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1 Introduction

Exascale targeted plasma modelling will require the e�cient and accurate solution of systems of hyper-
bolic partial di�erential equations (PDEs), and the corresponding elliptic problems, in the presence of
highly anisotropic dynamics. Furthermore, the techniques used must scale with the computing power
available, and be robust enough to be portable to any emerging hardware that arises in the future.
We are anticipating that high order �nite elements/spectral elements will be used to discretize the
equations, and we focus on methods amenable to such problems.

In Section 2 we investigate the current state of the art in time advance techniques, while in Sec-
tion 3 we turn our attention to the state of the art for preconditioners of elliptic systems; these ful�ll
deliverables 1.1 and 2.1 of ExCALIBUR project NEPTUNE: Mathematical Support for Software Im-
plementation. We give a high level summary of our �ndings at the end of each section.

2 State-of-the-art time stepping techniques for hyperbolic PDEs

We consider the solution of hyperbolic systems of the form

∂u

∂t
= A(u, t),

together with appropriate initial and boundary conditions. Stability requirements mean that explicit
methods (such as forward Euler) would require an unfeasibly small temporal step size. This problem
which is compounded by the fact that the step size for the entire domain is restricted by the �nest mesh
patch or wave velocity, which generally make explicit methods unsuitable for anisotropic hyperbolic
equations.

We can make use of larger time steps with an implicit (or semi-implicit) method. While such
schemes may be unconditionally stable, even in this case we must still restrict the size of the time step
with a CFL-like condition to ensure that the solution is su�ciently accurate. Also, with any implicit
method, there is the requirement to solve a large system of equations at each time step, and we must
do this carefully to ensure performance on modern HPC systems.

2.1 Fully Implicit Methods

The Method of Lines [44] is a technique to transform a PDE into system of ordinary di�erential
equations (ODEs) by applying a pre-determined discretization strategy to the spatial dimensions of
the PDE. We may then solve the resulting ODE with an appropriate temporal scheme to the required
accuracy.

In the linear case, and without algebraic constraints, the ODE system takes the form

Mu′(t) = Lu+ f̂(t) in (0, T ], u(0) = 0, (1)

where M ∈ Rn×n is a mass matrix, L ∈ Rn×n is a discrete linear operator, and f̂(t) a time-dependent
forcing function.

One may solve the ODE (1) by applying an s-stage Runge-Kutta scheme:

un+1 = un + δt

s∑
i=1

biki, (2)

Mki = L

(
un + δt

s∑
i=1

aijkj

)
+ f(tn + δtci). (3)

Such schemes are commonly expressed in terms of a Runge�Kutta matrix, A = {aij} ∈ Rs×s, weight
vector, bT = (b1, . . . , bs)

T , and quadrature nodes c = (c1, . . . , cs), often presented in a Butcher tableau:

c A

bT
.

The stage vectors {ki} are the solution of the block linear system,
M . . .

M

− δt
a11L · · · a1sL

...
. . .

...
as1L · · · assL



k1...
ks

 =

f1...
fs

 , (4)



where fi := f̂(tn+δtci)+L(tn+δtci)un. The di�culty in applying fully implicit Runge�Kutta methods
lies in solving the ns× ns block linear system (4).

The solution of nonlinear systems requires solves with the form (4), but with L now being a
linearized operator as determined by, say, a Newton or Picard iteration [43,76].

We may also incorporate constraints (such as incompressiblity); if the Method of Lines applied to
a PDE gives the Di�erential Algebraic Equation

Mu′(t) = N (u,w, t)

0 = G(u,w, t)

then an s−stage Runge�Kutta method applied to this gives iterates of the form[
un+1

wn+1

]
=

[
un
wn

]
+ δt

s∑
i=1

bi

[
ki
`i

]
.

In the linear case we obtain the stage vectors ki, `i by solving the system of equations


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0

]
. . . [

M
0

]
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]
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Gu Gw

]
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k1
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...
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
f1
g1
...
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 . (5)

Again, the nonlinear case is also possible, and results in a series of linearized systems of the form (5).
For more details see e.g., [8, Section 10.1.3], [76, Section 6]. In the following, for simplicity of exposition,
we consider only the linear case without constraints (unless we state otherwise), but the ideas can also
be applied in the more general case.

