentropic expansion factor
γ = 5/3, which equates to setting g = 2 in Equations(15) and (16).

In the Nektar solver framework, the addition of a second dimension entails adding an extra mo-
mentum density field, nv and modifying the construction of the flux vector used in the Riemann
solver when computing the advection terms.

We apply a Discontinuous Galerkin (DG) formulation to model the fields and fluxes between el-
ements are calculated using a Riemann solver (implementation due to Toro [8]). We use basis
functions constructed from a modified form of (5th order) Legendre polynomial, described by Kar-
niadakis and Sherwin [9]. The fluid fields are evolved using an explicit, 4th order, Runge Kutta time
stepping scheme.

In order to test the solver with non-zero momentum terms in both dimensions, we rotate the domain
about the origin by an angle θ, such that the SOL axis is no longer aligned with the x-axis. The
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rotation angle is set as a Nektar parameter in the configuration file and is used to rotate the
fluid source terms such that they vary along the SOL axis, but are constant in the cross-SOL
direction. The (Dirichlet) boundary conditions at the ends of the flux tube also need to account for
the rotation. They become

n = ninf , (17)
nu = α ninf uinf cos(π/4), (18)
nv = α ninf uinf sin(π/4), (19)

E =
pinf
γ − 1

+
ninf u

2
inf

2
, (20)

where u and v are speeds in the x and y directions respectively. We apply outflow conditions by
setting α = −1 at one end of the domain, and 1 at the other. We set ninf = pinf = uinf = 1, noting
that the density and velocity have already been non-dimensionalised with factors of B0/N0 and
the sound speed, cs, respectively. On the (long) sides of the flux tube, boundary conditions are set
to be periodic for all fluid fields.

2.2.5 Fluid-only validation

In the following, we first consider validation of the SIMPLE-SOL solver in isolation, that is, without
coupling to the particle framework. We choose a rectangular mesh which is 110 units long, 1 unit
high and rotated about the origin by an angle θ = π/4. Fluid elements are quadrilateral, with 56
along the SOL axis and 3 in the cross-SOL direction.

Figure 3: Left: The SOL 2-D domain, with a rotation angle of θ = π/2. Right: The SOL 2-D domain
without any rotation; the domain width is exaggerated by a factor of three, in this panel.

The left panel of Figure 3 shows the rotated mesh used for validation. The right panel shows
a version of the same mesh prior to rotation, with the aspect ratio reduced to make individual
quadrilateral elements easier to see.

We set initial conditions (in non-dimensionalised units) according to Table 1 and choose initial
conditions to differ significantly from the expected solution. Our fluid source terms are set to
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Table 1: Initial conditions used for validation.
Field label Parameterised value Numeric value
n ninf 1
nu 0 0
nv 0 0

E pinf/(γ − 1) +
ninf u

2
inf

2 1.5

match one of the configurations used to validate the SOLDRAKE solver [10]. When plotted parallel
to the SOL axis, the sources closely resemble those shown in Figure 8 of that reference, but with
Gaussian widths five times narrower. We set the magnitude of each source to be constant in the
cross-SOL direction.

When the simulation starts, the fields initially vary rapidly, before settling down into a steady state.
This is seen clearly in the number density profiles shown in Figure 4, which are computed at five
output times between t = 0 and t = 200. The label ‘s’, here, refers to the distance along the SOL
axis from one end of the field line to the other. Although we evaluate the number density along the
lower edge of the domain the symmetry of the source terms means that the same profile can be
obtained along any line parallel to the SOL axis.

Figure 4: Evolution of the number density profile along the SOL axis, from initial conditions to
steady state.

In Figure 5 we plot a comparison between the steady state reached by the SIMPLE-SOL solver
and an analytic solution presented by Arter [11]. The top row of panels are 1-D profiles in num-
ber density, velocity and energy along the SOL axis, while the bottom row shows the difference
between the SIMPLE-SOL and analytic solutions.
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Figure 5: Upper panels: Comparison of the density (left), velocity (centre) and temperature (right)
profiles along the SIMPLE-SOL field line. Lower panels: Difference between the simulated and
analytic profile.

2.2.6 Coupling with NESO-PARTICLES

We make modifications to the SIMPLE-SOL solver to facilitate coupling with the NESO-PARTICLESframework
as follows:

1. The temperature is computed based on the equation of state and stored in a separate Nek-
tar field at the beginning of each time step, then evaluated at the particle positions before
calculating the ionisation rates.

2. Four new fields were added, one for each particle source term. These fields are explicitly
excluded from the advection operation.

