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Executive summary:  

The present report draws a concise review of uncertainty quantification methods 

classified according to their intrusiveness. Attentions is paid to non-intrusive and later 

semi-intrusive methods which enable to define procedures which are independent of the 

models equations, thus enabling full separation of concern. The report also presents 

upto-date toolkits, libraries and pieces of software that enable the high-throughput 

ensemble-based computations required for verification, validation and uncertainty 

quantification. The report concludes with a brief review of direct attempts to quantify 

uncertainties with existing plasma fusion codes.  
  

     

 
  



	

 

1 Introduction  

Uncertainty quantification, verification and validation processes are crucial in order to demonstrate the 
robustness of all forms of simulation. Code results can be "validated" by comparison with experiment in a 
number of ways, ranging from qualitative (subjective) measures to quantitative measures which apply a 
validation metric. Verification (confirmation that the mathematical model has been coded correctly) and 
validation of computer simulations have been discussed at length for fluid dynamics [1]. Applications to 
fusion have been made in a number of subsequent papers, including "Validation in fusion research: 
Towards guidelines and best practices" [2], "Verification and validation for magnetic fusion" [3] and 
"Validation metrics for turbulent plasma transport" [4]. 
 
Computer modelling is widely used in science and engineering to study systems of interest and to predict 
their behaviour. These systems are usually multi-scale or multi-physics in nature, as their accuracy and 
reliability depend on the correct representation of processes taking place on several length and time scales 
involving different physics [5–8]. The resulting code often simulates a collection of coupled models. 
Moreover, these systems can be stochastic, since there are always some unresolved scales whose effects 
are not taken into account due to lack of knowledge or limitations of computational power [6,9]. Additionally, 
measurements of model parameters, model validation, and initial and boundary conditions themselves can 
be rarely if ever achieved with perfect accuracy [10]. Therefore, the simulation model and its output results 
inevitably contain uncertainties, and one needs to estimate their magnitudes by applying a forward 
uncertainty quantification (UQ) method. 
 
UQ is familiar in engineering and applied mathematics communities but quite immature at lower length 
and time scales relevant of physics and chemistry, let alone in combinations which arise in multiscale 
applications. Handling a large multiscale/multiphysics problem is arguably among the most complex one 
can address. Collectively speaking, verification, validation and UQ for such systems is an active research 
topic and off-the-shelf solutions remain absent. 
 
It is standard practice in UQ to distinguish two sources of uncertainty – “epistemic” and “aleatoric”. The 
former addresses systematic errors (caused by parameter values, etc.), the latter random ones, which are 
linked to the use of random numbers generators and random seeds. Importance must be attached to 
intrinsic stochasticity coming from chaos. Turbulence is the primary source in fusion research, but it is also 
present in many particle-based methods (such as classical molecular dynamics). Our current 
investigations of binding affinity calculations using molecular dynamics show that aleatoric uncertainty can 
more than double the variability of predictions compared with studies performed without ensemble 
averaging. For epistemic UQ, information about the distribution of the uncertainty in the parameters must 
be specified, but such information is rather rarely known. In our own work, we have often had to assume 
uniform distributions across a fixed range (say up to 20% changes in the parameter of interest). 
 
The purpose of the present report is to provide a short overview of approaches to uncertainty quantification 
including recommendations as to which are likely to be of most relevance to the Neptune project. This 
report draws heavily upon the experience gathered over recent years including the past three years 
running the VECMA project (www.vecma.eu). The goal of the project is to provide an open source toolkit 
(VECMAtk, www.vecma-toolkit.eu) containing a wide range of tools to facilitate the use of VVUQ 
techniques in multiscale, multi-physics applications [39]. Approaches are classified by degree of 
intrusiveness, and we focus on ones suited to enable separation of concerns, that is avoiding the 
development of methods on a per-application basis. The report then provides a review of existing toolkits 
enabling the execution of UQ workflows on high-performance computing infrastructures. 
 