For general properties of such methods, we refer the reader to Ascher and Petzold [8, Section 4].
In the speci�c case that interests us, the algebraic block is very large and ill conditioned, being the
spatial discretization of a partial di�erential equation. We can expect standard implementations of
algorithms for solving ODEs to fail, as direct methods would struggle to solve even a single system
with L. Below we describe the state of the art.

2.1.1 Diagonally-implicit Runge�Kutta (DIRK) methods

Diagonally-implicit Runge�Kutta (DIRK) methods have a lower triangular Runge�Kutta matrix, A.
This simpli�es the solution of (4) considerably, as the implicit solve requires only a series of n × n
systems, rather than one ns×ns system solve. Kennedy and Carpenter [40] performed a comprehensive
survey of DIRK methods for NASA, followed up by the development of several new methods [41]. We
recommend these papers, and the references therein, for more detail on this class of methods.

DIRK methods can be further divided into a series of subclasses: SDIRK methods are DIRK
methods where A has a constant diagonal; EDIRK methods are DIRK methods with an explicit �rst
stage (so a1,1 = 0); ESDIRK methods [45] are EDIRK methods where the non-zeros on the diagonal
are constant. Nektar++ implements SDIRK with two and three stages, and an ESDIRK method with
six stages; Yan et al. [84] gives a preliminary comparison of the performance of these methods against
each other, and against explicit methods.

Pan et al. [61] point out that one must be careful when choosing the time step, as making a naive
choice may lead to extra work without any gain in accuracy (see, e.g., [57]). They observe that, when
solving Navier-Stokes equations using a Discontinuous Galerkin discretization in the spatial domain, an
ESDIRK method in temporal domain, and solving the nonlinear system using a Jacobian Free-Newton
Krylov method (JFNK) [43], then the error in one time step is the sum of the local temporal error (from
ESDIRK), and the averaged spatial error (from DG) and the averaged algebraic JFNK error (from
preconditioned GMRES). They therefore propose a system, implemented in Nektar++ [84], which uses
explicit formulae for the spatial truncation error and temporal error to estimate the errors in these
components. These are then used to choose a priori a time step and a Newton tolerance such that
the temporal and iterative errors are smaller than the spatial errors, thus ensuring that the accuracy



is enough to ensure su�cient convergence, but not too much to waste CPU time. Since this method
is based on local errors, there is no guarantee on the global errors; however, it suggests a reasonable
heuristic which has been shown to be e�ective on the isentropic vortex, Taylor-Green vortex, �at plate
boundary layer, and turbulent �ow over a cylinder model problems. While this approach provides an
upper bound for the time step, this may not be enough to maintain stability for challenging problems,
yet the method is a promising approach for automatic simulation pipelines.

2.1.2 High order implicit Runge�Kutta (IRK) method

While DIRK schemes are attractive, since they simplify the structure of the linear systems, they
come with a number of drawbacks, as outlined in [40]. For a DIRK method with formal integration
order p and stage-order q, the order of accuracy observed in practice sti� nonlinear PDEs or DAEs
is approximately min{p, q + 1}. Stable DIRK methods have a maximum order of p = s + 1, and the
stage-order, q, is usually 1, although can be 2 for DIRK methods with an explicit �rst stage. However,
DIRK methods cannot have a stage-order larger than 2. Symplectic DIRK methods can be at most
4th order, and have the additional restriction that documented methods above order two have Runge�
Kutta matrices with negatives on the diagonal, which usually leads to more di�cult linear systems to
solve. Overall, DIRK methods have limited accuracy: often this is good enough for the application,
but can be an issue for di�cult modelling problems.

Fully implicit Runge�Kutta (IRK) methods, in contrast, can have high-order accuracy, since they
may have any stage-order: an s−stage IRK method may have accuracy of order 2s. However, the
linear system solved at each step �(4) is formidable, and is intractable for realistic sized problems
without careful handling of the linear algebra. Common IRK methods include the Gauss-Legendre,
Gauss-Lobatto and Gauss-Radau families, which contain classical techniques such as backward Euler
(RadauIIA), and Crank-Nicolson (LobattoIIIA).

