
ExCALIBUR

Complementary actions. Code integration, ac-
ceptance and operation 4.

M6c.5 Version 1.00
Abstract
The report describes work for ExCALIBUR project NEPTUNE at Mile-
stone M6c.5. It provides material related to the implementation of 3-D
plasma turbulence equations using finite element modelling (FEM) tech-
niques. Results produced with the Firedrake FEM sofware are presented,
demonstrating its usefulness as a tool for prototyping new solver implemen-
tations and verifying the correctness of existing NEPTUNE proxyapps. An
implementation of the 3-D Hasegawa-Wakatani equations in the Neptune
Exploratory SOfware (NESO) is introduced and preliminary results are re-
ported. A new code for generating field-aligned computational meshes is
discussed and example output is presented in 2-D and 3-D for realistic toka-
mak geometries. Finally, a synopsis of related work carried out by grantees
over the past year is provided in the form of technical report summaries and
reviews of code deliverables.

UKAEA REFERENCE AND APPROVAL SHEET
Client Reference:
UKAEA Reference: CD/ExCALIBUR -FMS/0084

Issue: 1.01
Date: 13 March 2024

Project Name: ExCALIBUR Fusion Modelling System

Name and Department Signature Date
Prepared By: Ed Threlfall N/A 13 March 2024

Owen Parry N/A 13 March 2024
Chris MacMackin N/A 13 March 2024

CD

Reviewed By: James Cook 15 March 2024

CD

1

1 Introduction

This report covers a range of topics related to the use of finite element modelling frameworks in
NEPTUNE. Section 2 focuses on the use of the Firedrake[1] software as a tool for rapid prototyp-
ing of new solvers and as a means of checking the correctness of existing proxyapps. In addition
to reimplementing some of those proxyapps and comparing to the Nektar++ versions directly, Fire-
drake is also employed to investigate various key components of a more complex model, which
represents the near-term goal of fluid plasma modelling in the NEPTUNE Exploratory Software
(NESO).

Section 3 reports on an implementation of the 3-D Hasegawa-Wakatani equations in NESO. The
solver extends an existing Nektar++ equation system, but has required substantial code refactor-
ing in order to adhere to sound software design practices, avoiding code duplication, preserving
encapsulation and allowing key functionality to be shared between similar solvers.

An important component of project NEPTUNE is the development of technology to produce com-
putational meshes that are suitable for modelling plasma and neutrals in the tokamak edge region.
A related challenge is the high degree of velocity anisotropy associated with magnetically confined
plasmas, which can negatively impact numerical accuracy when a mesh is not aligned with the
magnetic field. To this end, Section 4 describes a tool called “NESO-fame” which has been devel-
oped to produce field-aligned meshes in realistic geometries (i.e. conforming to the first wall of a
tokamak). A number of example meshes are presented in 2-D and 3-D.

Finally, Section 5 summarises related technical reports and code deliverables produced by project
grantees in the past year. A series of progress reports are provided by the Oxford grantee, de-
scribing important updates to their implementation of a finite element drift-kinetic model. The KCL
grantee work includes a report outlining improvements to their mesh generation tool, NekMesh,
and several code deliverables designed to increase the usability and performance portability of
Nektar++, as well as increase its utility for modelling fusion-relevant problems.

2 Firedrake as a tool to assist NEPTUNE development

The aim of the work described in this section has been to replicate NEPTUNE proxyapps using
Firedrake[1], for verification and validation purposes, to enable the comparison of different frame-
works for NEPTUNE finite-element aspects, to assist with finding bugs in existing NEPTUNE
proxyapps, and also to speed up development. It will be demonstrated that many of the finite-
element-based proxyapps developed under NEPTUNE may straightforwardly be implemented in
the Firedrake/Irksome[2] framework.

As explained in [1], Firedrake is a framework that automates the finite-element solution of par-
tial differential equations. The software user specifies the equation in a high-level, mathematical
domain-specific language called Unified Form Language (UFL), in which PDEs are expressed in
weak form, and then the package generates C code to solve the system, using also the PETSc
library. Time-stepping is provided by the complementary Irksome package which offers a range
of time-steppers within the Firedrake framework (though it is also possible to implement time-
steppers without Irksome, see e.g. [3]). One major attraction of Firedrake is the ease of im-

2

plementation, which gives a favourable time-to-working-solver for many problems; it is, however,
the intention of the developers of Firedrake that it be a competitive HPC tool, for example it has
been tested up to approximately 25,000 CPU cores (cf. Nektar++, which has been run on up to
c.100,000 cores). Another attraction is the Firedrake Github Discussions forum, which the author
has found a useful and responsive source of guidance.

There are other tangible benefits from Firedrake such as the easy interchangeability of numeri-
cal methods e.g. time-steppers and preconditioners, with obvious synergies with the work done
under the numerical analysis procurement (currently T/AW087/22). It is well-known that these
aspects can yield large increases in computational efficiency for a relatively small investment in
development time (see e.g. S.3.1.3 of [4]). The investigation of numerical methods is to an extent
independent of the finite-element framework used - one may as well select one’s tool on the ba-
sis of expediency - and to an extent not - why spend time implementing / debugging a promising
method in one framework if it is available already elsewhere.

Note that the problems treated here are small (reflecting the state of the current NEPTUNE prox-
yapp ecosystem), though they can be extended to truly HPC-grade cases e.g. by moving to three
dimensions and higher numerical resolution. Even the small problems can benefit from HPC e.g.
via running ensembles for UQ or surrogate construction, or by a parallel-in-time implementation
(the latter has been implemented for the Nektar-Driftwave proxyapp [5]).

Note also that, at the time of writing, little quantitative testing has been done on the outputs of the
codes in the sequel (again a bit like the case for many of the existing NEPTUNE proxyapps).

One extremely important example case is that of the Large PLasma Device (LAPD) simulation in
Nektar++. Major components of the physics in that problem are a sonic outflow of a compressible
fluid, and drift-wave turbulence in the transverse plane. The first few sections in the sequel address
these cases. The implementation of the LAPD simulation in the NESO framework, using Nektar++
and described in [6], is currently still ongoing. The author of this section believes that the remaining
issues with the implementation of the LAPD simulation will be resolved in the near future with the
aid of Firedrake prototyping.

Note that the scripts used to generate the outputs in this section can be obtained by requesting
access to the private repository [7].

2.1 One-dimensional outflow problem

The primary motivation for this section is to provide an initial implementation of the problem of sonic
outflow of a compressible fluid, in order to facilitate the implementation of the LAPD simulation
within Nektar++.

2.1.1 The model

A very simple 1D model for the scrape-off layer is to take the compressible isothermal gas dynam-
ics of a single species with no electric field and no transverse dynamics. Note that the isothermal

3

approximation is used in some plasma simulations e.g. the Blob2D example at [8] and for the ions
in the cold-ion approximation, see e.g. [9].

In the first instance for discussion, the equations are the steady-state of eqs.10 and 11 from [10].
Two ODEs on the domain x ∈ [−1, 1], describe the fluid density n and the flow velocity u:

(nu)′ = n∗,

(nu2)′ =−Tn′.
(1)

Prime is x-derivative. n∗ is a spatially-constant density source (cf. the LAPD simulation in which
there is assumed to be a longitudinally-constant source of electron density). The solution is,
specifying sonic outflow at the boundaries,

n =
n∗
√
T

(
1 +

√
1− x2

)
,

u =
√
T

(
1−

√
1− x2

x

)
.

(2)

For the following numerics the choices n∗ = 1, T = 1 will be made.

Note that an attempt was made to solve the same system including diffusion terms of various
types but no analytic solution was found.

2.1.2 Numerical treatment: continuous Galerkin (CG)

The equation treated by Firedrake is input in weak form using the UFL interface. For the system
Eqs.1, the UFL is shown in Listing 1.

Listing 1: UFL code defining the equations Eqs.1 for CG elements. Note that v1 and v2 are test
functions.
a = (grad (n*u) [0] * v1−ns ta r * v1+grad (n*u*u) [0] * v2+T* grad (n) [0] * v2) * dx

A naive treatment of the above hyperbolic system is prone to grid-scale oscillations which arise
from a negative numerical diffusivity coefficient (see, for example, Remark 2.6 of [11]). Thus the
simple Firedrake treatment in Listing 1 of the steady-state has the undesirable appearance shown
in Fig.1.

There are two main ways to fix the problem of grid-scale numerical oscillation, both of which are
basically equivalent to adding in a positive numerical diffusivity. These respectively will be the
subject of the next subsections.

2.1.3 Numerical treatment: streamline-upwind (SU) correction

The first method is to add numerical diffusivity by modification of the basis functions. The modi-
fication leads to additional terms in the weak form to account for added numerical damping; see

4

Figure 1: Numerical solution of Eqs.1 using 100 first-order CG elements. Note obvious grid-scale
oscillation in n. Generated by SOL 1D CG SU DG upwind.py [7]; CG output.

5

Figure 2: Numerical solution of Eqs.1 using 100 first-order CG elements with streamline-
upwind (SU) correction. Note suppression of grid-scale oscillation. Generated by
SOL 1D CG SU DG upwind.py [7]; CG output with SU correction enabled.

e.g. S.2.3 of [11]. The method demonstrated here will be referred to as a streamline-upwind (SU)
correction.

Listing 2: UFL code defining the SOL1D equations for CG elements including the SU correction
terms. Here h is the grid scale.
a = (grad (n*u) [0] * v1−ns ta r * v1+grad (n*u*u) [0] * v2+T* grad (n) [0] * v2) * dx \

+ (0 . 5 * h * (grad (n) [0] − ns ta r) * grad (v1) [0]) * dx \
+ (0 . 5 * h * (grad (n*u) [0]) * grad (v2) [0]) * dx

This method correctly suppresses the grid-scale oscillation, as is seen in Fig.2.

It is obvious that this method has the weakness that it is accurate to the model only to first-order
in the grid-spacing scale h - this is apparent from the O(h) correction to the weak form.

A time-dependent implementation is also possible; in this case the relevant equations are

ṅ+ (nu)′ = n∗,

˙(nu) + (nu2)′ =−Tn′.
(3)

6

Figure 3: Numerical solution of eqs.3 using 100 first-order CG elements with SU correction starting
from a Gaussian n and linear u initial condition. Plots from the left are t = 0, 1, 2, 3. Generated by
SOL 1D SU irksome.py [7].

Note that the second of these is recast in the form nu̇+ un∗ + nuu′ = −Tn′ in order to derive the
weak form in Listing 3.

Listing 3: UFL code (including Irksome time-derivatives) defining the equation system Eqs.3 plus
SU corrections.

F = ((Dt (n) * v1) * dx + (n* Dt (u) * v2) * dx) \
+ (grad (n*u) [0] * v1−v1 * ns ta r) * dx \
+ (ns ta r *u* v2+n*u* grad (u) [0] * v2+Temp* grad (n) [0] * v2) * dx \
+ (0 . 5 * h * (grad (n) [0] − ns ta r) * grad (v1) [0]) * dx \
+ (0 . 5 * h * (grad (n*u) [0]) * grad (v2) [0]) * dx

Output from the time-dependent implementation with SU correction weak form is exhibited in Fig.3.
It does show what looks like a minor discrepancy in n near the boundaries.

