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1 Introduction

The uncertainty quantification (UQ) in NEPTUNE is to be non-intrusive, which means that the UQ
functionality can be developed largely independently of the main NEPTUNE code base. Since the
main NEPTUNE codes are still in development, the first part of this report offers an exposition
of accuracy estimation for advection-diffusion problems, which are common in plasma physics
generally and NEPTUNE specifically. This analysis is of critical import for the implementation of
plasma fluid solvers currently taking place in the NESO framework.

A subject of ongoing relevance for NEPTUNE is heat transfer by a convecting fluid. The stability
properties of flows in vertical natural convection were studied in the prequel [1] to the current
report, with the discovery in the space parameterized by the Prandtl number and the Rayleigh
number of a one-dimensional ‘stability frontier’ between states with stable steady flows and states
which exhibit time-dependent behaviour. This is a little like a phase transition (in that the frontier is
a subspace of co-dimension one) and thus would be expected to display collapse to one dimension
of the active subspace. Here (§3) a deflated solution continuation analysis is used to give an
explanation for the form of the stability frontier as a composite of numerous overlapping instability
modes.

The UQ work has been defrayed under Grant T/AW085/21. This grantee’s work during the past
year has taken the form of code development and related hackathons, and a final written report.
This material, which covers UQ, reduced-order models, and data assimilation, is described briefly
in §4.

2



2 Estimating Accuracy in Advection-Diffusion Problems

2.1 Model Problem

This section develops ref [2, § 2.2], concerning discretisations of the time-dependent advection-
diffusion equation for a scalar field f(x, t) in a flow u(x, t) with diffusion κ and source term S(x, t)

∂f

∂t
+∇ · (uf) = ∇ · (κ∇f) + S (1)

Suppose that f only depends on a single spatial coordinate x, u has a single component u, and
also that the diffusion κ = const. Neglecting gradients of u, the analytic model equation may be
taken

∂f

∂t
+ u

∂f

∂x
= κ

∂2f

∂x2
+ S (2)

Solution is made in the finite domain 0 ≤ x ≤ L over a time interval [0, T ]. Note that the assump-
tions made do not exclude the nonlinear case f = u, when Equation (2) is known as Burgers
equation and κ becomes the viscous diffusion.

It will be important for subsequent work to distinguish different approaches to a dimensionless
treatment of Equation (2) and thence Equation (1), see Section 2.2. The following Section 2.3
shows how discretisation of Equation (2) introduces new dimensionless quantities based on mesh
spacing, and then Section 2.4 goes on to discuss the implications of these parameters for numer-
ical stability and accuracy. Section 2.3 also includes treatment of the hyper-diffusion term which
may be represented as an addition to the source in Equation (2) of form

S4 = −κ4
∂4f

∂x4
(3)

where κ4 is the hyper-diffusion, aka hyper-viscosity in the nonlinear case that f = u.

2.2 Dimensionless Parameters

Naturally because of the finite domain, distances are scaled by L, when by far the common-
est approach, particularly when S = 0 is to make time t dimensionless in terms of the diffusion
timescale L2/κ. It will be recalled that this leads to a model in dimensionless variables of the form

∂f

∂t
+ Pe · u∂f

∂x
=
∂2f

∂x2
(4)

where the Peclet number
Pe =

U0L

κ
(5)

with U0 = ||u|| as a representative absolute value of u, usually the maximum flow-speed. Making
t dimensionless in terms of the turnover timescale L/U0, similarly leads to the appearance of (the
reciprocal of) Pe in the coefficient of the diffusion term. The point is that in the linear problem, not
only is κ fixed at least in order of magnitude, but also so is u/U0 similarly of order unity throughout.
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When u is varying appreciably, eg. in time as a result of instability in a coupled momentum equation
(or say due to driving by S when f = u), it is often customary to omit the Peclet number, and work
with a model in dimensionless variables of the form

∂f

∂t
+ u

∂f

∂x
=
∂2f

∂x2
(6)

where the dimensionless umay vary over orders of magnitude, and of course even when u is fixed,
this formulation is workable. The fixed flow case using the model Equation (6) is then apparently
parameter-free, although it should be evident that the scale of the initial values of u serves to set
an implicit or ‘hidden’ Peclet number. (Similar remarks apply in respect of hyperdiffusion upon
introducing Pe4 = ||u||h3/κ4.)