Farrell et al. [26] have developed a high-level library called Irksome for manipulating UFL (Uni�ed
Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled
Runge�Kutta stage equations (3) at each time step. Irksome works with the Firedrake package to enable
the e�cient solution of the resulting coupled algebraic systems, which are solved matrix-free. Irksome
solves the matrix (4) using a Krylov method with preconditioner

blkdiag (M − a1,1δtL, · · · ,M − as,sδtL) ,

which has been shown [50] to be a good preconditioner for parabolic problems.
The system (4) can be re-written in Kronecker product form as

(I ⊗M − δtA⊗ L)k = f, (6)

which is the Sylvester matrix equation. Such systems arise commonly in model order reduction and
control applications, and we refer the reader to Simoncini's survey [75] on techniques for solving matrix
equations. This connection has led to a number of interesting approaches for the solution of (4) using
fully-implicit IRK methods over the past few years [37, 51,67,76,77].

Southworth et al. introduce a theoretical and algorithmic preconditioning framework for solving
(4) in the linear [77] and nonlinear [76] setting. This framework also naturally applies to discontinuous
Galerkin discretizations in time. Under quite general assumptions on the spatial discretization that
yield stable time integration, they prove that the preconditioned operator has a condition number
bounded by a small, order-one constant, independent of the spatial mesh and time-step size, and with
only weak dependence on number of stages/polynomial order; for example, the preconditioned operator
for 10th-order Gauss IRK has condition number less than two, independent of the spatial discretization
and time step.

The proposed method can be used with arbitrary existing preconditioners for backward Euler-type
time-stepping schemes and is amenable to the use of three-term recursion Krylov methods when the
underlying spatial discretization is symmetric. In [77], the authors apply their method to various
high-order �nite-di�erence and �nite element discretizations of linear parabolic and hyperbolic prob-
lems, demonstrating fast, scalable solution of up to 10th-order accuracy. The proposed method, in
several cases, can achieve 4th-order accuracy using Gauss integration with roughly half the number



of preconditioner applications and wallclock time as required using standard diagonally IRK methods.
In [76] the authors treat the nonlinear case and the existence of di�erential algebraic equations, apply-
ing the method to the nonlinear Navier�Stokes equation. Again, the method only requires an e�cient
preconditioner for matrices arising from classic backward Euler scheme.

The numerical experiments in [76,77] used the software MFEM [7], and employs multigrid precon-
ditioners that are available in Hypre (see 3). We highlight that Masud et al. [51] presented a similar
approach to that of Southworth et al., treating the parabolic case.

Common to all the approaches described here are fast methods for the solution of a sequence of
linear systems of equations of the form

(αiM − L)x = fi or

[
αiM − L BT

B C

] [
x1
x2

]
=

[
fi1
fi2

]
, (7)

depending on if constraints are present or not, where M is a mass matrix; L a linear di�erential
operator; and B, BT and C represent the di�erential algebraic constraints. The αi's depend on
the values in the Runge�Kutta matrix A, and can be assumed to be positive. The symmetry and
de�niteness of (7) therefore depends on the linear di�erential operator L. We point to Section 3 for a
description of recent advances in preconditioning (7) for both the symmetric and nonsymmetric case.

2.2 Linear Multistep Methods

Linear multistep time integration techniques applied to (1) take the form

0∑
j=−k

αk+jMui+j = δt
0∑

j=−k
βk+j (L(ui+j) + f(ti+j)) ,

for a given set of αi, βj ; methods with βk = 0 are explicit (e.g., the Adams-Bashforth family), and non-
zero βk gives implicit methods (e.g., the Adams-Moulton (AM) and Backward Di�erentiation Fomulae
(BDF) families).

There are, however, a number of drawbacks which limit their application to hyperbolic PDEs.
Although they don't su�er from the accuracy issues of DIRK methods, there are no implicit multistep
methods which are A-stable and of order greater than two. There are also no generally symplectic
multistep methods. By the nature of multistep methods, which build approximations to the solution
using solutions at previous points in time, multistep methods are more memory intensive than Runge�
Kutta methods, and so may not be so applicable for large simulations at exascale.

2.3 Implicit-Explicit (IMEX) methods

It is often the case that partial di�erential equations take the form

∂u

∂t
= B(u, t) + C(u, t),

where the operators B(u, t) and C(u, t) model phenomena on di�erent time-scales; examples include a
non-stationary convection-di�usion equation where we follow the convected time scale, where B(u, t)
and C(u, t) may represent the di�usion and convection terms, respectively, or coupled multiphysics
problems, where mixed �uids may have di�erent behaviours.