2.1.4 Numerical treatment: discontinuous Galerkin (DG)

The second method of stabilizing the flow equations is to use a discontinuous Galerkin method
with a dissipative numerical flux. Here an upwind flux is used (other choices, e.g. an interior
penalty flux, are possible).

Listing 4: UFL code defining the equations Eqs.1 for DG elements with upwind numerical flux. Note
that the backslashes denote new lines in the UFL whereas carriage returns without backslash are
formatting to keep the listing text on the page.

aD = (nD* dot (uD, grad (v1D))+ v1D* ns ta r) * dx \
+ (nD*uD [0] * dot (uD, grad (v2D [0])) + T*nD* grad (v2D [0]) [0]) * dx \
− c o n d i t i o n a l (dot (uD, norm) > 0 , v1D* dot (uD, norm) * nD, 0 . 0) * ds \

7

Figure 4: Numerical solution of eqs.1 using 100 first-order DG elements with upwind numerical
flux. Note suppression of grid-scale oscillation. Generated by SOL 1D DG upwind.py [7].

− (v1D (’ + ’) − v1D (’ − ’)) * (uD n (’ + ’) * nD(’ + ’) − uD n (’ − ’) *nD(’ − ’)) * dS \
− (v2D (’ + ’) [0] − v2D (’ − ’) [0]) * (nD (’ + ’) * uD (’ + ’) [0] * uD[0] (’ + ’) −nD(’ − ’)

*uD (’ − ’) [0] * uD [0] (’ − ’)) * dS \
− (v2D (’ + ’) [0] − v2D (’ − ’) [0]) * (nD(’+ ’) −nD(’ − ’)) * T*dS

A disadvantage of the DG method is that the degree-of-freedom count is increased due to the
duplication of boundary degrees of freedom. This problem is most acute for low orders, where
boundary degrees of freedom dominate the computation. It is noted that the DG implementations
are slower than the SU-corrected CG ones for the small codes described in this section of the
report.

The DG method has the advantage that the mass matrix is defined on a per-element basis; the
coupling between elements is exclusively via the element boundary numerical flux.

Output from the stationary-state and time-dependent DG implementations of the weak form in
Listing 5 is shown in Figs.4, 5. These outputs look better-behaved than the SU version near the
boundaries.

Listing 5: UFL code (including Irksome time-derivatives) defining the equation system Eqs.3 for
upwind DG.

8

Figure 5: Numerical solution of eqs.3 using 100 first-order DG elements with an upwind numerical
flux, starting from a Gaussian n and linear u initial condition. Plots from the left are t = 0, 1, 2, 3.
Generated by SOL 1D DG upwind irksome.py [7].

F = −((Dt (n) * v1) * dx + (n* dot (Dt (u) , v2)) * dx) \
+ (n* dot (u , grad (v1))+ v1 * ns ta r) * dx \
+ (ns ta r * dot (u , v2)+n*u [0] * grad (dot (u , v2)) [0] + n*u [0] * dot (u , grad (v2 [0]))

+Temp*n* grad (v2 [0]) [0]) * dx \
− (v1 (’ + ’) − v1 (’ − ’)) * (u n (’ + ’) * n (’ + ’) − u n (’ − ’) * n (’ − ’)) * dS \
+ (u (’ + ’) [0] * v2 (’ + ’) [0] − u (’ − ’) [0] * v2 (’ − ’) [0])

* (n (’ + ’) * u n (’+ ’) − n (’ − ’) * u n (’ − ’)) * dS \
− c o n d i t i o n a l (dot (u , norm) > 0 , v1 * dot (u , norm) * n , 0 . 0) * ds

Note also that scripts have been written to solve the above problem on 2D and 3D domains in
anticipation of elaborating this simple case into a script including the physics in the 3D LAPD
simulation; the density outputs are shown in Fig.6.

2.2 Drift-wave turbulence in Firedrake

The primary motivation for this section is to provide an initial implementation of drift-wave tur-
bulence in the transverse plane that can be integrated with the longitudinal outflow dynamics
explained above, in order to facilitate the implementation of the LAPD simulation within Nektar++.
Firedrake is again used here as an expedient framework in which to implement test cases. A sec-
ondary motivation for this work is to supplement the existing NEPTUNE 2D turbulence proxyapp,
the Nektar++-based Nektar-Driftwave [5], with an implementation in Firedrake / Irksome in which
the details of the numerical method, e.g. the choice of finite-element discretization and the choice
of time-stepper can be easily changed. (Apologia - extensive investigation of the effect of varying
the numerical method has not at the time of writing been performed but it could straightforwardly
be done, along with the addition of quantitative diagnostics such as energy, enstrophy, and power
spectra of the turbulent flow. Also, non-conservation of ω leads to obvious problems solving the
Poisson equation in the periodic case and so explicit conservation of ω is desirable. The author

9

Figure 6: Numerical solution of eqs.3 in 2D (top) and 3D (bottom), using first-order DG elements
with starting from a Gaussian n and linear u initial condition. Plots from left are t = 0, 1, 2, 3 in both
cases. Generated by SOL 2D DG upwind irksome.py [7] and SOL 3D DG upwind irksome.py [7].

thereby justifies the rather heuristic and visually-led nature of the following presentation. Note also
that performance measurements (wall times) for the codes do not reflect the scaling expected for
larger problems and are quoted in the context of obtaining a workable code that runs rapidly in
order to speed-up testing and progress toward more realistic problem e.g. the LAPD simulation.)

Nektar-Driftwave implements the Hasegawa-Wakatani equations, describing drift-wave turbulence,
for density n, vorticity ω, and potential ϕ:

∂n

∂t
+ [ϕ, n] = α(ϕ− n)

∂ω

∂t
+ [ϕ, ω] =α(ϕ− n)− κ

∂ϕ

∂y

∇2
⊥ϕ = ω.

(4)

In the above, the ‘Poisson bracket’ denotes [a, b] ≡ ∂a
∂x

∂b
∂y − ∂b

∂x
∂a
∂y .

The model is identical to that used in the existing Nektar-Driftwave proxyapp. The example sup-
plied with Nektar-Driftwave propagates the equations, starting from a Gaussian-profile density
perturbation, and a vorticity perturbation. The vorticity integrates to zero (or very nearly zero
depending on the condition that the vorticity amplitude drops to very nearly zero at the domain
boundaries), which is a property that must be preserved by periodic simulations as the vorticity
plays the role of a charge density. The simulations lasts for 50 time units using a timestep of 0.0005
time units, which is close to the stability limit of the explicit time evolution method used (standard
RK4). The small timestep means that the simulation is quite slow, taking eight hours to run on an
eight-core workstation (note that this uses a 64× 64 mesh of square p = 3 DG elements).

Note that we fix the parameters κ = 1 (strength of driving force from background gradient) and
α = 1 (called adiabaticity and related to the coupling to the out-of-plane dynamics in the 3D form
of the equations). The Firedrake examples in this section used κ = 2 and α = 2 i.e. a larger
driving force; this was done in order to ensure that the more strongly-damped cases evolved to a

10

Figure 7: Numerical solution of the vorticity from Eqs.4 from Nektar-Driftwave using a 64×64 mesh
of square third-order DG, starting from a Gaussian density perturbation initial condition. Plots from
left-to-right then top-to-bottom are t = 0, 10, 20, 30, 40, 50. Note that these outputs are not directly
comparable to the subsequent outputs from Firedrake due to the choice of different parameters;
however the appearance of these is a useful guide to the lengthscales resolved in the turbulent
state.

turbulent state. None of the examples in this section were found to need a hyperdiffusion term (in
all cases there is sufficient numerical damping to keep the time-evolution stable). The initial data
used in the 2D Firedrake examples was the same as that used in Nektar-Driftwave. The domain
is 40× 40 units in size and it has periodic boundary conditions on all boundaries.

Note that the equation system can be solved in one pass as a differential-algebraic equation
(DAE). An alternative, which is the one to which we will devote the most attention, is to update
the potential independently from the other variables in a leap-frogging fashion. This latter is the
approach used in the existing Nektar-Driftwave proxyapp, though it is the case that the potential is
solved at each stage of the RK stepper, using the vorticity field from the previous stage. Solving
the potential on a per-stage basis in this way in Irksome would require additional work beyond that
presented here.

A word on the current status of Nektar-Driftwave: the grantee (T/AW085/22) has recently made
great progress in improving the efficiency of this solver by replacing the explicit RK4 time-stepping
with an explicit method. There is also a parallel-in-time implementation, which the author under-
stands was the movitation behind the implicit implementation. It is, however, not clear whether the
performance gains will translate well to other plasma physics examples without careful consider-
ation of the preconditioning of the system (the simple 2D Hasegawa-Wakatani implementation is
found to work well without preconditioning).

11

2.2.1 Dirichlet boundary conditions

Outputs of a SU-corrected CG version (Listing 6) are shown in Fig.7.

Listing 6: UFL code defining the (non-elliptic part of the) equations for the 2D Hasegawa-Wakatani
system for CG elements with SU correction.

F = Dt (w) * v1 * dx + Dt (n) * v2 * dx \
− v1 * d iv (w* d r i f t v e l) * dx − v2 * d i v (n* d r i f t v e l) * dx \
− alpha * (ph i s −n) * (v1+v2) * dx \
+ kappa * grad (ph i s) [1] * v2 * dx \
+ 0.5* h * (dot (d r i f t v e l , grad (w)) − alpha * (ph i s −n)) * dot (d r i f t v e l , grad (v1))

* (1 / s q r t ((d r i f t v e l [0]) * * 2 + (d r i f t v e l [1]) * * 2)) * dx \
+ 0.5* h * (dot (d r i f t v e l , grad (n)) − alpha * (ph i s −n) −kappa * grad (ph i s) [1]) * dot (d r i f t v e l , grad (v2))

* (1 / s q r t ((d r i f t v e l [0]) * * 2 + (d r i f t v e l [1]) * * 2)) * dx

Note that the size of the SU term has been reduced below the amount specified by the textbook
[11], by a factor of ten. It was found that this led to a better resolution of the field activity without
showing a large increase in grid-scale oscillation.

Using p = 3 elements for the vorticity and p = 2 for density, potential and drift velocity gives a
simulation that takes approximately 21 minutes on one core of the author’s laptop.

Outputs of a DG implementation (Listing 7) are shown in Fig.9. Note that only the advected fields
are DG; CG was used for ϕ and drift velocity, as in Nektar-Driftwave and e.g. [12].

Listing 7: UFL code defining the (non-elliptic) equations for the 2D Hasegawa-Wakatani system
using upwind DG elements.

norm = FacetNormal (mesh)
d r i f t v e l n = 0 . 5 * (dot (d r i f t v e l , norm)+ abs (dot (d r i f t v e l , norm)))

F = Dt (w) * v1 * dx + Dt (n) * v2 * dx \
− v1 * d iv (w* d r i f t v e l) * dx − v2 * d i v (n* d r i f t v e l) * dx \
− alpha * (ph i s −n) * (v1+v2) * dx \
+ kappa * grad (ph i s) [1] * v2 * dx \
+ d r i f t v e l n (’ − ’) * (w(’ − ’) − w(’ + ’)) * v1 (’ − ’) * dS \
+ d r i f t v e l n (’ + ’) * (w(’ + ’) − w(’ − ’)) * v1 (’ + ’) * dS \
+ d r i f t v e l n (’ − ’) * (n (’ − ’) − n (’ + ’)) * v2 (’ − ’) * dS \
+ d r i f t v e l n (’ + ’) * (n (’ + ’) − n (’ − ’)) * v2 (’ + ’) * dS

Using p = 3 elements for the vorticity and p = 2 for density, potential and drift velocity gives
a simulation that takes approximately 100 minutes on one core of the author’s laptop. This is
significantly longer than the SU-corrected CG implementation, but the results to seem to indicate
a higher resolution of the turbulent flow.

