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1 Introduction

Uncertainty quantification (UQ) in NEPTUNE is to be performed non-intrusively, which means
that the UQ functionality can be developed largely independently of the main NEPTUNE code
base. Since the main NEPTUNE code is still in development, the first part of this report outlines
some relevant problems in heat transfer as targets for UQ and presents implementations using
the FIREDRAKE PDE solver. The case for this approach is strengthened by the fact that these
examples include material on one-way and two-way coupled models (Sec.2) and reduced-order
modelling. In addition, the analysis of the three-dimensional version of the heat transfer problem
in Sec.3 provides HPC-level problems suitable for use as examples by the holder of the numerical
analysis grant T/AW087/22 (specifically, to apply to preconditioners and solution continuation) as
well as subjects for UQ campaigns and surrogate construction.

The report also outlines an initial application of the EASYVVUQ software to the NESO-PARTICLES

code developed under NEPTUNE (Sec.4).

The UQ work has been defrayed under Grant T/AW085/21. Much of this grantee’s work during the
past year has taken the form of code development and related hackathons, rather than written re-
ports. This material, which covers UQ, reduced-order models, and data assimilation, is described
briefly in Sec.5.

2 Coupled models of heat transport

The experimental campaign of the SmalLab programme includes simulations of a convecting fluid
in a tank, in which the tank walls have a nonzero thickness and are themselves part of the heat
transfer problem, giving a coupled system that is a prime candidate for the application of UQ
techniques for studying discrepancies between theoretical models and experimental results. This
system is related to the problem of heat transfer in a fusion machine, in which the main challenge
is to keep the heat localized where the fusion reactions are intended to occur, see eg. the thesis
work of F. Wilczynski and resulting publications such as ref [1]. It is well-known that the rate of
heat transfer in a fluid is enhanced by turbulence and so one worthwhile goal is to control and
suppress turbulence. The latter can be achieved by reducing the temperature gradient across the
fluid region by adding insulation (large gradients are the drivers of turbulence).

Work is currently in progress to enable the coupling of the incompressible Navier-Stokes solver
and the diffusion solver of NEKTAR++ in order to enable the simulation of a fluid region (tank
interior) coupled to a solid conducting model (tank wall). These modifications are not completed
at the time of writing and so a reduced model of heat transfer by turbulent fluids and conductors,
and their coupling, is considered.

The study begins by examining a one-dimensional toy system with heat moving from left to right,
with temperature equal to unity on the left and zero on the right. Let there be two conducting
regions, each of unit width and of thermal conductivity κ1 (left) and κ2 (right). The law determining
the effective conductivity κ of the composite is
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Figure 1: Temperature profile across a composite region with thermal conductivities κ1 for x < 1
and κ2 for x > 1. The left-hand plot shows the case κ1 = 4κ2 and the right 4κ1 = κ2.

κ = 2
κ1κ2
κ1 + κ2

(1)

reminiscent of the law for the combination of electrical resistances in parallel, except for the extra
factor of 2.

The heat flux through the combined system is

F =
κ1κ2
κ1 + κ2

(2)

(which is symmetric under the interchange of κ1 and κ2).

The temperature at the midpoint is

Tmid =
κ1

κ1 + κ2
(3)

(which is not symmetric under the interchange of κ1 and κ2).

The midpoint temperature is greater than 1
2 if κ1 > κ2, in which case most of the temperature

drop occurs across the second (ie. the rightmost) region ie. the temperature gradient across the
first region is reduced (see Fig.1). If the first region is actually a tank of fluid, this means that the
Rayleigh number for the convective system will be decreased the poorer conductor the second
region is - the fluid will be hotter on average but the temperature gradient across it will be reduced.
This means the fluid is less likely to be turbulent, and, given the usual laws for heat transfer by
fluids, will transport heat at a lesser rate.

2.1 One-dimensional models - one-way coupled

The model of this section and the next will consist of a zero-dimensional (ie. ODE) surrogate for
the convecting fluid, coupled to a one-dimensional diffusion model.

3



A proxy for the potentially turbulent fluid is the Lorenz equations, also known as the Lorenz ’63
model [2], obtained by considering Rayleigh-Bénard convection and retaining only the first trigono-
metric eigenmode associated with departure from the purely-conducting state and its quadratic
self-interaction.

The equations are

Ẋ = σ(Y −X);

Ẏ = ρX − Y −XZ;
Ż = −βZ +XY.

(4)

This model retains some of the characteristics of a turbulent fluid problem ie. it exhibits smooth
behaviour for some parameter choices and chaotic behaviour for others. In addition, two of the
three free parameters in the model, respectively ρ and σ, correspond to the Rayleigh (Ra) and
Prandtl (Pr) numbers derived from the progenitor problem (the remaining parameter, β, is of lesser
interest in this study). As a reminder, the Rayleigh number is the dimensionless temperature
difference (eg. between the hot and cold sides of a fluid-filled cavity) driving the convection and
the Prandtl number is the dimensionless ratio of momentum diffusivity to thermal diffusivity. It is
possible to extract the quantity which in the full problem represents the Nusselt number (ie. the
rate of heat transfer) as Nu = 1 + 2Z

ρ . The Lorenz model is itself an useful candidate for UQ
studies due to its simplicity (three parameters) and the fact that its response surfaces may exhibit
discontinuous behaviour [3].