 



	

2 Classification of methods by intrusiveness 

Usually a distinction is made between intrusive UQ methods, where one substitutes the original model with 
its stochastic representation, and non-intrusive methods, where the original model is used as a black-box 
[11,12]. Intrusive methods are efficient and relatively easy to apply to linear models, e.g. [13]. This, 
however, represents only a relatively small class of models. They can be applied to non-linear models as 
well, but the solution of the resulting equations may become very demanding. Non-intrusive methods can 
be applied to any type of non-linear model. However, if a single model run requires large execution times, 
these UQ methods may be ineffective, or even computationally intractable. 
 
Non-intrusive uncertainty propagation methods consider the entire system as one black box, see Figure 
1. The main advantage is that the (legacy) simulation code is left completely untouched, hence the name 
‘non-intrusive’. This allows users to quickly add a UQ component to their existing simulation framework. 
The one thing any application user must do is write an encoder/decoder to allow a code of interest to 
connect to EasyVVUQ. To facilitate this, several non-intrusive methods are considered in the VECMAtk 
[14] and more specifically in EasyVVUQ [15] (which will be described in section 5): quasi Monte Carlo 
(qMC), Polynomial Chaos (PC) and the stochastic collocation (SC) methods [16]. All these methods follow 
a similar pattern, namely: 

1. Specify the input distributions and draw samples (create a so-called “design-of-experiment”). 
2. Run the ensemble. 
3. Perform post-processing analysis. 

 

 
 
Figure 1: Schematic of non-intrusive uncertainty propagation through a multiscale system of coupled 
single-scale solvers, mapping input distributions to a distribution of any output Quantity of Interest (QoI). 
The propagation technique is agnostic with respect to the structure of the multiscale system and treats it 
as a black box. 
 
The stochastic Galerkin method [17, 18] is often labelled as intrusive, due to the fact that dedicated solvers 
have to be developed in order to tackle the stochastic problem at hand. The equations of the problem are 
rewritten directly with stochastic variables. The additional programming effort is usually regarded as a 
major disadvantage, especially in the case of complex computational models whose software and 
underlying solvers are difficult to be accessed, modified or otherwise manipulated. Therefore, and despite 
the fact that stochastic Galerkin methods have appealing properties for error analysis and estimation, 
collocation methods are generally preferred, as they allow for non-intrusive, black-box use of the original 
computational models. It must be noted that the separation into intrusive and non-intrusive methods is an 
ongoing topic of discussion, see e.g. [19]. 
 
An intermediate class of methods exist for codes which couple multiple models. Such methods are called 
semi-intrusive UQ algorithms [20]. These algorithms are intrusive only on the level of the multiscale model, 
that is, in the way the single scale components are coupled together. The single scale components 
themselves are, however, treated as black-boxes, see Figure 2. Semi-intrusive algorithms will be 
discussed in more detail in section 6. 
 



	

 
Figure 2: Intrusiveness of UQ methods. The different levels of intrusiveness are associated with the 
components of an application which need to be modified to quantify uncertainty. 
 

