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1 Introduction

In simulations relating to plasma physics, and more generally, the dominant component in terms of simulation
time is normally the time to solve the underlying linear systems

Ax = b.

In this report, we will assume that A ∈ Rn×n is non-singular, the right-hand side b ∈ Rn is provided and we
wish to compute an (approximate) solution x ∈ Rn . These systems are usually solved via an iterative method
such a Krylov subspace method. Typically, the nature of these systems mean that a large number of iterations
are required to reach the desired level of accuracy. To reduce the number of iterations, we aim to choose a
preconditioner P ∈Rn×n such that applying the iterative method to the equivalent system

P−1 Ax = P−1b

results in a reduction in the number of iterations, and a reduction in the solution time (including the time to
initialise P ): note, in practice, the latter is of higher importance. In the above, we have described left precondi-
tioning. For right preconditioning, one is solving the equivalent system

AP−1 y = b, x = P−1 y.

It is also possible to use a combination of left and right preconditioners together:

P−1
1 AP−1

2 y = P−1
1 b, x = P−1

2 y.

2 Software for Plasma Physics Modelling: Overview

In the following, we describe our use of BOUT++ and Nektar++, which have been identified by UKAEA to be the
modelling packages of interest for the NEPTUNE Project. As part of the descriptions, we include how precon-
ditioners are currently incorporated into these libraries.
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2.1 BOUT++

BOUT++ [5] is very much designed for matrix-free calculations, which use external packages PETSc [13, 14] or
SUNDIALS [6, 7, 9] to solve the more complex problems. In themselves, these external packages use matrix-free
implementations by default. This means that custom preconditioners either need to be developed in a matrix-
free, operator-based manner and provided via BOUT++ or, for preconditioners that can act in a matrix-free
manner but require access to the action of the linear system being solved, it would need implementing within
the underlying library.

As part of this project, we used a nonlinear diffusion test case that simulates the effects of heat conduction
in a plasma. This test case is provided as part of BOUT++. At the moment, BOUT++ relies on the PETSc package
for the preconditioning work within this test case. There are multiple ways to execute the heat conduction
example. In the simplest possible form the code is launched with

./diffusion-nl

IMEX-BDF2 multistep scheme is launched with

./diffusion-nl solver:type=imexbdf2

Preconditioning is enabled with the following flag

./diffusion-nl solver:use_precon=true

Finally, Jacobian colouring with IMEX-BDF2 is enabled with

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false

The end command used in the experiments is

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false solver:use_precon=true

Extracting and saving the system matrix was done via PETSc routines. In order to save the matriximex-bdf2.cxx
source code file was modified. The precon routine was supplemented with the following commands:

1: PetscViewer viewer;
2: PetscViewerASCIIOpen(MPI_COMM_WORLD, "A.mtx", &viewer);
3: PetscViewerPushFormat(viewer, PETSC_VIEWER_ASCII_MATRIXMARKET);
4: MatView(Jmf, viewer);

Figure 1: C++ source code for system matrix extraction

In this report, we also consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid in
one dimension (along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear diffusion
example, this test case provides a preconditioner as part of the model in an operator-based manner.

2.2 Nektar++

Nektar++ [2, 12] is designed to provide discretisation and solution of partial differential equations using the
spectral/hp element method.

Nektar++ accepts *.xml or similar formats as inputs, where the input file provides finite-element mesh and
the specifications to solve the specific PDE problem. The specification of the mesh format within Nektar++ is
hierarchically defined as: 1D edges as connection of vertices, 2D faces as bounding edges and 3D elements as
bounding faces. Nektar++’s MultiRegions library derives mapping from these meshes and uses these mappings
for different Galerkin projection methods to assemble a global linear system. The global linear system may be
solved by (i) using direct methods based on Cholesky or LU factorisations, or (ii) using an iterative precondi-
tioned Krylov subspace method. Nektar++ provides a range of the preconditioners such as the classical Jacobi
preconditioner, coarse-space preconditioner, block preconditioner and low-energy preconditioner. It also pro-
vides an interface to PETSc for additional solvers and preconditioners. Nektar++ evaluates L2 and Linf errors
against the provided exact solution.