A simple C++ ODE solver implementation of the Lorenz model was written. A canonical choice
was made for the model parameters ρ = 28, σ = 10, β = 8

3 ; this choice is one that enables chaotic
behaviour. (More generally, the paper [3] exposes the behaviour of the system in (Ra,Pr)-space as
an interesting ‘phase diagram’.) The outputs are a plausible representation of the familiar Lorenz
system behaviour (Fig.2) and this was deemed sufficient as a unit test.

The diffusion model is a simple implementation of a time-dependent diffusion across a one-
dimensional domain of unit width. The code was written in C++ and follows the unconditionally-
stable implementation in [4] (which uses forward spatial differences and a Crank-Nicolson time-
stepping method). The solver can use Dirichlet or Neumann boundary conditions and a simple
unit test of the former case against analytic results was performed: the solver was run for t = 0.1
using D = 0.1, starting from zero temperature everywhere in the volume and T (x = 0) = 1,
T (x = 1) = 0 Dirichlet conditions. The analytic temperature profile is

T (t, x) = 1− x−
∞∑
n=1

2

πn
e−n

2π2Dt sinnπx. (5)

(This tends to the obvious steady-state solution 1 − x as t � D−1 and the subtraction is at t = 0
simply the Fourier series for that function; the Fourier modes each decay on a timescale set by the
wavenumber; the function can be approximated for t� D−1 by 1− erf( x√

4Dt
) which is the solution
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Figure 2: (Left) output of Lorenz ODE solver displaying the well-known Lorenz attractor. (Right)
unit test of the output of the diffusion solver against theory; there is no visible discrepancy between
the code output and the theory curve.

Figure 3: Behaviour of the coupled Lorenz-diffusion system as the diffusivity is varied. The time
series used is the heat flux. The conducting region acts as basically a low-pass filter on the heat
flux time series.

to the same problem on a semi-infinite interval. These analytic forms agree with the code outputs
in Fig.2.)

In the coupled system, the Nusselt number from the Lorenz model is used to provide a Neumann
boundary condition on the left-hand side of the diffusion problem (specifically the value of ∂T

∂x is
set equal to Nu

D ). The other side of the domain of the diffusion problem (this domain is called
the conducting region) is given a homogeneous Dirichlet condition (T = 0). The behaviour of the
coupled system for different values of diffusivity is show in Fig.3.

There is no coupling of the diffusion model back into the Lorenz model - this would be valid only
in the trivial limit where the solid is a much better conductor than the fluid (ie. the temperature is
near-uniform across the solid).

2.2 One-dimensional models - two-way coupled

Two-way coupling is necessary in order to study the effect of the insulation on the fluid system.

The diffusion problem can be made to back-react on the Lorenz model by allowing the temperature
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TL at the entry point to the conducting region to determine the Rayleigh number ρ in the Lorenz
model (recall that for vertical natural convection the Rayleigh number is the non-dimensionalized
temperature difference horizontally across the cavity). The connection needs to be made via
some function that avoids pathological behaviours; reasonable properties would seem to be that
ρ decreases monotonically with increasing TL and that ρ cannot become negative (this means
the minimum Nusselt number is 1 and there cannot be less-than-unity heat fluxes). In practice,
a function that ensures ρ ≥ 1 appears to work better than one that is allowed to decrease to
zero, giving better numerical stability and avoiding features such as negative temperatures in
the conducting region, heat flux from right to left, and large ‘spikes’ in heat flux. The function
ρ = 1 + 27e−TL was chosen empirically and was found to give no obvious numerical difficulties;
for the initial condition TL = 0 this choice represents the same parameter values as used in the
previous section. (Note that, with this function and positive temperatures, the Rayleigh number
has a maximum value of 28.) It seems likely that there are more sensible choices of this function
as not much experimentation was done with other choices - work was stopped once a bounded-
response choice was found. Note possible similarity to the activation functions chosen in neural
networks.

The parameters σ and β take the same fixed values as in the previous section.

Outputs can be seen in Fig.4; these are the time series for the heat flux into and out the other side
of the diffusive region. It can be seen that for large values of D the coupled response preserves
well the no-coupling input heat flux (the diffusion is rapid, therefore the temperature is near-uniform
- indeed near-zero - across the diffusive region). Small values of D result in a ‘turning off’ of the
turbulence, which physically is supposed to represent the fact that insulating the turbulent region
reduces the temperature gradient across it (the fluid is hotter but recall that turbulence is driven
by temperature gradients) - one sees that the turbulent time series is brought into a quiescent
state and the heat flux (Nusselt number) tends to unity, which is the minimum possible rate of
heat transfer in this model, corresponding to pure conduction. In between these regimes there
is an oscillatory regime (amusingly, this sort of thing is seen in the transition to turbulence in real
systems) in which, strangely, the average heat flux is enhanced over the turbulent case - it is
expected that this non-monotonicity reflects the non-physical nature of the model, either from the
extrapolation of the Lorenz single-mode approximation beyond its region of validity or from the
empirical choice of coupling function. It is clear that it is in reality not possible to enhance heat
flux by adding further insulation in a one-dimensional system. (Though note that this is not true in
higher dimensions; consider heat sinks.)

It is also possible to visualize how the back-reaction affects the behaviour of the Lorenz oscillator
(Fig.5). The interesting thing here is the recovery of the usual sort of Lorenz attractor for large
values of D, and apparently simpler attractors for reduced values of D, down to fixed points for
sufficiently small D. Note that the intermediate attractors display nonmonotonicity in D as to
whether they are able to access both ‘lobes’ of the original Lorenz attractor.

