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Abstract
This report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M4c.3. An integrated particle and continuum model has been de-
veloped in 3d3v, where 3d3v implies that there is variation in three space
dimensions (3-D) and three velocity space coordinates (3-V). Nektar++ pro-
vides the 3-D finite elements to represent the plasma as a fluid, whereas 3-
D 3-V phase space is populated with neutral particles by the SYCL-enabled
NESO-Particles library. The calculation is orchestrated by the NESO soft-
ware, which has been developed under project NEPTUNE. We have imple-
mented a set of fluid equations that exhibit turbulent behaviour, as shown
in this report, namely the Hasegawa-Wakatani equations as a subset of
the system of equations solved by HERMES-3 to model the LAPD device.
Particles interact with the finite-element fluid via an ionisation source term,
and variation of the fluid density changes the particle ionisation. This re-
port describes the following developments: upgrades to NESO-Particles;
an ionisation kernel in SYCL; the solver itself in NESO. The report closes
with an overview of NESO.
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1 Introduction

Interactions between turbulence and neutral particles is, as yet, an under-studied area of plasma
physics despite being crucial to understanding the nuances of plasma exhaust in tokamaks.
Plasma leaks out from the confined region of the tokamak past the last closed flux surface where
it travels down, and to some extent radially outwards, towards the divertor region. This plasma
may become turbulent, from built up gradients within the SOL, from its “initial conditions” coming
out of the confined region, or otherwise. Turbulence in the SOL can cause peaks in heatloads at
the divertor, in attached regions (where the plasma is in contact with the divertor), which can be
deleterious to the divertor causing erosion and embrittlement, for example. It is possible for the
ablated high charge state material to migrate back into the core plasma, thereby diluting the fuel
and causing cooling via radiation. In detached regimes, where there is an ionisation front between
the SOL plasma and the neutrals in front of the divertor, turbulence may perturb this equilibrium
potentially causing a breakdown of the detachment, which should be avoided during operation.
For these reasons it is important to understand the role of neutral interactions with turbulence in
the SOL, and this is what motivates the work done for this report and the wider project. To this
end, we have implemented the Hasegawa-Wakatani equations in 3-D with particles, as a natural
extension from previous 2-D work, as a child class of a more complete set of SOL turbulence
equations as implemented in the HERMES-3 software [1] and deployed on a system modelling
the LAPD machine [2].

The structure of the rest of the report is as follows. In the following section we highlight the devel-
opments made to the particle functionality, namely the creation of halos and the evaluation of basis
functions in various element types in support of 3-D simulations. Section 3 details the implemen-
tation of the ionisation kernel and how the neutral particles interact with the finite element fluid.
In section 4 we describe the Hasegawa-Wakatani implementation in 3-D and show some initial
results involving particles. Next, we describe the layout and some architectural decisions behind
NESO where we discuss some ways in which we aim to make development more productive as
well as highlighting some areas where improvements can be made in this direction.
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2 Task Work

2.1 Particles

The extension from 2-D to 3-D adds four new mesh element types that we must consider in order
to provide a functional 3-D implementation. These 3-D elements are the Tetrahedron, Pyramid,
Prism and Hexahedron. We assume for this report that these are linear elements and hence do
not feature curved edges or faces.

The implementation work is formed of two main components. The first component is the implemen-
tation that enables particles to exist on and be tracked over 3-D meshes. The second component
couples 3-D particles with 3-D finite element functions via projection and evaluation operations.

2.1.1 3-D Halo Creation

In the mesh decomposition approach to parallelisation each MPI rank holds a portion of the overall
mesh. The cells in this sub-domain are considered to be “owned” by that MPI rank. However it is
computationally advantageous for an MPI rank to have copies of mesh elements that are owned by
neighbouring ranks. We refer to these copies as “halo cells”, or more concisely “halo(s)”, however
these copies are also called “ghost cells” in other literature.

In NESO-Particles (NP; [3]) halo regions are combined with a global grid structure to enable global
particle transfer. This global communication algorithm relies on the existence of the halo regions
to function correctly and efficiently. Figure 1 illustrates the sub-domain owned by an MPI rank
augmented with halo cells from neighbouring ranks.

When a particle leaves the sub-domain owned by an MPI rank one of two scenarios occurs. In
the first scenario the new position is contained within a halo cell held by the rank. If the position
is in a halo cell then the MPI rank which owns the halo cell should be sent the particle. If the new
particle position falls outside the halo region then the particle should be sent through the global
communication algorithm via the global data structure. A description of this global move algorithm
is described in [4].

Halo regions are constructed during the setup of the simulation. This setup stage is a two part
process: 1) identify which mesh cells are required on each MPI rank to form the halo region, and
2) pack, exchange and unpack these geometry objects. As in the 2-D case, the coarse Cartesian
mesh, which forms the global data structure, provides the information required to efficiently identify
the communication pattern for these geometry objects to conduct step 1).

For step 2) we identify that, in Nektar++, 3-D geometry objects are constructed, in the C++ sense
of the word constructed, from the 2-D geometry objects which form the faces. As NESO already
contained the implementation required to exchange 2-D geometry objects, the natural implemen-
tation to exchange 3-D objects is to exchange the 2-D faces using the existing 2-D mechanisms
along with the additional information required to construct the 3-D objects.

In Nektar++ all geometry objects are given a globally unique (within each dimension) integer label.
As all 2-D geometry objects have a globally unique integer label, the description of a 3-D object
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Figure 1: 2-D sub-domain on a single rank with owned elements illustrated by thin black lines and
halo elements illustrated by thicker blue lines.

can be simply constructed by a single integer that describes the 3-D object type followed by the
integer labels of the constituent faces. As the receiving MPI rank already holds the 2-D geometry
objects, which we communicated via the 2-D communication functions, a set of 3-D geometry
objects can be communicated via an array of integers. In Figure 2 we present an example of a
sub-domain, as owned by an MPI rank, along with the built halo region.

