
T/NA083/20

Fluid Referent Models

Task 0.1 Environment

Ben Dudson, Peter Hill, Ed Higgins, David Dickinson, and Steven
Wright

University of York

David Moxey

University of Exeter

December 20, 2021

Contents

1 Executive summary 1

2 Development environment 2

2.1 Slack . 2

2.2 GitHub Organisation . 2

2.3 ReadTheDocs . 3

3 Community building 3

3.1 Hackathons . 3

3.1.1 VECMA . 3

3.2 Workshops . 6

3.2.1 Performance Analysis . 6

3.2.2 HPC Development using C++ and SYCL 7

3.2.3 Towards Exascale Simulation of Integrated Engineering
Systems at Extreme Scales 7

3.3 Cross-task coordination . 7

4 Testing 8

4.1 Correctness testing . 8

4.2 Performance testing . 8

4.2.1 Existing Solutions . 10

1 Executive summary

This document describes activities from January to March 2021, to coordinate

community activities under the ExCALIBUR-Neptune project. The deliver-

able for this work package was to set up the development environment (version

1

control, continuous development/integration, automated testing and documen-

tation services, coding standards). To achieve this we have set up development

services, organised and attended community activities. The other part of this

work package is to set up a testing framework for evaluating parallel scaling

on e.g. Archer2 / Viking / Bede. In this period we have carried out a search

of existing tools, and created an outline of the Neptune performance testing

system design. This system will be implemented in task 0.2 (2021/22).

2 Development environment

2.1 Slack

We set up a Slack (https://slack.com/intl/en-gb/) work-space, excalibur-neptune,

as a discussion and communication tool across all of the groups involved in

ExCALIBUR-NEPTUNE. We considered alternatives such as Zulip (https:

//zulip.com/), which has similar features of asynchronous text messaging,

group private messages, separate topics or channels, and file sharing. Zulip

has some advantages over Slack, most notably it is free to host one’s own in-

stance (or rather, “free as in ‘puppy’”: the product is free, but there are still

costs involved in the setup, maintenance and running of the service on one’s own

infrastructure). The main reason for choosing Slack over Zulip was the degree

of familiarity people are likely to have with Slack: Zulip has a different model

of conversations, somewhat similar to email, while Slack has a more traditional

“chatroom” model. Many researchers are already members of at least one Slack

workspace, so there is little incremental cost and a shallow learning curve to

joining an additional workspace.

2.2 GitHub Organisation

Working with Research Software Engineers (RSEs) at UKAEA, we set up the

GitHub organisation ExCALIBUR-NEPTUNE, creating two repositories:

• Documents – private repository archiving non-public documents, such as

bid documents and reports.

2

https://slack.com/intl/en-gb/
https://zulip.com/
https://zulip.com/

• Neptune – public repository to collate Neptune components and documen-

tation

We are managing access to these repositories as well as to the organisation

as whole, inviting members of other groups to become organisation members,

giving them permissions to create and manage their own repositories under the

organisation. Through this mechanism, as of the start of March 2021, two proxy-

apps (minepoch and Nektar-driftwave) are hosted under the ExCALIBUR-

NEPTUNE organisation.

2.3 ReadTheDocs

We have set up ReadTheDocs (https://readthedocs.org/) to automatically

build and host documentation in the Neptune repository. ReadTheDocs is

built on Sphinx (https://www.sphinx-doc.org/en/master/) which reads and

parses ReStructuredText (http://docutils.sourceforge.net/rst.html) files.

3 Community building

3.1 Hackathons

3.1.1 VECMA

The VECMA Hackathon ran from the 19th to 22nd of January 2021, and served

as an introduction to the VECMA toolkit of uncertainty quantification (UQ)

tools. We used two BOUT++ models, a simple 1D heat conduction model

and a more complicated 2D “blob” model, as bases with which to learn the

EasyVVUQ (https://easyvvuq.readthedocs.io/en/dev/) tool. We gained

experience with using EasyVVUQ for BOUT++, and started understanding

some of the challenges UQ is going to present to the ExCALIBUR-NEPTUNE

project. During the Hackathon, we had conversations with the UQ group and

fed our findings back to them.