There is scope for further investigation of simple models of this sort (note the compute times for all
the examples above are typically one second or less on a single core of a laptop). It is possible to
imagine simple control strategies by varying the temperature used as the Dirichlet boundary on the
right-hand side of the conducting region. It is possible to imagine coupling additional ‘convecting’,
ie. Lorenz, systems and additional conducting regions.
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Figure 4: Time series heat flux inputs (blue) and outputs (orange) for the conducting region of the
coupled Lorenz and diffusion model for various values of the diffusivity D, ie. the heat flux entering
the diffusive region from the turbulent model, which is affected by the back-reaction of the diffusion
problem on the Lorenz series in the way explained in the main text. The main phenomenon of in-
terest is the fact that sufficient insulation ( small D) results in suppression of the chaotic behaviour,
which is interpreted loosely as the suppression of turbulence. Note the plots are not shown here
but the time series for the temperature at the left-hand side of the conductor show similar time-
dependence, and the average entry temperature seems to be a monotonically-decreasing function
of D, which is physically consistent.

Figure 5: (Modified) Lorenz attractor part of the two-way coupled Lorenz and diffusion model for
various values of the diffusivity D. Top (L-R) D = 10, 4, 3.16; bottom D = 2, 1, 0.1. Note the
attractor is largely as in the classic non-coupled case for D = 10 and it degenerates to a single
figure-of-eight attractor track as D is reduced to 3.16. Below about 3.13 the attractor is confined
to one lobe of the classic structure, but this behavior changes with the D = 1 case exploring two
lobes. Very small values ofD lead to the attractor becoming a fixed point with Z = 0 corresponding
to a pure conducting Nu = 1 situation. All cases are 2-D projections with the positive X-axis
oriented into the page (and right-handed Cartesian axes).
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The implementation used to generate the results in this section is tightly coupled but there is no
reason, other than convenience, not to use a value-passing approach to couple separate Lorenz
and diffusion software modules.

3 Convection models as proxyapps for UQ

Attention is now shifted to study of two-dimensional convecting fluids as targets for UQ and
reduced-order models.

The well-cited paper [5] presents a ‘phase diagram’ charting the expected behaviour of Rayleigh-
Bénard convection as a function of the two parameters Ra and Pr. The diagram is reproduced
here as Fig.6. The analysis in that paper is possible due to a systematic theory based on analytic
results for global averages of kinetic and thermal dissipation rates (eg. Eqs.2.5, 2.6 in [5]). This
allows consideration of the system behaviour depending on whether the boundary layer or the bulk
dominates the kinetic and thermal dissipation and on whether the kinetic or thermal boundary layer
is thicker. The case of vertical natural convection (also known as side-heated or slot convection), in
which the temperature gradient is applied horizontally, is more challenging as the same approach
does not work (the global relations for dissipation rates do not exist). There does not seem to exist
in the current literature a vertical natural convection analogue of the diagram in [5], motivating
a study of this system. Note that phase transitions are interesting from a UQ standpoint, not
least because a small uncertainty in a control parameter value can lead to a very large change in
the physical response of the system in the vicinity of a phase boundary (or, in the case in [5], a
boundary between two scaling regimes).

The vertical natural convection problem is directly relevant to the SmalLab experiments, and it
is of interest in the context of uncertainty quantification, as will now be discussed. This work
provides an opportunity to test the impact of parameter uncertainty in an interesting model that
possesses different physical regimes which furthermore may be demarcated by boundaries at
which the response or its derivatives are discontinuous. (A discontinuous response poses a chal-
lenge for polynomial fitting techniques which tend to work well only in rather smooth cases.) There
is also opportunity to construct useful surrogates of response surfaces that depend on potentially
large amounts of computation - the examples presented here will be two-dimensional, but the
three-dimensional versions are a supercomputer-level challenge. Even the two-dimensional case
is helpful in highlighting some features of the computation that are germane to the construction of
the ensemble-based campaign that is necessary in order to perform non-intrusive UQ. Namely:

• UQ campaigns generally aim to achieve a meaningful coverage of a parameter space of
some dimensionality, size, and shape. In many cases, coverage is achieved by trivial par-
allelization of individual calculations. However, it is sometimes advantageous, or even es-
sential, to perform the computations in some sort of ordered pattern - the ‘continuation’
approach to solving elliptic problems means that the next calculation may need the results
from an earlier one from nearby in parameter space (eg. to provide the initial guess) and so
some degree of serialization is mandated.

• A specific example of the above is the performance of numerical eigensolvers, which can
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Figure 6: The phase diagram of Rayleigh-Bénard convection (Fig.2 in [5]). The differently-labelled
regimes correspond to a different scaling law of the Nusselt number (and / or Reynolds number)
with Rayleigh and Prandtl numbers Nu ∼ RaαPrβ.
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depend strongly on the initial guess of the eigenvalue. This value can come, as above, from
a nearby solution.

• A reduced-order model can be used to inform initial values of the type mentioned above, for
example it may be known how an eigenvalue is expected to scale with a control parameter.
The need for expensive solution continuation may be removed by using a reduced-order
model to initialize the solver at an arbitrary point in parameter space.