2.1.2 Halo Extension

When a particle leaves a sub-domain it holds a position which is either inside or outside the halo
region. If this particle position is inside the halo region then the particle is transferred directly
to the new owning rank with an MPI communication pattern which is both local and determined
at simulation setup. This is in contrast to the global communication procedure which is global in
nature and hence less efficient. Hence the larger the halo region the greater the probability that
a leaving particle is communicated to the new owning rank via a local communication approach
instead of a global communication approach.
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Figure 2: 3-D sub-domain on a single rank with owned elements illustrated by thin black lines and
halo elements illustrated by thicker blue lines.

Figure 3: 2-D sub-domain on a single rank with owned elements illustrated by thin black lines
and halo elements illustrated by thicker blue lines. Moving left to right increases the width of the
halo region from no halos (pre-setup) to an extremely large halo which wraps around the periodic
boundary.

For the plasma use case we may model highly directional plasma flow where it is advantageous to
grow the size of the halo in particular directions. For the moment NESO can grow the halo region
in all directions. In Figure 3 we illustrate halo extension on a periodic square domain for increasing
halo width. Although this example is 2-D the implementation will extend the halo regions on 3-D
domains by applying the same algorithm.
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2.1.3 3-D Cell Mapping

In Nektar++ there are three coordinate systems which we consider to determine if a particle re-
sides within a particular mesh element. These three spaces are illustrated in Figure 4 for an
example triangle. As an input the user specifies a mesh containing many elements; these ele-
ments are specified in a coordinate system which we will refer to as “physical” coordinates. In
many FEM implementations, for computational efficiency reasons, it is beneficial to perform op-
erations on a “reference” element for each geometry object type and to map from the reference
space (ξ) to the physical space.

(−1,−1) (1,−1)

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(−1, 1)

(−2,−2)
(1,−1.5)

(−1, 1.2)

χ(ξ⃗)
η⃗ ← ξ⃗

η⃗ → ξ⃗

Figure 4: Illustration of Nektar++ coordinate systems in 2-D. Left: “collapsed” coordinate system
(η⃗). Middle: “standard” triangle reference element (ξ⃗). Right: physical space coordinate system as
found in the input mesh (χ(ξ⃗)).

We denote the map from reference space ξ⃗ to physical space x⃗ as χ(ξ⃗). Typically χ is a non-
linear map that is relatively straightforward to evaluate. However the inverse map χ−1 is non-trivial
and is typically evaluated via a Newton iteration. In addition to the “standard” reference elements
Nektar++ contains a “collapsed” coordinate space which is defined as [−1, 1]× [−1, 1] in 2-D and
[−1, 1]× [−1, 1]× [−1, 1] in 3-D for all element types. The maps between the reference coordinate
space ξ⃗ and collapsed coordinate space η⃗ are given in closed form for each direction and element
and are relatively easy to evaluate.

At each time step of a simulation the positions of each particle in the system are updated and
the element that contains each particle must be computed. More formally, for a given particle
position r⃗i we must find an element e and reference position ξ⃗i such that χe(ξ⃗i) = r⃗i. The element
e contains the particle if ξ⃗i is contained within the reference element. As determining whether
ξ⃗i is inside the reference element is itself a non-trivial computation, and would be element type-
dependent, we instead use the collapsed coordinates η⃗i and test if η⃗i is inside [−1, 1]d. An overview
of the process to determine the element containing a given particle position is given in Algorithm
1.
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for particle i with position r⃗i do
for candidate element e for position r⃗i do

Compute ξ⃗i such that χe(ξ⃗i) = r⃗i via Newton iteration
Set η⃗i = to collapsed(ξ⃗i)
if η⃗i ∈ [−1, 1]d then

r⃗i is contained inside element e.
Store η⃗i for basis function evaluation.
break.

end
end

end
Algorithm 1: Algorithm to determine the element e containing a particle i with position r⃗i.
We assume that a coarse map exists to map positions r⃗ to candidate elements e based on
bounding boxes.

For linear sided elements each of the four 3-D element types have a map from reference space ξ⃗
to physical space χ(ξ⃗). These maps are functions constructed using the vertices of the element
in physical space and are essentially a one-to-one mapping between a vertex in reference space
and a vertex in physical space. These χ mappings are explicitly defined as

χtriangle(ξ⃗) =
1

2
[v⃗1 − v⃗0, v⃗2 − v⃗0]

[
ξ⃗ +

[
1
1

]]
+ v⃗0 (1)

χquadrilateral(ξ⃗) =
1

4

(
v⃗0(1− ξ0)(1− ξ1) + v⃗1(1 + ξ0)(1− ξ1)

+ v⃗3(1− ξ0)(1 + ξ1) + v⃗2(1 + ξ0)(1 + ξ1)

)
(2)

χtetrahedron(ξ⃗) =
1

2
[v⃗1 − v⃗0, v⃗2 − v⃗0, v⃗3 − v⃗0] (ξ⃗ + [1, 1, 1]T ) + v⃗0. (3)

The pyramid mappings are more involved and are written in terms of the collapsed coordinates η⃗,

χpyramid(ξ⃗) = c0v⃗0 + c1v⃗1 + c2v⃗2 + c3v⃗3 + c4v⃗4 + c5v⃗5 (4)
where d2 = 1− ξ2 (5)