3

https://readthedocs.org/
https://www.sphinx-doc.org/en/master/
http://docutils.sourceforge.net/rst.html
https://easyvvuq.readthedocs.io/en/dev/

In order to use EasyVVUQ with BOUT++, we had to first write a custom

“encoder” and “decoder” in Python. The encoder turns a Python dict of

input values into an input file that BOUT++ can read, while the decoder reads

BOUT++ output file(s) into a Python dict. This was trivial to implement

given BOUT++’s existing pre- and post-processing tools.

We next followed existing EasyVVUQ examples and tutorials to get a basic UQ

workflow setup using the simple 1D model. These were easy to follow and to

adapt to our model, and were greatly helped by access to EasyVVUQ developers

and experts during the hackathon.

The 1D heat conduction model evolves the following equation in time, t:

∂T

∂t
= ∇||(χ∂||T) (1)

where T is the temperature and χ is heat conductivity. BOUT++ grids are

always 3D, even if some dimensions only have a single point. Here, we use 100

points in y, the parallel direction, and 1 point in both x and z. The initial

condition is given by a Gaussian in y:

T (t = 0) = A exp[−(y − y0)2/(2w2)]/(w
√

2π) (2)

where A is the amplitude, y0 the Gaussian centre, and w is the width of the

Gaussian. Thus, we have four input parameters: χ, A, y0 and w.

Overall, EasyVVUQ proved easy to do basic UQ and get results out. We ini-

tially used Polynomial Chaos Expansion (PCE) with this model, varying just

χ and A, and measuring T (y, t = 10). This model takes only a few seconds to

run, and using 3rd order PCE resulted in 16 simulations, taking only a couple

of minutes total. The PCE tools in EasyVVUQ have built-in tools for plot-

ting the moments and Sobol indices, making simple analyses trivial. However,

even using this simple model immediately uncovered some subtleties: it is (cur-

rently) not possible to give EasyVVUQ more information about the expected

distribution. We know that T must always be positive, but when varying χ over

multiple orders of magnitude, some simulations see T very quickly go to zero.

The distribution of simulations can be heavily weighted close to zero, and the

4

resulting distribution of T computed by the PCE analysis can have significant

amplitude at negative T , which is nonphysical. Similar difficulties are antic-

ipated in any system where uncertainty in an independent or input variable

varies over multiple orders of magnitude. One solution is to instead measure

ln(T) instead of T , which enforces the positivity condition, but at the expense

of making the resulting uncertainties more difficult to interpret. A more robust

solution would be for EasyVVUQ to be able to incorporate additional a priori

knowledge of the dependent variables.

The “blob2D” model is more complex, having spatial variation in two dimen-

sions (x and z), and two evolving variables, the vorticity ω and the plasma

density n:

∂ω

∂t
= − [φ, n] + 2

∂n

∂z

ρs
Rc

+Dn∇2
⊥n (3)

∂n

∂t
= − [φ, ω] + 2

∂n

∂z

ρs
nRc

+Dω∇2
⊥ω

1

n
(4)

ω = ∇2φ (5)

where φ is the electrostatic potential, [·, ·] is the Poisson bracket, ρs =
√
eTe0mi/(eB0/mi)

is the Bohm gyro-radius, e the electron charge, Te0 the initial electron temper-

ature, mi the ion mass, B0 the magnetic field, Rc is the radius of curvature, Dn

is the density diffusion coefficient, and Dω is the viscous diffusion coefficient.

This model is significantly more complex than the conduction model with many

more input parameters, and takes several minutes to complete 50 timesteps on

16 cores. We used this model to investigate using EasyVVUQ on expensive

turbulence models, varying the initial amplitudes of Te0, the scale of the initial

density perturbation, n0, Dn, and Dω. Because the output of this model is

2D in space, plus time, we used a number of lower-dimensional diagnostics as

measurements instead. These consisted of the (x, z) position of the both the

peak density and its centre of mass, as well as the velocity of this point.

The first thing to note is that the PCE sampler requires (N + 1)M samples,

where N is the order of polynomials used, and M is the number of parameters

being varied. For our model where we are varying M = 4 parameters and

using N = 3 we need 256 simulations. This is prohibitive on a local machine,

5

but EasyVVUQ includes several mechanisms for running simulations in parallel,

including on clusters with job/queue managers such as SLURM. One mechanism

is via dask (https://dask.org/), which works best for simple parallelisation

on a local machine, and especially for Python kernels. The dask jobqueue

(https://jobqueue.dask.org/en/latest/) package extends this to SLURM

clusters, but this proved to be very difficult to use for MPI parallelised programs.