• One might consider a simple line-based ordering of simulations in order to achieve coverage
of a multi-dimensional parameter space, though this is at odds with Latin-hypercube type
approaches. An alternative is to consider placing simulation attempts along a space-filling
curve (eg. the Hilbert curve).

• An alternative to serialization is to store the state of previous simulations and to make this
data available to solvers performing new simulations (data from a ‘nearby’ past run could be
used as an initial state). This approach would favour algorithms where a large amount of
arithmetic work is needed per unit of stored state data.

• As a general principle, understanding gained using a two-dimensional fluid system may be
applied to a larger study of the three-dimensional problem and may specifically reduce the
amount of trial-and-error needed when working with expensive supercomputer runtime.

It is possible to use NEKTAR++ to obtain the Nusselt number as a function of position in (Ra, Pr)
space. A general analysis is challenging due to the need to tune the parameters of the simulation
in order to preserve numerical stability and to ensure that the results are not contaminated by
transients. It is expedient to start on the problem using the FIREDRAKE PDE solver framework [6] to
solve for the steady state and this is the approach taken here. With the use of a time-independent
solver, only the conducting and laminar convecting regimes are accessible. What can usefully be
determined from such analysis is the onset of linear instability in the laminar solutions - this gives
a bound on the stability of the laminar regime as there the system transitions to an oscillatory
solution, which tends to lie between the laminar and turbulent regimes, in what is referred to
as a Hopf bifurcation. (The transition to turbulence occurs at higher Ra and is associated to
the excitation of many incommensurate linear modes.) The goal then is the discovery of a one-
dimensional stability frontier between stationary and oscillatory states in the (Ra, Pr) plane.

The stability of a given stationary laminar solution is studied by determining the most negative
eigenvalue for a linear perturbation about the laminar convecting background states. The criterion
for a linear instability is that the real part of the eigenvalue is negative. Here the eigen-analysis is
done with the aid of the SLEPc eigensolver library [7]. Two techniques were tried:

• Simple scans of (Ra,Pr) space to determine where eigenvalues with negative real parts
occur.

• A nonlinear analysis technique to determine directly the value of Ra at which the system
exhibits a Hopf bifurcation. The method is outlined in a paper by Griewank and Reddien
[8]. The FIREDRAKE implementation, which will not be detailed here, was largely copied
from [9] with minor differences, eg. in the pressure condition where [9] evades the constant-
pressure null space by fixing the pressure at a boundary point, while the present study used
the nullspace feature of FIREDRAKE.
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The scripts here employ a direct solver for the linear systems as in [9]. This is expedient and is
effective for small problems but uses more memory than iterative-based approaches. Note that
convergence failures here mentioned refer to failure of nonlinear algorithms to converge, rather
than the direct linear solver.

One complicating factor is the need to perform solution continuation in order to cover the necessary
regions of parameter space (if this is not used, then it is likely that only a small part of the laminar-
to-non-stationary stability frontier can be found).

It might be noted that this system is known to exhibit a rich variety of instability phenomena eg.
internal gravity waves, instabilities at the corners, and instabilities at the walls; see the literature
cited in the sequels for details. A few useful test cases are available in the literature; these are
outlined in the following subsections in order to provide some verification of the methods.

3.1 Rayleigh-Bénard convection

The simplest test is to obtain the stability limit of the Rayleigh-Bénard problem. It is well-known
that the infinite layer version of this problem becomes unstable to convection at Rac ≈ 1708 ([10])
and textbook that the Lorenz equations capture its behaviour close to onset correctly as a pitchfork
bifurcation (see [11, §11.2]). Here, it is easier to perform the analysis for a unit square cavity with
no-slip boundary conditions at all walls and insulating (the term ‘adiabatic’ is equivalent) vertical
walls. The paper [12] by Farrell et al. contains an analysis of this problem and there a value of
Rac = 2586 is found using a 50 × 50 element mesh of uniform squares with order-2 elements
used to discretize the velocity and order-1 for the pressure and temperature (called Taylor-Hood
elements). Note that the aforementioned paper uses Pr = 1, though in fact the value of the critical
Rayleigh number does not depend on the value of the Prandtl number because the background
state does not depend on that value.

A Griewank-Reddien analysis was done using FIREDRAKE and starting the eigenvalue search
from a value of 2550. Note that the background state for this problem is trivial - a linear variation in
temperature from T = 1 at the bottom to T = 0 at the top, with the appropriate pressure gradient,
and zero fluid velocity.

The results (Table 1), obtained using a 50 × 50 element mesh of uniform squares, show good
agreement with those of [12]. The instability mode is illustrated in Fig.7.

3.2 Vertical natural convection with unit aspect ratio

Of course, the R-B problem is simpler and numerically easier than the vertical convection case
since the former involves a perturbation to a trivial, non-moving background solution. The vertical
case is more challenging as a moving solution appears for at a very small value of the Rayleigh
number and the moving background means both that the position of the Hopf bifurcation depends
on the value of the Prandtl number, and that the eigenvalue of the first instability mode is not purely
real. The nontrivial background also introduces local anisotropy into the system (in the directional
flow, that is, not anisotropic diffusion).
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Author element orders Rac value
Farrell et al. ([12]) 2, 1, 1 2586

this report 2, 1, 1 2586.2227
this report 3, 2, 2 2585.0189
this report 4, 3, 3 2585.0187
this report 5, 4, 4 2585.0187
this report 6, 5, 5 did not run

Table 1: Table of critical Rayleigh number for the Rayleigh-Bénard problem, where instability is
always direct, ie. growth rates are all real. The notation 2, 1, 1 refers to the element orders used
for respectively the velocity, the pressure, and the temperature. All computations used a 50 × 50
mesh of uniform squares. The 6, 5, 5 case failed to run due to an out-of-memory error.