A DG-DAE implementation was created (Listing 8). This was run for 50 time units using 500
timesteps. The timestepper was RadauIIA(2). The output shows considerably more resolution

12

Figure 8: Numerical solution of the vorticity from Eqs.4 using a 64× 64 mesh of square first-order
CG elements with a SU correction term, starting from a Gaussian density perturbation initial con-
dition. Plots from left are t = 0, 10, 20, 30, 40, 50. Note that in subsequent plots, the first three times
are not shown as they are largely identical to those in the above (the system is in a laminar regime
in which the numerical methods give visually very similar results). Note the boundary effects
caused by the use of a homogeneous Dirichlet boundary condition for the potential (and homoge-
neous Neumann for the other variables). Generated by Nektar-Driftwave port irksome SU.py

[7].

Figure 9: Numerical solution of the vorticity from Eqs.4 using a 64 × 64 mesh of square DG ele-
ments with upwind numerical flux, starting from a Gaussian density perturbation initial condition.
Plots from left are t = 30, 40, 50. Generated by Nektar-Driftwave port irksome DG.py [7].

13

Figure 10: Numerical solution of the vorticity from Eqs.4 using a 64 × 64 mesh of square DG
elements with upwind numerical flux and solving the elliptic equation for ϕ concurrently with the
rest of the system, starting from a Gaussian density perturbation initial condition. Plots from the
left are t = 30, 40, 50. Generated by Nektar-Driftwave port irksome DG DAE.py [7].

than the preceding examples, implying that the resolved scale depends on the timestep (and quite
likely the accuracy implied by the scheme for updating ϕ). This implementation was found to be
rather slow, taking approximately 24 hours to execute using a single core of a laptop. This im-
plementation at least means that fully higher-order time-stepping can be accessed without further
doctoring.

Listing 8: UFL code defining the equations for the 2D Hasegawa-Wakatani system including the
elliptic solve (DG for advected fields and CG for potential solve).

norm = FacetNormal (mesh)

F = Dt (w) * v1 * dx + Dt (n) * v2 * dx \
− v1 * d iv (w* as vec to r ([grad (ph i) [1] , − grad (ph i) [0]])) * dx

− v2 * d i v (n* as vec to r ([grad (ph i) [1] , − grad (ph i) [0]])) * dx \
− alpha * (phi −n) * (v1+v2) * dx \
+ kappa * grad (ph i) [1] * v2 * dx \
+ 0 . 5 * (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm)

+abs (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm))) (’ − ’)

* (w(’ − ’) − w(’ + ’)) * v1 (’ − ’) * dS \
+ 0 . 5 * (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm)

+abs (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm))) (’ + ’)

* (w(’ + ’) − w(’ − ’)) * v1 (’ + ’) * dS \
+ 0 . 5 * (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm)

+abs (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm))) (’ − ’)

* (n (’ − ’) − n (’ + ’)) * v2 (’ − ’) * dS \
+ 0 . 5 * (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm)

+abs (dot (as vec to r ([grad (ph i) [1] , − grad (ph i) [0]]) , norm))) (’ + ’)

* (n (’ + ’) − n (’ − ’)) * v2 (’ + ’) * dS \
+ inner (grad (ph i) , grad (v3)) * dx \
+ w* v3 * dx

The first step towards extending this model into a three-dimensional plasma fluid simulator is to

14

Figure 11: Illustration showing incorrect output from Firedrake when running with four MPI pro-
cesses. Field on surface of 3D domain shown.

put the 2D dynamics in a 3D domain. Note that this may or may not result in a system symmetric in
the new dimension, depending on the boundary conditions. A CG / SU version was implemented.
In the initial version of this script, an inconsistency was found when running with MPI (Fig.11).
This was resolved by dialogue with the developers; the problem is the discontinuous value of the
facet-tangential derivative of the potential: the interpolation was giving a different answer in MPI
depending on which cell was last evaluated. The solution is to avoid interpolating the drift velocity
onto a Firedrake function but rather to substitute the expression directly into where it is needed.
In addition, it was found that a small softening length needed to be added into the denominator
of the SU stabilization terms, else the potential solver would crash immediately. Outputs from the
working solver are shown in Figs.12 and 13.

Listing 9: UFL code defining the equation system for a MPI-capable implementation of the 2D
Hasegawa-Wakatani equations in 3D. Note softening length in denominator.

F = Dt (w) * v1 * dx + Dt (n) * v2 * dx \
− v1 * d iv (w* as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0])) * dx

− v2 * d i v (n* as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0])) * dx \
− alpha * (ph i s −n) * (v1+v2) * dx \
+ kappa * grad (ph i s) [1] * v2 * dx \
+ 0.5* h * (dot (as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0]) , grad (w))

− alpha * (ph i s −n))

* dot (as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0]) , grad (v1))

* (1 / s q r t ((grad (ph i s) [1]) * * 2 + (grad (ph i s) [0]) * * 2 + 0 . 0 0 0 1)) * dx \
+ 0.5* h * (dot (as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0]) , grad (n))

− alpha * (ph i s −n) −kappa * grad (ph i s) [1])

* dot (as vec to r ([grad (ph i s) [1] , − grad (ph i s) [0] , 0 . 0]) , grad (v2))

* (1 / s q r t ((grad (ph i s) [1]) * * 2 + (grad (ph i s) [0]) * * 2 + 0 . 0 0 0 1)) * dx \

2.2.2 Periodic boundary conditions

Two- and three- dimensional implementations with periodic boundary conditions have been writ-
ten. The 2D case took approx. 58 minutes to run - slower than the equivalent Dirichlet-boundary
simulation. Outputs are shown in Figs.14 and 15.

15

Figure 12: Numerical solution of Eqs.4, showing density, using a 64× 64× 16 mesh further subdi-
vided into tetrahedral first-order CG elements with a SU correction term, starting from a Gaussian
density perturbation initial condition modulated by a sinusoid in the longitudinal direction. Density
plotted using the Nvidia IndeX plugin in ParaView, using a custom non-monotonic colour map to
emphasize the shape of the flow features. Plots from left-to-right then top-to-bottom correspond
to t = 0, 10, 20, 30, 40, 50. Generated by Nektar-Driftwave port irksome SU 2Din3D.py [7].

16

Figure 13: Numerical solution of Eqs.4, showing vorticity, using the same mesh as in Fig.12
of first-order CG elements with a SU correction term, starting from a Gaussian density pertur-
bation initial condition modulated by a sinusoid in the longitudinal direction. Plots from left are
t = 0, 10, 20, 30, 40, 50. Generated by Nektar-Driftwave port irksome SU 2Din3D.py [7].

Figure 14: Numerical solution of Eqs.4, showing vorticity, using a periodic 64 × 64 mesh
of square first-order CG elements with a SU correction term, starting from a Gaussian
density perturbation initial condition. Plots from left are t = 30, 40, 50. Generated by
Nektar-Driftwave port irksome SU periodic.py [7].

17

Figure 15: Numerical solution of Eqs.4, showing density, using a 64×64×16 mesh of first-order CG
elements with a SU correction term, starting from a Gaussian density perturbation initial condition
modulated by a sinusoid in the longitudinal direction. Plots from left are t = 0, 10, 20, 30, 40, 50.
Note symmetry. Generated by Nektar-Driftwave port irksome SU 2Din3D periodic.py [7].

18

2.2.3 Truly 3D Hasegawa-Wakatani

A version of the fully 3D Haswgawa-Wakatani system has been implemented and preliminary
results have been obtained from it. (See HW3D SU periodic.py)

2.3 Blob2D example in Firedrake

The motivation for this work is to enable debugging of some of the examples implemented in
Nektar++ that do not yet work correctly. There are two solvers representing the examples Blob2D-
Te-Ti and 2D-drift-plane-turbulence-Te-Ti at [13]. In the present work, only the simplest example,
Blob2D, is exhibited.

The explicit solver was constructed on the basis of mirroring closely the numerical implementation
in the Nektar-Driftplane proxyapp. A higher-order explicit time-stepping scheme was chosen, after
the implementation in [3] (note that this time-stepper does not use the Irksome package). A mesh
of 64*32 square fourth-order DG elements was used, along with a timestep of dt = 2× 10−3.

Listing 10: UFL code defining the equation system for the Hermes-3 Blob2D example.

L1 = −dt * (− v1 * d i v (w* d r i f t v e l) * dx − v2 * d i v (n* d r i f t v e l) * dx \
− (ph i s *n / L par) * (v1+v2) * dx \
+ kappa * grad (n) [1] * v1 * dx \
+ d r i f t v e l n (’ − ’) * (w(’ − ’) − w(’ + ’)) * v1 (’ − ’) * dS \
+ d r i f t v e l n (’ + ’) * (w(’ + ’) − w(’ − ’)) * v1 (’ + ’) * dS \
+ d r i f t v e l n (’ − ’) * (n (’ − ’) − n (’ + ’)) * v2 (’ − ’) * dS \
+ d r i f t v e l n (’ + ’) * (n (’ + ’) − n (’ − ’)) * v2 (’ + ’) * dS)

The outputs (Fig.16) can be compared with those generated by the Nektar-Driftplane proxyapp;
see Fig.2 of [14]. As in that case, the equations simulated here have no explicit diffusive terms
(hence the behaviour is rather similar to that of an Euler fluid with the scale of feature generation
being cut off by numerical diffusion). One advantage of Firedrake is that diffusion terms are easily
added into the equations.

2.4 Plasma kinetics in Firedrake

2.4.1 Two-stream instability

The Vlasov-Poisson system is implemented in Firedrake. The code simulates the same two-
stream instability as described in the report [15] in which a prototype Nektar++ solver was imple-
mented. As noted in that report, the problem can be cast as an advection coupled to an elliptic
solve, and it can be linearized by solving the elliptic problem and using that output to compute the
advection velocity for a separate advection time step. The set-up involves two counter-propagating
beams of like-charged particles on a periodic domain, along with a static neutralizing background

19

Figure 16: Numerical solution of the Hermes-3 Blob2D system, showing density, using a 64 × 32
mesh of square fourth-order DG elements, starting from a Gaussian density perturbation ini-
tial condition. Plots show density, left-to-right then top-to-bottom t = 0, 23 ,

4
3 , 2. Generated by

Blob2D explicit.py [7].

20

to make the Poisson problem well-posed. The beams are given an initial density perturbation in
the form of a sinusoid with one period across the domain.

The Vlasov-Poisson system is, for charged matter in a uniform neutralizing background,

ḟ + v
∂f

∂x
+ E(x)

∂f

∂v
= 0;

d2Φ(x)

dx2
= −ω2

P

(∫ +∞

−∞

fdv

vN
− 1

)
;

E = −dΦ

dx
;

(5)

where the constant vN is chosen such that the domain contains no net charge. The constant ωp

is the plasma frequency, which specifies the strength of the coupling and is the only parameter
in the problem (excepting initial data). Physically this translates into ∝ e

√
n for electron number

density n for spatially-homogeneous solutions. The function f is the distribution function (DF) for
the charged particles, ρ is the charge density, and Φ is the electrostatic potential. Note that the
earlier references contain a sign error in the RHS of the second equation (the physical effect of
which is to make like charges attract, which is correct for the gravitational case, where of course
the neutralizing background is unphysical, but not the electrostatic).