2.3 Discrete Dimensionless Parameters

Suppose h is the spatial mesh separation implicitly assumed to be uniform, ie. h = L/N , where
N + 1 with N ≫ 1 is the number of mesh-points in 0 ≤ x ≤ L. Let ∆t be the timestep, then the
discrete time advance is of general form

∆tf

∆t
+
u

h
∆xf = κ

∆2
xf

h2
(7)

where ∆x and ∆2
x are discrete difference operators in the x-coordinate, eg. ∆xf = fi+1 − fi,

operating on the discrete values of fi at the mesh-points i. (∆t is defined analogously.) If κ = 0
and there is only hyper-diffusion

∆tf

∆t
+
u

h
∆xf = −κ4

∆2
xf

h4
(8)

Evidently the discrete Equation (7) may be made dimensionless using the mesh-scale h, introduc-
ing the mesh Peclet number parameter

Peh =
U0h

κ
(9)

There are questions concerning the role of Peh inherited from a good deal of controversy about
the role of the mesh Reynolds number Reh, viz. Peh for the nonlinear case. Nonetheless, at least
heuristically it would seem that when Peh = O(1), there is an approximate balance between the
discrete advective and diffusive terms. For smaller Peh the latter dominates, which is numerically
significant in that the discrete Laplacian operator, being symmetric and definite, is much easier
to treat numerically than the discrete advection operator. (Similar remarks apply to Equation (8)
upon introducing

Pe4h =
U0h

3

κ4
) (10)

Other important well-known dimensionless groups for Equations(7) and (8) are the Courant or
CFL number and the diffusion limit parameters, respectively

ch =
U0∆t

h
, dh =

κ∆t

h2
, and d4 =

κ4∆t

h4
(11)
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When these are separately unity, the corresponding timestep has a simple physical interpreta-
tion as respectively the timescale for the turnover, diffusion and hyper-diffusion of one cell of the
discretisation. Note also the identities

Peh =
ch
dh

and Pe4h =
ch
d4

(12)

Note finally that, particularly in the case of more general nonlinear advection-diffusion problems, it
is unclear how long the simulated duration T needs to be, and indeed what the smallest physically
significant lengthscale will be, thus it is inadequate to consider the simple dimensionless ratios
∆t/T and ∆x/L.

2.4 Stability Parameters and Accuracy

If the temporal discretisation of Equation (7) is explicit, it is plausible (as is confirmed by rigorous
analysis up to factors of order unity) that for stability the timestep must be less than or equal to the
turnover and diffusion times of one cell, viz.

ch ≤ 1, dh ≤ 1, and/or d4 ≤ 1 (13)

Since maximal size of timestep is to be preferred for computational efficiency, then to within O(1)
factors, ch = dh = 1 will be taken and so Peh = 1 at the stability boundary.

It is important to consider accuracy, again this is posed in heuristic terms by assuming that the
smallest lengthscale ℓ important in the dynamics of f is capable of numerical estimation, or known
say on the basis of analytic results. It follows that for minimally accurate results h < ℓ. For
advection-diffusion problems, whether or not they are linear, provided S = 0, then typically

ℓ = LPe−α, or ℓ4 = LPe−β
4 (14)

for positive α ≤ 1 and β ≤ 1. Simple balancing of coefficients gives α = β = 1, whereas smaller
values follow in higher dimensions when the flow is incompressible (typically α = 1/2) or from
estimates of turbulent microscales in the nonlinear case, giving α = 3/4 [3].

Suppose further that hyper-diffusion is added to an advection-diffusion problem for additional nu-
merical smoothing, then it is desirable that the minimum scale h4 attained by the latter satisfies
ℓ4 < ℓ, equivalently Pe−β

4 < Pe−α, which when α = β implies κ4 < κL2, and hence Pe4 > Peh/N
2.