Figure 7: Velocity magnitude (left) and temperature profile of the instability mode found for
Rayleigh-Bénard convection. Overall scale omitted as the eigenmode is defined up to a multi-
plicative factor. The computational mesh is overlaid on the velocity profile.
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Author element orders Rac value ωc value
Winters ([13]) 2, 1, 2 2.1092× 106 1949.4

this report 2, 1, 1 did not converge did not converge
this report 3, 2, 2 2.1103× 106 1950.0
this report 4, 3, 3 2.1080× 106 1949.1

Table 2: Table of critical Rayleigh number and corresponding oscillation angular frequency for the
vertical convection problem with conducting floor and ceiling. The value from Winters is for the
most accurate grid used for the first eigenvalue (28×28) and note that Winters used discontinuous
first-order elements to discretize the pressure.

There are two choices of boundary conditions in the literature, with the use of insulating conditions
on the floor and ceiling boundaries being the more common whereas the relatively early paper
[13] used a conducting condition.

3.2.1 Conducting floor and ceiling

The vertical convection problem was treated in 1987 by Winters [13], who used a finite-element
discretization with up to 32 × 32 grids of nine-noded (ie. second order) elements with a degree of
refinement near the boundaries. The background steady-state and the eigenvalue problem were
solved using the ENTWIFE finite-element code developed at Harwell running on a Cray S-2200.

A unit square cavity was used and the fluid had Pr = 0.71, the value for air (due to the application
of this problem to heat transfer across double glazing units). Note one detail here is the use of
a linear temperature profile as a Dirichlet boundary condition T = 1 − x on the floor and ceiling
(called a conducting condition above).

In the FIREDRAKE implementation, the nontrivial background solution (Fig.8) was computed using
a continuation method (see [14]) to reach a value known to be near the first Hopf bifurcation
(Ra = 2× 106 was used). A 40× 40 mesh with boundary refinement was used.

The results (Table 2) show very good agreement with those of [13]. The instability mode is illus-
trated in Fig.9.

3.2.2 Insulating horizontal boundaries

The same problem with homogeneous Neumann (called insulating) boundary conditions on the
floor and ceiling temperatures was treated by le Quéré and Behnia in [15], also using a Cray
machine. The background solution is shown in Fig. 10, from which it is clear that there is a
nontrivial flow at two of the corners, and the Griewank-Reddien analysis produced the first unstable
mode shown in Fig.11, which shows that those interesting flows source the initial instability.

The choice of boundary conditions for the temperature can now be seen to have a very large
effect, at least for Pr = 0.71. Winters’ [13] result is Rac ≈ 2.1× 106 using the conducting boundary
condition on the floor and ceiling of the cavity; by contrast, using insulating conditions on those
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Figure 8: (L-R) Streamlines, velocity magnitude, and temperature profile near the first Hopf bi-
furcation (the actual value of Ra used is 2 × 106) for vertical convection using the conducting
floor and ceiling boundary conditions. Overall scale omitted as the eigenmode is defined up to a
multiplicative factor. The computational mesh is overlaid on the temperature profile.

Figure 9: (L-R) Velocity components x and y and temperature profile of the first instability mode
found for vertical convection using the conducting floor and ceiling boundary conditions. Overall
scale omitted as the eigenmode is defined up to a multiplicative factor.
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Figure 10: (L-R) Streamlines, velocity magnitude, and temperature profile of the background flow
near the first Hopf bifurcation of the Pr = 0.71 unit square vertical natural convection using the
insulating floor and ceiling boundary conditions; Ra = 1.91× 108.

Figure 11: (L-R) Streamlines, velocity magnitude, and temperature profile of the first unstable
mode of the Pr = 0.71 unit square vertical natural convection using the insulating floor and ceiling
boundary conditions; Ra = 1.91× 108.

boundaries gives Rac ≈ 1.9 × 108, which is close to the le Quéré et al. [15] result that Rac ≈
1.82× 108. This represents two orders of magnitude difference in the value of Rac (and is another
example of a well-insulated system retaining a steady flow better than an un-insulated one).

A Biot type boundary condition could be imposed with parameter αB, eg. (1 − αB)(T − T0(x)) +
αBn̂ ·∇ ·T = 0 and presumably a UQ analysis would show a large sensitivity to the parameter αB.

3.3 Vertical natural convection with 8 : 1 aspect ratio

The paper by Zucatti et al. [16] treats the vertical natural convection problem in a tall (8 : 1 ratio)
cavity, again air-filled: Pr = 0.71. The floor and ceiling boundary conditions are insulating (but
presumably this has less effect than for the unit aspect ratio case due to the relative shortness of
the floor and ceiling boundaries here).

Using orders 3, 2, 2 the Griewank-Reddien solver converges to Rac = 304176.22 with ωc = 735.66.
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The results (12) can be compared with those illustrated for a value of Ra slightly above the Hopf
bifurcation in [17] which were obtained using NEKTAR++, as well as those in Zucatti et al. [16].