The MCMCMI software that implements the Monte Carlo Markov Chain Matrix Inverse preconditioner [8,
10, 11] is structured in a manner that made it infeasible to follow the steps described in [2] and adapt it as a pre-
conditioner module for the Nektar++ in the timeline of the project. Therefore, Nektar++ is edited accordingly
to extract full system matrices as Matrix Market format *.mtx to use it separately in the MCMCMI algorithm.
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Nektar++ provides an Advection-Diffusion-Reaction solver to solve partial differential equations of the form
(1) in either discontinuous or continuous projections of the solution field [12].

α
∂u

∂t
+λu + v∇u +ϵ∇· (D∇u) = f (1)

However, it is not possible to construct linear systems for the discontinuous Galerkin method. Hence, applica-
tion cases using the continuous Galerkin method were chosen from ’Nektar++/Solvers/ADRSolver/Tests’ and
used to generate the prioritised equations as described in [1].

2.3 Testing Environment

Numerical experiments were run on the SKL (Skylake) nodes of the Scafell Pike system which consists of nodes
fitted with 2x XEON gold E5-6142 v5 processors resulting in 32 cores per node and, due to HyperThreading, 64
threads per node.

3 Numerical Results for Sparse Approximate Inverse Preconditioners

MCMCMI experiments were performed on four system matrices extracted from the BOUT++ software. These
matrices were created for the one-dimensional “non-linear diffusion” test problem called diffusion-nl. The
main BOUT++ source code was modified to enforce PETSc, powering the solution of diffusion-nl problem,
to output system matrices into the Matrix Market *.mtx format. Matrix orders of the extracted BOUT++ system
matrices were n = 128, 512, 2048 and 8192. The ever-increasing system matrices were obtained by increasing
the resolution over the y axis. Unfortunately, it was not possible to extend the problem even further since PETSc
started to crash for n > 8192.
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Figure 2: Matrix order vs GMRES and BiCGStab iteration steps, BOUT++.

In Figure 2, we compare the matrix order vs GMRES and BiCGStab iteration steps for the BOUT++ examples.
In the case of GMRES method and small matrices (n = 128, 512), the MCMCMI preconditioner P decreases
the number of iterations required for the linear system solution by 18% and 72%, respectively. For the GM-
RES method applied to larger matrix orders (n = 2048, 8192), the MCMCMI preconditioner shows a dramatic
improvement of 94%. On the other hand, using the BiCGStab solver, the MCMCMI-based preconditioner pro-
vides performance comparable with the reference solution for small matrices (n = 128, 512). For larger system
matrices (n = 2048, 8192), the MCMCMI preconditioner reduces the number of iterations by 26% and 27%,
respectively.

We compare the L1 norm values of the residual for our approximate solutions from GMRES and BiCGStab
for the BOUT++ test problems in Figure 3. The highest values of L1 norm are provided by the preconditioned
linear system solve in the GMRES method. L1 norm values for non-preconditioned solutions in GMRES and
BiCGStab are comparable. Finally, the smallest values of L1 norm are obtained by the preconditioned solution
with the BiCGStab. One exception is the L1 norm values for the smallest test matrix (n = 128).
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Figure 3: Matrix order vs L1 norm values in GMRES and BiCGStab, BOUT++.
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Figure 4: Matrix order vs L2 norm values in GMRES and BiCGStab, BOUT++.
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In Figure 4, we compare the L2 norm values of the residuals for our approximate solutions from GMRES
and BiCGStab for the BOUT++ test problems. The L2 norm values follow the same tendency as the L1 norms
described above (see Fig. 3 for details). The highest values are produced by the preconditioned solution with
the GMRES method and the lowest values by the preconditioned solution with the BiCGStab algorithm. The
L∞ norm values are compared in Figure 5. L∞ norms exhibit behaviour similar to the L1 and L2 norms. Overall,
the L∞ norms are the smallest amongst all norms. With rare exceptions the preconditioned system solutions
resulted in the highest (GMRES) and the lowest (BiCGStab) norm values. We note that a left preconditioner is
being used within the GMRES method and, hence, at each iteration k, the preconditioned residual

||P−1 (b − Axk ) ||2
is minimimised, where xk is a member of the Krylov subspace defined by