 
3 Enhanced sampling methods 

Most commonly, UQ studies rely on sampling methods. Monte Carlo (MC) sampling converges irrespective 
of the number of random variables (RVs) or the regularity of the given problem, albeit with a slow 
convergence rate in the mean-square-error sense. Improved cost-error ratios can be achieved with 
multilevel MC methods [21]. Spectral UQ approaches converge much faster, exponentially in the most 
favourable cases, for a small to moderate number of random inputs and smooth input-to-output map [22]. 
Typical methods of this type are stochastic collocation [16,23,24] or point collocation [25,26] methods. 
Comparisons between stochastic and point collocation methods, see e.g. [27], indicate that the former 
tends to provide superior accuracies and convergence rates for smooth quantities of interest (QoI). 
However, since these approaches differ significantly, a fair comparison between the two is still an open 
research topic, as also indicated in [26].  
A common bottleneck of all aforementioned methods is the so-called “curse of dimensionality” [28], i.e. 
convergence rates deteriorate, and computational costs increase with the number of considered input 
parameters, by definition, exponentially. As a possible remedy, state-of-the-art methods employ sparse, 
adaptively constructed polynomial approximations, see e.g. [29,30] for adaptive stochastic collocation 
methods and [25] for adaptive point collocation methods. While generally not free of the curse of 
dimensionality, adaptive methods exploit possible anisotropies among the input parameters regarding their 
impact upon the QoI. Assuming that such anisotropies exist, adaptivity may enable studies with a 
comparably large number of input parameters. More recently, tensor decompositions (see [31] and the 
references therein) have been used to exploit possible low-rank structures of parametric problems in order 
to tackle the curse of dimensionality. In several cases, again relying on high regularity, superior asymptotic 
convergence rates have been obtained compared to sparse grid methods [32]. However, comparisons 
between these methods remain an active field of research. In EasyVVUQ only adaptive stochastic 
collocation methods were considered and applied to the large-scale UQ of the CovidSim code [69]. In the 
search for an acceptable compromise between computational work and approximation accuracy, such 
approaches are receiving increasing attention in uncertainty quantification. Dimension-adaptive methods 
are based on nested univariate collocation points, e.g. Clenshaw-Curtis and Genz-Keister nodes are 
typical choices for uniform and normal input distributions, respectively. 
The aforementioned adaptive algorithms don’t break the curse of dimensionality, they postpone it. 
Although the sampling plan is iteratively refined in directions that are found to be more important than 
others, they ultimately still create a sampling plan in a high dimensional space. A class of methods that 
attempts to circumvent this are the so-called High-Dimensional Model Representation (HMDR) models 
[59]. Without going into detail, the basic idea is to write the model response as an expansion of component 
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functions of increasing dimension (akin to the ANOVA expansion). The assumption is then made that in 
most physical models, (very) high-order interaction effects between parameters are not important. This is 
not proven, but often observed in practice. One can then truncate the expansion at for instance second-
order interactions. Each remaining component function must now be approximated by, for instance, QMC 
or stochastic collocation, which can be readily performed since each function is at most two-dimensional. 
Thus, instead of trying to sample a single high-dimensional space as efficiently as possible, the problem 
is broken up into a series of low-dimensional subproblems. This could potentially be implemented in 
EasyVVUQ, since the machinery to approximate each component function is already in place. Note that 
instead of manually choosing the order at which to truncate the expansion, the order can also be found 
adaptively [60]. Although the number of component functions can be large, this algorithm does have a high 
degree of parallelism, as all component functions of a given order can be approximated in parallel. 
Thus far we have discussed adaptivity in the stochastic dimensions. Another type of adaptivity relates to 
locally refining the stochastic space (of a given dimension), in the case when the response in this space 
is not entirely regular. The stochastic collocation and polynomial chaos methods write the code output as 
an expansion over global polynomials. However, if say a discontinuity exists in the stochastic domain, an 
expansion over global polynomials can lead to the well-known Runge phenomenon. Various methods exist 
that instead use a (polynomial) basis with local support, e.g., Adaptive Sparse Grid methods [61] or the 
Simplex Stochastic Collocation method [62]. Adaptivity in this case means placing more samples in regions 
of the stochastic space where the solution is not regular. It is also possible to combine dimension adaptivity 
with local adaptivity, see e.g. [63]. 
Active subspace methods [64] are a more recent class of UQ methods that deal with high dimensional 
input spaces. These are not adaptive in nature, but instead use gradient information to find a matrix that 
projects the high-dimensional input vector to a low-dimensional `active subspace’, in which most of the 
variation takes place. Although certainly promising, the classical active subspace method requires the 
gradient of the output with respect to the inputs to be available, which will not always be the case. At the 
Turing Institute, work has been performed which combines active subspace ideas with Gaussian 
Processes, without the need for computing the gradients [65]. Finally, machine-learning methods for 
finding active subspaces have recently also been developed, for instance the “Deep active subspaces” 
[66] or “Deep UQ” frameworks [67]. These also work without the need for gradients. An early 
implementation is in development within the EasySurrogate module within the VECMA Toolkit. 
 