3.4 Towards a phase diagram for vertical natural convection

An exploration of (Ra,Pr) space was performed in order to study the transition between steady
laminar and non-steady oscillatory flows. A range of log10Pr from −2 to 2 is chosen (to make
this more meaningful, a viscous oil such as glycerol has Pr ≈ 103, water ≈ 7, air ≈ 0.7, Mercury
≈ 0.015). For plasma, see [18, §2.3], the story is complicated by the presence of at least two
different charged species, the Braginskii theory is argued as giving a Prandtl number of 0.23 based
on perpendicular coefficients and 0.33 for parallel transport in the edge.

The set-up, including boundary conditions, is largely equivalent to that used in the paper by Farrell
et al. ([12]) ie. a square cavity, but with a choice of conducting or insulating floor and ceiling bound-
ary conditions as outlined in the preceding subsections. Note that the corresponding Rayleigh-
Bénard problems were also studied and both cases showed a stability frontier independent of Pr.
The parameter space was scanned by choosing a value for Pr and solving for the lowest eigen-
value at increasing values of Ra until a negative eigenvalue was discovered (the corresponding
values of (Ra,Pr) were recorded). This simple line-based scanning technique was chosen be-
cause the initial implementation of the Griewank-Reddien solver seemed not particularly reliable,
with convergence often not being achieved; the author has been informed [19] that the nonlinear
system may require a fairly good initial guess of the critical value of the Rayleigh number in order
to converge, so perhaps the best approach is to use the Griewank-Reddien solver to refine initial
values obtained by a crude parameter scan.

The results of the parameter space scan are shown in Fig.13 for the case of the conducting floor
and ceiling boundaries and Fig.14 for the insulating (adiabatic) floor and ceiling boundaries. (The
results indicate that the departure from steady laminar convection occurs at much lower Ra for
fluids like Mercury than for air / water / viscous oils, which is the case in reality.) Also shown
in both cases is the result from the equivalent Rayleigh-Bénard problem in which the boundary
conditions are basically rotated by 90◦ and in both Rayleigh-Bénard cases the stability frontier
is independent of Prandtl number. Both graphs also include data points from the literature, with
agreement being good for the conducting case (already seen in Table 2) and for both Rayleigh-
Bénard cases. Agreement is less good for the value from [20] for the insulating case, which is
more challenging due to the larger values obtained for the critical Rayleigh number. The insulating
case is the more interesting, with the appearance of a very rapid change in Rac for Pr ≈ 100.21 and
possibly a cusp at the end of this region (there may be additional cusps in the graph and indeed
may be one or more in the conducting case). The region of rapid change is apparently associated
to a rescaling of the flow (Fig.15). This feature may be present for other choices of the aspect ratio
given that the feature is localized to the vertical walls with apparently little coupling between the
walls. Note that the most interesting part of the curve, for Pr ∈ [0, 0.5], lies within the Pr range for
probably the most important coolants used on Earth - air and water. (The apparent structure of
this curve makes it an interesting subject for reduced-order modelling and surrogate construction.)
It is clear that more data points are needed along with a proper analysis of convergence. Note
the step size used in the horizontal scan of Ra at fixed Pr was 1

64 in all cases - larger step sizes
meant that the method would sometimes ‘miss’ a negative eigenvalue and find one at a larger
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Figure 12: (L-R) Streamlines, velocity magnitude, and temperature profile very near the first Hopf
bifurcation for the system in [16]. Overall scale omitted as the eigenmode is defined up to a
multiplicative factor. The three plots on the right are x, y-components of velocity and T for the first
eigenmode. The computational mesh is a 10× 80 mesh of uniform squares.
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Figure 13: Phase diagram for vertical natural convection using the conducting floor and ceiling
boundary conditions of [13] (the value for the first Hopf bifurcation from which is indicated by the
red cross). The yellow points indicate where the same method has been applied to the first Hopf
bifurcation of the Rayleigh-Bénard problem and the result in that case does not to depend on the
value of the Prandtl number. In both cases, the time-stationary solution is stable to the left of the
stability frontier and is assumed to remain unstable to the right of it.
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Figure 14: Phase diagram for vertical natural convection using the insulating floor and ceiling
boundary conditions as in most of the literature, including [15]. The orange circles indicate where
the same method has been applied to the first Hopf bifurcation of the Rayleigh-Bénard problem
and the value of Rac there is seen to agree with the value of 2586 obtained in [12] (indicated
by the green cross) and not to depend on the value of the Prandtl number. Two other values
from the literature are plotted: The value at (non-log) (10, 6 × 1010) from [20], and the value at
(0.71, 1.82× 108) from [15].
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Figure 15: Profiles of flow velocity magnitude at Rac for log10Pr = 0.205 (left) and log10Pr = 0.225
(right) for the insulating floor and ceiling boundary conditions. Note the abrupt change in scale of
the corner flows between the two plots. The scale bars are not shown but the peak speed in the
right-hand plot is ≈ 20 times that in the left-hand one. The difference in Rac between the two plots
is more than two orders of magnitude.

value of Ra (perhaps a higher Hopf bifurcation) or would crash. Note the computations used the
boundary-refined 40× 40 mesh shown in the right-most plot of Fig.8 with element orders 5, 4, 4 for
velocity, pressure, and temperature. Fig.16 shows temperature and velocity profiles of background
flows for a range of Pr values at or near first Hopf bifurcations for the insulating floor and ceiling
boundary case. It is clear that the vicinity of Pr ≈ 100.25 is associated to very thin thermal boundary
layers.

