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1 Introduction

Many modern physical computer models involve solving PDEs with numerical solvers, such as finite
element methods (FEM), which can be computationally expensive due to

• ever more complex and larger-scale models;

• high-dimensional input and output;

• large demands on computational resources.

These create challenges to efficient uncertainty quantification of computer models, such as the fusion
models, as we often need to run the models in a large number of times for tasks such as sensitivity analysis,
uncertainty propagation and model calibration. To tackle these challenges, reduced order models (ROM)
are needed to

• serve as low-dimensional replacements with comparable accuracy;

• reduce evaluation time of original solvers;

• save storage, e.g., for high-dimensional output.

Traditional reduced order models, also known as intrusive reduced order models, often are constructed
using reduced basis methods [16], among which the Proper Orthogonal Decomposition (POD) is perhaps
the most popular technique. The intrusive reduced order models for original high-fidelity models with
high-dimensional output are typically built using a two-phase procedure called offline-online decomposi-
tion:

• offline phase: high-fidelity solutions/outputs are obtained and reduced basis is calculated;

• online phase: the original problems are projected onto the reduced space for efficient computation
of solutions at new inputs.

However, the online phase of the intrusive reduced order modelling is challenging in practice because:

• expertise and domain knowledge are required to project the equations and physics of the original
high-fidelity problems to constructed reduced space;

• dimensionality reduction techniques are largely constrained by the problem formulation;

• uncertainty is not incorporated.

For these reasons, in this report we focus on non-intrusive reduced order models for problems with
high dimensional outputs, utilising the family of Gaussian process (GP) surrogates. These have been
successfully implemented for dimension reduction of either outputs or inputs. For instance:

• [9] used Functional Principal Components Analysis (FPCA) as an equivalent approach to POD
for time series outputs of tsunami waves, and [2] used Spherical Harmonics and Gaussian Markov
Random Fields for optimal reduction of surfaces outputs.

• For inputs, [13] employed a kernel-based approach to extract the few input field directions of most
influence for the outputs in order to build GPs with few input dimensions (orders of magnitude
gain in dimension).

The report is organised as follows. In Section 2, a non-intrusive ROM with GP surrogates and POD
is described. The method is then applied in Section 3 for a anisotropic heat transport problem. Future
directions are discussed in Section 4.
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2 Non-intrusive ROM with Gaussian Process Surrogates

The non-intrusive reduced order modelling is a data-driven approach that uses a statistical surrogate
model to mimic the functional relations between the model input and constructed reduced output space
in the online phase of the offline-online decomposition. The utilisation of statistical surrogates alleviates
the difficulties involved in reformulating the original high-fidelity problems under the intrusive reduced
order modelling. In particular, with GP surrogates we are able to quantify uncertainty of the high-
dimensional outputs predicted at unobserved input positions.

Let X ∈ RN×D contain N sets of D dimensional input of a computer model, which produces N
corresponding sets of K dimensional output Y ∈ RN×K accordingly. Then, one can mimic the functional
relationships between the input X and each output dimension Yk ∈ RN×1 by a GP surrogate GPk
independently for k = 1, . . . ,K without considering the dependence between output dimensions [6].
Ignoring the potential cross-dependence does not pose a serious issue unless we are interested in the joint
distribution of the output, and it can be shown [11] that the independently constructed GP surrogates
correspond to the marginal GPs of a joint GP surrogate under certain dependence structures. The GP
surrogate GPk is formally defined as a multivariate normal distribution with respect to Yk:

Yk ∼ N (µk(X), σ2
kRk(X)),

in which the i-th element of µk(X) ∈ RN×1 is often specified by a trend function fk(Xi) with Xi ∈ R1×D

being the i-th row of X, and the ij-th element of Rk(X) ∈ RN×N is given by ck(Xi,Xj), where ck is a
given kernel function. The trend function fk can be formulated as a linear combination of a set of basis
functions of Xi and we assume a constant trend function fk(Xi) = bk in this report.