η0 = 2((1 + ξ0)/d2)− 1 (6)
η1 = 2((1 + ξ1)/d2)− 1 (7)
η2 = ξ2 (8)
c0 = (1/8)(1− η0)(1− η1)(1− η2) (9)
c1 = (1/8)(1 + η0)(1− η1)(1− η2) (10)
c2 = (1/8)(1 + η0)(1 + η1)(1− η2) (11)
c3 = (1/8)(1− η0)(1 + η1)(1− η2) (12)
c4 = (1 + η2)/2. (13)
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In a similar fashion, for the prism,

χprism(ξ⃗) = c0v⃗0 + c1v⃗1 + c2v⃗2 + c3v⃗3 + c4v⃗4 + c5v⃗5 (14)
where η0 = 2((1 + ξ0)/(1− ξ2))− 1 (15)

c0 = (1/8)(1− η0)(1− ξ1)(1− ξ2) (16)
c1 = (1/8)(1 + η0)(1− ξ1)(1− ξ2) (17)
c2 = (1/8)(1 + η0)(1 + ξ1)(1− ξ2) (18)
c3 = (1/8)(1− η0)(1 + ξ1)(1− ξ2) (19)
c4 = (1/4)(1− ξ1)(1 + ξ2) (20)
c5 = (1/4)(1 + ξ1)(1 + ξ2). (21)

Finally the hexahedron mapping is given by

χhexahedron(ξ⃗) =
1

8

(
v⃗0(1− ξ0)(1− ξ1)(1− ξ2)

+ v⃗1(1 + ξ0)(1− ξ1)(1− ξ2)
+ v⃗2(1 + ξ0)(1 + ξ1)(1− ξ2)
+ v⃗3(1− ξ0)(1 + ξ1)(1− ξ2)
+ v⃗4(1− ξ0)(1− ξ1)(1 + ξ2)

+ v⃗5(1 + ξ0)(1− ξ1)(1 + ξ2)

+ v⃗6(1 + ξ0)(1 + ξ1)(1 + ξ2)

+ v⃗7(1− ξ0)(1 + ξ1)(1 + ξ2)
)

(22)

where for all mappings we use the notation ξ⃗ = [ξ0, ξ1]
T in 2-D and ξ⃗ = [ξ0, ξ1, ξ2]

T in 3-D.

To perform the Newton iterations we applied a static polymorphism technique known as Curiously
Recurring Template Pattern (CRTP) to separate the particular definition of χ from the Newton it-
eration loop. This separation allows NESO to implement generic Newton method iterations which
are templated for a particular element type at compile time. The abstract Newton method inter-
face is defined in an abstract base class MappingNewtonIterationBase and specialisations are
implemented for each of the element types.

The specialisations of the Newton iteration base class define various methods for each of the
element types. Most importantly the specialisation defines how a Newton iteration occurs, ie.
compute new iteration ξ⃗n+1 from current iteration ξ⃗n, and defines the residual computation |χ(ξ⃗)−
x⃗| where x⃗ is the target physical coordinate. These methods are non-trivial to implement by hand
but are readily generated by symbolic computation packages such as Sympy [5]. An example
of the generated implementation for a residual computation is provided in Listing 1 for a simple
example map. From a software engineering point of view this code generation approach allows
these involved expressions to be computed and tested in a robust manner.

Listing 1: Generated implementation to compute the residual for a χquadrilateral map.
/**

* Compute and return F evaluation where

*
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* F(xi) = X(xi) - X_phys

*

* where X_phys are the global coordinates. X is defined as

*

*

* X(xi) = 0.25 * v0 * (1 - xi_0) * (1 - xi_1) +

* 0.25 * v1 * (1 + xi_0) * (1 - xi_1) +

* 0.25 * v3 * (1 - xi_0) * (1 + xi_1) +

* 0.25 * v2 * (1 + xi_0) * (1 + xi_1)

*

*

* This is a generated function. To modify this function please edit

* the script that generates this function. See top of file.

*

* @param[in] xi0 Current xi_n point , x component.

* @param[in] xi1 Current xi_n point , y component.

* @param[in] v00 Vertex 0, x component.

* @param[in] v01 Vertex 0, y component.

* @param[in] v10 Vertex 1, x component.

* @param[in] v11 Vertex 1, y component.

* @param[in] v20 Vertex 2, x component.

* @param[in] v21 Vertex 2, y component.

* @param[in] v30 Vertex 3, x component.

* @param[in] v31 Vertex 3, y component.

* @param[in] phys0 Target point in global space , x component.

* @param[in] phys1 Target point in global space , y component.

* @param[in, out] f0 Current f evaluation at xi, x component.

* @param[in, out] f1 Current f evaluation at xi, y component.

*/

inline void newton_f_linear_2d(

const REAL xi0 , const REAL xi1 , const REAL v00 ,

const REAL v01 , const REAL v10 , const REAL v11 ,

const REAL v20 , const REAL v21 , const REAL v30 ,

const REAL v31 , const REAL phys0 ,

const REAL phys1 , REAL *f0, REAL *f1

) {

const REAL x0 = xi0 - 1;

const REAL x1 = xi1 - 1;

const REAL x2 = xi0 + 1;

const REAL x3 = 0.25 * x1 * x2;

const REAL x4 = xi1 + 1;

const REAL x5 = 0.25 * x0 * x4;

const REAL f0_tmp = -phys0 + 0.25 * v00 * x0 * x1 - v10 * x3 +

0.25 * v20 * x2 * x4 - v30 * x5;

const REAL f1_tmp = -phys1 + 0.25 * v01 * x0 * x1 - v11 * x3 +

0.25 * v21 * x2 * x4 - v31 * x5;
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*f0 = f0_tmp;

*f1 = f1_tmp;

}

2.1.4 3-D Basis Function Evaluation

In report [6] we describe an L2 Galerkin approach to convert a particle representation of a field
into a FEM based representation. This projection approach relies on evaluating the FEM basis
functions at the location of each particle in the system. As we perform the projection, and evalua-
tion, operations at each time step and for each particle a set of basis functions must be evaluated.
The overall cost of these operations is computationally very significant. By using recursion rela-
tions we implement the evaluation of the required basis functions for N particles with O(Npd) for
polynomial order p and dimension d.