The presence of the fast term precludes the use of fully explicit integrators, as we would require a
prohibitively small time-step to ensure convergence. On the other hand, using a fully implicit method
may ask too much of the linear (or non-linear) solvers. Implicit-Explicit (IMEX) time integration
schemes exploit the structure of the problem by solving for the slow term explicitly, where we may
safely take larger time steps, and solving for the fast term implicitly. The split between the two
di�erent regimes is not always clear, and schemes may leak sti�ness. IMEX methods also may su�er
from accuracy issues, and fully implicit methods may need to be used if a tight tolerance is required.

A number of IMEX schemes have recently been proposed for general hyperbolic problems [16,33,62],
for multiphysics problems (see [42, Section 3.2.2] and the references therein), and for plasma modelling
[54]. Nektar++ implements a scheme by Karndarkis et al. [38] for thermal convection problems [36]; we
note that Nektar++ uses an equivalence between IMEX method and general linear methods to ease the



switch between various implicit, explicit and IMEX methods [82]. PETSc's TS package [11, Section 6]
provides interfaces to the IMEX methods proposed in [9,16,32,39,62] (mostly using an SDIRK implicit
solver). We would like to highlight that IMEX methods (together with bespoke preconditioners for
the implicit solves) have recently been successfully applied at scale as the integrator in the Uni�ed
Model [15,52].

2.4 Parallel-in-time

As the parallel performance of spatial solvers has become saturated, there has been an increase in
interest in parallel in time (PinT) methods; see the survey by Gander [27]. The development of the
parareal method by Lions, Maday and Turinici in 2001 [46] was the catalyst for much of this activity.
The parareal algorithm combines two solvers; a cheap, global, `coarse' solver, and a more accurate `�ne'
solver. The basic concept is simple: we employ a �ne solver in parallel, which constitutes the bulk of
the computational e�ort, and then combine the results into a global solution using the coarse solver.
While most results in the literature apply this method to model problems and, in particular, those
of a di�usive nature, there has been some success in applying the parareal paradigm to real scienti�c
applications with a hyperbolic PDE, most notably in the work of Samaddar et al. on tokamak edge
plasma simulations [14,23,69�74]. Key in this work is the selection of an appropriate coarse grid solver,
and unfortunately there is currently little (if any) theoretical guidance on how which schemes would
prove successful for other problems. Nevertheless, these studies report a speed up of roughly a factor
of ten by using parareal over conventional time-stepping techniques.

An alternative approach to parareal is Multigrid Reduction in Time (MGRIT) [24], a method built
on the equivalence between a traditional time integration method and a block lower triangular system
of equations. The parareal method is equivalent to two grid (in time) multigrid method [29] and
MGRIT is, in some ways, the natural extension, considering a hierarchy of grids. XBraid software [1]
is an implementation of MGRIT, and has been shown to give speedups of up to a factor of �fty over
sequential time-stepping.

Both parareal and MGRIT struggle on hyperbolic problems. Southworth et al. [78] recently pro-
vided a convergence analysis detailing whether or not parareal or two-level MGRIT will converge on a
given problem, as well as what spatial or temporal discretizations are applicable with MGRIT. Recent
work by Wathen and collaborators [20, 53] and Gander et al [28], based on the development of block
preconditioners for the large block lower-triangular time-stepping matrix, has potential to overcome
this limitation.

We highlight there is an ExCALIBUR project to compare the performance of parallel in time
methods for exascale use, the �ndings of which will be relevant here. https://excalibur.ac.uk/

projects/exposing-parallelism-parallel-in-time/

Summary

• DIRK time-stepping methods, where applicable, are well developed, and [40] is a nice sum-
mary.

• Fully implicit Runge�Kutta methods were largely dismissed as impractical for hyperbolic
problems, but recent advances in preconditioning techniques may mean this is no-longer the
case; Southworth et al. [76, 77] describes (and advances) the state of the art.

• The theory of IMEX methods is also well developed, and should be used where appropriate.

• Recent work in parallel-in-time methods may help break the inherently sequential nature of
traditional time integration algorithms, which rely exclusively on the solution of the spatial
discretization for parallelism.

