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1. Introduction

In this report, we propose 1D drift kinetic equations to test the possibility of extracting
low order moments from the distribution functions for implicit methods. The model that
we present here has periodic boundary conditions, adequate for the closed field line region
of the edge. We will address wall boundary conditions for open field lines in the reports
for milestones M1.3, M2.4 and M2.5.

2. 1D electrostatic drift kinetics

We consider a plasma with one ion species with charge e and mass m;, electrons with
charge —e and mass m., and one species of neutrals with mass

My = M. (2.1)

The plasma is magnetized by a constant magnetic field B = Bz, and we assume that
the plasma only varies along magnetic field lines. In this case, the electric field produced
by the plasma is electrostatic, E = —(0¢/0z)z. The potential ¢(z,t) depends on the
position along magnetic field lines z and on time t.

If we assume that the gyroradii are small compared to the length scales of interest,
and that the gyrofrequencies are much larger than the frequencies that we want to model
(Hazeltine 1973), the distribution functions fs(z,v,vL,t) of the different species s =
i, e,n only depend on the component of the velocity parallel to the magnetic field v and
the magnitude of the velocity perpendicular to the magnetic field v , and are independent
of the direction of the velocity perpendicular to the magnetic field. Thus, the distribution
functions that in general can depend on three spatial variables r, three components of
the velocity v and the time ¢ depend only on 2, v, v, and ¢,

fs(r,V,t):fs(Z,U”,’UJJt). (22)
The equations for the distribution functions of the different species are

ofi Of; e 09 f;

ot +UH e - E%(K)UH :Cu[fl} +Cm[fiafn]a (2'3)
of. Ofe e 0p0f. ' 4
ot 1 0z + E@avu = Ceelfe] + Ceilfe, fil + Cenlfe ful (2.4)
and
Ofn Ofn

Here we have included ion-ion and electron-electron collisions, modeled by the Fokker-
Planck collision operators Cy;[f;] and Ce.[f.] (Rosenbluth et al. 1957), elastic electron-ion
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and electron-neutral collisions, modeled by the simplified Fokker-Planck collision operator
Ceilfe, fi] (Braginskii 1958) and the Boltzmann collision operator Cey|[fe, fn], and charge-
exchange collisions, represented by the simplified Boltzmann collision operators

Cinlfis fn] = —/Rm(lv V) V) (V) = fi(V) fu(v)] @ (2.6)
and
Crilfn, fi] = */Rm(lv — V) (W) (V) = fu (V) fi(v)] @, (2.7)

To simplify our equations, we assume that the function R, is constant (Connor 1977;
Hazeltine et al. 1992; Catto 1994), finding

and
where the densities are
ns(z,t) = 271'/ d’UH/ dvy vy fo(z,v),v1,1). (2.10)
—00 0

Note that we can neglect the effect of electron collisions on ions and on neutrals due to the
smallness of the electron mass (Braginskii 1958). We have also neglected neutral-neutral
collisions because, in current fusion devices, the neutral density is sufficiently small that
the neutral-neutral collisions are rare.

The kinetic equations will be solved in the interval z € [0, L], and we will impose
periodic boundary conditions at z =0 and z = L,

fs(z=0,v,vL,t) = fs(z = L,vj,vL,1). (2.11)
Finally, the potential ¢(z,t) is determined by the quasineutrality equation
N = Ne. (2.12)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on 9f; /9t and 0 f./0t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function, notably the density.

Before we treat the complete problem, we will simplify the treatment of electrons to
obtain a system of equations that can be solved with an explicit time advance so that we
can compare our implicit schemes with an explicit numerical method. Instead of solving
for f., we will use a Maxwell-Boltzmann response,

ne(z,t) = N, exp (e‘bgf’t)) , (2.13)

€

where N, and T, are constants (see Appendix A for a derivation of the Maxwell-Boltzmann
response). Moreover, the full Fokker-Planck ion-ion collision operator Cj;[f;] is a com-
plicated integro-differential operator that we will not implement in the first versions of
our drift kinetic code, so we do not include it in the equations for now. Thus, the final
simplified model for f;(z,v),v1,t), fu(z,v),vL,t) and ¢(z,t) is given by the equations
ofi ofi e 09 df;

ot +UH 9z m; 0z aUH = _Rm(nnfz _nifn)a (2'14)
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)
ot +UH 9z - _Rln(nlfn nnfz) (215)
and
_ €9
ni = Ne exp (T) , (2.16)

with periodic boundary conditions (2.11). This system of equations can be solved explic-
itly because the simple electron model allows one to obtain ¢ as a function of n;.