4 Surrogate modelling methods 

The construction and use of surrogate models (also referred to as metamodels or emulators) is a central 
computational strategy in UQ [11]. A surrogate model is trained or fitted to the output of a limited number 
of evaluations of an expensive computational model. Once trained, the surrogate can replace the 
expensive model and thereby enable tasks that require many model evaluations, e.g. detailed assessment 
of forward uncertainty propagation, or Bayesian model calibration. 
 
Techniques to construct surrogates that are well-established in the UQ domain include Non-Intrusive 
Spectral Projection (based on Polynomial Chaos Expansion), interpolating polynomials resulting from 
stochastic collocation, and Gaussian Process regression (also known as “kriging”). They are not 
specifically aimed at the multi-model setting, however. A step forward was the semi-intrusive approach 
(detailed in section 6) where it was shown that these existing techniques can be successfully used as 
elements in a multi-model UQ framework. 
 
Below we give an overview of newly developed, advanced techniques to obtain a surrogate model 𝜇" from 
an original model 𝜇. Specifically, we discuss: 

1. Stochastic surrogates 
2. Reduced surrogates  



	

4.1 Data driven stochastic surrogates 
When given parametric states can correspond to multiple 𝜇 model states methods, stochastic surrogate 
modelling (or stochastic parameterization) of the model are necessary to account for the uncertainty in 
the 𝜇 state. In the VECMA project, methods have been developed that resample 𝜇 data coming from a 
reference simulation, conditioned on given parametric states. In our case of multi scale modelling, µ is 
often a quantity derived from the expensive micro model, for which we wish to make a surrogate. 
Furthermore, et 𝑋 be some collection of parametric. This could include the QoI 𝑄, although not 
necessarily. In general, our surrogate µ"  takes the form of a conditional probability density function, i.e. 
 

𝜇"!"# 	∼ 	 𝜇!"#	|	𝑋'! , 𝑋'!$#, 𝑋'!$%, …	 , 𝜇"! , 𝜇"!$#, 𝜇"!$%, … (1) 
 
Here, the index j corresponds to a given time 𝑡!. Thus, in addition to a stochastic nature, we also have the 
option of embedding memory into the surrogate by conditioning on multiple time steps into the past. This 
is especially relevant when there is no clear time scale separation between the submodels. In essence, 
by conditioning as 𝜇!"#	|	𝑋'! , 𝑋'!$#, 𝑋'!$%, …	 , 𝜇"! , 𝜇"!$#, 𝜇"!$%, …  we identify a subset of candidate 𝜇!"# 
reference samples, from which we randomly sample one value (i.e. 𝜇"!"#) to be used as the prediction for 
the next time step 𝑡!"#. 
 
Eq. (1) describes a class of different models. Within VECMA, we have implemented a model based on the 
so-called “binning” concept from [33]; see [34]. Here, the space of conditioning variables is discretized into 
a set of non-overlapping bins, where each bin contains a given number of reference samples from µ. This 
is a direct way to identify the required subset of reference samples, since the conditioning variables will lie 
inside a single bin at every time step. The results of the implementation were positive [34]. Notwithstanding 
this, a downside of the approach is that it is subject to the curse of dimensionality, since the number of 
bins grows exponentially with the number of time-lagged conditioning variables. 
 
To circumvent this problem, we have developed a conditional resampling model based on probabilistic 
classification via machine learning [35]. Now, instead of binning the conditioning variables, the output (i.e. 
the reference 𝜇 samples) is placed into 𝐾 non-overlapping bins. The advantage is that this avoids the 
curse of dimensionality, since we do not include any memory in the output, i.e. the number of bins remains 
equal to 𝐾. A neural network is used to learn a discrete probability mass function (PMF) over the 𝐾 output 
bins, conditional on the time-lagged macroscopic input features. At any timestep, they can sample a bin 
index from this PMF, and subsequently resample 𝜇 reference data from the designated bin, see Figure 3. 
 