• All approaches for solving implicit time-stepping problems require good methods for solving
(variations of) the stationary system; see Section 3.

https://excalibur.ac.uk/projects/exposing-parallelism-parallel-in-time/
https://excalibur.ac.uk/projects/exposing-parallelism-parallel-in-time/


3 State-of-the-art approaches for preconditioning elliptic problems discretized

with high-order methods

Existing and emerging computing architectures su�er from an exponentially growing gap between the
time necessary to perform a �oating point operation and the time to move data across the network
on a distributed memory environment. High-order numerical methods provide higher accuracy with
fewer degrees of freedom, at the cost of more arithmetic operations performed per degree of freedom.
Because of their high arithmetic intensity, high-order methods are promising candidates to get the best
performance on exascale systems.

A �nite element or discontinuous Galerkin method of polynomial degree p in d spatial dimensions
will have O(pd) degrees of freedom per element, and hence the system matrix will have O(p2d) non-
zeros entries. For this reason the coe�cient matrix is often not assembled, and operations with it are
carried out in a matrix-free fashion. A matrix-free method reduces the memory requirements to O(pd),
and, making use of sum factorization techniques, the cost of a matrix-vector product can be reduced
to O(dpd+1) [60].

The condition number of the discretized matrix increases quadratically with the polynomial degree.
Due to the large bandwidth, direct methods for solving linear systems are not an option. We therefore
must turn to iterative solvers, and it is vital that we pair the Krylov subspace solver with an appropriate
preconditioner to get good performance.

In this section, we summarize the state-of-the-art in techniques proposed to precondition linear
systems arising from the discretization of elliptic PDEs by using high-order methods. We point the
reader to the NEPTUNE report [6] for an overview of general-purpose preconditioners, as well as the
excellent review by Wathen [83].

3.1 Preconditioning high order �nite element matrices

There are is a good body of work on preconditioners for low to moderate order �nite elements, and
there are some excellent implementations of algorithms which have been used in a wide variety of
practical situations; see Section 3.2. However, it has been observed that such methods often give less
than desirable performance when applied to high order discretization (however, see Heys et al. [35],
who show that AMG can be applied successfully � albeit with a mild p−dependence � with minor
modi�cations).

One technique that has proved successful, �rst proposed by Orszag in 1980 [60], is to exploit the
spectral equivalence between low-order and high-order operators, known as FEM-SEM equivalence;
see the review by Canuto, Gervasio and Quarteroni [18] and the references therein. This approach
allows us to use a low order discretization to precondition the high order problem, allowing the use the
methods outlined in Section 3.2 as a fast approximation to this `ideal', low-order, preconditioner.

In practice, the tensor-product of the Gauss-Lobatto-Legendre points used to generate the grid for
spectral element methods result in anisotropic �nite element meshes, which challenge basic multigrid
and domain decomposition methods [47]. Nevertheless, there has been considerable success in the
development of such methods in recent years; Pazner and Kolev [64,65] develop a multigrid precondi-
tioner for high-order continuous and discontinuous Galerkin methods with hp−re�nement; Chalmers
and Warburton [19] and Olson [59] apply this idea to simplexes in two and three dimensions; Bello-
Maldonado and Fischer [13] create a scheme that uses a precondiioner based on P1-elements, using
a meshing technique for rectangular and hexahedral elements; Pazner, Dohrmann and Kolev [21, 66]
show this can be applied to �nite element problems on H(curl) and H(div) spaces (using Nédélec and
Raivart-Thomas elements, respectively). These methods are typically independent of the polynomial
degree, mesh size and, for DG methods, the penalty parameter. In a comparison by Sundar, Stadler
and Biros [80] conclude that this approach is more advantageous than h− or p− multigrid.

We particularly highlight the work of Pazner, Dohrmann and Kolev [66], who present numerical
experiments using the �nite element library MFEM, with which the construction of such precondi-
tioners requires only one or two lines of code. These tests corroborate the theoretical properties the
proposed preconditioners, and demonstrate the �exibility and scalability of the method on a range of
challenging three-dimensional problems. These new solvers are �exible and easy to use; any black-box
preconditioner for low-order problems can be used to create an e�ective and e�cient preconditioner



for the corresponding high-order problem. The lor_solvers miniapp, and its parallel counterpart
plor_solvers, illustrate the construction of low-order-re�ned discretizations and solvers, and come
distributed with MFEM's source code, available at https://github.com/mfem/mfem.