Remembering that L = Nh and Pe = U0L/κ, then h < LPe−α gives

h < N
1−α
α

κ

U0
, ie. Peh < N−1+ 1

α , implying ch < dhN
−1+ 1

α (15)

Similarly for hyper-diffusion

h3 < N
1−3β

β
κ4
U0
, ie. Pe4h < N

−3+ 1
β , implying ch < d4N

−3+ 1
β (16)

The results Equations(15) and (16) are key. From Equation (15) it follows that stability of the
explicit scheme implies accurate advection-diffusion for all reasonable values of α. Moreover there
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is benefit from use of implicit schemes, even on uniform meshes if α < 1, since then accuracy is
possible even when ch ≫ 1.

Whether accuracy is achieved in a time-dependent calculation, depends on the smallest important
timescale τ . The work of Hunt et al. [3] implies τ = ℓ2/κ, ie. then ∆t < τ implies dh < 1 since
h < ℓ has been assumed, so that temporal accuracy may also be consistent with ch ≫ 1. (For
hyperdiffusion, d4 < κ4/(κh

2), so if κ4 < κL2, d4 < N2.) However if τ = ℓ/U0, which could occur
if there were say large initial transients, then for minimal accuracy in the time advance, ∆t < τ
implies ch < 1. By contrast, in an approach to a steady-state solution, the timescale for change
of field variables could become very long, meaning that an implicit scheme would benefit from its
ability to take very large timesteps whilst maintaining accuracy.

3 Vertical natural convection revisited

Work described in §3.4 of [1] was performed partially to provide target proxyapps for UQ / ROM /
DA investigations as a stand-in until software developed in the NESO framework becomes avail-
able for large-scale studies. The aforementioned work targetted the different regimes of vertical
natural convection in a square cavity with the aim of providing a ‘phase diagram’ showing, ini-
tially, the dividing line (in a parameter space coordinatized by the two dimensionless parameters
in the problems, the Prandtl number (Pr) and the Rayleigh number (Ra)) between convecting sys-
tems with a stationary steady-state flow and those where the flow is subject to time-dependent
behaviour (this division, which is a Hopf bifurcation, is referred to as the ‘stability frontier’ in the
sequel). This is a very interesting and rich problem due to the variation in the background flow for
different values of Pr and Ra . The quantification of behaviour over a wide range of parameters is
expected to provide a useful general guide to the behaviour of various fluids in heated cavities: a
range of −2 to 2 was used for the base-10 logarithm of the Prandtl number, which covers a wide
range of fluids at room temperature e.g. mercury (Pr = 0.015), gases such as air (Pr = 0.7), water
(Pr = 7.0), up to viscous oils (Pr = 100+) (this range reflects the relative ease of the diffusive
transfer of momentum relative to that of heat). Note the thermal properties of many of these fluids
are relevant for fusion-related, as well as more general, engineering applications.

The holder of grant T/AW087/22 was given this problem to further investigate, in order to demon-
strate the use of solution continuation techniques; the grantee chose to use the DEFCON software
package [4] to apply the technique of deflated continuation to the problem. The deflation technique
allows additional solutions to nonlinear systems to be found, basically by removing known solu-
tions from the Newton iteration. The science goals here were to explain the form of the stability
frontier, and more prosaically to provide a check on the numerics used in [1] (the grant holder is
expert in numerical analysis).

The outcome of the new work is a confirmation of much of the material presented before. The
stability frontier was plotted in [1] for two choices of boundary condition on the top / bottom of
the cavity (which was coordinatized as a unit square with the bottom left corner at the origin):
either conducting, where a an inhomogeneous (1 − x) Dirichlet boundary condition is applied for
the temperature (as used in e.g. [5]), or insulating, where a homogeneous Neumann condition
applies. Note that the latter case a) appears to exhibit more interesting behaviour and b) is more
numerically demanding due to the larger Rayleigh numbers required to trigger time-dependent
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Figure 1: Stability frontiers data produced by grantee (grey points) overlain with data presented in
[1]; conducting boundaries (left), insulating boundaries (right).

instabilities (this is an example of the loose rule that a more-insulated fluid system is more likely
to remain in a steady flow condition).