They applied these stochastic surrogates to problems in the context of climate modelling. As mentioned 
earlier, the goal here is to obtain a surrogate such that the overall, time-averaged statistics of the 
macroscopic solver are accurately captured. The results obtained to date are positive, when applied to a 
simplified atmospheric model [35] and to a more complex two-dimensional ocean circulation model [34]. 
Furthermore, the neural network approach has been extended to include a kernel-mixture network [36], 
enabling construction of a continuous Probability Density Function (PDF) instead of the discrete PMF used 
until now. 
 



	

 
Figure 3: Schematic representation of the neural network used for resampling-based stochastic surrogate 
modelling, as proposed in [35]. 

4.2 Data-driven reduced surrogates 
Multiscale models often have a high dimensional state space. As a consequence, the target of a surrogate 
model, for instance a subgrid-scale term in a turbulence simulation, also has a high number of degrees of 
freedom. That said, despite this high dimension, the QoI could just be a function that takes the high 
dimensional code output, and produces a single scalar. For instance, in a climate context, it is not 
uncommon that the QoIs are global, spatially integrated, quantities. Within VECMA, we have developed 
so-called reduced surrogate models that exploit such a massive difference in size between the model state 
and the QoIs. 
 
A model state has fixed parametric dimension. Hence, a surrogate model must have the same dimension 
as the original model. However, the unclosed component the surrogate models can be controlled. The 
unclosed component is the only part which must be learned from data, as the closed component is fully 
determined from known variables. In the VECMA project, a procedure has been developed where the 
unclosed component of the surrogate model is of the same size as a set of a priori defined integrated QoIs. 
This can be viewed as a pre-processing procedure which generates new training data that is reduced in 
size by several orders of magnitude compared to the original surrogate model 𝜇. For instance, if we have 
a 2D model with 64 points in each spatial direction, and our QoIs are 4 scalar time series (computed from 
the high-dimensional model state), we can reduce the training data size of each snap shot in time from 642 
to 4, without any significant loss of accuracy in our QoIs during the training phase. Effectively, instead of 
creating a surrogate for a high-dimensional dynamic field, we only need to create a surrogate for a small 
number of scalar time series, as far as accuracy in our pre-defined set of QoIs is concerned. The 
methodology is described in [37,38]. Briefly, the surrogate model is given by the following expansion: 
 

𝜇"(𝑥, 𝑦, 𝑡) =2 τ&(𝑡)𝑃&(𝑥, 𝑦, 𝑡)
'

&(#

 

 
Here, τ&(𝑡) are the generated new training data for which a surrogate must be learned, and the 𝑃&(𝑥, 𝑦, 𝑡) 
are dynamic fields which are completely made up of known, (macroscopic) variables. Hence, the 𝑃& do not 
need to be learned from data, and can be computed without reference to the expensive micro model. In 
principle, any type of surrogate can be trained on the generated τ time series data.  
 
Thus far, we have only tested this method on two-dimensional problems. The reduction in training data 
size for three-dimensional problems will even be greater (e.g. 643 to 4 in our example). However, our 
current focus lies on training surrogates on the generated reduced training data, and solving the equations 
with a trained reduced (microscopic) surrogate in place. This is a challenging problem, as a surrogate (in 
general) is trained offline to fit the training data. It is not directly trained to perform well in an online coupled 
modelling environment, in which there is a two-way interaction between the surrogate and the 



	

(macroscopic) governing equations. This does not have to be a problem (see e.g. [35]), although we (and 
others) have also observed that this can yield incorrect results. To circumvent this, we are currently 
investigating the effectiveness of a second, online training phase, see the work of [68] for the general 
methodology. 

 

5 Semi-intrusive uncertainty quantification for multi-model applications  

The semi-intrusive methods for multiscale UQ are a family of algorithms which employ the structure of the 
multiscale and multi-physics codes in order to perform an efficient UQ, that is, estimating the uncertainties 
with comparable quality as the black box MC method, but with a substantially reduced execution time. 
According to the Multiscale Modelling and Simulation Framework [55], instead of considering the whole 
code as a black-box, the code can be seen as a collection of coupled single scale black-box sub-models. 
Thus, the semi-intrusiveness of the methods boils down to a limited inspection of the multi-model code, 
which is only up to the level of single scale components and their coupling. Below the main ideas behind 
the semi-intrusive UQ methods is described. 