An alternative approach is to use the observation of Pavarino [63] that additive Schwartz, together
with an additive coarse space of order one and a vertex-centered space decomposition, is robust with
respect to both p and h for symmetric and coercive problems. The local solves for such problems are
dense, and solved with a direct method, and also the coarse-grid operator is also fairly dense and can
quickly become expensive. However, in recent years good methods for solving this system have become
available; see, e.g., Lottes and Fischer [47].

Recently Brubeck and Farrell [17] introduced a p−robust preconditioner which uses the additive
Schwarz method with vertex patches combined with a low-order coarse space as a solver for symmetric
and coercive problems. By constructing a tensor product basis that diagonalizes the blocks in the
sti�ness matrix for the internal degrees of freedom of each individual cell, they show that the patch
problem is as sparse as a low-order �nite di�erence discretization and having a sparse Cholesky fac-
torization allows them to scale to large polynomial degree p and a�ord the assembly and factorization
of the matrices in the vertex-patch problems. They successfully apply their method to the Poisson
equation and the mixed formulation of linear elasticity both with constant coe�cient problems and
claim that the theory of [10] suggests that it would remain e�ective for spatially varying coe�cients.
In their conclusion, they state that the downside of their approach: (1) its narrow applicability; it
will not be e�ective on more general problems (tested on Poisson and mixed formulation of linear
elasticity), especially for those where the dominant terms include mixed derivatives and mixed vector
components. (2) their method relies on having a good quality mesh, with its performance depending
on the minimal angle.

Finally, we highlight that even explicit time integration methods require the solution of a mass
matrix at each time step; while this is trivial in low-order, it is less obviously the case for high-order
problems, as the condition number of the mass matrix grows algebraically with the polynomial order.
Ainsworth and Jiang [2] describe an e�cient preconditioner for the mass matrix, independent of h and
p, based on a speci�c choice of hierarchical basis, which involves only diagonal solves.

3.2 Preconditioners for low order problems

The methods described above depend on a robust and e�cient linear solver for low-order �nite element
systems. Outside of basic PDEs on uniform grids, where, where Fast Multipole Methods and Fast
Fourier Transforms may be successfuly applied [31], the choice is between multigrid methods and
domain decomposition methods.

3.2.1 Multigrid methods

Multigrid methods [81] are split into algebraic (AMG) and geometric (GMG) variants. AMG meth-
ods use the algebraic properties of the assembled matrix to restrict to coarser grids, whereas GMG
solvers use information about the underlying mesh connectivity. GMG solvers can be over an order of
magnitude faster than the best AMG solvers [31], since they can be used matrix-free, and operators
can be modi�ed on di�erent levels, which can be advantageous when solving, e.g., advection di�usion
problems [68], or when needing to accommodate non-standard boundary conditions. However, there
are excellent robust AMG implementations available which work well o�-the-shelf for a wide range
of problems, which we describe below, and AMG solvers and preconditioners are some of the fastest
black-box numerical methods to solve linear systems.

The convergence of AMG solvers is well established for symmetric positive de�nite (SPD) lin-
ear systems resulting from the discretization of general elliptic PDEs or the spatial discretization of
parabolic PDEs. Hyperbolic PDEs remain a challenge for AMG, as well as other fast linear solvers, in
part because the resulting linear systems are often highly nonsymmetric. Nevertheless, modern AMG
implementations can perform well on a wide range of problems.

The HYPRE library [25], originating from the Lawrence Livermore National Laboratories, con-
tains a number of high quality implementations of multigrid preconditioners. BoomerAMG [34] is a
parallel implementation of the classical Ruge-Stüben AMG method, and o�ers a range of coarsening,
interpolation, and smoothing options.

https://github.com/mfem/mfem


Trilinos's ML preconditioner [30], developed by Sanida National Laboratory, is another fully fea-
tured algebraic multigrid implementation, o�ering a range of multilevel schemes, smooothers, and
coarse solvers.

PETSc's GAMG preconditioner [11, Section 4.4.5] uses a smoothed aggregation coarsening strat-
egy, and o�ers a reference implementation of the classical Ruge-Stüben method. It also provides
unsmoothed aggregation, which can be useful for unsymmetric problems. Note that both HYPRE and
ML are also available via the PETSc interface.

Notay's AGMG method [55,56] is another aggregation-based algebraic multigrid method which can
be applied to any system matrix that has positive digonal entries. The implementation can use MPI,
multithreading, or both.