The four sets of so-called “modified” basis functions are defined as

ψA
p (z) =


(1− z)/2 if p = 0
(1 + z)/2 if p = 1

(1/4)(1− z)(1 + z)P 1,1
p−2(z) otherwise

(23)

ψB
pq(z) =


ψA
q (z) if p = 0

((1− z)/2)p if p ̸= 0, q = 0

((1− z)/2)p((1 + z)/2)P 2p−1,1
q−1 (z) otherwise

(24)

ψC
pqr(z) = ψB

(p+q)r(z) (25)

ψPyrC
pqr (z) =



ψB
qr(z) if p = 0

ψB
1r(z) if p = 1, q = 0

ψB
qr(z) if p = 1, q ̸= 0

ψB
pr(z) if p > 1, q < 2

((1− z)/2)p+q−2 if p > 1, q ≥ 2, r = 0

((1− z)/2)p+q−2((1 + z)/2)P 2p+2q−3,1
r−1 (z) otherwise

(26)

where Pα,β
p denotes a pth order Jacobi polynomial. Note that although these equations specify the

underlying basis functions additional modifications are made for particular element types.

For each d-dimensional element type in Nektar++ there exists a d-tuple of basis functions for that
element. This set of basis functions can be considered as an order p basis for each dimension.
The basis functions for the element types are as follows:

Quadrilateral ψA, ψA

Triangle ψA, ψB

Tetrahedron ψA, ψB, ψC

Pyramid ψA, ψA, ψPyrC

Prism ψA, ψA, ψB
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Hexahedron ψA, ψA, ψA

For each of these element types there exists a double, in the 2-D case, or triple in the 3-D case,
loop over the p,q and r (in 3-D) indices that index the basis. It is in these triple loops that corrections
to the basis functions are made when evaluating the entire set of basis functions. As these loops
are non-trivial we provide a reference implementation in NESO.

Evaluating these basis functions is a major computational cost in NESO based simulations. Fur-
thermore the tensor product structure of the loops provides high arithmetic intensity for larger
polynomial orders. As for the Newton iteration implementation we apply the CRTP method to sep-
arate the parallel loop over particles and DOFs from the particular specialisation required for each
element type.

A significant advantage of the projection approach in comparison to traditional deposition ap-
proaches is the natural extension to complex geometry. In Figure 5 we plot a source particle
distribution and the corresponding L2 projection onto a Continuous Galerkin function space con-
structed with cubic polynomials and homogeneous Dirichlet boundary conditions. The domain for
this projection example is half a torus discretised into a Tetrahedron mesh.

Figure 5: Left: Subset of particles (104 out of 106 total) to visualise the quantity-of-interest which
is represented in the finite element function space. Middle: Volume representation of FEM repre-
sentation. Right: Slices through FEM representation.

This concludes the present discussion of the particles implementation.

2.2 Charge Exchange

Reactions (ionization, charge exchange, etc.) are used to couple the particles and plasma fluid
implementations. Charge exchange reactions have been added to NESO since the date of the
last report.

Charge exchange is the process in which an electron is exchanged between two colliding atoms.
To include this process into NESO involves considering the following reaction

H +H+ → H+ +H. (27)
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As the number of H and H+ is the same in the final state as it was in the initial state, then the
ion density (nions) and neutral density (nneutrals) are unchanged in this particular reaction. The
momentum of the H atom in the final state does not however generally equal the momentum of
the H atom in the initial state in general though, as its value takes on the momentum of the initial
H+ ion, and vice versa for the final state momentum of the H+ ion. This means that charge ex-
change is a mechanism by which momentum can be exchanged between the charged and neutral
species. In this work, the neutral species is represented by particles and the charged species are
represented by a fluid. As such, charge exchange is a mechanism by which momentum can be
exchanged between particles and fluid components of the plasma, without affecting density. As
the Hasegawa-Wakatani equations describe the evolution of the plasma density and vorticity, but
not the momentum, it was decided that charge exchange would not be included in the solver for
these equations. However, a charge exchange kernel will be needed for future use within NESO,
so work continued on this topic. The first requirement for such a kernel was to find an estimate
of the rate at which charge exchange is likely to occur on a per-particle basis (RCE), given a
neutral’s kinetic energy. A csv file was created that contains this rate as a function of the H ki-
netic energy by digitising figure 37 of ref. [7]. A csv reader class was built to enable this. Once
this reference data has been read in it can then be used in conjunction with a 1-D linear inter-
polator to estimate the RCE value for a neutral based on the average kinetic energy of a particle
within a macro-particle, which represents w physical particles. ∆w which represents the number
of particles which undergo charge exchange in time-step ∆t can be calculated using the following
formula

∆w = RCE w nions ∆t, (28)

For a neutral particle with velocity v, the total change in velocity ∆v as a function of ∆w is given
by

∆v =
∆w

mneutralw
(mneutralv −mionvfluid), (29)

and the total change in the fluid momentum

∆pfluid = ∆w(mionvfluid −mneutralv), (30)

where mneutral is the mass of a single neutral H atom, mion is the mass of a single H+ ion, and
vfluid is the velocity of the fluid. Having completed the 1-D linear interpolator and csv reader
in prior work, we are currently in the process of creating a charge exchange kernel. Once the
charge exchange kernel had been created, several tests will be put in place. At a basic level,
conservation of momentum will be tested for by accounting for the total amount of momentum
initialised and injected into the system in all species. Next, the rates of change of momentum will
be calculated from the code and tested against analytical solutions.
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2.3 NEKTAR++

In this subsection we present work on implementing plasma turbulence equations in a 3-D domain
using Nektar++. In Section 2.3.1 we describe the implementation of the Hasegawa-Wakatani
equations and present encouraging results that suggest the Nektar framework is capable of cap-
turing 3-D plasma turbulence. Section 2.3.2 outlines modifications required to integrate the Nektar
solver with a system of neutrals, modelled using NESO-Particles, and demonstrates the behaviour
of the coupled software. Lastly, Section 2.3.3 reports on progress towards implementing a more
complex system of equations and outlines a number of items to be addressed in upcoming work.