The results from [1] are superimposed on the grantee’s results in Fig.1. Note the grantee has
chosen to transpose the axes relative to the existing work.

The grantee’s numerical results for the conducting case shows good general agreement with ear-
lier work over the entire range of parameters studied, with the possible exception of one point at
log10Pr = −1 where the early work appears not to pick up the instability until slightly late into the
continuation parameter scan (which used monotonically increasing values of Pr).

The grantee’s results for the insulating case show good agreement with earlier work up to log10Pr ≈
0.4. For higher Pr values, where the numerics are more challenging due to the narrowness of the
boundary layers on the upright walls, the grantee was unable to obtain numerical results to the
same level of precision as their other results. Indeed, their results for lower precision (the con-
tinuous part of the grey curve in Fig.1 and the continuous dark blue curve in Fig.2) show marked
discrepancy with the numerical results presented in [1]. In view of the interesting behaviour seen
in the latter, this is slightly unfortunate and further study of this region of parameter space for the
problem would appear to be indicated. The author considers their earlier results in need of further
verification (note also the discrepancy with the study by Wang et al [6] for log10Pr = 1.0 exhibited
in Fig.14 of [1]). Nevertheless, the grantee’s work has provided a verification of a large portion of
the parameter space for the stability frontier.

Rather informative colour-coded versions of the stability frontier diagrams were produced by the
grantee (Fig.2), showing that the frontier is in both boundary condition cases a composite of multi-
ple instabilities protruding into the steady-flow part of the parameter space. This structure means
that the frontier is a continuous curve with points of discontinuous derivative (cusps). It would be
of interest to obtain a plot of the instability mode associated to each of the solution branches.

The grantee’s work was presented in-person (at the NEPTUNE Workshop 2024) in lieu of a written
report. The associated proxyapp code and some documentation can be accessed in the repository
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Figure 2: Stability frontiers colour-coded by solution branch; conducting boundaries (left), insulat-
ing boundaries (right). Different branches denote different time-dependent instabilities. Note that
the continuous blue curve to the extreme right of the right-hand-side plot is a numerical region
where the precision needed to be reduced due to the numerical demands of the large Rayleigh
number and this part of the plot does not agree with the results reported in [1].

[7]. Note that this code was based on the Firedrake scripts used in the earlier study but that the
grantee extended it to use the DEFCON software to track the solution branches and therefore the
original code has now been inspected by more than one professional numerical analyst.

The present author is very interested to know whether any results are available regarding the
overall shape of the stability frontier or any asymptotics (e.g. very small or very large Pr or Ra).
There are many possibilities for further work, involving extension of the studied parameter ranges,
and extension into other geometries including the three-dimensional case which is expected to
contain additional instabilities.

The same grantee performed related work applying adjoint methods to the cavity problem for
values of Ra near the stability frontier, in the case of air as the fluid (Pr = 0.71 / log10Pr =
−0.15, which falls within the region where there is agreement between numerics of the author and
those explained above). This work used the adjoint analysis features available in Nektar++, thus
providing a useful example of an adjoint problem in Nektar++ (which latter is the finite-element
framework currently used as a basis for the NESO plasma fluids solvers). In this case, the adjoint
analysis is used to discover the perturbations in the wall temperatures profiles to which the system
is most sensitive, which is complementary to the stability frontier work which concerns currently
only constant vertical wall temperatures. This work was reported as Technical Report 2068625-
TN-09, and the code and scripts used (including some new additional Nektar++ source code) can
be found at [8].

3.1 Additional physics of vertical natural convection

The vertical natural convection problem has other interesting aspects beyond the physics of the
transition to time-dependent behaviour. One is of course the turbulent regime, but even the laminar
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flows exhibit a range of physical effects that are the subject of current investigation by the fluids
community; an example of the latter is the study of secondary flows in [9] (which does not include
any UQ analysis). It might be noted that, while continuation in Pr, which is a property of the
fluid, may not seem particularly physically-motivated, it is actually the case that many fluids exhibit
significant change in Pr as their temperature is varied.