3. The source terms class was updated to add the particle source fields to the RHS of their
respective fluid equations.

2.2.7 Particle Creation Along Lines

The model system includes two locations where a neutral species is introduced into the domain.
We inject particles at both ends of the domain which represents the situation where neutral species
are deliberately injected into the plasma or where charged species are neutralised on contact with
a wall and are repelled back into the plasma.
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For parallel plasma flow in the x direction, we initialise neutral particles along straight lines in the
y direction. At each end of the domain, at L − a and a for a constant offset a and domain length
L, we define a collection of lines centred around these two predetermined points. Each collection
of lines spans the entire domain in the y direction and Gaussian spacing in the x direction. Each
line is discretised into a large number of uniformly spaced points where particles may be created.

Discretising each line into a large number of points allows performance optimisations to be made
that reduce the cost of adding particles to the domain. We pre-compute the MPI ranks that own
points on the line to reduce the communication overhead of adding particles. Secondly we pre-
compute the owning cell and NEKTAR++ reference positions of the points to avoid a costly cell
binning process which would only occur on a subset of MPI ranks.

At each time step, when we inject particles, we initialise each particle with a computational weight
that represents the physical number of particles that computational particle represents. This com-
putational weight is subsequently reduced by the ionisation process we describe in this report.
Secondly the velocity of each particle is sampled from a Gaussian distribution such that the over-
all ensemble of neutral particles exhibits a desired temperature.

2.2.8 Particle Boundary Conditions

The 2-D system we describe in this report is constructed with two types of behaviour for particles
at the domain edges. In the y direction, which is the perpendicular direction to the field lines, we
periodically map particles over the boundary. In the x direction, which is the direction parallel to
the field lines, we remove particles from the simulation domain when they reach the domain edge.

Previous iterations of NESO-PARTICLES(NP) did not provide users with a high level interface to
remove particles. For the simulation we describe here, and to extend the functionality of NP, we
implemented a high level user facing interface that allows specification of which particles should be
removed from the simulation. To use this interface a user tags particles that should be removed
from the system with a user defined value in a user defined particle property. The user then
calls the remove method and passes their chosen tag value and chosen particle property. On
completion of the call to the remove method all particles matching the tag value in the property
are removed.

2.3 Coupled proxyapp results

In Figure 6 plot the distribution of fluid plasma (upper image) and neutral particles (lower image)
towards one end of the domain, corresponding to the region closest to the divertor. The position
of the particle source in the lower panel is easily identified by the concentration of points with
high computational weights (redder colours). As the simulation evolves, computational particles
move away from the source location, becoming progressively more ionised (bluer colours) and
depositing material onto the plasma density field (redder colours in the upper panel). This is then
advected towards the domain boundaries by the fluid solver. Particles crossing the left-boundary
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are automatically removed from the simulation at each time step, using the mechanism described
in Section 2.2.8.

Figure 6: Zoom-in on one end of the 2-D domain showing the plasma number density (top) and
distribution of neutral particles (bottom) coloured by weight.

To initially test the mass conservation properties of the simulation we created a closed system by
replacing the outflow boundary conditions in the x direction with periodic boundary conditions. This
new system, with fully periodic boundary conditions, contains zero sinks for neutral particles or
plasma fluid and hence will rapidly “fill” with plasma. As the system is closed, accurately measuring
the total mass in the system is now straightforward.

We constructed a system where the plasma fields n and ~u are initialised to 1 and ~0 respectively.
Furthermore we disabled all source terms except the mass coupling between the plasma fluid
and neutral particles. This remaining term is responsible for ionising neutral particle species as a
plasma fluid density source. Mass is created at each time step at the injection points we describe
earlier in this report. Hence the total mass in the system linearly increases with time at a chosen
rate.

In Figure 7 we plot the mass stored as both neutral particles and plasma fluid along with the
relative error in total system mass. As the system is closed except for our neutral particle injection
we computed the correct total system mass as the mass of the injected particles plus the initial
plasma field density. By comparing the expected system mass against the particle mass and fluid
mass we quantified any loss in mass due to conversion between particle and fluid representations
or loss of mass due to implementation errors. We observe good conservation of mass from this
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test case.

0.0 0.2 0.4 0.6

Time

0

1

2

3

4

5

6

M
as

s
×1020

Particle Mass

Fluid Mass

2

4

6

8

10

R
el

at
iv

e
E

rr
or

×10−15

Figure 7: Mass conservation test for closed system under periodic boundary conditions. Mass
expressed in terms of particle number. Black: relative error in total system mass. Blue: mass
contained in fluid density fields. Red: mass stored on neutral particles.
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3 Executive Summaries

This section both introduces the context and summarises two reports in the higher dimensional
work package. The first relates to implementing higher dimensional models using a continuum
and the second is an investigation into the performance of code related to the first.

Accepted reports are held on the Documents repository of the ExCALIBUR-NEPTUNE organisa-
tion on GitHub, to which belong other repos containing software developed under project NEP-
TUNE. Note that some of these repos may be access-controlled, please email neptune@ukaea.uk
if difficulties are encountered in seeing the material.