2.3.1 A ’2-D-in-3-D’ Hasegawa-Wakatani solver

A solver for the 2-D Hasegawa-Wakatani equations has previously been presented as a NEP-
TUNE proxyapp[8] called Nektar-driftwave. Rather than extend the existing code to work in a 3-D
domain, we reimplement the equation system in an inheritance hierarchy, with the intent of cou-
pling a particle system to the base class later. This approach allows all systems in the hierarchy to
use the same particle interface, avoiding code duplication and making it trivial to switch to a more
complex set of plasma turbulence equations at a later date.

Note that the present plasma equations represent a proof-of-concept rather than a system of
particular physical interest. The equations to be solved are unchanged from those implemented
in Nektar-driftwave [8], but are replicated below for convenience:

∂n

∂t
+ [Φ, n] = α(Φ− n)− κ∂Φ

∂y
, (31)

∂ω

∂t
+ [Φ, ω] = α(Φ− n), (32)

where n is number density, ω is vorticity and Φ is the electrostatic potential.

[a, b] is the Poisson bracket operator, defined as

[a, b] =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (33)

Φ is obtained at each time-step by solving the Poisson equation

∇2
⊥Φ = ω (34)

where the ⊥ subscript denotes the restriction of the Laplacian to the two-dimensional subspace
transverse to the magnetic field lines (which are assumed to be parallel to the z-axis).

In these equations, n is assumed to be a perturbation on a fixed background (n0), the profile of
which is exponential in the x coordinate with a scale length κ, that is

n0 = exp(−κx), (35)
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and α is an ‘adiabiacity operator’, which describes parallel electron behaviour and is a constant in
the 2-D version of these equations.

In order to implement the ∇⊥ operator that appears in Equation (34), we use a feature of the
Nektar++ API that has previously been applied to modelling anisotropic diffusion. For Poisson
problems, we can supply elements of a matrix C, such that Nektar solves

∇ · (C∇Φ) = rhs (36)

where the matrix coefficients are labelled according to

C =

 d00 d01 d02
d01 d11 d12
d02 d12 d22

 . (37)

We set d00 = d11 = 1 and all other coefficients other to zero, such that the operator becomes
∂2

∂x2 + ∂2

∂y2
. Note that this approach means the solution is not unique - an arbitrary z-dependence

can be added to Φ without changing the right hand side. Hence, it must be understood how the
solution changes from one iteration to the next, since the HW equations rely on the value of Φ
directly.

The two advected fields (n and ω) are discretised using a Discontinuous Galerkin (DG) formulation,
while Φ is represented as a Continuous Galerkin (CG) field, which is recomputed from ω at each
time step. Fluxes between DG elements are calculated using a Riemann solver (implementation
due to Toro [9]). We use basis functions constructed from a modified form of 7th order Legendre
polynomials, described by Karniadakis and Sherwin [10]. The fluid fields are evolved using an
explicit, 4th order, Runge-Kutta time stepping scheme.

The domain was chosen to be a cuboid with dimensions (arbitrary length units) 5x5x10. A mesh
with 8x8x16 hexahedral elements was created in GMSH and converted to Nektar++ format using
NekMesh.

Component Label Description Value
Nektar

TimeStep Fluid time-step 1.25e-3
TFinal Simulation duration 40.0

HW
α HW equation coefficient 0.1
κ HW equation coefficient 3.5
Bxy Magnetic field strength 1.0

Table 1: Parameter values used in the 3-D HW solver. Values listed in the final column are
dimensionless unless otherwise specified.

The simulation is configured via a standard Nektar++ XML session file. Some of the most impor-
tant parameters are listed in Table 1.

n and ω are initialised to a Gaussian profile in x and y, modulated by a sinusoidal function in the z
direction. Boundary conditions are chosen to be periodic in all three dimensions.
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Note that this configuration closely resembles the simulation setup described in section 2.2.1 of
report M6c.4 [11] but uses an initial density perturbation with six times greater amplitude, a higher
value of κ, a shorter time-step and a longer total duration (these values were chosen empirically
to obtain non-trivial behaviour in the plasma ie. to give the appearance of a turbulent state).

Figure 6 shows the evolution of the plasma density at four output times between t = 0 (the initial
conditions) and t = 40 (the last time-step of the simulation).

Several possibilities exist for improving the performance of our HW solver. Typically, solvers for
this problem add a hyper-diffusion term to suppress numerical instabilities. As far as the authors
are aware, hyper-diffusion has not been employed in Nektar applications before, so no guidance
is immediately available as to how the corresponding flux terms (required by DG solvers) should
be implemented. Further work will be needed to determine the form of those functions. While
it is possible to use regular diffusion instead, for explicit methods this places a further constraint
on the time-step which is inversely proportional to the diffusion coefficient, though we note that
other Nektar applications have bypassed this problem by implementing diffusion implicitly. Finally,
further investigation is needed to assess, and possibly replace, our current implementation of the
∇⊥ operator (see discussion following Equation (36)), in collaboration with Nektar++ developers.