3. 1D moment drift kinetics

Instead of solving for fs(z,v),v1,t), we solve for

v}, (1)
ns(z,t)

where we have defined the normalized velocities

FS(Z7U)||,U)J_,t) =

fs (z, gl (2, 1) + ves(2, t)w), ves (2, t)wo, t), (3.1)

’UH — usn (Z, t)

and
U1
wy (z,v1,1) := D) (3.3)
the average parallel velocity
27_[_ oo oo
ug)|(2,t) := n—/ dy /0 dvy vy fs(z,v),vL,t) (3.4)

and the thermal speed

vis(2,t) == \/47r /:X’ dy /000 dvy vy [(v) — ug)(2,1)2 + 03] fs(z, v, 01,t).  (3.5)

3ng

According to its definition, F(z,wy, w1 ,t) must satisfy the conditions

27r/0O dw) /Ooode_wJ_FS(z,wth_,t)—l, (3.6)
o0 0
27r/_oo de/O dwi wyw)Fy(z, w,wy,t) =0 (3.7)
and
2m /O:o duw) /Ooo dwy wy (wff +w?) Fy(z,wy, wi,t) = % (3:8)

at every point z and time t.
The equations for ions become

B + 9 (niui”) =0, (3'9)

Ouy) Ouy) 9| 99
n;Mmy ( + u; . ) =~ em% + NNy Ry (U — 4, (3.10)
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3 0 i 5] i 0 4 8Ui 3
5N Vt4 (;t + kL ) — 2 | H + *nmnmiRm(UEn - U?z)

2 t Yl 0z 0z 0z 4
1
+§nmnmiRm(un” — ’ui”)2 (3.11)
and
OF; OF; OF; OF; .
C b G e F Ui = Fi + Cip. 3.12
ot Tz 0z +UJH 8w‘|+wl 811“_ + ( )
Here, we have defined the coefficients
Zs [FS](vaHat) = U + VtsW|, (313)
, 1 Ops 2wy [0 3 2\ 9us|
FS ) 7t = - sl| — J'ts sUts
sl (2w ) NsMsVrs 0% +3nsmsvfs 0z AP gMtsMMslis | 75,
ov
2 ts
~ Vi, (3.14)
. 2w dqs Ouy Ovys
s Fs 5 5 ,t = — —_ 3.15
DLolFo](z w0, w0, 1) 3nsmsv2, < 0z P 0z YLy, (3:.15)

and

0z ng 0z

2 (% (L) Ol
nsmsvi, \ 0z Psll = gTsTsbis 0z

. OV Ups Ong
FS[FS](z,w”,wJ_,t) ::lw (3 ¢ ¢ )

F,, (3.16)

the parallel pressure
Py [Fs](2,1) = 27rnsmsvt25/ dw) / dw, wLwﬁFS(z,w”,wJ_,t) (3.17)
—00 0
the parallel heat flux
oo oo
s [Fs) (2, ) := mnymgvi / dw) / dw, wJ_wH(wﬁ +wl)Fy(z,w,wi,t), (3.18)
—00 0

and the modified charge exchange collision operator

Cin[Fia Fnzn’ruuiHvun\|7’Utiavtn](zawﬂan_at)

3
Vi: Uz — U Vi Vi
. i 4| n|| ti ti
= —n,Rin | F; — sk |z, ———+ —uw, wy,t
(Y + (Y Vtn

tn Utn tn
dwy Uti 2 \vg 3vg;
. 2 2 9 N2
g onfln 0 ful (v g 2w ) (3.19)
wy Owy | 2 \vg 3v

Note that the differential terms in this modified collision operator could have been in-
cluded in the definitions of the coefficients w;, w,; and F;, but we have decided to make
them part of a modified collision operator instead to separate the effect of collisions
clearly. This split should not be taken as a suggestion on how to implement these terms
in a code.
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The equations for the neutrals are

ony, 0
i) i) Ipn|
NpM; ( ot + Un|| 02 ) = _W + ninnmiRin(uiH - unH)a (321)