A brief note about the physics. These beams repel one another and so a concentration of charge
density is associated with slower-moving particles. This is easily seen to be the case in the
simulations.

Note that this problem is also the subject of the grantee proxyapp using the TensorRegions exten-
sion to the Nektar++ library, developed under grant T/AW084/21 which had the aim of exploring
the use of Nektar++ for this type of phase-space fluid problem. The two-stream instability using
TensorRegions suffers from two outstanding issues: firstly, the solution, while showing the correct
general appearance, demonstrates a circular oscillation as if the centre of mass of the system is
undergoing simple harmonic motion; secondly, there are visible artifacts associated to element
edges that are not seen in other implementations. The aspiration of the current work is that it may
give a way to diagnose and debug the Nektar++ code, e.g. if the same artifacts can be reproduced
- this work is ongoing.

The system is implemented as an advection problem coupled to an elliptic solve. The elliptic solve
is done outside of the time-stepping stages, which is expected to limit the accuracy of the time-
stepping - as before, this can be remedied by constructing a DAE implementation. The evaluation
of the right-hand side of the Poisson equation involves the integration of f over the velocity axis
(this sort of thing is central to such kinetic problems and is technically a section of the radon trans-
form of the phase space density) and this is accomplished using the R-space functionality of Fire-
drake (this means that a function - in this case the potential - in a two-dimensional ExtrudedMesh
can be independent of one of the dimensions) and a projection of f into the R-space. Note that
unfortunately this method currently works only in two-dimensions. The author is not certain that
this projection mechanism is available for DG elements since an error is reported if trying to ob-
tain the facet normals on an ExtrudedMesh and so a SU-stabilized CG implementation was used.
The SU term leads to significant damping and stabilizes the long-term behaviour relative to the
implementation described in [15], which showed energy gain over the course of the simulation.

21

Figure 17: Numerical solution of Eqs.5 using a 64×256 mesh of square second-order CG elements
with SU correction, starting from a bi-Gaussian-beam initial condition, and using ω2

P = 10. Plots,
L-R, are t = 0, 8, 16, 24, which can be compared to similar outputs in Fig.5 of [15]. Generated by
two-stream instability SU repel.py [7].

The UFL for the advection can be seen in Listing 11.

Listing 11: UFL code defining the equation system for the non-elliptic part of the Vlasov-Poisson
system (h is the mesh cell size).

F = Dt (f) * v1 * dx \
− v1 * d iv (f * d r i f t v e l) * dx \
+ 0.5* h * (dot (d r i f t v e l , grad (f))) * dot (d r i f t v e l , grad (v1))

* (1 / s q r t ((d r i f t v e l [0]) * * 2 + (d r i f t v e l [1]) * * 2)) * dx

Note that this problem has interesting stability properties that were examined in Appendix A.3 of
[14]. These properties could easily be studied further using Firedrake.

As well as the case of two beams of like-charged particles in a neutralizing background, it is
possible to consider the situation where the beams have opposite charges i.e. they attract one
another and no neutralizing background is needed. This is easily implemented by having two
species (in the simple case presented here the two species have the same mass, but this is not
necessary and stiffness can be introduced by making one species electrons and the other much
heavier ions). The UFL for the advection in this case is shown in Listing 12.

Listing 12: UFL code defining the equation system for the Vlasov-Poisson system in the case of
oppositely-charged matter beams.

F = Dt (f a) * v1 a * dx + Dt (f b) * v1 b * dx \
− v1 a * d iv (f a * d r i f t v e l a) * dx − v1 b * d i v (f b * d r i f t v e l b) * dx\
+ 0.5* h * (dot (d r i f t v e l a , grad (f a))) * dot (d r i f t v e l a , grad (v1 a))

* (1 / s q r t ((d r i f t v e l a [0]) * * 2 + (d r i f t v e l a [1]) * * 2)) * dx \
+ 0.5* h * (dot (d r i f t v e l b , grad (f b))) * dot (d r i f t v e l b , grad (v1 b))

* (1 / s q r t ((d r i f t v e l b [0]) * * 2 + (d r i f t v e l b [1]) * * 2)) * dx

22

Figure 18: Numerical solution of Eqs.5 using a 64×256 mesh of square second-order CG elements
with SU correction, starting from a bi-Gaussian-beam initial condition, and using ω2

P = 10. Plots,
L-R, are t = 0, 8, 16, 24. The plots are done by differencing the density of the two species using a
ParaView Calculator; the plotted quantity then corresponds to the electrostatic charge density in
phase space. Generated by two-stream instability SU attract.py [7].

The potential is similar to that observed in the like-charges case - a near-sinusoid. This time the
two species behave differently - because they feel opposite potential gradients, one species is fast
at the same position that the other one is slow.

2.4.2 An analytic attractive equilbrium

Another system that can be tried in this solver is the analytic stationary solution found in Appendix
A.1 of [16]. It must be noted that, due to the sign error mentioned earlier, this is not an electrostatic
solution but rather one that applies in the case of a self-attractive force. Nevertheless, it can be
studied numerically and has some value as a test case.

The solution, which satisfies Eqs.5 (but with the sign of ω2
P flipped), is

f(x, v) =
vN√
2π

 1− 4π2Φ0

ω2
P√

Φ0 − cos 2πx− 1
2v

2
+

8π2
√

Φ0 − cos 2πx− 1
2v

2

ω2
P

ρ(x) = −ω2

P

(∫
f
dv

vN
− 1

)
= 4π2 cos 2πx;

d2Φ

dx2
= −ρ.

(6)

The non-singular case (Φ0 =
ω2
P

4π2) is

f(x, v) =
4
√
2πvN
ω2
P

√
ω2
P

4π2
− cos 2πx− 1

2
v2. (7)

23

A quick test was done on this for ω2
P = 5π2 and the solution was time-evolved for 10 time units.

Minimal change was seen in the form of the solution (Fig.19). Small perturbations were added to
the analytic equilibrium and the solution was seen to relax back to something close to the analytic
solution.

Solutions with the integrable singularity might also be tested - yet to be done.

3 A 3-D Hasegawa-Wakatani solver

Report [17] presented a NESO solver for the 2-D Hasegawa-Wakatani (hereafter HW) equations
in a 3-D domain. This section describes how the 2D-in-3D Nektar++ EquationSystem has been
extended to solve the full 3-D HW equations. These equations are of interest for two main reasons.
Firstly, as a stepping stone on the path to modelling the LAPD problem, which is the near-term goal
for plasma turbulence simulation in NESO, and second because they have already been studied
using BOUT++ [18], offering an opportunity to verify the results with the help of grantees who are
experienced users of that code.

The 3-D equations are similar to the 2-D form, but with the constant adiabacity parameter replaced
by a second order spatial derivative in the parallel direction, that is:

∂n

∂t
=− [ϕ, n]− α∇ ·

[
b(∂∥ϕ− ∂∥n)

]
− κ

∂ϕ

∂y
(8)

∂ω

∂t
=− [ϕ, ω]− α∇ ·

[
b(∂∥ϕ− ∂∥n)

]
(9)

Note that, as with the (modified) 2D Hasegawa Wakatani equations (see, e.g. [19]), n represents
a fluctuations on a fixed background, often represented as n̂. In the following discussion, we omit
the ‘hat’ notation for brevity.

∂∥ indicates a spatial derivative parallel to the magnetic field, and [a, b] is the Poisson bracket
operator, defined as

[a, b] =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
. (10)

Note that, for a scalar field f

[ϕ, f] ≡ ∇ · (fvE×B), (11)

so in the code, the Poisson brackets are implemented via the Nektar advection API, having first
calculated vE×B from Φ with a z-axis-aligned magnetic field.

As in the “2Din3DHW” system, Φ is updated at each stage of the Runge Kutta algorithm by solving
a Poisson equation

∇2
⊥Φ = ω (12)

24

Figure 19: Numerical solution of phase-space density f from 7 using a 128× 768 mesh of square
second-order CG elements with SU correction, for ω2

P = 5π2. Left-hand plots show the initial data
and right-hand plots the state after evolving for 10 time units; top is phase-space density profile
and bottom is the profile at the central x-value of the upper plots. Note that the interaction can
be seen to be attractive by the fact that greater particle speeds are associated to greater particle
density. Generated by Vlasov-Poisson analytic SU.py [7].

25

where the ⊥ subscript signifies that the operator is restricted to the two-dimensional subspace
transverse to the magnetic field.

Implementations of the 3-D HW equations in the literature, e.g. [20], typically include diffusion or
hyper-diffusion (∇4) terms in both the n and ω equations to add stability. In our solver this role is
played, to some extent, by numerical diffusion associated with the discretisation.

3.1 Implementation details

The solver provides for two ways of specifying parameters in the Nektar++ configuration file. Users
may either supply α and κ directly, or may set physical parameters which are then used to calculate
α and κ when the Nektar EquationSystem is initialised.

In this latter mode, the code first computes the Coulomb logarithm for electron-ion interactions,
logΛe,i, based on equation 131 of [21], then the electron resistivity via the Spitzer formula with a
singly charged ion, η = 5.2× 10−5logΛe,i/(T

3/2
0), [22]. α then follows from:

α =
T0

n0ηeωci
, (13)

where T0 and n0 are the background electron temperature in eV and number density in SI units,
respectively.

Recall that the turbulent drive term coefficient, κ, controls the slope of the exponential background
density profile. The user may set an approprate value for the scale length, λn and the code then
computes κ, normalising to the ion gyro-radius ρs =

√
miT0/eB.

κ =
ρs
λn

, (14)

The parallel diffusion terms in Equations(8) and (9) are implemented via the Nektar++ diffusion
API. A matrix C can be supplied such that, for a scalar field f , Nektar++ computes

∇ · (C∇f) . (15)

The matrix coefficients are labelled according to

C =

 d00 d01 d02
d01 d11 d12
d02 d12 d22

 . (16)

Setting f = (Φ− n), d22 = 1 and all other coefficients to zero, therefore yields the required term in
the 3-D HW equations:

∇ ·
[
b(∂∥ϕ− ∂∥n)

]
, (17)

with b = (0, 0, 1).

As is the case for the “2Din3D” solver, n and ω are discretised using the Discontinuous Galerkin
(DG) method, while the potential, Φ, is represented as a Continuous Galerkin (CG) field that is

26

Figure 20: A PlantUML diagram showing the inheritance structure of EquationSystem classes in
the H3LAPD (HERMES-3-LAPD) solver. Note that all member functions are shown, but member
variables are excluded for the sake of brevity. Image generated from NESO header files using the
hpp2plantuml [24] and plantuml [25] Python packages

recomputed from ω at each timestep. n and ω are evolved using an explicit 4th order Runge Kutta
scheme and the advection operations are stabilised using a first-order upwinding scheme.