2.3.2 Coupled 3-D solver

The fluid solver described in Section 2.3.1 was augmented in a number of ways in order to couple
it to a system of neutrals, which are modelled using the NESO-Particles framework.

1. A new field was added to the Nektar++ configuration file to store the particle density sources.
Note that this field is excluded (along with the potential, Φ) from the advection operations that
affect n and ω.

2. Objects were added to the equation system class to handle evaluation of the Nektar++ elec-
tron density field at the particle positions and projection of the particle weights onto the new
source field.

3. An additional member function was implemented to add the source field to the right-hand
side of the density time evolution equation.

The domain dimensions used for the coupled simulation were the same as those used in the fluid-
only case. The number of elements for the coupled simulation was 8x8x16 and the order of the
Nektar++ basis functions was six.

The initial conditions were set to be zero throughout the domain for both n and ω, such that all
non-trivial evolution of the fluid fields is triggered by particle sources. The boundary conditions
remain periodic in all three dimensions for the fluid solver and the same conditions are adopted
for the neutral particle system. All other parameters used by the fluid solver were set to the values
listed in Table 1.

The parameters used to configure the neutral particle system are listed in Table 2. The code gen-
erates num particles total computational particles and assigns initial weights (number of neutral
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(a) t = 0 (b) t = 12.5

(c) t = 25 (d) t = 40

Figure 6: Evolution of the electron density in the fluid-only 2-D-in-3-D Hasegawa-Wakatani solver.
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Label Description Value
drift velocity Bulk velocity given to new particles 2.0
number density Overall number density of neutrals in m−3 1016

num particles total Number of computational particles 106

source width Width of the 3-D Gaussian used to draw ran-
dom initial particle positions

0.2

thermal velocity Width of the 3-D Gaussian used to draw ran-
dom initial particle velocities

1.0

nbg Assumed background density in m−3 1018

Te Electron temperature in eV 10

Table 2: Parameter values used to configure the particle system in the coupled 3-D solver. Values
listed in the final column are dimensionless, unless otherwise specified.

particles) such that the overall number density in the domain matches the requested value. Initial
particle positions are chosen by drawing values at random from a 3-D Gaussian distribution cen-
tred at the origin. Initial velocities are assigned by adding random thermal velocities, drawn from
a second Gaussian, to a bulk drift velocity.

Recall that the electron density in Equation (31) is actually the magnitude of a perturbation on a
fixed background. To compute an ionisation rate, therefore, the perturbed value evaluated at each
particle is multiplied by an SI conversion factor and added to a constant, nbg, in order to arrive at
a number density in m−3. In combination with the assumed electron temperature, Te, this value is
used to calculate the number of particles ionised per unit time, which is projected back onto the
source field and then added to the right-hand side of Equation (31) by the fluid solver.

To demonstrate the behaviour of the coupled fluid-particle solver, we present two sets of images,
illustrating first the effects of ionisation at the beginning of the simulation and then the subsequent
evolution of the fluid fields.

Figure 7 shows the initial evolution of the fluid, with particle positions overlaid. Time increases
from left to right and top to bottom. Over this interval most of the neutrals ionise, as indicated by
the changing colours of the points in the four panels, leaving a “hot spot” of plasma which then
evolves according to the 2-D HW equations.

Figure 8 shows the evolution of the electron density and vorticity in the remainder of the simulation.
Note the larger range of output times relative to Figure 7, reflecting a relatively slow evolution
compared to the particle dynamics.

2.3.3 The LAPD problem

In this subsection we report on progress using Nektar++ to solve a more complex system of
equations that captures additional physics used to study plasma turbulence.

Our aim is to simulate the LArge Plasma Device (LAPD; [2, 12]) - a linear, pulsed-discharge
device designed for plasma physics research. This problem has already been tackled using
the HERMES-3 finite difference solver [13] (based on the BOUT++ [14] framework), offering
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(a) t = 0 (b) t = 0.225

(c) t = 0.45 (d) t = 0.675

Figure 7: Evolution of the particle distribution (points) and electron density (coloured contours) in
the coupled 2-D-in-3-D Hasegawa-Wakatani / particles solver. Particles are coloured according to
their computational weight, corresponding to the number of physical neutrals that they represent.
Captions under each panel indicate the simulation time.
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(a) t = 1.5

(b) t = 3

(c) t = 4.5

(d) t = 6

Figure 8: Evolution of the electron density (left) and vorticity (right) in the coupled 2-D-in-3-D
Hasegawa-Wakatani / particles solver. Captions under each panel indicate the simulation time.
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a straightforward path to validating our results.

The LAPD is reasonably well approximated as a 17 m cylinder, with a circular cross section of
diameter ∼ 1m and a plasma source at each end. Typically, electron number densities reach
1018 m−3 and electron temperatures are ≤ 10 eV. For an image of a mesh designed for the LAPD
problem, see Fig. 4 of [11].

The LAPD equation system has been implemented as a parent class of the system described in
Section 2.3.1, meaning that all of the same apparatus for coupling neutral particles can be reused
without modifications to the code. Switching between the two systems simply involves setting a
different equation system label as a parameter in the XML configuration file.