3.1 Implementation of TensorRegions library in Nektar++

Authors: Chris Cantwell, Spencer Sherwin, and David Moxey.

The context of this brief report[12] is the step change in exhaust power of a power-plant scale
tokamak compared to that of current experimental devices. The resulting increase in local plasma
temperature will reduce the collisionality of the plasma in the scrape-off-layer thereby rendering
the existing set of fluid models and fluid numerical methods much less accurate in this parame-
ter regime. Although NEPTUNE includes a particle modelling workstream, which also enables
kinetic effects, particle simulations have limitations due to sampling noise which deterministic fi-
nite element calculations do not suffer from. Higher dimensional finite element calculations have
their own issues however, notably regarding cost, and to some extent the two approaches are
complementary.

The extension of NEKTAR++ to accommodate one- or two-dimensional velocity space continuum
grids (typically referred to by 1V or 2V) superimposed onto 1-D, 2-D and 3-D spatial domains is de-
tailed in this report. The introduction describes how existing components have been re-used in the
development of this feature. The second section on implementation explains the how to configure
and create the additional continuum dimensions to resolve velocity space: the TensorRegion(ie.
the velocity space representation embedded in a spatial region); the TensorStorage or storage
arrays for calculations; and a read/write View of this underlying data. Next code snippets are given
in the Example Usage section, where it is explained how this work fits into the wider context of
NEKTAR++ developments. The report closes with automatically generated API documentation.

3.1.1 Report on DG Performance in NEKTAR++

Authors: Edward Laughton, David Moxey, Chris Cantwell, and Spencer Sherwin.

This report[13] concerns high order discontinuous Galerkin (DG) methods, which have many
attractive properties for Exascale fluid dynamics. Arguably first among these is the accuracy
achieved per unit amount of MPI communication. Since Nektar++ makes use of spatial DG meth-
ods for higher dimensional methods, which comes at a higher computational cost due to the curse
of dimensionality, it is imperative that the implementation is as performant as possible. This re-
port details a real world simulation case, a Taylor-Green vortex, to attempt to identify bottlenecks
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for this high dimensional relevant method. Ultimately, no out-of-the-ordinary bottlenecks exist for
the current implementation on x86-64 architectures. However, having performed some tests and
analysed the profiling date, the authors highlight a few areas where algorithm improvements may
be made.

The first section summarises the DG formulation for the Navier-Stokes (NS) system of equations,
giving emphasis to components of it that will feature later in the report: the number of commu-
nicated degrees of freedom; the requirement for an inverse matrix multiplication; the auxillary
variable required to accommodate the diffusion operator separating NS from compressible Euler.
The experimental setup of 6th order 3-D advection-diffusion system (Navier-Stokes) on an 8×8×8
grid is introduced.

The second section describes the profiling procedure as well as some caveats around different
approaches to MPI communication that may influence results. As such it is noted that care was
taken when profiling MPI communication.

The results section comes third. It notes the requirement of an MPI AllReduce in each substep
of the Runge-Kutta 4 integrator, that the flux values must be communicated across sub-domain
boundaries, and that there is some jitter in the MPI but would not adversely affect wall-clock time
for the whole simulation. It is noted that the fluid solver spends much of its time in low level
matrix-multiply BLAS calls, as expected.

The report concludes with several observations that might help improve performance:

• that the cost of the inverse matrix multiply may be alleviated by a real Schur decomposition
of the matrix or by swapping to the use of orthogonal polynomials.

• an MPI call could be streamlined so as not to send extraneous data for this use-case.

• an area of the code has been found where it is possible to interleave MPI with compute.

4 Summary

In this report we describe a spatially 2-D model for fluid plasma equations relevant to the plasma
exhaust. This model consists of a fluid system to describe a plasma species and a particle system
to describe a neutral species. These two species are coupled through an interaction between
plasma and neutrals where neutral species are ionised at a particular rate. The ionised particles
create a source term for plasma species in the associated fluid equations. Hence there exists a
coupling from neutral species to plasma species. Secondly the ionisation rate, evaluated at particle
locations, is a function of the plasma density and temperature. Hence there exists a coupling from
plasma species to neutral species.

The implementation of the coupling operations relies on the capability to evaluate finite element
functions at particle locations and the ability to convert particle representations to finite element
representations. These evaluation and projection operations are frequently performed and ex-
pensive operations and hence are performance critical. As part of the task work for this report
we implemented algorithms to perform these operations within SYCL. SYCL implementations of
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these core operations improve the overall performance portability of the NESO framework and
allow these operations to be executed on a wider range of hardware. We complete the description
of our own work in this report by presenting initial validation results from the fluid and particle sys-
tems. These validation results are important to demonstrate that the coupling between fluid and
particles is correctly implemented and conserves key system quantities.

Lastly, summaries and links to external grant work associated with D4c are provided.
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