Since several aspects of the numerical implementation described above are common to both the
“2Din3D” and 3-D HW equation systems, substantial refactoring of the equation system classes
(over and above that reported in M4c.3 [17]) was undertaken in order to avoid code duplication.
The refactoring is also intended to properly encapsulate functionality relevant to equation systems
that are in development, notably those used to solve the LAPD problem discussed in section 2.3.3
of report M4c.3. Figure 20 shows a PlantUML [23] diagram illustrating the new inheritance struc-
ture of C++ equation systems classes in the H3LAPD solver. Note that only member functions,
and not member variables, are shown for the sake of brevity. Public function names are preceded
by a green circle, protected functions by a yellow diamond, and private functions by a red square.

All of the systems inherit from an abstract base class called “DriftReducedSystem”, which itself
inherits from Nektar++’s “AdvectionSystem”. This base class implements a number of pure virtual
functions which all derived classes must implement, including:

• explicit time int : called by a Nektar time integrator (of explicit type) at each step to compute
terms on the right-hand side of the time evolution equations.

27

(a) Neutral particle coupling (b) Solver diagnostic callback example

Figure 21: PlantUML diagrams showing the coupling between the base equation system class
and the neutral particle system (a) and an example of attaching callbacks to a solver in order to
run analysis or diagnostics (b).

• get phi solve rhs: defines the right-hand side of the Poisson equation used to calculate the
potential

• load params: reads any class-specific parameters from the Nektar configuration file

• v InitObject : a function inherited from the Nektar++ EquationSystem class that carries out
class-specific initialisation at startup, including allocating temporary arrays, instantiating ob-
jects from the Nektar++ API, etc.

The base class also stores and initialises a system of neutral particles (see panel a of Figure 21),
which can be configured, or disabled entirely, via parameters in the Nektar XML file. All derived
classes then call functions inherited from the base class to interact with the underlying NESO-
Particles objects. An example of a coupled simulation based on the 3-D HW solver, including
ionisation and recombination, can be found in [26].

Two diagnostic classes are attached to the base class in order to monitor total fluid mass, particle
mass, energy and enstrophy (panel b of Figure 21). These can be used for analysis but are
also employed in integration tests of the solver hierarchy in order to verify that (e.g.) the process
of ionisation conserves mass in coupled solvers and that the growth of energy and enstrophy
matches analytically expected rates for the Hasegawa-Wakatani equations.

“HWSystem” includes data storage and implementation common to both the 2-D and 3-D versions
of the Hasegawa-Wakatani equations, including variables to store the α and κ parameters (de-
fined slightly differently in the two systems), an override of the get phi solve rhs function, which
retrieves the current values of the vorticity field at each quadrature point and an override of the
calc E and adv vels function that passes values of the vE×B (calculated in the base class imple-
mentation) to the electron advection object.

Finally, the “HW2Din3DSystem” and “HW3DSystem” classes implement different versions of ex-
plicit time int, adding the appropriate terms to the n and ω equations in each case.

28

3.2 Results and discussion

The results described in this section are from a simulation run in a cuboid-shaped domain using a
5x5x10 mesh with unit cube elements. Element basis functions were set to be modified 7th order
Legendre polynomials of the form described by Karniadakis and Sherwin [27]. The parameters
α and κ were set to 0.1 and 3.5 respectively. Note that this configuration does not correspond
to a specific physical scenario of interest, but was instead chosen to demonstrate evolution to
a turbulent state and to test the operation of the new equation system in the solver. The initial
conditions were set to be Gaussian in the perpendicular direction, with a width of 0.5 normalised
units, and sinusoidal in the parallel direction with a period one fifth of the box length. Periodic
boundary conditions were used in all three dimensions.

The simulation is set up as a NESO solver example, stored in the GitHub repository [28] at
examples/H3LAPD/3D-hw, at time of writing. The example directory contains a Nektar++ configura-
tion file and a GMSH file that defines the characteristics of the mesh. Utility scripts are provided to
generate a Nektar++-compatible mesh from the GMSH file and then run the example in a separate
directory, using MPI.

3.2.1 Density evolution

Figure 22 shows the evolution of the density field captured at six output times. In general, one
might expect the relatively high value of κ to drive linear growth of perturbations via the drift-
wave instability, which then undergo secondary instabilities that drive non-linear growth, generat-
ing shear and giving rise to zonal flows. While some evidence of turbulent structure is apparent in
the final output, at t=40, it appears to be somewhat less prevalent than in simulations run with the
’2Din3D’ implementation of the solver (c.f. Figure 6 in [17]), presumably due to the addition of the
diffusive term in the field-parallel direction. Examples of similar simulations in the literature (e.g.
[19]) show that, in general, a steady state is reached in which the resistive dissipation (controlled
by α) balances the turbulent drive term. Note, however, that results in Section 3.2.2 suggest that
such a state has not yet been reached by t=40.

3.2.2 Energy and enstrophy

Two quantities of interest in HW simulations are the total system energy and enstrophy. These can
be calculated with integrals over the domain:

E =
1

2

∫
(n2 + |∇⊥ϕ|2) dx (18)

W =
1

2

∫
(n− ζ)2 dx (19)

29

(a) t = 0 (b) t = 10

(c) t = 17.5 (d) t = 25

(e) t = 32.5 (f) t = 40

Figure 22: Evolution of the electron density in the 3-D Hasegawa-Wakatani solver at several output
times.

30

Figure 23: Rates of energy and enstrophy growth, in normalised units, for the first 100 steps of
the simulation. Dashed lines indicate analytic expected values in each case, calculated based on
Equations(20) and (21).

As explained in reference [19], the energy and enstrophy are expected to evolve at rates

dE

dt
= Γn − Γα (20)

dW

dt
= Γn (21)

where

Γα =

∫
α[

∂

∂z
(n− ϕ)]2 dx (22)

Γn = −κ

∫
n
∂ϕ

∂y
dx (23)

In order to study these quantities with NESO, a solver callback was added to the HWSystem class
to compute E, W , Γα and Γn at each step and write them to file.

Figure 23 shows the rates of change of E and W over the first 100 steps of the simulation (in the
linear growth phase), together with the expected values calculated from Equations(20) and (21).
The former are calculated by differencing each quantity between consecutive steps and dividing
by the system timestep. Both quantities grow at a rate very close to the expected values, verifying,
to a degree the implementation of the “3DHW” equation system.

In Figure 24, the evolution of the total energy is plotted over the full simulation duration. In a steady
state, where resistive dissipation matches turbulent drive from the background density profile, one
expects Γα = Γn, such that the total energy saturates. In this simulation it is clear that the system
is still in flux at t = 40 and has not yet reached the saturation point.

31

Figure 24: Evolution of the total system energy over the full duration of the simulation. Time and
energy are plotted in normalised units.

32

3.3 Summary

The 3-D Hasegawa-Wakatani equations have been implemented in NESO by adding a new Nek-
tar++ equation system to the “H3LAPD” solver. Substantial refactoring work has been undertaken
to avoid code duplication and to facilitate coupling between the various H3LAPD systems and an
ensemble of kinetic neutrals modelled with NESO-Particles, an example of which is demonstrated
in report [26].

Analysis of the total energy and enstrophy in our example simulation demonstrates good agree-
ment with the evolution predicted analytically, and reveals that the total duration may be slightly
too short to reach a steady state. Further verification of our 3-D HW implementation is already
underway via a comparison to the results presented by the York grantees in report [29].

4 Producing Field-Aligned Meshes

This section describes the work done to produce field-aligned meshes for calculating anisotropic
diffusion.

In finite difference (and low-order finite-element) codes it has been found that anisotropic diffusion
can only be solved accurately if the mesh is aligned with the magnetic field. Otherwise the solver
will converge to the wrong solution. This issue may be less significant for higher-order finite differ-
ence basis functions, but there could still be performance benefits if a lower-order basis could be
used to achieve the same level of accuracy.

While it is possible to generate meshes where elements follow magnetic field-lines, the problem
that arises is that, in general, field lines will not form a closed loop after a single circuit of a
tokamak. This means there would be a discontinuity at ϕ = 0, 2π where faces of adjacent elements
would not align. In finite difference codes the toroidal direction is not actually aligned with the field
but interpolation is used when taking derivatives along the field-lines.

A similar approach can be used for finite element methods. First, a poloidal mesh is generated in
the plane with ϕ = 0. The field line intersecting each control point in that mesh is then followed
to ±∆ϕ/2, where ∆ϕ is the toroidal grid spacing. These field lines will make up the edges of
one “layer” of elements. Successive layers will be identical except rotated a suitable angle in
the toroidal direction. In general the poloidal faces of elements in adjacent layers will not align
and are said to be “nonconformal”. There are established algorithms to interpolate values from
nonconformal elements when using the discontinuous Galerkin method[30]. DG is less efficient
than Continuous Galerkin for elliptical problems such as diffusion. In production, however, there
will also be hyperbolic terms in the equations, at which point it will be necessary to use DG anyway.

Note that it is assumed that the equilibrium magnetic field is axisymmetric, i.e., does not depend
on ϕ. This means that the shape of elements only needs to be computed for one layer; all layers
would be the same except rotated in ϕ. The techniques outlined in this section could be modified
to work without axisemmetry but this would be more computationally expensive as every layer
would need to be calculated individually.

33

4.1 NESO-fame

It is necessary to generate a mesh that can be used by Nektar++. Gmsh meshes can be converted
to the Nektar++ format and, if necessary, undergo further manipulations using the NekMesh tool.
This is the workflow which is normally used. Unfortunately, Gmsh and most other existing software
for generating meshes does not allow one to specify the exact arrangement and alignment of
elements within the domain. This meant it was not suitable to ensure the elements are field-
aligned. Instead, new software had to be written. This was called NESO-fame, where “fame”
stands for “field-aligned mesh extrusion”.

Data on equilibrium magnetic fields for tokamaks are usually distributed using the G-EQDSK
format. To avoid needing to implement a new reader for EQDSK files, the existing hypnotoad

package was used. This software was designed to generates meshes for the BOUT++ finite dif-
ference library[31]. In addition to reading the EQDSK file, it can be used to generate (most of)
the 2D poloidal mesh from which the 3D mesh will be extruded. The only disadvantage of using
hypnotoad is that it is released under the GNU General Public License, meaning that NESO-fame
also had to use this license. However, NESO-fame is sufficiently ancillary to the main NEPTUNE
codebase that this was considered an acceptable compromise. Furthermore, it remains possi-
ble to write a replacement for the hypnotoad functions used in fame in the future, if it becomes
necessary to distribute the latter under a more permissive license.

hypnotoad is written in Python, so the NekPy Python bindings were used to produce Nektar++
meshes from it. This required a few additional class and method bindings to be added to NekPy,
particularly for nonconformal interfaces.

4.2 2D and Simple 3D Meshes

Initial work focused on very simple 2D and 3D meshes. For further simplicity, these used Carte-
sian coordinates rather than cylindrical. NESO-fame would first generate a structured 1D or a
2D mesh. It would take the angle between the magnetic field and the normal direction of this
mesh and extrude each element along that angle. The user would specify how many “layers”
there would be in the direction of the field. Between each layer is a nonconformal interface (see
Figures 25b and 26b). Each layer can be further subdivided into conformal elements in the field
direction, if desired (see Figures 25c and 26c). This makes it possible to experiment to determine
what frequency of conformal and nonconformal interfaces can give the best accuracy for the least
computational cost.