There are various choices for ck (see [17]). In this report, we use the separable kernel function:

ck(Xi, Xj) =

D∏
d=1

ck,d(Xid, Xjd),

where ck,d is a one-dimensional kernel function. A typical choice for ck,d in computer model emulation is
the squared exponential (SExp) kernel:

ck,d(Xid, Xjd) = exp

{
− (Xid −Xjd)

2

γ2k,d

}
,

where γk,d > 0 is the range parameter. However, the SExp kernel has been criticised for its over-
smoothness [20] for physical problems as well as its associated ill-conditioned problems [3, 8]. Another
popular kernel choice is the Matérn kernel [17]:

ck,d(Xid, Xjd) = exp

(
−
√

2p+ 1 rij,d
γk,d

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2rij,d

√
2p+ 1

γk,d

)p−i
,

where rij,d = Xid − Xjd. The Matérn kernel is known to be less prone to ill-conditioning issues and
provides a reasonably adequate smoothness to the GP surrogates. In particular, the Matérn-2.5 kernel,
which is defined as the Matérn kernel with p = 2:

ck,d(Xid, Xjd) =

(
1 +

√
5|Xid −Xjd|

γk,d
+

5(Xid −Xjd)
2

3γ2k,d

)
exp

{
−
√

5|Xid −Xjd|
γk,d

}
,

is the default kernel choice for many computer model emulation packages, such as DiceKriging [19] and
RobustGaSP [7]. Therefore, we employ the Matérn-2.5 kernel in this report.

The posterior predictive distribution N (µ̂k(x∗), σ̂2
k(x∗)) of GPk with respect to the output Y ∗k (x∗)

at an unobserved input position x∗ is given in different analytical forms depending on how the model
parameters bk, σ2

k and {γk,d}d=1,...,D are estimated. Different maximum-likelihood-based estimation
approaches and the corresponding expressions for µ̂k(x∗) and σ̂2

k(x∗) are discussed in [19, 8].
The main computational bottlenecks of the GP surrogate construction are the number of data points

N and the dimension K of the output of a computer model. Since the inference of GP surrogates
involve inversions of the correlation matrix Rk ∈ RN×N with computational complexity of O(N3), it
soon becomes computationally prohibitive to build GP surrogates in practice when N is more than
several thousands. In such a case, one may need sparse approximations [12] to the GP to reduce the
computational complexity induced by the big data.
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In computer model experiments, one often does not have big data (i.e., realisations from the underlying
computer model) due to the limited computational budget. However, if the input dimension D is large,
then small data are insufficient to explore adequately the whole input domain and thus the resulting GP
surrogates can be inaccurate. High input dimension also causes challenges to the model estimation because
a large number of range parameters {γk,d}d=1,...,D need to be estimated for each output dimension. To
alleviate this issue, one can reduce the input dimension D to P such that P � D by dimension reduction
techniques such as POD, kernel dimension reduction [13], and active subspace [21].

A high output dimension K creates the issue that it can be computational burdensome to build
K independent GP surrogates: without parallel implementation the training and validation of a huge
amount of GP surrogates are practically infeasible. This report tackles the latter issue on high-dimensional
outputs (e.g., a snapshot where each point on the snapshot represents a FE solution and contributes to
the output dimensionality) produced by computer models. Perhaps the most straightforward approach
to address the issue is to reduce the output dimension K to L such that L� K by POD.

The POD of Y ∈ RN×K can be done with following steps:

1. Compute the sample mean µY ∈ R1×K of Y and obtain the centred output matrix Yc = Y−µY;

2. Implement the eigendecomposition of G = 1
NYcY

>
c such that G = VΛV>, where the columns of

V ∈ RN×N contains the eigenvectors of G and the diagonal of Λ ∈ RN×N contains the correspond-
ing eigenvalues (λ1, . . . , λN ) in descending order;

3. Compute Ṽ = Y>c V ∈ RK×N , which contains the eigenvectors of sample covariance matrix C =
1
NY>c Yc;

4. Choose L ≤ N and obtain the low dimensional output Ŷ = YcṼL ∈ RN×L, where ṼL ∈ RK×L
contains the first L eigenvectors included in Ṽ.