span
{

P−1r0,P−1 AP−1r0, . . . ,
(
P−1 A

)k
P−1r0

}
with r0 = b − Ax0. Now,

||P−1 (b − Axk ) ||2
||P−1||2

≤ ||b − Axk ||2 ≤ ||P ||2||P−1 (b − Axk ) ||2

and, hence, left preconditioned GMRES is not minimising the L2 norm of the residual and the values of ||P ||2
and ||P−1||2 are likely to be such that whilst ||P−1 (b − Axk ) ||2 can be small, the value of ||b−Axk ||2 can be large.
There is no minimisation property for the iterations of BiCGStab but these results lead to the question: would
right preconditioned GMRES produce similar results to BiCGStab? In the future, we would like to investigate
this with larger problem sizes.
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Figure 5: Matrix order vs L∞ norm values in GMRES and BiCGStab, BOUT++.

In Table 1, we provide the details for the matrices that were extracted from Nektar++. We compare the num-
ber of GMRES and BiCGStab steps in Figure 6. Since the iterations are higher than non-preconditioned GMRES
method, the preconditioner failed for the GMRES method for all except the Helmholtz problems. However, the
preconditioner is successful for the BiCGStab method. Higher L2 and L∞ values also supports the failure of the
preconditioner for the GMRES method, likewise success for the BiCGStab method as shown in the Figures 7
and 8.

In the future, we would like to investigate the use of the MCMCMI preconditioner with test problems that
arise from anisotropic problems to see if the performance is markedly different.
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Matrix name Label n Mode | Order Int timestep

Helmholtz H 1312 2D modal
Steady Adv-Diff SAD 2281 2D modal
Unsteady Adv-Diff 1 UAD1 225 Order 1 001
Unsteady Adv-Diff 2 UAD2 225 Order 1 0001
Unsteady Adv-Diff 3 UAD3 225 Order 2 001
Unsteady Adv-Diff 4 UAD4 225 Order 2 0001

Table 1: Nektar++ matrices used in MCMCMI preconditioner experiments.
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Figure 6: Matrix order vs GMRES and BiCGStab iteration steps, Nektar++.
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Figure 7: Matrix order vs L2 norm values in GMRES and BiCGStab, Nektar++.
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Figure 8: Matrix order vs L∞ norm values in GMRES and BiCGStab, Nektar++.
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4 Numerical results for operator-based preconditioners

Here, we focus on operator-based preconditioners. An understanding of the underlying mathematical opera-
tors and the numerical properties of the discretised version can provide great insight into the optimal choice
of preconditioner. For example, a standard finite-element discretisation of the Laplacian operator will, in gen-
eral, have condition number that is inversely proportion to h2 for 2D problems and h3 for 3D problems, where
h is the mesh size and the domain is assumed to be uniformly discretised. Thus, halving h will increase the
condition number by factors of 4 or 8, respectively. This can cause a dramatic increase in iterations if no pre-
conditioner, or an ineffective preconditioner, is used.

Suppose we have a problem that couples together 3 different variables, then the matrix A will naturally split
into a block 3×3 format:

A =
 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 . (2)

For such problems, it will be natural to use a block-diagonal preconditioner of the form:

P =
 P1,1 0 0

0 P2,2 0
0 0 P3,3

 , (3)

where the dimension of each block directly tallies with the dimension of the associated block in (2). Alterna-
tively, P could be block upper or lower triangular, or take a constraint preconditioner format:

P =
 P1,1 P1,2 A1,3

P2,1 P2,2 A2,3

A3,1 A3,2 A3,3

 .

For symmetric A, Wathen [16] provides a good overview of block preconditioners and we note that factor-
izations of constraint preconditioners can be generated implicitly [3]. Constraint preconditioners have been
extended for non-symmetric problems in [15] and, due to time restrictions, are not considered for the test case
considered in this report.

Here, we consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid in one dimension
(along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear diffusion example, this
test case provides a preconditioner as part of the model in an operator-based manner. SD1D has a number of
different cases. For Case-03, the equations for the plasma density n, pressure p and momentum mi nV||i are
evolved:

∂n

∂t
= −∇· (bV||n

)+Sn −S (4)

∂

∂t

(
3

2
p

)
= −∇·q+V||∂||p +Sp −E −R (5)

∂

∂t

(
mi nV||

) = −∇· (mi nV||bV||
)−∂||p −F (6)

j|| = 0

Ti = Te = 1

2

p

en

q = 5

2
pbV||−κ||e∂||Te .