5.1 Semi-intrusive Monte Carlo 

 
Figure 4: Semi-intrusive Monte Carlo method applied to a coupled-model application consisting of 
submodels 𝑀 and 𝜇. A smaller number of samples of the expensive submodel 𝜇 are simulated using 
advanced sampling. 
 
Semi-intrusive Monte Carlo (SIMC) is a Monte Carlo method with a reduced number of samples of the 
expensive component of the multiscale model, see Figure 4. The remaining samples are obtained by 
interpolation. Usually the interpolation method produces results which are not exact to the micro model 
response. Therefore, a statistical cross-validation is applied to test whether the interpolation does not lead 
to a large error in the estimates of uncertainty: the error is compared to the confidence interval of the 𝑁) 
MC estimate, and then, our algorithm accepts the SIMC results when the error is smaller than the 
confidence interval and the MC results. All details can be found in [20]. 
 

5.2 Metamodeling of expensive sub-model 
 

Surrogate modelling is a common approach to perform an efficient UQ for computationally intensive 
systems at a reduced amount of time [56,18]. The idea of these methods is to substitute the original system 



	

by its surrogate, much like the ones discussed in section 4, which produces a similar output, but their 
computational time is lower. In the semi-intrusive multiscale metamodeling method, these techniques are 
applied to a single scale component, which takes the largest portion of the computational time [22]. In this 
way, the error introduced by the approximation is expected to be small when estimating the uncertainties 
of the multiscale model. 
 
Figure 5 shows an example where the micro model is substituted by a surrogate. The rest of the multiscale 
model has the original form. However, since the micro model produces an approximate result, the output 
of the macro model is not the same as the original model. In this method, the error will always depend on 
the details of the model. It depends on the properties of the micro model, for example, smoothness, which 
determines how difficult it will be to approximate the original single scale model. Additionally, the error in 
the estimates of uncertainty also depends on how sensitive the result of the macro model is to the output 
of the micro model which is replaced by a surrogate. If, for instance, this sensitivity is low, it is reasonable 
to expect that the error introduced by the approximation is small. Of course, the error also depends on the 
method with which the surrogate is build. 
 

 
Figure 5: Semi-intrusive multiscale metamodeling uncertainty quantification. The expensive submodel 𝜇 
is replace by a cheaper surrogate model 𝜇" when computing ensembles of simulation of the complete 
application to perform UQ. 

 
 

6 Uncertainty quantification toolkit for high-performance computing  

Recent advances in the scale of computational resources available, and the algorithms designed to exploit 
them, mean that it is increasingly possible to conduct the additional sampling required by UQ even for 
highly complex calculations and workflows. EasyVVUQ is being developed as part of the VECMA project. 
The aim is to define stable interfaces and data formats that facilitate VVUQ in the widest range of 
applications. This would then provide the platform to support complex multi-solver workflows. Several 
software packages or libraries are already available for performing VVUQ (as shown in the next 
paragraph), but in many cases these rely on closed source components and none of them provide the 
separation of concerns needed to allow the analysis of both small local computations and highly compute 
intensive kernels (potentially using many thousands of cores and GPUs on HPC or cloud resources). 
Consequently, the design of EasyVVUQ is focused on making a wide range of VVUQ techniques available 
for scientists employing unmodified versions of existing applications. In particular, key considerations for 
us are the ability to support HPC codes, large job counts of the kind necessary for ensembles, as well as 
the robustness and restartability of workflows. 
 