The examples in Fig.3 were run using Firedrake to find the steady flow in a tall tank (aspect ratio
10). The code solves initially the problem for a value of the Prandtl number close to unity, which
flows are a single convective cell and prove numerically easy to obtain. Subsequently, continuation
is performed i.e. Pr is gradually decremented and the simulation is re-run using the previous
solution as an initial guess. This reveals, for sufficiently small values of Pr, more interesting flow
patterns containing multiple convective cells along the tank length resulting in an approximate
periodicity, and which may display more than one cell structure per period (i.e. the alternating-size
sawtooth pattern seen in the left-hand figure).

The utility of the above in a UQ / ROM context is that these flows could be made the subject of a
campaign of simulations where the objective is to develop a smart choice of ‘experimental design’
(i.e. choosing where in parameter space to perform simulations for use in surrogate construction)
including the need for solution continuation (which means that new simulations in some areas of
parameter space must use a nearby solution as an initial guess in order to obtain convergence;
see the discussion in §.3 of [1]). Such work would extend the grantee’s current expertise in exper-
imental design.

It is clearly also possible to do the stability frontier analysis on this sort of tank geometry.

4 Management of grant T/AW085/21

The present author has been responsible for the management of the titular grant for approximately
the past year. This has included regular online meetings to discuss the grant work and also regu-
lar attendance at the meeting series ‘Uncertainty in Fluid Turbulence’ chaired by Professor Peter
Coveney of University College London. As has previously been the case, the utility to Project
NEPTUNE of the grantee’s expertise and technology (which includes the SEAVEA Toolkit of un-
certainty quantification software (the acronym stands for Software Environment for Actionable and
VVUQ-evaluated Exascale Applications), and also other powerful frameworks as listed in §.5 of
[10]) has been affected by the lack of a large-scale plasma solver code within the NEPTUNE
software ecosystem. It has been a priority to ensure that such a code is developed, hence the
implementation of working plasma solvers in the NESO framework (these were described in [11]).

Another area of work relevant to this grant is the Smallab fluid tank experiment being developed
at Leeds University. It was originally conceived that novel measurements from such experiments
would form the basis for data assimilation and reduced-order modelling work under NEPTUNE,
leading towards a digital twin of a tabletop fluid heat transfer experiment. Unfortunately, there are
as yet no meaningful measurements from the experiment, which the present author understands
to have been delayed as a result of practical difficulties (and said author in no way wishes to
understate the challenges of this experiment). Note that the experimental work is being supported
by numerical simulation performed using, among other softwares, Nektar++, including efforts by
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Figure 3: Steady-state temperature colour maps for laminar flows. Left panel: log10Ra =
3.5; log10Pr = −0.1,−0.4,−0.7,−1.0 (left to right). Right panel: log10Ra = 4.0; log10Pr =
−0.2,−0.6,−1.0,−1.4 (left to right). The acceleration due to gravity acts (as usual) in the down-
ward direction.
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Figure 4: Labelled experimental setup for Smallab fluid tank experiment.

Figure 5: Example velocimetry outputs from an early version of the Smallab fluid tank experiment.
The colour map indicates the local flow speed.

the experimenter and also fully 3D numerics performed by UKAEA personnel (for the latter see
Fig.17 of [1]). An image of the apparatus being considered is shown in fig 4, from which some
of the complexity involved is apparent. The experimenter has given a preliminary presentation
detailing the experiment design and showing some initial measurements (e.g. Fig.5); a video
recording of this presentation exists and may be available, subject to relevant permissions, by
appealing to the authors of this report.

The holder of grant T/AW085/21 has continued to provided HPC allocations on Archer2 to some
of the other grantees (specifically, the holders of grants T/AW087/22 and T/AW088/22) and to the
UKAEA, which latter allowance continues for at least three months after the expiry of T/AW085/21.

Further details of the work described in this section can be found in UCL grantee report 2057701-
TN-02 [12].
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4.1 NESO

The grantee has implemented a plugin for FabSim3 to facilitate HPC runs of UKAEA NESO soft-
ware. This is currently set up with turn-key examples including a polynomial chaos expansion of
outputs from the existing 2D-in-3D Haswgawa-Wakatani plasma solver in NESO and a Bayesian
calibration run using the NESO Electrostatic2D3V solver.