It is well known that AMG methods don't perform well `out-of-the-box` for anisotropic problems,
and may require some problem-speci�c tuning; the PETSc documention [11, Section 4.4.5] gives some
advice for this.

Manteu�el et al. [49] present a new variation on classical AMG for nonsymmetric matrices (denoted
`AIR), based on a local approximation to the ideal restriction operator, coupled with F-relaxation.
They demonstrate the e�cacy of the proposed preconditioner on systems arising from the discrete
form of the advection-di�usion-reaction equation. `AIR is shown to be a robust solver for various
discretizations of the advection-di�usion-reaction equation, including time-dependent and steady-state,
from purely advective to purely di�usive. Convergence is robust for discretizations on unstructured
meshes and using higher-order �nite elements, and is particularly e�ective on upwind discontinuous
Galerkin discretizations. `−AIR available in PyAMG [58], and an implementation through HYPRE is
underway.

In a related, Manteu�el et al. [48] present a reduction-based AMG method developed for upwind
discretizations of hyperbolic PDEs, based on the concept of a Neumann approximation to ideal restric-
tion (nAIR). nAIR can be seen as a variation of local AIR (`AIR) speci�cally targeting matrices with
triangular structure. Although less versatile than `AIR, setup times for nAIR can be substantially
faster for problems with high connectivity. nAIR is shown to be an e�ective and scalable solver of
steady state transport for discontinuous, upwind discretizations, with unstructured meshes, and up to
6th-order �nite elements, o�ering a signi�cant improvement over existing AMG methods. nAIR is also
shown to be e�ective on several classes of nearly triangular matrices resulting from curvilinear �nite
elements and arti�cial di�usion.

3.2.2 Domain decomposition methods

Domain decomposition methods are among the most e�cient for solving sparse linear systems of
equations on massively parallel architectures; see, e.g., the book for Dolean, Jolivet and Nataf [22] for
a recent overview of the �eld. Their e�ectiveness relies on a judiciously chosen coarse space. Spillane
et al. introduced GenEO, a spectral coarse space, in [79]. GenEO proved to be very attractive as it
can be constructed e�ciently and adapts to the underlying problem and its di�culty with minimum
amount of e�ort from the user perspective. This method is theoretically proved to be e�cient and
robust with respect to the problem size, mesh, discretization type and order and parameters for elliptic
PDEs [3,12]. That is, the preconditioner can be constructed e�ciently such that the condition number
of the preconditioned matrix is bounded from above by a user de�ned number.

Al Daas et al. [4] have recently extended GenEO to be applicable as a black-box method to precon-
dition general sparse linear system. They assessed the e�ciency and scalability of the algebraic GenEO
using a variety of very challenging problems arising from a wide range of applications and including
highly non symmetric problems such as the advection dominated advection-di�usion equation. Com-
parisons against state-of-the-art multigrid preconditioners illustrated the robustness and e�ciency of
algebraic GenEO.

Al Daas et al. [5] recently introduced an algebraic extension of GenEO for the diagonally weighted
normal equation matrix. Their motivation was to precondition iterative methods for solving linear
least-squares problems. The weighted normal equation matrix also arises in block preconditioning
where a preconditioner is required for the (approximate) Schur complement matrix. The preconditioner
proposed in [5] can be directly employed within a block preconditioner resulting in a robust, e�cient
and scalable precondtioner for the (approximate) Schur complement matrix.



Implementations of the Algebraic GenEO methods proposed in [4, 5] are available through the
PETSc preconditioner PCHPDDM, and only require the coe�cient matrix.

Summary

• The most promising method solving matrices from high order elliptic PDEs is to precondition
with a low order �nite element operator; low-order solvers have become robust enough to
solve the resulting (challenging) linear systems [66].

• Multigrid and Domain Decomposition based precondtioners are the leading contenders for
performant parallel iterative solves on anisotropic elliptic problems of low order.

• There are several excellent algebraic multigrid packages available that are highly parallel.
However, to get good performance it is vital to tune the parameters for a given problem.
A well-implemented geometric multigrid method would give superior performance to an
algebraic multigrid.

• The GenEO method [79] is the domain decomposition method with most promise, with
a good trade o� between performance and ease of setup; the recent development of fully
algebraic variations [4, 5] make this even more the case.
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