The system of equations to be modelled is

∂ne
∂t

=−∇ ·
[
ne(vE×B + bv∥e

)
] (38)

∂(menev∥e)

∂t
=−∇ ·

[
menev∥e(vE×B + bv∥e

)
]− ∂∥pe − eneE∥ +meneνei(v∥d+ − v∥e) (39)

∂(md+nd+v∥d+)

∂t
=−∇ ·

[
md+nd+v∥d+(vE×B + bv∥d+

)
]− ∂||pd+ + end+E∥ −meneνei(v∥d+ − v∥e)

(40)
∂ω

∂t
=−∇ · (ωvE×B) +∇ · (nd+v∥d+ − nev∥e) (41)

where Equation (38) describes the evolution of the electron density, Equations(39) and (40) the
parallel momentum of electrons and (Deuterium) ions respectively and Equation (41) the vorticity.
Quasi-neutrality is assumed, hence no additional equation is required for the ion number density.
Electrons and ions are taken to be isothermal with temperatures Te and Td+ respectively, meaning
that the pressure of species x can be trivially obtained using px = neTx. The electron-ion collision
rate, νei, is calculated from the Coulomb logarithm, Λ, according to

νei =
|qe||qi|ni log Λ (1 +me/mi)

3π3/2ϵ20m
2
e

(
v2e + v2i

)3/2 (42)

with v2x = 2kTx/mx.

qx, mx, nx and vx are, respectively, the charge, mass, number density and velocity of species x
and ϵ0 is the permittivity of free space.

As with the simpler HW system described in Section 2.3.1, the drift velocity is calculated from the
potential using vE×B = b×∇Φ

B2 and the potential is obtained by solving the Poisson-like equation:

∇ · (m̄in̄

B2
∇⊥Φ) = ω (43)

where m̄in̄ is a characteristic density.

As a first approximation, we will assume a magnetic field aligned with the z-axis, but plan to relax
that assumption when initial results have been validated. Further development of the solver may
also include generalisation of the above equations to multiple ion species.
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In order to compare our results to HERMES-3 directly, we choose a density source and initial
conditions to match their implementation. The (steady) density source term is set to be Gaussian
in the radial direction and constant in the axial direction, via a Nektar++ session file function. This
function is added to the right-hand side of Equation (38) at each time step.

The initial conditions for ne are set to

0.1 e−x2
+ 10−5 (mixmode(z) + mixmode(4 ∗ z − x)) (44)

where ‘mixmode’ is a function defined as

mixmode(x) =
14∑
i=1

1

(1 + |i− 4|)2
cos[ix+Φ(i, seed)] (45)

where i is the mode number and Φ is a random phase between −π and +π. As explained in the
“Variable initialisation” section of the BOUT++ documentation [14]: “The factor in front of each
term is chosen so that the 4th harmonic (i = 4) has the highest amplitude. This is useful mainly
for initialising turbulence simulations, where a mixture of mode numbers is desired.”

Substantial progress towards implementing the LAPD equation system in NESO has already
been made, but there remain a number of future work items before results can be compared
to HERMES-3 and to experimental data. Firstly, boundary condition implementations need to
be developed that are appropriate to the physical conditions expected at the edges of the LAPD
domain. At each end of the domain along the magnetic axis, for instance, a sheath is expected,
characterised by outflow at, or close to, the sound speed. A successful implementation of sheath
boundary conditions should enforce appropriate outflow rates whilst avoiding the creation of steep
velocity/momentum gradients that might degrade numerical stability. Typically the potential is con-
strained with a Dirichlet condition Φ = 0, but that approach can cause the formation of artificial
boundary layers. HERMES-3 prevents this by employing a relaxation technique [15] which it may
make sense to emulate in our Nektar++ solver. Secondly we note that, in the current version of
the solver, Equation (43) is solved in an identical fashion to Equation (34). While the LAPD equa-
tions do not depend on the value of Φ directly, as the HW equations do, the parallel electric field
E∥ = ∂Φ/∂z does feature in Equations(39) and (40). Hence, further work is required to examine
and improve our implementation of the ∇⊥ operator, as highlighted in the Section 2.3.1. Finally,
Nektar++ does not support non-Cartesian coordinate systems, meaning that cylindrical polar co-
ordinates, which are a more natural choice for the LAPD problem, cannot be used. While this
does not add any significant difficulty to the implementation, it will add an extra layer of processing
when drawing comparisons to HERMES-3 results.

2.4 Synthesis

NESO [16] is an open source C++ framework for solving equations involving a coupling of con-
tinuum fields to computational Lagrangian markers, or particles. The specific use-case in mind
for project NEPTUNE is the exhaust region of a tokamak power plant where the dynamics may
be captured, in some regimes, by the interactions between a continuum fluid plasma and point
particle neutral species. These two requirements are met by the use of Nektar++, for solving
fluid-like PDEs, and NESO-Particles [3] for representing particles. NESO brings together both
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of these in a single framework and provides the functionality required for the two to interoperate:
NESO-Particles particles deposit sources to Nektar++ fields and the Nektar++ fields are evaluated
to provide information at each particle’s location.

The following sections describe some of the design aspects of NESO behind the work described
in this document.

2.4.1 Framework layout

This section explains the layout of NESO during development. The directory tree showing only 2
layers is as follows:

builds

gcc-hipsycl

oneapi-dpcpp

cmake

docker

docs

doxygen

sphinx

examples

Electrostatic2D3V

H3LAPD

MaxwellWave2D3V

poisson

SimpleSOL

include

nektar interface

particle utility

solvers

nektar

builds

cmake

docker

docs

library

pkg

solvers

templates

tests

ThirdParty

utilities

neso-particles

build

builds
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cmake

docs

include

test

NESO-Spack

packages

python

deformed mappings

scripts

build python

solvers

Electrostatic2D3V

H3LAPD

SimpleSOL

src

nektar interface

test

integration

test resources

unit

views

gcc-hipsycl

oneapi-dpcpp

The builds directory contains two sets of binaries and library files: one set is built with oneAPI
and the other with hipSYCL. By always building against two implementations of SYCL we have
a higher degree of certainty that our code will build against any implementation, at least with a
minimum of changes. The cmake directory needs little introduction; the docker directory contains
docker files. docs is where the .rst and .md documentation for the code is kept. Code that is
shared between different solvers within NESO has been written in header files within the include

directory. The nektar, neso-particles and neso-spack directories contain the corresponding
git-submodules for these tools.