4.2 Reduced-order models for discontinuous response surfaces

Many models relevant to fusion exhibit discontinuous response surfaces (examples are the transi-
tion to a convecting state in Rayleigh-Bénard convection in a continuum fluid when the problem is
parameterized by Rayleigh and Prandtl numbers, and the various steady-states of the two-stream
instability in the space parameterized by the plasma frequency and the proper velocity of the initial
beams - see Appendix A.3 of [13]). Note that the two-stream instability is a model problem in
plasma continuum kinetics and has formed the basis for one of the NEPTUNE proxyapps devel-
oped under the grant T/AW084/21. It is well-known that standard Gaussian process (GP) tech-
niques work well for smooth response surfaces and the grantee has explored the performance of
GP surrogates for the discontinuous response case. The model chosen was the Lorenz 63 reduc-
tion of Rayleigh-Bénard convection to a set of nonlinear ODEs. Like the full problem, this system
has a parameter space coordinatized by the Prandtl and Rayleigh numbers. The response is taken
to be the Nusselt number (which in the full problem is the rate of heat transfer across the convect-
ing fluid). The Nusselt number exhibits discontinuous behaviour in (Ra,Pr)-space (Fig.6) because
some choices of these parameters means the system tends to a stable fixed point, whereas other
values lead to the chaotic behaviour associated to the familiar Lorenz attractor.

The grantee investigated this problem using a two-layered deep GP and a Latin hypercube-based
design for selecting new sampling points in (Ra,Pr)-space. Further, due to the knowledge of the
asymptotics, rectangular regions were selected as bounding boxes for the asymptotes, giving two
subregions in which to conduct Latin hypercube sampling; in this way, the sample points are con-
centrated near where the discontinuity is expected to be. This may reasonably be described as
a physics-informed experimental design method. Note that the method relies on knowing in ad-
vance the asymptotes of the stability frontier. The grantee has developed also a statistical method
capable of estimating where the gradient in the underlying model exceeds a certain threshold and
some outputs can be seen in Fig.7.

Note that the two-stream instability cases show a markedly similar structure to that seen in the
Lorenz 63 model with an L-shaped stability frontier having two linear asymptotics (Fig.8). In the
figure, ωP is the plasma frequency, the counter-propagating beams have initial speeds ±v0 and
Gaussian width (i.e. square root of temperature) σ and k is just a constant. The equation for the
stability frontier is y ≡ ωP

kσ = (2xD+(x)− 1)−
1
2 where x ≡ v0√

2σ
and D+(x) ≡

√
π
2 e

−x2
erfi(x) is a

Dawson function. The two linear asymptotes are x = 0.92414 and y =
√
2x.
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Figure 6: Response surface i.e. Nusselt number (Nu) as a function of Rayleigh (Ra) and Prandtl
(Pr) numbers for the Lorenz 63 system. The dashed blue lines are the known linear asymptotes
of the stability frontier (given by the discontinuity in the response surface).

Figure 7: Sequential design for numerical experiments designed to detect the discontinuity in the
response surface discussed in the text. The colourmap indicates the probability that the local
gradient exceeds a threshold value. The surface estimates shown used 3, 10, 30 and 50 samples
(increasing left to right).
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Figure 8: Stability frontier for the two-stream instability problem.

4.3 Data assimilation: initial study of drift-wave turbulence

A particle filter-based data assimilation package, ParticleDA.jl [14], was released during 2022. An
initial version, which provides data assimilation capability linked to the other capabilities of the
SEAVEA Toolkit, can be found at [15]. One of the author’s goals has been to apply this particle
filter implementation to some of the proxyapps developed under NEPTUNE. The output of the
Nektar++-based proxyapp Nektar-Driftwave was chosen as an initial target and the problem setup
was started at a SEAVEA hackathon event which occurred on December 1, 4-5 2024 and was
attended by two personnel from UKAEA NEPTUNE.