The last mechanism, ExecuteSLURM, takes a template SLURM job script and

replaces variables with concrete values, and offers some control over the number

of jobs to submit at once. This turned out to the be the most robust of the three

mechanisms tried, and although it did not offer much benefit over a hand-written

parameter scan, it is likely to be of more use when using hierarchical sparse grid

sampling, where the parameter scan is incrementally refined. One thing to

note is that while EasyVVUQ can launch simulations in parallel, the decoding

– reading the output of the simulations – still happens in serial. Therefore if

there is any cost to the decoding, it is probably wise to have this done as part

of the simulation.

Lastly, we also explored using stochastic collocation (SC) instead of PCE. There

was some pain to this. While the EasyVVUQ sampling and analysis objects are

easily swapped between these two methods, the later analysis and plotting of

results differ significantly. This means that a workflow written for one method

needs several changes in order to convert it to use the other. Mostly these

differences are due to incomplete or unimplemented methods, and it is expected

that these differences disappear as EasyVVUQ matures.

3.2 Workshops

3.2.1 Performance Analysis

This ExCALIBUR-affiliated performance analysis workshop (https://tinyurl.

com/performanceanalysis2021) held online workshops on the 21st & 22nd of

January, and 18th Feb.

Most of this work has been done by Joseph Parker and John Omotani (CCFE),

with input and discussions from the BOUT++ team at York and elsewhere.

BOUT++, and in particular the STORM model, has been instrumented with a

6

https://dask.org/
https://jobqueue.dask.org/en/latest/
https://tinyurl.com/performanceanalysis2021
https://tinyurl.com/performanceanalysis2021

number of tools including Intel VTune and Score-P. The results of these work-

shops are collected in a github repository (https://github.com/boutproject/

cs-performance-tuning-workshop).

3.2.2 HPC Development using C++ and SYCL

SYCL is one of the potential technologies for developing performance portable

software under ExCALIBUR-NEPTUNE. We therefore joined workshops or-

ganised by Codeplay on 7th Jan and 17th Feb 2021. This included tutorials,

exercises, and help from Codeplay to install and use SYCL compilers.

3.2.3 Towards Exascale Simulation of Integrated Engineering Sys-

tems at Extreme Scales

21 – 22 January, 2021: This was an ExCALIBUR meeting, at which Ben Dud-

son gave a talk ”Coupling Codes at Exascale for the ExCALIBUR UKAEA

NEPTUNE Nuclear Fusion Project”. That talk presented an overview of the

challenges, some representative examples of integrated simulations and code

coupling in fusion, and invited participation in and input into the Neptune

project.

3.3 Cross-task coordination

We have given talks at the main Neptune events, including the kickoff meeting

14th Jan, and workshop on 16th March, and regular progress update meetings.

Regular meetings have also been held with Oxford/Warwick group, and the

STFC preconditioners group. Separate meetings have also been held with groups

to discuss PinT and UQ bids and activities, to consider how these fit into the

Neptune work plan. We have also participated in and in some cases led dis-

cussions in the ExCALIBUR-Neptune Slack workspace, to coordinate with the

other Neptune tasks.

7

https://github.com/boutproject/cs-performance-tuning-workshop
https://github.com/boutproject/cs-performance-tuning-workshop

4 Testing

4.1 Correctness testing

Since Github is used to host the Excalibur-Neptune code, we propose to use

Github actions for correctness and regression testing, as well as enforcement

of coding styles and simple static code analysis. These tests can be triggered

on pushes or pull requests, and can be configured to block merging into main

branches unless passed.

The approach used by Nektar++ appears promising, in which Docker images

are built and then used to run the test suite. If a test fails, this means that the

same docker image can be downloaded and run on a developer’s machine. This

helps reproduce and identify errors, which might otherwise only occur on the

testing server.

Github actions runs on virtual servers, with typically one or two cores, and

inconsistent performance. This makes it unsuitable for performance testing, for

which a bespoke solution is being developed, described in the next section.