3 6vtn 3vm 8(]7 Ou 3

1
+=npnim R ()| — uiH)Q (3.22)

2
and
JoF, . OF, . 0F, . OF, .
n n n = Fn ni- 2
ot +z Ep + awH +wy w0, +C (3.23)

Here, we have defined the modified charge exchange collision operator

an[Fna FivnivunHvuiHvUtnavti](za wHan_vt)

3
v u — U (Y v
. tn n|| 1| tn tn
‘= — n;Rin {Fn - BF, (z o ay wy
ti

ti (%7 (%7
O [(uwy —uny | wy (v} 2(un) — wyy)?
Rin o | (S0 20 (Y Sl — M)
o 6’[0” |:( Utn * 2 Ut2n * 3Uf2n
niRiy 0 [wl (v} 2(up) — uq)?
_— | —= Lol ——"|F . 3.24
+ w, Ow, { 2 2 + v, " ( )

Equations (3.12) and (3.23) for F; and F,, are constructed such that conditions (3.6),
(3.7) and (3.8) are satisfied at all times if they are satisfied at ¢t = 0.

4. Linear test

One possible test for the sets of 1D equations described above is the evolution of small
perturbations to a uniform Maxwellian equilibrium. We assume the following form for
the ion and neutral distribution functions,

fs(zyv,vL,t) = fus(v),ve) + for(v), ve)[exp(ikz — iwt) + complex conjugate], (4.1)

N 3/2 m; (v? + v2
fas(v,v1) = ng < o ) exp (_W) . (4.2)

where

27TTh 2Th
Note that both species share the same constant temperature 7. To ensure that the
potential is small, we assume n; = N,.
Since the perturbations fs1(v),v1) and ¢ are small, equations (2.14), (2.15) and (2.16)
can be linearized to give

. . e .
(ko) —w = inpg Rip) fir +iniRip fri1 = —ka||v|\ i + 1R (M1 fori — iy farn),  (4.3)

ing, Rin fir + (kjvy —w — ini Rin) fr1r = 1Rin (ni1 farn — N1 fars) (4.4)
and

i _ 9 (4.5)

ng Te .
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FIGURE 1. Solutions to the dispersion relation (4.7): acoustic waves (solid lines) and non-prop-
agating modes (dashed lines). (a) Real frequency w, := Re(w) and (b) growth rate v := Im(w)
as functions of the charge exchange collision frequency (n; 4+ nn)Rin for Te/Th, = 1 and several
values of the parameter n;/(n; + n,). (c) Real frequency w, and (d) growth rate v as functions
of the the charge exchange collision frequency (n; + n,)Rin for n;/(n; + n,) = 1/2 and several
values of the parameter Te/T}.

Here, we have defined the perturbations to the density as

Ngp = 27?/ dvy / dvy vy fe1. (4.6)
—o0 0

Solving for the functions f;; and f,,1 as functions of n;; and n,; and then integrating
fi1 and f,1 over velocity space, we find the equations

() (m)-(3). .

where the elements of the matrix are

T, Uz T, Tin, T,
Aii:1+ﬁ+mﬁ Z(C)+m {(14'%) Cz‘n—C] Z(Gin) (4.8)
n;
Ny T, T.
A== { Kl " Th) Cin @] 2(Gin) Thczw} (4.10)
and
n;
Apn =1+ m(ﬁm = ) Z(Gin)- (4.11)
Here, we have defined
W o wH i(n; + ny)Rin
C A |kH|'Uth’ wmn T |k”‘7)th 9 (412)

with vy, := /2T, /m;, and we have used the plasma dispersion function (Fried & Conte
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1961)

¢
Z(¢) = exp(—(¢?) (iﬁ— 2/0 exp(y2)dy> : (4.13)

By setting the determinant of the matrix in equation (4.7) to zero, we can calculate the
frequency w of the modes for an initial k.