As background, the filtering problem is typically of the form

Xk = g(Xk−1) +Wk−1

Yk = h(Xk) + Vk. (17)

In the above, Xk is the state of the system at time horizon k and Yk is an observation. Wk−1 is the
stochastic component of the model update and Vk is measurement noise associated to observa-
tion k. The model update is g and is Markov. The goal is to estimate the posterior distribution of
the model state given the measurements. Note that for a linear update g and Gaussian Wk and
Vk this posterior is available analytically and this is the usual Kalman filter treatment. The particle
filter is a way of doing this problem that works in nonlinear cases such as Nektar-Driftwave.

Since all currently-available NEPTUNE / NESO proxyapps are deterministic, and no experimental
results are available (results from the fluid tank experiment mentioned in §.3 would have served
admirably), the particle filter must be applied to proxyapp outputs to which some artificial noise
is added (particle filters require a non-degenerate distribution of state at future times given the
current state). The grantee implemented a method of generating Gaussian random fields on a
spatial domain, within the Nektar++ framework, and this Gaussian noise was added to simulation
outputs to simulate model error.
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It is worth noting that the version of Nektar-Driftwave used by the grantee has, subsequent to
this work, been updated and is now a great deal faster (i.e. at least one order of magnitude) in
execution than before. The simulations used here were run on HPC but it is likely now that this
work could be reproduced quickly using only a laptop.

Outputs are shown in Fig.9. The filter is found to work adequately for early times, but once the
simulation starts to enter the turbulent state, the method fails due to the well-known degeneracy
problem of particle filters, that is, the weights for most of the particles drop to near-zero, making
the ensemble close to degenerate. The grantee proposes improved proposal distributions and /
or use of localization as possible improvements (it is also the case that increasing the ensemble
size (i.e. the number of particles) would stave off the degeneracy problem and allow the state to
be tracked for a longer time).

It would probably be better to apply the filter to one of the other outputs of the model which have a
smoother general appearance than the vorticity, e.g. the potential, which obeys ∇2ϕ = w (it is clear
that differentiating twice results in a less-smooth function, and in the numerical implementation the
potential is a continuous field, while the vorticity and density use a discontinuous representation).

The problem discussed here is rather similar to an application of a particle filter to the barotropic
vorticity equations, detailed in Ch.13 of [16], in particular §.13.4.7. That analysis gives some
possible methods for improving the initial results . Note that in this example, the vorticity field
seems to have been chosen as the target for the data assimilation problem in order to give a
more-challenging task than would be the case if the streamfunction (the equivalent of the potential
in the Nektar-Driftwave case) were used.

∂w

∂t
− ∂ψ

∂y

∂w

∂x
+
∂ψ

∂x

∂w

∂y
= β

∂2ψ

∂x2
+
∂2ψ

∂y2
= w (18)

Here w is the vorticity, ψ the streamfunction, and β a random noise term representing errors in
the model equations. These equations are very similar to the 2D Hasegawa-Wakatani system
modelled by Nektar-Driftwave.

Unfortunately, the current implementation of NESO-Particles does not allow for stochastic time-
evolution i.e. there is no stochastic input to the model once it is started (i.e. a run, once initialized,
is deterministic). This means NESO-Particles simulations cannot yet be used with the particle
filter. This issue will go away once Monte Carlo collisions are available in NESO-Particles.
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Figure 9: Time-evolution of the vorticity in Nektar-Driftwave: true state (left) and particle filter
estimate of the mean using an initial ensemble size of 512 particles. The state is tracked well
during the initial evolution but fails later on due to the degeneracy problem.

16



5 Summary

Material for understanding the numerical errors associated to advection-diffusion problems, which
problems are ubiquitous in simulations of plasma physics, was presented.

An update to the analysis of stability for 2D convecting fluid problems, started in [1], was provided
and an explanation for the form of the stability frontier curve was presented.

The recent work of the holder of grant T/AW085/21 on uncertainty, reduced-order models, and
data assimilation was briefly summarized.

The authors acknowledge assistance from Niall Bootland, Ubaid Qadri and Josh Williams of STFC,
and Peter Coveney, Matt Graham, Serge Guillas, Yiming Yang and others of University College
London.
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