One can also obtain Ṽ by performing the singular value decomposition (SVD) of Yc that is implemented,
e.g., in the PCA function of Python package scikit-learn [15]. After obtaining the low dimensional data

Ŷ, we then construct L independent GP surrogates of each of L dimensions of Ŷ. Let N (µ̂l(x
∗), σ̂2

l (x∗))

be the posterior predictive distribution of Ŷ ∗l (x∗), the l-th dimension of the low dimensional output, pre-
dicted at an unobserved input position x∗. Then the posterior predictive distribution of the corresponding
high dimensional output Y∗(x∗) ∈ R1×K is given by

N
(
µ̂(x∗)Ṽ>L + µY, ṼLΣ̂(x∗)Ṽ>L

)
,

where µ̂(x∗) = (µ̂1(x∗), . . . , µ̂L(x∗)) and Σ̂(x∗) = diag(σ̂2
1(x∗), . . . , σ̂2

L(x∗)).

Figure 1 demonstrates the procedure to build non-intrusive reduced order model with GP surro-
gates. In the offline phase, dimension-reduction techniques, e.g., POD, are applied to reduce the high-
dimensional output to a low-dimensional space. Then in the online phase, GP surrogates are constructed
independently on each reduced dimension. Using the constructed GP surrogate and reduced basis, one
can obtain the predicted low-dimensional and in turn the high-dimensional output at new input positions
with little computational efforts.

SolverInput
High-dim
Output

GP
Surrogate

New Input
Low-dim
Output

Figure 1: The workflow to construct non-intrusive ROM with GP. The black arrows represent the offline
phase; the blue arrows represent the online phase; the red arrows represent the prediction procedure using
the constructed non-intrusive ROM with GP.
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3 2-D model of anisotropic heat transport

In this section, we explore the non-intrusive ROM with GP to mimic the FE solver to the 2-D problem
“Open field lines with oscillating anisotropy directions” in [5]. The problem has two key inputs m and α
that control the anisotropy of the solution field, i.e., the anisotropy direction is defined by

b =
B

|B|
, B =

(
α(2y − 1) cos(mπx) + π
παm(y2 − y) sin(mπx)

)
,

where m/2 is the number of oscillation periods in the computational domain and α is the amplitude.
The output is a high-dimensional 2-D field defined on the square computational domain [0, 1]× [0, 1] and
allows a closed form solution: .

3.1 Experimental Design

To construct the reduced basis via the POD and the GP surrogate, N=40 samples are arranged in a
Latin hypercube over m ∈ [0, 12] and α ∈ [0, 3] (see the left plot in Figure 2). We then run the FE solver
(implemented in Firedrake [18]) of the toy problem to obtain the corresponding 2-D outputs, each of
which contains FE solutions on K = 78961 nodes. These 40× 78961 high-dimensional outputs are then
reduced to 40 low-dimensional outputs (40×25) using POD by retaining the first 25 principal components
out of the total 40 components, see the right plot in Figure 2, where the cumulative explained variance

is defined as
∑L

i=1 λi∑N
i=1 λi

with L be the number of components.

Figure 2: (Left): Training and designing points generated for the inputs m and α. The blue points are
design input locations generated from the Latin hypercube design and the red points are testing input
locations; (Right): cumulative explained variance given by the POD.

GP surrogates are then constructed independently for each of the 25 dimensions of the reduced order
data. GP surrogates are trained with the Matérn-2.5 kernel using the RobustGaSP package in R.

3.2 Experimental Results

We test the constructed non-intrusive ROM at four testing input positions (m,α) = (6, 2), (10, 2), (1, 2)
and (10, 0) (see the left plot of Figure 2). The FE solutions (from the Firedrake) and the predicted
solutions from the built ROM are compared in Figure 3. The normalised (to the range of FE solutions)
errors between the FE solutions and the predicted solutions from the built ROM are shown in Figure 4.
The coverage of the ROM (i.e., the instances that the FE solutions fall within the predictive bounds of
GP-based ROM) are also given in Figure 5.