Which has a conserved energy: ∫
V

[
1

2
mi nV 2

||i +
3

2
p

]
dV.

The heat conduction coefficient κ||e is a nonlinear function of temperature Te :

κ||e = κ0T 5/2
e ,

where κ0 is a constant. See [4] for further details. Operators are:

∂|| f = b ·∇ f ∇|| f =∇· (b f
)

. (7)
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This nonlinear problem is solved by using CVODE from the SUNDIALS library [9], which uses a Newton method.
At the heart of the simulation, a large number of systems of the form (2) are solved, where A = I −γJ and J are
Jacobian matrices for a computed value of γ : for clarity, we will assume that J has the same block structure
as A and J1, j are derived via (4), J2, j are derived via (5), J3, j are derived via (6), J j ,1 are formed by taking the
derivative with respect to n, J j ,2 are formed by taking the derivative with respect to p and J j ,3 are formed by
taking the derivative with respect to mi nV||. We note that J2,1 and J2,2 contain terms that include ∂2

||.
The preconditioner provided within SD1D takes the following block-diagonal, operator form:

P0 =
 I 0 0

0 I −γ 2
3∂

2
|| 0

0 0 I

 . (8)

We note that in (5), ∂2
|| is applied to 1

2 Te and not p, and hence, we propose the following block-diagonal,
operator-form preconditioner:

P1 =
 I 0 0

0 (I −γ 1
3n ∂

2
||)n 0

0 0 I

 . (9)

We note that application of the preconditioner P1 will be more expensive than P0. Finally, for Case-03, we also
try a block lower triangular preconditioner that additionally incorporates the ∂|| from (6):

P2 =
 I 0 0

0 (I −γ 1
3n ∂

2
||)n 0

0 −γ∂|| I

 . (10)

Case-04 from SD1D additionally couples the above plasma equations to a similar set of equations for the
neutral gas density, pressure, and parallel momentum. A fixed particle and power source is used here, and a
20% recycling fraction. Exchange of particles, momentum and energy between neutrals and plasma occurs
through ionisation, recombination and charge exchange. If we sub-divide A according to the variables that are
being evolved, we now have a block 6×6 structure. The provided preconditioner P0 is now

P0 =



I 0 0 0 0 0
0 I −γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I −γ 2

3∂
2
||

0 0 0 0 0 I

 . (11)

Using the properties of the neutral, we instead propose

P1 =



I 0 0 0 0 0
0 I −γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I −γDn

2
3∂

2
||

0 0 0 0 0 I

 , (12)

where Dn is a diffusion term. As for Case-03, we also propose a block lower-triangular preconditioner that
incorporates the ∂|| from (6) and the ∂|| from the corresponding equation for neutral momentum:

P2 =



I 0 0 0 0 0
0 I −γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I −γDn

2
3∂

2
||

0 0 0 0 −γ∂|| I

 . (13)

Finally, we consider a preconditioner that is identical to P2 but the ∂|| relating to the neutral momentum equa-
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tion is dropped:

P3 =



I 0 0 0 0 0
0 I −γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I −γDn

2
3∂

2
||

0 0 0 0 0 I

 . (14)

In Figure 9, we compare the number of times the time derivatives (right-hand sides) were computed for
Case-03 and Case-04 for the different preconditioners. We also compare what happens if no preconditioner is
used for the smaller problems. The smaller matrix orders are from the default problem set-up (i.e., 200 mesh
points for each variable). For Case-03, we also compare the preconditioners for the discretization with 1000
mesh points per variable and, for Case-04, 400 mesh points per variable. If we consider the smaller version of
Case-03, all of the preconditioners reduce the number of right-hand side evaluations by roughly a factor of 36
with P2 producing the lowest number of evaluations; for the larger problem, we observe that P2 also has the
lowest number of evaluations with an 18% reduction compared to P0. In Figure 10, we compare the wall clock
time to run the simulations. Just one MPI process was used with one OpenMP thread because of the relatively
small problem sizes. For the larger version of Case-03, we see a 10% improvement, with respect to wall-clock
time, when using the block lower-triangular preconditioner compared to the original preconditioner. These
savings are relatively modest because the density n remains close to uniform throughout the simulation.