We show two different types of solutions to the dispersion relation in figure 1: acoustic
waves that have both real frequency w, := Re(w) and damping rate v := Im(w), and non-
propagating modes with w, = 0. In the figure, we plot the real frequency and damping
rate for the acoustic waves as solid lines, whereas for the non-propagating modes, we
only plot the damping rates as dashed lines. We can use these solutions to benchmark
the implementation of the equations in our code.

5. Conclusions

We have identified the first set of equations that we will use to test a new approach to
drift kinetics that extracts the low order moments from the distribution function. The
chosen model can be integrated without employing implicit time-stepping methods. This
is a choice that we have made to ensure that we can compare the new model with the
well-established drift kinetic model.

We have also developed an analytical benchmark for the equations. The calculation
ignores ion-ion collisions and it is hence not relevant to all edge operational regimes,
but it allows us to test the implementation of the equations with and without collisions.
Similar calculations can be performed including the full ion-ion collision operator and
model collision operators.
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Appendix A. The Maxwell-Boltzmann response

The Maxwell-Boltzmann response in equation (2.13) is the solution to electron drift
kinetic equation (2.4) in the limit \/m./m; < 1. The expansion in the mass ratio is
based on the fact that the species within the plasma tend to thermalize due to collisions,
and hence the different species have in general similar average kinetic energies. Thus,

the characteristic thermal speeds of the ions and neutrals, vy; and vg,, scale as mi_l/ 2,

whereas the electron thermal speed scales as me Y 2, gIvINng vie > Vg ~ Vpn-
We assume that the massive ions and neutrals control the dynamics of interest, giving
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the estimate
8 UVt

oo A1l
ot L (A1)
Thus, the time derivative in equation (2.4) is negligible compared to terms like
Ofe Vte
el (A2)
Hence, we can neglect the time derivative to find
fe | e 09 0fe
— . :Cpe e Cel' erJi Cen ey Jn]- A3
Nz g 0z o, celfe] + Ceilfe, fi] + Cenlfe, fnl (A3)

To solve this equation, we need to use the properties of the collision operators. The
electron-electron collision operator satisfies an H-theorem: the entropy production

—/mfe Ceelf]d®v =0 (A4)

is always positive and it only vanishes if f. is a Maxwellian. The elastic collision operators
Ceilfe, fi] and Ceplfe, fn] also satisfy H-theorems, but they are much more complicated
as in general these theorems involve the ions and the neutrals. Luckily, if we perform the
expansion /me/m; < 1, Ce;ilfe, fi] and Cep[fe, fn] satisfy simplified versions of their
H-theorems, namely, the entropy productions

7/1nfecei[fe7fi]d3v>oand 7/1nfecen[feafn]dgv>o (A5)

are always positive, and they only vanish if f. is isotropic. Note that, in the limit
/me/m; < 1, these operators do not impose conditions on f; or f,.

Armed with these properties, we multiply equation (A 3) by —In f. and we integrate
over velocity space to obtain

% |:_/(felnfe_fe)vl dBU:| :_/hl.fecee[fE]dB'U_/lnfecei[feafi]dgv

- / I fo Conlfer fu] . (A6)

Integrating this equation over z and using the periodic boundary conditions, we finally
obtain

0=—/0Ldz/lnfecee[feJd%—/oLdz/1nfecei[fe,fi]d3v

L
- / d / I fu Conlfor fu] dPo. (A7)
0

Since the entropy production of each collision operator is always positive, this equation
can only be satisfied if each of the entropy productions vanish at every z. This implies
that, at every z, f. is Maxwellian and isotropic,

me O\ meld+0d)
fe(Z,’UH,'UL) = fMe(Z,’U”,'UL,t) = ne(z,t) <27‘(Cre(z’t)) exp —m .
(A8)

We need to determine the dependence of n.(z,t) and T.(z,¢) on z. Substituting the
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solution fase(z,v),v.L,t) on equation (A 3), we find

9 e 8¢ me(vf +v1) 3\ 9
—Inn, — —— —— — — | — InT,
[v|<8z nn T;8z>_%vl< 2T, 2) 0z "
Since this equation has to be satisfied for every value of v and v, T,(t) cannot depend

on z, and ne(z,t) = N(t) exp(ep(z,t)/Te(t)). Thus, we find equation (2.13) with N, and
T. being in general functions of ¢. For simplicity, we choose them to be constants.

fare =0. (A9)