It can been seen from these results that the constructed ROM with GP could predict well the FE
solutions of the anisotropic problem at input locations that are not realised. Among the four testing
positions, the final case with m = 10 and α = 0 presents the largest normalised errors up to 13%. This is
not a surprising result because m has no effect on the FE solution of the problem when α = 0. However,
this information is not fully captured in the training data and thus not gained by the non-intrusive ROM
with GP, which is pure data-driven method that only understands the functional relation between m, α
and the solution field from the training set. As a result, we could observe 5 blurred oscillation periods
in the predicted solutions from ROM in Figure 3. However, the predictive interval (whose upper and
lower bounds are given at two standard deviations 2σ̂ above and below the predictive mean µ̂) of the
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Figure 3: Comparisons of FE solutions to the predicted solutions given by the constructed GP-based
ROM. The first row gives the FE solutions. The second row gives the predicted solutions from the GP-
based ROM. The columns from left to right correspond to testing input positions (m,α) = (6, 2), (10, 2),
(1, 2) and (10, 0) respectively.

Figure 4: The normalised errors between FE solutions and the predicted solutions from the ROM with
GP surrogate. The plots from left to right correspond to testing input positions (m,α) = (6, 2), (10, 2),
(1, 2) and (10, 0) respectively.

Figure 5: The coverage of constructed ROM with GP, giving the instances that FE solutions fall within
the predictive bounds provided by the ROM with GP. 1 indicates that the FE solution is covered by the
predictive interval (whose upper and lower bounds are given at two standard deviations 2σ̂ above and
below the predictive mean µ̂) and 0 indicates otherwise. The plots from left to right correspond to testing
input positions (m,α) = (6, 2), (10, 2), (1, 2) and (10, 0) respectively.
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GP-based ROM covers the FE solutions sufficiently in this case, demonstrating that one can benefit from
the predictive uncertainty embedded in the non-intrusive ROM coupled with GP emulation.

4 Future Directions

We demonstrate in this report that a non-intrusive ROM with GP surrogate could be used to replace
computationally expensive computer solvers for problems with high-dimensional output, in one of the
building blocks of nuclear fusion modelling. However, the predictive performance of GP-based ROM relies
on the information contained in the training data, i.e., the quality of computer experimental design. We
use Latin hypercube sampling (LHS) in this experiment, but it is worth exploring the benefits provided
by the sequential designs [1], especially in cases where FE solutions are changing rapidly in small regions
of the input space. The rapid changes of FE solution field also indicates that the GP surrogate should
incorporate the non-stationary features, giving rise to the more advanced Gaussian process models with
deep hierarchies [4]. Furthermore, dimension reduction techniques such as POD lose information when
the original data are projected onto a lower dimensional space, and thus some extreme but important
events could be masked in the low dimensional data, a scenario called masking effect. As a result, if the
GP surrogate is built on the low dimensional data one may not be able to recover these outlying events
using the constructed non-intrusive ROM.

Although the non-intrusive ROM requires no domain knowledge and access to the source code of
original problems, it ignores the physics implied by the underlying problem and thus may be inaccurate
comparing to the its intrusive counter-party. Therefore, it would be worth exploring the trade-off between
the speed and accuracy of intrusive and non-intrusive MOR, especially in context of UQ. It would also
be interesting to find a middle ground where one could exploit the benefits (e.g., accuracy, speed and
uncertainty) of both intrusive and non-intrusive ROM, producing a physics-informed non-intrusive ROM.
Some relevant literature on physics-informed machine learning (say using a boundary condition or other
approaches) include [22, 10, 23].

f1x1

f2x2

f3 y
w1

w2

Layer 1 Layer 2

Figure 6: An illustrative example of a system of three computer models f1, f2 and f3. Note this is only
for illustration. Linked GP in [14] can work on any feed-forward computer systems.

Since fusion models are often multi-disciplinary and multi-physics, the recent advances on linked
Gaussian process surrogates [14] could be considered and explored as a potential candidate to construct
non-intrusive ROM for fusion systems by linking non-intrusive ROM of individual sub-models. For
example, to construct the ROM of the two-layered system in Figure 6, one could first build GP-based
non-intrusive ROM (as demonstrated above) for all individual sub-models (f1, f2 and f3) and then
construct the non-intrusive ROM of the whole system by linking the non-intrusive ROM of f1 and f2
to that of f3 through the reduced space w1 and w2 analytically. One key benefit of this approach for
system-wise reduced order modelling is that one only needs to do dimensionality reduction to the outputs
of sub-models. Whereas, to build intrusive ROM, one has to make extra challenging efforts to reformulate
the original high-fidelity model (e.g., f3) under both reduced input (e.g., w1 and w2) and output (e.g.,
y).
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