Note that this ‘phase diagram’ is a very good candidate for reduced-order modelling because a) it
condenses a lot of simulation time into a single response surface (particularly true for the three-
dimensional case) and b) the richness of physics in the problem and the nonlinearity make it very
hard to predict without solving the full problem.

The author admits to not being a numerical analysis expert and plans to have the scripts used in
this section reviewed by eg. the holder of the grant T/AW087/22 (numerical analysis). The author
also offers apologies for including in a report on UQ results without error bars.

3.5 Three-dimensional convective heat transport

The 3-D version of the above problem is more challenging and will be run on Archer2. Studies are
also being performed using NEKTAR++ - Fig.17 shows a preliminary output from a simulation on
Archer2 where the 3-D geometry is a model for an actual fluid tank experiment being performed
under the SmalLab programme. It is hoped that this investigation will provide a valuable addition
to existing literature in addition to theoretical support for SmalLab.
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Figure 16: Temperature (top) and magnitude of velocity (bottom) profiles for Pr = −2,−1, 0, 1, 2
(L-R) showing the background fields at or near first Hopf bifurcations for the insulating horizontal
boundary case.

Figure 17: Temperature near hot and cold faces of 3-D convecting fluid tank (gravity acts in the
negative z-direction and note the axes label on the figure). Obtained using NEKTAR++ on Archer2;
the computational mesh comprises 189, 000 cuboidal elements.
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Figure 18: (Left) mean, variance and confidence intervals for the electrostatic potential φ evaluated
using the PCE sampler. (Right) first-order Sobol indices for the potential.

4 Uncertainty quantification applied to NESO-Particles

It is expected that interesting and meaningful applications of non-intrusive UQ will be possible as
the complexity of the code written under NEPTUNE develops; much focus in UQ is on analyz-
ing systems with large numbers of control parameters, and once the atomic reactions, collision
dynamics, and multiple species are included in the NEPTUNE code this will be a major topic
of investigation. For now, a preliminary study has been set up, representing a successful initial
integration of EasyVVUQ, NESO-Particles [21], and NEKTAR++ (which is used to perform the
electrostatic solve in the particles code), and which is ready for future extension.

In this investigation, a polynomial chaos expansion (PCE) was fitted to the electrostatic potential
generated by running a two-stream instability to a quasi-stationary state, for which it is known
that the potential has an approximately sinusoidal form (see eg. Fig.6 of [22]). The PCE (which
really does not have anything intrinsically to do with chaos) means expanding the output quantity
of interest (QoI) in a set of polynomials in the input variables, and the latter are taken to be
random variables with some probability distribution function (PDF); the nice property is the easy
of computation of moments (mean, variance, etc.) as the cross terms cancel out by orthogonality.
It is thus seen that the appropriate polynomial set is the Sturm-Liouville polynomial with weight
function corresponding to the PDF of the random variables. The particular input parameters used
here are the initial particle density and the stream velocity, both being taken to have uniform
distributions (this means the polynomials of choice are the Legendre polynomials).

The first-order Sobol indices are also available in the example; these tell the how much of the
variance in the QoI comes from each input.

Some details of the campaign were: 4 × 105 particles, particle density uniformly distributed on
[94.5, 115.5], initial velocity uniformly distributed on [0.9, 1.1]. The number of runs required for the
campaign is defined by N = (p + 1)d where p is the polynomial order (p = 3 was chosen, on
the basis that it gave very similar outputs to p = 2) and d = 2 is the number of uncertain input
parameters, so 16 runs were required for this exercise.
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These scripts can be found in the GitHub repository [23].

5 Grantee work

Expertise in uncertainty quantification and reduced-order modelling is being provided to the NEP-
TUNE project by the holder of the grant T/AW085-21, University College London, via the AQUIFER
project (the acronym derives from Advanced Quantification of Uncertainties In Fusion at the Ex-
ascale with model order Reduction)). That grantee is also responsible for the SEAVEA project
[24] (the acronym stands for Software Environment for Actionable and VVUQ-evaluated Exascale
Applications) under which is developed and maintained the SEAVEA Toolkit, a significant body of
open-source software for uncertainty quantification; this will be described briefly. Note much of
this software was formerly under the guise of the VECMA Toolkit.

A simple summary of the components of the SEAVEA Toolkit is:

• EasyVVUQ - provides tools for non-intrusive uncertainty quantification, including the con-
struction of polynomial chaos surrogates and the calculation of Sobol indices.

• MUSCLE3 - A framework for coupling codes and propagating uncertainty through the cou-
pling.

• FabSim3 - a framework for automating UQ workflows on HPC.

• QCG-Client and Broker - manages different job types, including complex workflows using
supercomputers.

• QCG-PilotJob - tool enabling the submission of large numbers (eg. 108) of individual jobs to
a supercomputer.

• QCG-Now - aims to enable getting quick and convenient use of a supercomputer.

• EasySurrogate and MOGP - tools for constructing cheaper surrogate models; MOGP (for
Multi-Output Gaussian Process) computes Gaussian process surrogates.

The toolkit is being actively developed and some additions have been made to target specific
problems raised by UKAEA eg. surrogates for models with discontinuous response surfaces via
the simplex-stochastic correlation method as explained in [25].