4.2 Performance testing

We have started writing the specification for a system for monitoring perfor-

mance of ExCALIBUR-NEPTUNE components and proxy-/mini-apps (here-

after collectively “apps”). Some requirements:

• Can be run manually, but amenable to automation: we want to be able to

track the performance history of a given app, while still maintaining the

flexibility to run ad hoc experiments across different app and hardware

configurations;

• Flexible output: the performance metrics that we want to measure and

track may change over time or between apps or experiments. We don’t

want to define a rigid schema now only to need to continually change it

later;

• App agnostic: ExCALIBUR-NEPTUNE will be made of many compo-

8

nents, with many proxy-apps developed along the way, and making use

of a variety of performance profiling tools. We want a single performance

testing framework that can handle all of this variation;

In order to satisfy the first requirement, we have chosen to start developing

a “push” framework, where data is collected on a machine and pushed to the

data repository, rather than a “pull” framework where a server launches jobs on

remote machines and pulls the data. This leaves open the option of automating

the performance testing and converting the “push” framework (at least partly)

into a “pull” one.

Our proposed framework consists of several components:

• Test configuration files: define an individual run of an app

• Runner : reads test configuration files and runs an app

• Performance data files: output from an individual run of an app

• Uploader : collates performance data files and uploads them to the data

repository

• Data repository : stores performance data files

• Dashboard : interprets and displays data from data repository

Test configuration files need to be human readable, as these will be written by

humans. This rules out formats such as JSON, which are suitable for machine-

machine transfer of data, but are not human-friendly. There are a variety of

text file formats that would be suitable; we are currently looking at TOML

(https://toml.io/en/). The schema of these configuration files is still a work in

progress, but there are several requirements:

• App executable location

• App input file(s) location(s)

• Performance tool (optional)

• Performance data file output location

9

The runner would read the test configuration files, and launch the app, possibly

wrapped or instrumented with a separate performance profiling tool. This set

up would allow automatic scanning for configuration files, and so expanding the

performance test suite could be done through simply adding a new file.

The performance data files should be structured text files of some form, most

likely JSON, to facilitate interoperability. This gives us the most flexibility in

terms of moving to more rigid schemas later on or databases.

The data repository will be a plain GitHub repository. The uploader can then

be a simple wrapper around git.

4.2.1 Existing Solutions

TheMatrix (https://github.com/devitocodes/thematrix) is a similar project for

the Devito (https://www.devitoproject.org) symbolic finite difference library.

TheMatrix runs performance benchmarks of Devito on a variety of hardware

hosted in the Azure cloud service, and uses Airspeed Velocity (https://asv.readthedocs.io/en/stable/)

to visualise the results. While meeting several of the ExCALIBUR-NEPTUNE

requirements, there are a few major downsides. Firstly, Airspeed Velocity is lim-

ited to profiling Python tools/kernels only. This is essentially a show-stopper for

ExCALIBUR-NEPTUNE in terms of being able to monitor the performance of

proxy-apps written in several different languages. The other significant point is

that TheMatrix is built around running the tests on the Azure platform, which

does not currently meet the needs of ExCALIBUR-NEPTUNE.

Another similar project is Gingko Performance Explorer (GPE) (https://ginkgo-

project.github.io/gpe/), another performance monitoring solution tied to a par-

ticular numerical package, Gingko (https://ginkgo-project.github.io). GPE is

designed to be run automatically as part of a Continuous Integration/Continuous

Development (CI/CD) process. After a commit to the development branch of

the Gingko project, a GitHub Actions runner starts GPE, which pushes jobs

to HPC systems, where tests are run and the performance is measured. GPE

then periodically ”checks in” to the HPC to see if the jobs have finished, and

if so, collates the results. A particularly interesting feature of GPE is the data

visualisation, which allows custom queries to be written and visualised directly

in a web browser.

10

From an initial survey it seems that there is no existing solution which meets

all the needs of ExCALIBUR-NEPTUNE. Partial solutions exist, and aspects

of these will be adopted, to inform the design of the Excalibur-Neptune system.

Since we are designing this to be a generic tool, it is likely to also be of interest

to a wider community.

11

	Executive summary
	Development environment
	Slack
	GitHub Organisation
	ReadTheDocs

	Community building
	Hackathons
	VECMA

	Workshops
	Performance Analysis
	HPC Development using C++ and SYCL
	Towards Exascale Simulation of Integrated Engineering Systems at Extreme Scales

	Cross-task coordination

	Testing
	Correctness testing
	Performance testing
	Existing Solutions