The layout of NESO is driven to some extent by the desire to build separate executables for
different equation systems, aka solvers, such that users may incrementally explore the numerical
and physical parameter spaces of their problems. This has led to the separation of different solver
code into directories within solvers. Penultimately, we have the src and test files for NESO
code, and finally the views directory that spack creates.

2.4.2 Building solvers

Recursive cloning of the NESO repository avails the user of the NESO-Spack git submodule. Users
may easily (at least significantly more easily than any alternative method) build NESO and all of its
dependencies for both the OpenSYCL (previously known as hipSYCL) and oneAPI SYCL builds;
that is to say, NESO-Particles can be compiled with both implementations of the SYCL standard.
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2.4.3 Hasegawa-Wakatani solver and example

The code for the HERMES-3 LAPD system of equations is located in the solvers/H3LAPD direc-
tory relative to the top directory of NESO.

solvers/H3LAPD

CMakeLists.txt

Diagnostics

mass conservation.hpp

EquationSystems

H3LAPDSystem.cpp

H3LAPDSystem.hpp

HWSystem.cpp

HWSystem.hpp

H3LAPD.cpp

H3LAPD.hpp

main.cpp

ParticleSystems

neutral particles.hpp

The hierarchy of classes is designed to re-use code where available and to taper down function-
ality to create two sets of integration tests, see Fig. 9. HWSystem inherits from H3LAPDSystem,
which itself inherits directly from the Nektar++ class AdvectionSystem. In this way, terms may be
tested in the boiled down Hasegawa-Wakatani system before deployment in the more complicated
HERMES-3 LAPD system.

2.4.4 Diagnostics and data processing

Primarily of value are diagnostic dumps of fields and particles, where post-processing may be
performed in eg. Python or PARAVIEW. NESO-Particles uses the HDF5 particles standard, H5part,
to output particle data, which may then be read in by any number of tools. Nektar++ outputs .chk

files, which can be converted to the widespread .vtu format with the use of the Nektar++ tool
FieldConvert.

The team most commonly use PARAVIEW for post-processing of results. There will be a time when
detailed calculations will be required of the simulation results. At that time it will be necessary to
spawn a new repository dedicated to the task, based on versioned data output schemes.

2.4.5 Adding SYCL to Nektar++

Work has begun, via collaboration between the Cambridge Open Zettascale lab and UKAEA, to
SYCL-ise bottlenecks found in Nektar++. The Intel Advisor software, which emulates ports of CPU
code to SYCL and characterises its performance, has been deployed on the SOL2D with particles
NESO solver and has highlighted a number of areas for speed up via GPUs. Although this work
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has just begun, there is hope that performance gains may be found for universal components of
Nektar++, such as the Riemann solver of Toro.

2.5 Opportunities to increase productivity

Working with a cutting edge software stack puts developers up against the limit of implementa-
tions and as such can cause delays in progress. This report covers coupling of particles to the
Hasegawa-Wakatani system and progress towards coupling to the full HERMES-3 LAPD sys-
tem. In the process, we have encountered some opportunities for increasing our productivity
when working with Nektar++.

It is well known to the community that the Hasegawa-Wakatani equations rely on a hyper-diffusion
term for numerical stability. The derivation of the physics does not include this term, so it is
important to include it sparingly with only just enough damping to keep the simulation stable.
Unfortunately, fluxes for this term, required by the DG method, were not formulated during the work
for this report and it remains a matter for future work. It was posited that the strongly discontinuous
values of the 4th derivative of high-order basis functions would decrease stability unless the fluxes
were fully accounted for, hence it was decided, in the interest of time, to rely on the dissipative
qualities of upwinded flux. Productivity on the project would increase given time to fully understand
the way fluxes are imposed and create a quality-of-life wrapper or interface, if necessary.

A productivity improvement would be the addition of a DG-enabled implicit diffusion term. We ex-
perimented with the explicit diffusion term that was taken from the nektar-diffusion proxyapp, itself
a product of a prior ExCALIBUR -NEPTUNE grant from UKAEA. Unfortunately, it was found that
large diffusion coefficients caused the code to crash, likely due to a breach of the CFL condition
of the explicit algorithm.

It is necessary to revisit the implementation of the perpendicular Laplacian having found failure
cases whilst performing the work for this deliverable. Future work involves collaborating with the
Nektar++ developers to augment the test suite and finesse the implementation to make improve-
ments.

Automatic timestep modifiers exist in the form of simple Proportionalintegralderivative (PID) con-
trollers, and the inclusion of one into Nektar++ would be beneficial. Another improvement would
be to allow error-handling to re-run a calculation with a reduced timestep.
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Figure 9: A PlantUML diagram showing the inheritance and composition of classes within the
H3LAPD (HERMES-3-LAPD) solver.
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3 Summary

In this report we describe the development of a system of fluid equations that exhibits turbulence
in the presence of neutral particles, by full coupling of GPU-enabled particles and high order finite
element fluid fields. A significant amount of development has gone into the particle framework to
enable the communication of particles over a 3-D mesh. Further work has augmented the NESO
framework to create classes for the HERMES-3 LAPD system of equations and the Hasegawa-
Wakatani system. The latter was run with and without particle sources giving encouraging initial
results showing turbulence for the former case and the production and transport of fluid plasma
density in the latter. As such, this report describes the successful development of a fluid turbulence
model coupled to kinetic particles, in three spatial dimensions and three velocity dimensions, in a
finite element framework coupled to a GPU-enabled particles library.
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