Several other toolkits share a subset of the added values that VECMAtk provides. In the area of VVUQ, a 
well-known toolkit is Design Analysis for Optimization and Terascale Applications (DAKOTA, 



	

https://dakota.sandia.gov) [40], which provides a suite of algorithms for optimization, UQ, parameter 
studies, and model calibration. DAKOTA is a powerful tool but has a relatively steep learning curve due to 
the large number of tools available and offers no way to coordinate resources across concurrent runs [41]. 
Similarly, there are other toolkits that help with UQ directly, such as UQTK [42] and UQLab 
(https://www.uqlab.com) [43]. In the area of VVUQ using HPC, there are several other relevant tools. 
OpenTURNS [44] focuses on probabilistic modelling and uncertainty management, connects to HPC 
facilities, and provides calibration/Bayesian methods and a full set of interfaces to optimization solvers. 
Uranie leverages the ROOT framework (http://root.cern.ch) to support a wide range of UQ and sensitivity 
analyses (SA) activities using local and HPC resources. A key requirement for performing many types of 
UQ and SA is the ability to effectively run large ensembles of simulations runs. The “pilot job” mechanism 
allows a user to claim a large portion of a supercomputer into which a large and often complex set of 
individual jobs are submitted to form a workflow. In addition to QCG-PJ developed as part of the VECMAtk 
there are tools such as RADICAL-Cybertools [45] that can be used to initiate and manage large simulation 
ensembles on peta and emerging exascale supercomputers.  
 
In the area of surrogate modelling, GPM/SA [46] helps to create surrogate models, calibrates them to 
observations of the system, and give predictions of the expected system response. At the Turing Institute, 
a Python package for fitting Gaussian Process Emulators to computer simulation results call MOGP is 
being developed (https://github.com/alan-turing-institute/mogp-emulator). There is also a portfolio of 
available solutions for rapidly processing user-defined experiments consisting of large numbers of 
relatively small tasks. The examples are Swift/T [47] and Parsl [48], both of which support execution of 
data-driven workflows. Another range of relevant related tools include more statistically oriented 
approaches. For instance, Uncertainpy [49] is a UQ and SA library that supports qMC and polynomial 
chaos expansions (PCE) methods. PSUADE [50] is a toolbox for UQ, SA and model calibration in non-
intrusive ways [51], while DUE [52] assesses uncertain environmental variables, and generates 
realisations of uncertain data for use in uncertainty propagation analyses. PyMC3 [53] is a Python package 
for Bayesian statistical modelling and probabilistic machine learning which focuses on Markov Chain MC 
approaches and variational fitting. Similarly, SimLab (https://ec.europa.eu/jrc/en/samo/simlab) offers 
global UQ-SA based on non-intrusive MC methods. UQLab and SAFE [54] are MATLAB-based tools that 
provide support for UQ (using e.g. PCE) and SA (using e.g. Sobol’s method) respectively. 
 
It is worth mentioning that capabilities of Uncertainpy have been integrated in EasyVVUQ. Indeed, it is 
possible to integrate many kinds of capabilities within EasyVVUQ, as it is designed to host VVUQ arbitrary 
applications that may be of interest now or in the future. This should be particularly convenient if currently 
un-featured UQ techniques are to be considered such as multilevel MC, or the mentioned HDMR 
techniques. 

 
 

7 Review of UQ attempts on plasma fusion codes 

The application of UQ to fusion simulation codes has been described in several papers, including 
"Validation in fusion research: Towards guidelines and best practices"[70], "Verification and validation for 
magnetic fusion" [3] and "Validation metrics for turbulent plasma transport" [4]. 
 
Although the UQ field has undergone rapid development over the past few years, its applications to plasma 
physics mainly focus on the two limits of Vlasov [71-73] and MHD [74, 75] with standard stochastic settings. 
Apart from the work in fluid dynamics [76, 77], to the best of the authors' knowledge, only limited work has 
been conducted on the propagation of uncertainty in multi-scale plasma physics. 
 
Recently, the plasma community has recognized the importance of UQ in the validation and prediction of 
magnetically confined plasma turbulence [4]. Within the computational power afforded by current 
supercomputers at the time, the plasma community has explored the inclusion of UQ in the analysis of 



	

reduced models, such as trapped-gyro-Landau-fluid (TGLF) equations, while UQ analysis in compute-
intensive nonlinear simulations, e.g., gyrokinetic simulations, remains a challenging task. There is some 
previous literature concerning the inclusion of UQ in reduced model assessments and in the fitting of 
experimental measurements which includes but is not limited to [78, 79]. 
 