It was planned to use the existing Nektar++ anisotropic diffusion mini-app [32] to compare the
accuracy of 2D meshes with no field alignment, with fully-conformal field alignment, and with field
alignment and non-conformal interfaces. The computational cost of each of these would also be
compared. However, it was discovered that the mini-app only worked with the Continuous Galerkin
method and that Nektar++ did not support Neumann boundary conditions with the Discontinuous
Galerkin method. These only became available in the final weeks of the NEPTUNE project. Sup-
port for 3D meshes in the mini-app was not available at the time of writing.

34

(a) Unaligned, Conformal (b) Aligned, Nonconformal (c) Aligned, Subdivided

Figure 25: Examples of various types of 2D meshes which are aligned (or not) to a magnetic field
with a 2◦ angle to the x-axis.

4.3 Generating a Poloidal Mesh

While awaiting the changes to Nektar++ necessary to benchmark anisotropic diffusion in the 2D
case, work continued to generate realistic tokamak meshes. The first step of this was to produce
a useful 2D poloidal mesh.

The starting point was a poloidal mesh generated by hypnotoad from a G-EQDSK file. hypnotoad
provides a large number of configurable parameters and a graphical user interface which allows
one to experiment with the values of these and preview the result. These meshes are made up
of quads. Two edges of each quad follow flux surfaces and the other two are (by default) perpen-
dicular to flux surfaces. This mesh can be brought arbitrarily close to the core of the tokamak, but
will always have a hole in the centre. The mesh will not conform to the wall of the tokamak (the
shape of which will typically be included in a G-EQDSK file). Some portions of it may protrude
past the wall, while in other regions there may be a gap between the mesh and the wall; compare
Figures 27a and 27b.

4.4 Filling the Gaps

Filling the hole in the centre was straightforward. The quad edges closest to the centre are used
as one edge of a triangular element, with the other edges formed by perpendicular segments
connecting to the O-point. Due to numerical difficulties, these edges deviate slightly from perpen-
dicular when very near the centre, instead taking the shortest path in Euclidean space for the rest
of the distance. Note that extending the mesh into the centre is optional; if this region is not of
interest then a boundary condition can be imposed on the inner edge of the annulus instead.

Next, any vertices of the hypnotoad mesh which lie outside the tokamak wall are eliminated. The
user may also specify some minimum distance between these vertices and the wall; any vertices
nearer than that will also be removed. It is necessary to follow the field lines starting at these
vertices (see next section), to ensure that at no point will the edge of the element extruded from
this node pass outside the wall or within the minimum distance to the wall. The meshpy library, with

35

(a) Unaligned, Conformal (b) Aligned, Nonconformal

(c) Aligned, Subdivided

Figure 26: Examples of various types of 3D meshes which are aligned (or not) to a magnetic
field with a 2◦ angle from the x-axis towards the y-axis and a 2◦ angle from the x-axis towards the
z-axis.

36

(a) Basic hypnotoad mesh (b) Fitted to the tokamak vessel

(c) Adjusted wall resolution (d) Merged very narrow elements

Figure 27: Poloidal meshes from which 3D meshes can be extruded, demonstrating how they are
adjusted from the output of hypnotoad. (a) The mesh generated by hypnotoad. (b) The previous
mesh but restricted to inside the tokamak vessel, with any empty spaces filled in with triangles. (c)
The same, except with the wall resolution adjusted to more closely match that of the main mesh.
(d) Very narrow elements above the x-point have been merged, so this region is not over-resolved.

37

the triangle code as a backend, was then used to produce triangles to fill the space between the
remaining hypnotoad vertices and the tokamak wall.

An example of applying these adjustments can be found in Figure 27b.

4.4.1 The Wall

The information on the shape of the wall provided in the G-EQDSK data consists of a series of lin-
ear segments. The length of these segments can vary significantly and may be much smaller than
the resolution of the mesh being generated. Generating a high quality mesh therefore requires
adjusting the shape and resolution of the wall, before generating the triangular elements between
it and the hypnotoad mesh. The user may specify a target wall resolution. This is expressed as a
multiple of the average size of the hypnotoad mesh edges that are closest to the wall. The user
will also specify the minimum size of any sharp angles which should be preserved after regridding.

Adjacent line segments are put into groups, separated by sharp angles above the user-provided
threshold. The total length of each group in space is calculated. If a group has a length less
than 0.1 of the target size then it is deleted and the ends of adjacent groups moved to its centre.
Cubic splines are used to interpolate the shape of the remaining groups. A number of curved
segments, as close to the target length as possible, will be created for each group. The length of
the segments created from the same group will be equal, but in general the length of segments
from different groups will not be. An example of a mesh with a regridded wall can be found in
Figure 27c.

4.4.2 Improving Mesh Quality

All of these 2D elements may be higher-order (i.e., have non-linear edges). This allows the flux
surfaces and perpendiculars to be followed more accurately. The triangles near the wall of the
tokamak will mostly have straight edges, except where they adjoin the hypnotoad-generated mesh
or the wall itself. As the triangle code assumes first-order elements it can sometimes produce
shapes that are self-intersecting once curved edges are applied. To guard against this, the Jaco-
bian of each triangle adjacent to the wall is checked. Those with negative Jacobians (indicating
self-intersection) may be merged with an adjacent triangle to produce a quad or, if no such quad
is well-formed, forced to be first-order.

Lines that are perpendicular to the flux surfaces tend to diverge near the X-point. Ensuring there
is adequate resolution in that region will often result in overly-resolved areas towards the O-point,
where these lines converge. Columns of elements radiating away from the X-point and towards the
O-point are checked to see if elements become extremely narrow. If the ratio between their length
and width exceeds some threshold (set by the user), they are merged with adjacent elements. This
means computational resources will not be wasted with unnecessary resolution. An example of a
mesh to which this process has been applied can be found by comparing Figure 27c to Figure 27d.

38

4.5 Following the Field

The path of a field line is the solution to the following system of differential equations:

dR

dϕ
=

BR(R,Z)

Bϕ(R,Z)
,

dZ

dϕ
=

BZ(R,Z)

Bϕ(R,Z)
.

(24)

A solution would have the form R(R0, Z0, ϕ), Z(R0, Z0, ϕ), where R0 and Z0 are the coordinates
where the field line intersects the poloidal plane at ϕ = 0. In general there will not be a closed
form for this solution and it must be integrated numerically from the G-EQDSK equilibrium data. To
extrude the 2D elements into the toroidal direction, this integral is evaluated starting at the control
points on each of the edges of the toroidal mesh. The integral is taken from ϕ = 0 to ϕ = ±∆ϕ/2,
where ∆ϕ is the spacing of elements in the toroidal direction. The distance travelled along the field
line is also calculated. The results for each field line are then interpolated against the normalised
distance travelled, to ensure that any new control points are equally-spaced on the line.

This will not work for elements falling between the mesh generated by hypnotoad and the tokamak
wall, as the field line may leave the tokamak vessel. The edges of these elements are therefore
left unaligned, with R(ϕ) = R0 and Z(ϕ) = Z0. Elements immediately outside the hypnotoad

mesh will have some edges that are field-aligned and some that are not. This can sometimes
cause the element to be self-intersecting. It is also anticipated that the sudden transition might
cause numerical artefacts. To avoid this, the user can specify the number of steps to take between
elements that are fully field-aligned and fully unaligned. Elements within the hypnotoad mesh but
near its edge will have edges that are the weighted average between the aligned and unaligned
shape, with the weight of the unaligned component rising as the edge is approached. It is this
weighted average that is used when evaluating whether a vertex and its corresponding field line
lie within the tokamak vessel (see Section 4.4).

An example of the meshes generated by this process can be found in Figure 28.

5 Grantee Deliverable Summaries

Each section below summarises the deliverables received from a grantee, with one report or code
deliverable per subsection. A link is provided in the title to the location of the accepted report,
where applicable. Accepted reports are held on the Documents repository of the ExCALIBUR-
NEPTUNE organisation on GitHub, to which belong other repos containing software developed
under project NEPTUNE. Note that some of these repos may be access-controlled, please email
neptune@ukaea.uk if difficulties are encountered in seeing the material.

5.1 Reports received under Grant T/AW086/22, PO 2070839

The Oxford grantee produced the following reports

39

Figure 28: The field-aligned mesh for a quadrant of a tokamak. On the left is the full mesh, while
on the right some of the elements have been hidden to give a view of the mesh interior. Edges
and quads on the surface of the tokamak are not field aligned and are therefore conformal. This
contrasts with the internal elements.

40

5.1.1 Report 2070839-TN-03 [33]

The report examines how best to formulate the calculation of the electrostatic potential ϕ when
solving the drift kinetic equations, to ensure the potential is accurately and stably computed nu-
merically. Use of the Boltzmann response to calculate ϕ may give rise to a significant error. The
first requirement is therefore a way of deciding when the Boltzmann response is inadequate, which
is addressed by a theory that makes a perturbation to the Boltzmann response in the estimation.
If the perturbation is small, then it is used to correct the Boltzmann response, otherwise a far
more complicated formulation leading to the electron fluid equations for electron density, velocity
and temperature is argued to be necessary. One truncated variant is shown to be equivalent to
drift-reduced Braginskii. The analytic results in the report should be valuable for ensuring accurate
and efficient numerical solution of drift kinetic equations.

5.1.2 Report 2070839-TN-04 [34]

The report describes work designed to test using the Method of Manufactured Solutions (MMS),
correct implementation of the 2-D drift kinetic model introduced in previous reports from Oxford,
and restated in the current report. This work has exposed limitations both of high order finite
elements and of MMS, one of the latter being somewhat subtle. Dealing first with the limitations of
high order, the peculiar nature of the boundary condition implies that the chosen solution becomes
zero at off-node points, ie. effectively discontinuous. Moreover, solutions corresponding to realistic
source terms are expected to have the sheath singularity dependence, ϕ ∝

√
z, where ϕ is the

electric potential. Spectral convergence is only to be expected when approximating a smooth
solution. Otherwise, two strategies to obtain better convergence are possible, the first (adopted)
is to use lower order elements, but more of them, and this was successful. The second option,
particularly applicable to a known form of singularity, is to use singular elements, treated in detail
by Strang and Fix [35], as referenced by Boyd [36, § 16.6]. This suggestion is added to the list of
options for further exploration and testing of the model implementation at higher accuracy.

The first limitation of MMS exposed by the study is inappropriateness of the function chosen,
which does not have the expected singular potential behaviour. Secondly, evidence is presented
of the more subtle issue that the source implied by the solution chosen tends to provoke a short
wavelength instability. Convergence is restored by appropriately chosen numerical dissipation,
again of course at the expense of accuracy. Nonetheless, it is hard to doubt the correctness of
coding and likely fidelity of simulation to be achieved using the program, for which a link to the
repository is given in Appendix A.

5.1.3 Report 2070839-TN-05 [37]

Report 2070839–TN–05 continues the series of high-quality reports produced by Oxford for the
project, with clear explanations, notably as to why particular options have been selected. The
report concentrates on the treatment of the electrons, leaving description of the kinetic modelling
of the ion and neutral species to previous reports. A further assumption, made for the purposes
of the Oxford development, is that not only are the models 1-D in space, but also in velocity

41

space 1d1v, where the relevant component is parallel to the magnetic field, which is here taken to
be uniform and straight in the z-direction.