For Case-04, we observe that all of the preconditioners substantially decrease the number of evaluations
and the wall clock time compared to using no preconditioner. For both problem sizes, compared to the original
preconditioner, preconditioners P1, P2 and P3 are reducing the number of evaluations and wall clock time by a
third. Thus, for the expert user, it is possible to incorporate more sophisticated operator-based preconditioners
within BOUT++.
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Figure 9: Total number of right-hand side evaluations performed during the whole simulation for Case-03
and Case-04 with different preconditioners. For Case-03, results for the default discretization with 200 mesh
points per variable (matrix order 600) and a larger problem size with 1000 mesh points per variable (matrix
order 3000) are provided. For Case-04, results for the default discretization with 200 mesh points per variable
(matrix order 600) and a larger problem size with 1000 mesh points per variable (matrix order 3000) are pro-
vided.

5 Proposed roadmap for including new preconditioners within BOUT++
and Nektar++

Prior to including custom new preconditioners into BOUT++ and Nektar++, it would be best to have the exact
testing scenarios of interest to UKAEA available and ready. Once the testing scenarios are available and working
at scale close to the real problems UKAEA want to solve, it would be the right time to investigate preconditioner
deployment. Ideally the new preconditioners need to be reformulated in a matrix-free manner. Once these
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Figure 10: Total wall clock time (seconds) for the whole simulation for Case-03 and Case-04 with different
preconditioners. For Case-03, results for the default discretization with 200 mesh points per variable (matrix
order 600) and a larger problem size with 1000 mesh points per variable (matrix order 3000) are provided. For
Case-04, results for the default discretization with 200 mesh points per variable (matrix order 600) and a larger
problem size with 1000 mesh points per variable (matrix order 3000) are provided.

formulations are available they could be integrated into PETSc, SUNDIALS and other solver packages powering
BOUT++ and Nektar++. This way it would bring more benefit to the user community. The user base of PETSc
and SUNDIALS is likely to be much larger than that of BOUT++ and Nektar++. This would also ensure that only
minimal changes would be required to BOUT++ and Nektar++ in order to leverage computational advantages
of new preconditioners.

In summary the following steps are required for a successful deployment of new preconditioners into BOUT++
and Nektar++:

1. Design testing scenarios in native BOUT++ and Nektar++. These scenarios should reflect real-world
problems UKAEA solves at the moment and pay attention to the scale at which simulations should be
performed.

2. Identify (matrix-free) methods and underlying solver packages (PVODE, CVODE, PETSc, SUNDIALS) that
BOUT++ and Nektar++ employ to solve those problems.

3. Reformulate MCMCMI-based preconditioner in the operator (matrix-free) form.

4. Implement MCMCMI preconditioner in operator form and test it thoroughly.

5. Integrate operator-based MCMCMI preconditioner into solver packages identified in Step 2.

6. Solve testing scenarios identified in Step 1 using standard (native) BOUT++ and Nektar++ methods as
well as new MCMCMI preconditioners.

7. Compare computational performance of native vs MCMCMI-based preconditioners.

6 Conclusion

Including MCMCMI-based preconditioners into either BOUT++ or Nektar++ simulation software is difficult
at the moment. First, the MCMCMI code needs to be reformulated in the matrix-free manner. Then it can
be integrated into solver packages (PETSc, SUNDIALS) powering solving abilities of BOUT++ and Nektar++.
Reformulation and implementation of MCMCMI in the operator form will take 3–6 months. Integration of
operator-based MCMCMI into PETSc and SUNDIALS will take another 3–6 months. Therefore, to obtain pre-
liminary results of MCMCMI performance over the test problems the STFC team decided to extract the system
matrices from the relevant BOUT++ and Nektar++ testing scenarios. In the process the team discovered (i) it
was not possible to extract the matrices for some scenarios due to their inherent matrix-free nature, (ii) some
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testing scenarios of interest to UKAEA are not available yet in either BOUT++ or Nektar++. These need to be
designed and developed further.
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