In more recent work, Calleja et al. [80] address a very concrete scenario: the analysis of first wall 
installations on the DEMO installation. An initial Monte Carlo study of the first wall is performed to develop 
understanding of the complex effects of tile misalignment. The Matlab toolkit COSSAN is used to perform 
the SA of the SMARRDA plasma modelling and simulation code. Another concrete application of UQ to 
DEMO by Lux et al [81] uses the PROCESS fusion power plant systems code. A multi-parameter Monte-
Carlo method together with single parameter studies are performed to investigate individual impacts of 
performance parameters (net electric output and pulse length) on the fusion gain. Lakhlili et al. [82] 
performed the first UQ attempt on a multi-model (multiscale) fusion workflow, coupling a transport model 
of plasma profiles, a turbulence model of fluxes and an equilibrium model of plasma geometries. The UQ 
was performed using non-intrusive the polynomial chaos expansion. 
 
Other advanced sampling techniques have been applied directly to plasma fusion simulations. Sensitivity-
driven adaptive sparse stochastic approximations in plasma microinstability analysis was performed by 
Farcas et al [83]. They leveraged Sobol decompositions and introduced a sensitivity scoring system to 
drive the adaptive process. Their second test case was a real-world example stemming from a particular 
validation study for the ASDEX Upgrade experiment. They carried out a two-step analysis, initially 
considering three uncertain inputs characterizing the ions and electrons, and then 12 stochastic 
parameters associated with the particle species and the magnetic geometry. The results showed that the 
proposed approach has an accuracy comparable to the standard adaptive approach at significantly 
reduced computational cost; for example, for the 12D scenario, up to 13.3 fewer Gene evaluations.  
 
Xiao et al. [84] introduced a stochastic kinetic scheme for multi-scale plasma transport with uncertainty 
quantification. They focused on the emergence, propagation and evolution of randomness from gyrations 
of charged particles in magnetohydrodynamic simulations. Solving Maxwell's equations with the wave-
propagation method, the evolutions of ions, electrons and the electromagnetic field are coupled throughout 
the simulation. They combined the advantages of SG and SC methods with the construction principle of 
kinetic schemes, and obtained an efficient and accurate scheme for a cross-scale BGK-Maxwell system 
with uncertainties. Randomly initial inputs of both flow and electromagnetic fields are considered. Finally, 
point collocation methods have been used by Vaezi et al. [85] on simulations from a validation study of 
drift-wave turbulence in the CSDX linear plasma device experiment using BOUT++ [86]. 
 
 

8 Conclusions  

 
We have introduced three types of UQ approaches according to their intrusiveness with respect to the 
simulated application. At the single-model level, we discussed non-intrusive and intrusive methods. When 
considering applications coupling multiple models, we presented semi-intrusive methods which enable to 
save significant computational timing while avoiding interfering with the models equations. Non-intrusive 
and semi-intrusive methods appear to be interesting candidate keeping in mind that the Neptune projects 
seeks to promote the separation of concerns. While intrusive methods could circumvent the so-called 
curse of dimensionality, they would entail to implement UQ on a per-application basis. We have focused 
on two specific types of non-intrusive UQ methods: enhanced sampling and surrogate modelling.  
 
Both techniques are already available from Neptune partners, that is UCL and the Turing Institute with 
tools such as EasyVVUQ, EasySurrogate and MOGP Emulator. We introduced these tools as part of a 



	

larger review of (VV)UQ toolkits available which implement such methods and render these available for 
widespread use on high-performance computing infrastructures. 
 
This report lays the foundations of methods that will be further investigated and tested during the duration 
of this 6-month project. Following the first meetings on the theme of UQ which were held mid-January 
(workshop and hackathon), enhanced sampling techniques as well as actionability of EasyVVUQ 
workflows has been tested by a subset of Neptune application partners. On the basis of their experience 
as well as expectations from the whole project’s community, we will attempt to conclude on a precise list 
of methods and toolkits to integrate UQ at the heart of the future Neptune code. 
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