The electron treatment is moment-based, implying a set of fluid-like equations for mass/charge,
momentum and energy. The electron momentum balance gives the electric field which can other-
wise be hard to calculate. Boundary conditions are chosen so that the electrons have the same
density and velocity as the ions. Tests show that making zero flux assumptions, an electron Boltz-
mann response is recoverable, and that using the Braginskii closure a steady state is achievable,
although the E-field is noisy.

5.1.4 Report 2070839-TN-06 [38]

The report 2070839–TN–06 continues the series of high-quality reports produced by the Oxford
grantees for the project, with clear explanations, notably as to why particular options have been
selected. The model is 1D2V for the ions, which are coupled to Boltzmann electrons as in previous
Oxford reports, the novelty here being the collision operator for the ions. Two different operators -
the simple Krook and a more complicated gyro-averaged Fokker-Planck type - are introduced as
indicated in the report title.

The simple Krook operator is used in the range of Knudsen numbers 0.1 to 100 where both ac-
curate modelling and intuition about likely results are hard to come by. Nonetheless, there is a
satisfactory test of the code by the Method of Manufactured Solutions (MMS), and physically plau-
sible ‘smooth’ solutions are found for a Maxwellian particle source, in the presence of a small
artificial viscosity. There are numerical challenges associated with the latter Fokker-Planck opera-
tor since it leads to fourth order derivatives, and its calculation involves integration over the infinite
range and an inverse square-root singularity at one integration limit. Progress has been made in
the understanding of these issues.

5.1.5 Report 2070839-TN-07 [39]

The report 2070839–TN–07 describes in sufficient detail for implementation, the use of a high
order basis to treat the Rosenbluth-MacDonald-Judd form of the Fokker-Planck collision operator
for charged particle species. The basis consists of the direct product of Lagrange polynomials
in velocity coordinatesr v∥ and v⊥ defined on Lobatto points except for the element including
v⊥ = 0. Since the operator involved is both nonlinear and integro-differential, and there are chal-
lenging boundary conditions at infinity, as well as the usual issues expected at the origin of a
radial coordinate v⊥, the analysis involves approximately 100 numbered equations. Preliminary
testing and timing of the initialisation and a single step calculation using the operator is success-
fully performed, with results that the subsequent discussion concludes are encouraging for further
implementation.

42

5.1.6 Report 2070839-TN-08 [40]

The report 2070839–TN–08 describes openly and honestly progress made in pursuit of a challeng-
ing technical objective. The objective of a more accurate electron distribution function is pursued
further in report 2070839–TN–10, of which see the summary below for more technical details of
the objective and the latest progress.

5.1.7 Report 2070839-TN-09 [41]

The report 2070839–TN–09 describes the introduction into the ExCALIBUR drift-kinetic (“Ox-
ford”) model of a magnetic field of spatially varying strength (formerly only field direction varied).
This z-dependence of Bz leads to more complex ion dynamics, whilst the electrons are treated as
adiabatic. It is argued that in the 1-D and 2-D situations considered, it is adequate to demonstrate
magnetic mirroring without forcing the field to be solenoidal. The Method of Manufactured Solu-
tions is used to test the resulting software, demonstrating spectral convergence in both one- and
two- space dimensions, where in the latter case the solution is assumed to be periodic in the radial
coordinate. The success of the tests bodes well for more complicated open field geometries.

5.1.8 Report 2070839-TN-10 [42]

The report 2070839–TN–10 returns to a problem attacked unsuccessfully in previous work [43],
viz. to find an electron particle distribution function fe by replacing use of the Boltzmann assump-
tion with a less prescriptive formulation. Indeed, the new model for evolution of fe is almost as de-
tailed as for the ion species fi, the major difference being the assumption that fe may be evolved
in pseudo-time to find a steady-state. The new model equation (42) for ge ∝ fe is inevitably of
a complicated integro-differential form with boundary conditions that are linked to the fi distribu-
tion via the electric potential. The boundary conditions are reformulated to impose a zero parallel
current.

Following implementation of the new boundary conditions and other changes to the coding, Com-
putations assuming up-down spatial symmetry obtain physically reasonable fe except very near
the domain boundaries where a finite grid-scale oscillation is observed. Thus, the work demon-
strates significant progress towards more accurate calculation of electron behaviour, but indicates
that more research is still needed.

5.2 Reports and code deliverables received under Grant T/AW085/22, PO 2068435

The KCL grantee produced the following reports and code deliverables

43

5.2.1 Report 2068435-TN-01 [44]

The report 2068435-TN-01 presents in Section 2, Nektar++ implementations of three HERMES-3
examples in 2-D, viz. Blob2D, Blob2D-Te-Ti, and Blob2D-Te-Ti-Turb, the last of these in pre-
liminary form. All have domains that are simple square regions, but the equations become more
numerous and complicated with each example. Section 3 contains an explanation of the various
Nektar++ components needed to implement a Discontinuous Galerkin (DG) solver and their use in
the API. Section 4.1 contains implementation details including two alternative ways of solving the
Poisson problem in the Blob2D-Te-Ti case; one method works while the other does not. Further
work is needed to understand the reason for this, possibly there are problems with the dimen-
sionless scaling. Section 4.2 considers an issue with the initial version of the Blob2D proxyapp, in
that the numerical flux implementation in the DG solver was not fully conservative, however little
difference is observed after modification. Section 5 suggests further work, incidentally mentioning
changes to help developers deal with multi-species problems.

5.2.2 Report 2068435-TN-02 [45]

The report 2068435-TN-02 discusses improvements made to the Nektar++ mesh generation
toolkit that cover many different aspects. It contains links to the relevant merge requests in the
Nektar++ repository for the new and corrected code.

The report describes the following:

1. Completion of work on r-adaptation of mesh (ie. the movement of finite elements according
to suitable criteria, without introduction of additional elements), with an associated figure
showing anisotropic refinement of a grid around a circle.

2. Usability improvements with relation to mesh quality - statistics of the values of mesh-map
Jacobians are printed out to the screen including graphics showing the distribution of Jaco-
bians.

3. Bug fixes and improvements for domains incorporating periodicity have made periodic do-
mains with pyramidal cells more robust, which should improve the situation where oscillations
would emanate from periodic boundaries.

4. Improvements to isoparametric layer mesh generation in boundary layers. Previously, face
curvature was not used, which led to low quality meshes especially at low resolution. This
has now been fixed.

5. An examination of tokamak-relevant first wall geometries, which discusses the generation of
a higher order mesh from simplified CAD models of a divertor concept. The bad elements
which were found, are attributed to areas of poor CAD parameterisation.

6. Some future directions for NekMesh post-NEPTUNE. This section describes planned (and
funded) work to make the NekMesh code more robust, extend the Python API, and to provide
a standalone GUI for use by non-experts. Another workstream is the development of an
Industrial Pipeline and wrapping that functionality back into NekMesh and Nektar++. Finally,

44

plans are laid out to incorporate NekMesh into Nektar++ so that the mesh can be modified
at runtime, enabling eg. dynamic load balancing.

5.2.3 Code deliverable 2068435 Deliverable 4, Task 3.2

This deliverable consists of modifications to the Nektar++ codebase, submitted in the form of
merge request !1759 in the main Nektar GitLab repository. It entails the addition of the ”MUI”
(Multiscale Universal Interface) library Nektar++ as an alternative coupling framework to ”CWIPI”.

MUI has been enabled via additions to the MPI communications code, as is required for coupling
frameworks over a split MPI commicator. Further alterations have been made to the simulation
configuration tools, so that coupling may be defined via the standard user interface. In addition to
these source code changes, there is a DummyMui EquationSystem, which serves as an example
of how to couple codes (in this case two solvers within Nektar++) in 1, 2 and 3 spatial dimensions.

All tests added to the code as part of the merge request have been confirmed to execute success-
fully by a UKAEA reviewer.

5.2.4 Code deliverable 2068435 Deliverable 5, Task 3.3

This deliverable consists of modifications to the Nektar++ codebase, submitted in the form of
two merge requests, !1379 and !1752 in the main Nektar++ GitLab repository. They expand
Nektar’s existing set of Python bindings (NekPy) to include the SolverUtils library, which allows
time-evolving Nektar solvers to be run directly from Python for the first time.

Demos are provided for an unsteady implicit diffusion solver and a Helmholtz solver, both in 2D
domains.

In the context of project NEPTUNE, these changes have two important benefits:

1. The potential for rapid prototyping of new equation systems in Python, reducing overall de-
velopment time

2. The removal of one of the major obstacles to building a Python DSL for Nektar++ solvers

All tests added to the code as part of the two merge requests have been confirmed to execute
successfully by a UKAEA reviewer.

5.2.5 Code deliverable 2068435 Deliverable 1, Task 1.3

This deliverable consists of modifications to the Nektar++ codebase, submitted in the form of
merge request !1743 in the main Nektar GitLab repository. It is the third and final part of deliverable
1, which comprises a significant refactoring of Nektar’s core libraries, with the aim of enhancing
the modularity and performance portability of the code.

45

https://gitlab.nektar.info/nektar/nektar/-/merge_requests/1759
https://gitlab.nektar.info/nektar/nektar/-/merge_requests/1379
https://gitlab.nektar.info/nektar/nektar/-/merge_requests/1752
https://gitlab.nektar.info/nektar/nektar/-/merge_requests/1743

The changes that have been made decouple operators from the data that they act upon, lifting a
restriction that was significantly limiting the capacity of the code to be performance portable. This
decoupling also means that developers can implement their own operators and use them with
other Nektar++ components, without having to make changes to Nektar itself.

All tests added to the code as part of the merge request (for both CPU and CUDA-based operators)
have been confirmed to execute successfully by a UKAEA reviewer.

While the grantee only committed to adding (refactored) CPU-based implementations for each op-
erator, CUDA versions, suitable for execution on NVIDIA GPUs, have also been written in several
cases. The overall effect of these changes is to make the software more suitable for developing
Exascale-capable applications.

6 Summary

This report has presented results from a number of workstreams related to the implementation of
3-D plasma turbulence equations in a realistic tokamak geometry using finite element techniques.

A variety of test cases were implemented using the Firedrake finite element code, demonstrat-
ing its utility as a tool for rapid prototyping as well as for experimenting with different numerical
implementations and debugging existing NEPTUNE Proxyapps.

An implementation of the 3-D Hasegawa-Wakatani equations using Nektar++ was demonstrated,
intended as a stepping stone to a more complex set of fluid plasma equations. The code extends
existing Nektar++ solvers embedded in NESO whilst retaining existing functionality (in particular,
coupling to a kinetic neutrals framework) via a substantial code refactoring exercise.

The report also described NESO-fame, a tool for generating field-aligned meshes. Particular
focuses of this work were on producing meshes that can conform to the first wall of the tokamak
and that are of sufficient quality to use in scalable fluid plasma simulations.

Finally, summaries were provided for a number of grantee deliverables, covering ongoing im-
provements to the Oxford grantee’s finite element drift-kinetic model and various updates to the
Nektar++ codebase that enhance its suitability for modelling fusion-relevant problems on Exascale
platforms.

Acknowledgement

The support of the UK Meteorological Office and Strategic Priorities Fund is acknowledged. ET
acknowledges assistance from the rest of the UKAEA NEPTUNE team, as well as Hussam al-
Daas (STFC), Professor Patrick Farrell (Oxford) and Professors Colin Cotter and David Ham of
Imperial College London.