It is notable that many of the VVUQ tools in EasyVVUQ deal only with forward uncertainty propa-
gation, ie. they do not work in cases where there is two-way coupling between models.

A particle filter-based data assimilation package, ParticleDA.jl [26], was released during 2022
and is currently being integrated with the above tools. An initial version, which provides data
assimilation capability linked to the other capabilities of the SEAVEA Toolkit, can be found at [27].

The grantee has implemented a plug-in for FabSim3 which uses as target problem a choice of
two-dimensional and three-dimensional fluid convection problems in NEKTAR++. This facilitates
applying the SEAVEA toolkit to NEPTUNE -specific problems.
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Two hackathons were held (24 June and 8-9 December 2022). The first of these was attended
remotely by ET and Owen Parry of UKAEA and focussed on running FabNEPTUNE both lo-
cally and on Archer2. The second was held at UCL; authors ET and SP attended in-person and
focussed on integrating EasyVVUQ with NESO-Particles. In December 2022, James Cook gave
a presentation at the SEAVEA Applications Meeting, which was attended by other UKAEA per-
sonnel, on the topic of FEM-Particle Coupling with NESO-Particles being the main focus. A high
level overview of the implementation of NESO-Particles was given: the L2 Galerkin projection of
particle quantities to a fluid representation of the density of that quantity; the capability to store
arbitrary data on particles; the ideas behind how particle movement is formed between cells and
across MPI ranks; and finally favourable scaling of both local and global particle transfer across
the MPI domain is shown.

The grantee has performed an initial comparison between linked and deep Gaussian Process
approaches for an example problem. The grantee has also performed a study of data assimilation
as applied to the outputs of a nonlinear ODE system containing two time-scales - this model
replaces actual physical data that, due to delays in getting the SmalLab experimental campaign
working, is not yet available.

The grantee has provided HPC allocations including Archer2 and also the future prospect of Fron-
tier and its testbed proxy Crusher, the latter of which will be exploited as soon as a scaleable
NEPTUNE GPU code is available.

6 Summary

A computationally-cheap one-dimensional system of a reduced convection model coupled to a
diffusion model was demonstrated and was shown to exhibit the phenomenologically-plausible
behaviour of more insulation suppressing chaotic behaviour. It is worth noting however that the
models assume a uniform temperature of insulator, which may be difficult to achieve in prac-
tice (D. Buta, private communication). A two-dimensional case of vertical natural convection was
studied and the boundary in parameter space between steady laminar flows and oscillatory flows,
which is the start of the transition to turbulence, was uncovered for two choices of boundary con-
ditions on the horizontal boundaries of the domain. The ensemble UQ package EASYVVUQ was
applied to the NEPTUNE particles code NESO-PARTICLES. The work of the holder of grant
T/AW085/21 on UQ and reduced-order models was briefly summarized.
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[15] le Quéré P. and Behnia M. From onset of unsteadiness to chaos in a differentially heated
square cavity. J. Fluid Mech. (1998) vol.359 pp81-107, 1998.

[16] Zucatti V., Lui H.F.S., Pitz D.B., and Wolf W.R. Assessment of reduced-order modelling strate-
gies for convective heat transfer. Numerical Heat Transfer: Part A: Applications 77:7., pages
702–729, 2020.

25

https://slepc.upv.es/


[17] E. Threlfall. Finite element models: complementary actions 2. Technical
Report CD/EXCALIBUR-FMS/0064, UKAEA Project Neptune, 2022. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0046-M6.2.pdf.

[18] W. Arter et al. Equations for EXCALIBUR/NEPTUNE Proxyapps. Techni-
cal Report CD/EXCALIBUR-FMS/0021-1.26-M1.2.1, UKAEA, 1 2023. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf.

[19] Farrell P.E. Private communication, 2023.

[20] Wang Q., Liu H-R., Verzicco R., Shishkina O., and Lohse D. Regime transitions in ther-
mally driven high-Rayleigh number vertical convection. J. Fluid Mech. (2021) Vol.197 A.6
doi:10.1017/jfm.2021.262, 2021.

[21] NESO-Particles code repository. https://github.com/ExCALIBUR-NEPTUNE/

NESO-Particles. Accessed: September 2022.

[22] E. Threlfall and W. Saunders. Support high-dimensional procurement. Techni-
cal Report CD/EXCALIBUR-FMS/0066, UKAEA Project Neptune, 2022. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0066-M4.1.pdf.

[23] NESO-UQ code repository. https://github.com/ExCALIBUR-NEPTUNE/NESO-UQ. Accessed:
March 2023.

[24] SEAVEAtk. https://www.seavea-project.org/seaveatk/. Accessed: March 2023.

[25] Edeling W.N, Dwight R.P., and Cinella P. Simplex-stochastic collocation method with improved
scalability, 2016.

[26] ParticleDA.jl. https://github.com/Team-RADDISH/ParticleDA.jl. Accessed: March 2023.

[27] FABParticleDA. https://github.com/djgroen/FabParticleDA/tree/master. Accessed:
March 2023.

26

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0046-M6.2.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/NESO-Particles
https://github.com/ExCALIBUR-NEPTUNE/NESO-Particles
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/NESO-UQ
https://www.seavea-project.org/seaveatk/
https://github.com/Team-RADDISH/ParticleDA.jl
https://github.com/djgroen/FabParticleDA/tree/master