46

References

[1] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, An-
drew T. T. Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Fire-
drake: automating the finite element method by composing abstractions. ACM Trans. Math.
Softw., 43(3):24:124:27, 2016. URL: http://arxiv.org/abs/1501.01809, arXiv:1501.01809,
doi:10.1145/2998441., 2015.

[2] Patrick E. Farrell, Robert C. Kirby, and Jorge Marchena-Menendez. Irksome: Automating
runge–kutta time-stepping for finite element methods, 2020.

[3] DG advection with upwinding. https://www.firedrakeproject.org/demos/DG_advection.
py.html. Accessed: March 2024.

[4] Busch K., Koenig M., and Niegemann J. Discontinuous Galerkin methods in nanophotonics.
Laser and Photonics Reviews Vol.5 Issue 6 (Nov 2011)., pages 773–809, 2011.

[5] Nektar-Driftwave. https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave. Ac-
cessed: March 2023.

[6] E. Threlfall and W. Arter. Finite Element Models Complementary Actions: Code Integration,
Integration and Operation 3. Technical Report CD/EXCALIBUR-FMS/0079, UKAEA Project
Neptune, 2023.

[7] m6c5 scripts. https://github.com/ethrelfall/m6c5_phase2/tree/main, 2024. Ac-
cessed: March 2024.

[8] Hermes-3. https://hermes3.readthedocs.io/en/latest/examples.html#

d-drift-plane. Accessed: March 2023.

[9] STORM. https://github.com/boutproject/STORM, 2024. Accessed: March 2024.

[10] W. Arter. Equations for ExCALIBUR / NEPTUNE proxyapps. Technical Re-
port CD/EXCALIBUR-FMS/0021, UKAEA Project Neptune, 2023. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf.

[11] Donea J. and Huerta A. Finite Element Methods for Flow Problems. Wiley, 2003.

[12] Bernsen E., Bokhove O., and van der Vegt J.J.W. A (Dis)continuous finite element model for
generalized 2D vorticity dynamics. Memorandum No. 1787, Department of Applied Mathe-
matics, University of Twente, 2005.

[13] Nektar-Driftplane. https://github.com/ExCALIBUR-NEPTUNE/nektar-driftplane. Ac-
cessed: March 2023.

[14] E. Threlfall, J. Cook, M. Barton, O. Parry, W. Saunders, and W. Arter. Complementary actions.
Code integration, acceptance and operation 3. Technical Report CD/EXCALIBUR-FMS/0074-
M6c.3, UKAEA, 3 2023. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/ukaea_reports/CD-EXCALIBUR-FMS0074-M6c.3.pdf.

47

https://www.firedrakeproject.org/demos/DG_advection.py.html
https://www.firedrakeproject.org/demos/DG_advection.py.html
https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave
https://github.com/ethrelfall/m6c5_phase2/tree/main
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://hermes3.readthedocs.io/en/latest/examples.html#d-drift-plane
https://github.com/boutproject/STORM
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.26-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/nektar-driftplane
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0074-M6c.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0074-M6c.3.pdf

[15] E. Threlfall and W. Saunders. Support high-dimensional procurement. Techni-
cal Report CD/EXCALIBUR-FMS/0066, UKAEA Project Neptune, 2022. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0066-M4.1.pdf.

[16] E. Threlfall, O. Parry, and W. Arter. Finite Element Models Complementary Actions: Code In-
tegration, Integration and Operation 3. Technical Report CD/EXCALIBUR-FMS/0074, UKAEA
Project Neptune, 2023.

[17] J. Cook, W. Saunders, and O. Parry. Three-Dimensional integrated particle and
continuum model. Technical Report CD/EXCALIBUR-FMS/0079-M4c.3, UKAEA, 9
2023. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_

reports/CD-EXCALIBUR-FMS0079-M4c.3.pdf to be posted.

[18] B.D. Dudson. BOUT++ repository. https://github.com/boutproject/BOUT-dev, 2020. Ac-
cessed: June 2020.

[19] R. Numata, R. Ball, and R.L. Dewar. Bifurcation in electrostatic resistive drift wave turbulence.
Physics of Plasmas, 14:102312, 2007.

[20] B. Friedman and T. A. Carter. A non-modal analytical method to predict turbulent properties
applied to the Hasegawa-Wakatani model. Physics of Plasmas, 22(1):012307, 01 2015.

[21] W. Arter et al. Equations for EXCALIBUR/NEPTUNE Proxyapps. Techni-
cal Report CD/EXCALIBUR-FMS/0021-1.30-M1.2.1, UKAEA, 6 2023. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/

CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf.

[22] F.F. Chen. Introduction to Plasma Physics, 3rd ed. Springer Science & Business Media,
2012.

[23] A. Roques and open source developers. Plantuml website. https://plantuml.com/, 2024.
Accessed: February 2024.

[24] T. Marin. hpp2plantuml python package. https://pypi.org/project/hpp2plantuml/, 2024.
Accessed: February 2024.

[25] D. Napoleone, S. Marks, and E. Frederich. plantuml python package. https://pypi.org/

project/plantuml/, 2024. Accessed: February 2024.

[26] J. Cook, E. Threlfall, , O. Parry, W. Saunders, and W. Arter. Three-Dimensional integrated
particle and continuum model continued. Technical Report CD/EXCALIBUR-FMS/0082-
M4c.4, UKAEA, 3 2024. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/ukaea_reports/CD-EXCALIBUR-FMS0082-M4c.4.pdf.

[27] G. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid dy-
namics 2nd Ed. Oxford University Press, 2005. https://doi.org/10.1093/acprof:oso/

9780198528692.001.0001.

48

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0066-M4.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0079-M4c.3.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0079-M4c.3.pdf
https://github.com/boutproject/BOUT-dev
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.30-M1.2.1.pdf
https://plantuml.com/
https://pypi.org/project/hpp2plantuml/
https://pypi.org/project/plantuml/
https://pypi.org/project/plantuml/
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0082-M4c.4.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0082-M4c.4.pdf
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001

[28] J. W. Cook, J. T. Parker, W. R. Saunders, and Parry O. Neptune Exploratory SOftware
(NESO) repository. https://github.com/ExCALIBUR-NEPTUNE/NESO, 2023. Accessed: Jan-
uary 2023.

[29] C. Ridgers and M. Kryjak. Benchmarks for basic turbulence cases (Report on Test Cases
and Proxy-App) - updated . Technical Report 2067270-TN-06, UKAEA Project Neptune,
2024. to be posted at https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/2067270/TN-06.pdf.

[30] Edward Laughton, Gavin Tabor, and David Moxey. A comparison of interpolation techniques
for non-conformal high-order discontinuous galerkin methods. Computer Methods in Applied
Mechanics and Engineering, 381:113820, 2021.

[31] John Omotani, Ben Dudson, Peter Hill, Vandoo, and bshanahan. boutproject/hypnotoad:
0.5.2, March 2023.

[32] Nektar-diffusion proxyapp. https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion,
2021. Accessed: September 2021.

[33] M. Barnes, M.R. Hardman, S.L. Newton, J. Omotani, and F.I. Parra. A reduced electron model
for testing plasma dynamics for closed field lines. Technical Report 2070839-TN-03, UKAEA
Project Neptune, 2023. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/

reports/2070839/TN-03.pdf.

[34] M.R. Hardman, J. Omotani, M. Barnes, S.L. Newton, and F.I. Parra. Convergence of the
solutions of the 2D-1V ion drift kinetic equation with wall boundary conditions: manufactured
solutions tests. Technical Report 2070839-TN-04, UKAEA Project Neptune, 2023. https:

//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-04.pdf.

[35] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cliffs, NJ, 1973.

[36] J.P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola, NY, 2001.
http://www-personal.umich.edu/ jpboyd/BOOK Spectral2000.html.

[37] M. Barnes, M.R. Hardman, S.L. Newton, J. Omotani, and F.I. Parra. Numerical implemen-
tation of a fluid model for electrons in a drift kinetic code. Technical Report 2070839-TN-
05, UKAEA Project Neptune, 2023. https://github.com/ExCALIBUR-NEPTUNE/Documents/
blob/main/reports/2070839/TN-05.pdf.

[38] M.R. Hardman, J. Omotani, M. Barnes, S.L. Newton, and F.I. Parra. Ion-ion model
collision operators: a Krook operator and a model Fokker-Planck operator. Tech-
nical Report 2070839-TN-06, UKAEA Project Neptune, 2023. https://github.com/

ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-06.pdf.

[39] M.R. Hardman, M. Abazorius, J. Omotani, M. Barnes, S.L. Newton, and F.I. Parra. A higher-
order finite-element implementation of the full-F Landau Fokker-Planck collision operator for
charged particle collisions in a low density plasma. Technical Report 2070839-TN-07, UKAEA
Project Neptune, 2023. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/

reports/2070839/TN-07.pdf.

49

https://github.com/ExCALIBUR-NEPTUNE/NESO
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2067270/TN-06.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2067270/TN-06.pdf
https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-03.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-03.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-04.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-04.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-05.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-05.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-06.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-06.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-07.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-07.pdf

[40] M. Barnes, M.R. Hardman, S.L. Newton, J. Omotani, and F.I. Parra. Numerical implemen-
tation of moment-kinetic electrons. Technical Report 2070839-TN-08, UKAEA Project Nep-
tune, 2023. to be posted at https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/
main/reports/2070839/TN-08.pdf.

[41] M.R. Hardman, J. Omotani, M. Barnes, S.L. Newton, and F.I. Parra. Aspects of magnetic
geometry in a drift-kinetic code with wall boundaries. Technical Report 2070839-TN-09,
UKAEA Project Neptune, 2024. to be posted at https://github.com/ExCALIBUR-NEPTUNE/
Documents/blob/main/reports/2070839/TN-09.pdf.

[42] M. Barnes, J. Omotani, S.L. Newton, M.R. Hardman, and F.I. Parra. An update on nu-
merical implementation of moment-kinetic electrons. Technical Report 2070839-TN-10,
UKAEA Project Neptune, 2024. to be posted at https://github.com/ExCALIBUR-NEPTUNE/
Documents/blob/main/reports/2070839/TN-10.pdf.

[43] M. Barnes, M.R. Hardman, S.L. Newton, J. Omotani, and F.I. Parra. Numerical implemen-
tation of moment-kinetic electrons. Technical Report 2070839-TN-08, UKAEA Project Nep-
tune, 2024. to be posted at https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/
main/reports/2070839/TN-08.pdf.

[44] D. Moxey, M. Green, C. Cantwell, and S. Sherwin. DG implementation for Blob2D equations.
Technical Report 2068435-TN-01, UKAEA Project Neptune, 2024. to be posted at https:
//github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2068435/TN-01.pdf.

[45] D. Moxey, M. Green, C. Cantwell, K. Kirilov, J. Zhou, J. Peiro, and S. Sherwin. Summary
of mesh generation activities. Technical Report 2068435-TN-02, UKAEA Project Neptune,
2024. to be posted at https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/2068435/TN-02.pdf.

50

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-08.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-08.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-09.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-09.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-10.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-10.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-08.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2070839/TN-08.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2068435/TN-01.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2068435/TN-01.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2068435/TN-02.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2068435/TN-02.pdf

