
T/AW088/22

Software Support Procurement

Report 2067270-TN-02-01

Developing an Exascale-Ready Fusion Simulation

Revision 6.0

Steven Wright, Ed Higgins, Ben Dudson, Peter Hill, and David Dickinson

University of York

Gihan Mudalige, Ben McMillan, and Tom Goffrey

University of Warwick

May 3, 2023

Contents

1 Context 1

1.1 Project NEPTUNE . 2

2 Evaluation Methodology 4

2.1 Visualising Performance Portability . 4

2.2 Roofline Analysis . 5

3 Approaches to Exascale Application Development 7

3.1 General Purpose Programming Languages . 7

3.2 Parallel Programming Models . 8

3.2.1 Accelerator Extensions . 9

3.3 Software Libraries . 11

3.4 C++ Template Libraries . 13

3.5 Domain Specific Languages . 14

3.5.1 DSLs for Stencil Computations . 15

3.5.2 Higher-Level DSLs . 16

3.6 Summary . 18

4 Applications for Evaluation 19

4.1 Fluid Models . 19

4.2 Particle Methods . 21

4.3 Validation . 22

5 Evaluations of Approaches 23

5.1 Heat . 23

5.1.1 Performance . 23

5.1.2 Portability . 24

5.2 TeaLeaf . 25

5.2.1 Performance . 25

i

5.2.2 Portability . 25

5.3 miniFE . 29

5.3.1 Performance . 29

5.3.2 Portability . 30

5.4 Laghos . 30

5.4.1 Performance . 31

5.4.2 Portability . 31

5.5 vlp4d . 32

5.5.1 Performance . 32

5.5.2 Portability . 33

5.6 CabanaPIC . 34

5.6.1 Performance . 34

5.7 VPIC . 35

5.7.1 Performance . 35

5.7.2 Portability . 36

5.8 EMPIRE-PIC . 37

5.8.1 Performance . 37

5.8.2 Portability . 38

5.9 Mini-FEM-PIC . 40

5.9.1 Performance . 40

6 Analysis of Approaches 42

6.1 Pragma-based Approaches . 42

6.2 Programming Model Approaches . 43

6.3 High-level DSL Approaches . 46

6.4 Summary . 46

7 Key Findings and Recommendations 48

7.1 Future Work . 52

ii

References 53

A Code Examples 61

A.1 OpenMP . 61

A.2 OpenMP Target Directives . 61

A.3 SYCL and DPC++ . 62

A.4 Kokkos . 62

A.5 RAJA . 63

A.6 Bout++ . 63

A.7 UFL/Firedrake . 64

A.8 AoS vs SoA . 66

A.8.1 Intel SDLT . 66

A.8.2 VPIC and Kokkos . 66

iii

Glossary

AVX Advanced Vector eXtensions

CFD Computational Fluid Dynamics

DIMM Dual In-line Memory Module

DRAM Dynamic Random Access Memory

DSL Domain Specific Language

eDSL Embedded Domain Specific Language

FLOP/s Floating point operations per second

FPGA Field Programmable Gate Array

HBM High Bandwidth Memory

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JIT Just-in-time Compilation

MCDRAM Multi-Channel DRAM

N-1 N processes writing data to a single file

N-N N processes writing data to their own files

N-M N processes writing to M files

PCIe Peripheral Component Interconnect Express

SIMD Single-instruction, multiple-data

SMT Simultaneous multi-threading

SPMD Single-program, multiple-data

SSE Streaming SIMD Extensions

SVE Scalable Vector Extensions

iv

Changelog

March 2023

• Updated the Evaluation Methodology section to include a reference to the new P3 Analysis Library,

and the new plot style. Removed references to the box plots (which arguably add little information

over the cascade plots).

• Added stdpar and Thrust to discussion on programming models, since they are evaluated for vlp4d.

• Updated data for Heat to include evaluations on Intel HD P630.

• Regenerated all cascade plots to use the new style of plot using the P3 Analysis Library.

• Added data and analysis for the vlp4d mini-application.

• Added data for mini-fem-pic taken from previous report, along with mention of the OP-PIC DSL.

November 2022

• Added some new apps of interest for evaluation (NESO and vlp4d).

• Added section regarding validation of mini-applications against parent applications – to be built upon

in future iterations.

• Clarified that hipSYCL uses LLVM-based backend

• Added results for miniFE using different SYCL compilers, gathered by Shilpage et al.

• Added link to repository of apps and results under the ExCALIBUR-NEPTUNE github.

July 2022

• Addressed all reviewer comments from previous submission.

• Added Heat mini app to evaluation set.

• Included link to a repository containing all mini-apps and results.

March 2022

• Reorganisation of document, combining elements of the previous four reports, 2047358-TN-01, 2047358-

TN-02, 2047358-TN-03 and 2047358-TN-04 into a single report on software approaches.

• Described new applications for evaluation, though these have not yet been evaluated.

v

1 Context

In 2008 Roadrunner became the first supercomputer to break the PetaFLOP/s barrier. Roadrunner was

an AMD Opteron powered system with PowerXCell accelerators connected to each core, making it one

of the first modern heterogeneous systems. This heterogeneous approach has continued ever since, with a

growing proportion of the fastest supercomputers in the world making use of highly-specialised computational

accelerators (e.g. GPUs) alongside traditional multi-CPU hosts; and this trend looks set to continue as we

cross the ExaFLOP/s barrier.

The emergence of computational accelerators has been coupled with a golden age of architectural develop-

ments [1]. Many of the systems likely to be available in the next decade will employ hierarchical parallelism,

delivered by a diverse set of architectures [2,3]. With each architecture potentially requiring a different pro-

gramming model and different optimisation strategies, developing software that is portable across systems

is becoming increasingly difficult.

For most large scientific simulation applications, maintaining multiple versions of a code-base is simply not

a reasonable option given the significant time and effort, not to mention the expertise required. Even with

multiple versions, it does not guarantee a future-proof application where the next innovation in hardware

may well require yet another parallel programming model to obtain best performance for the new device.

These challenges are now general and applicable equally to any scientific domain that relies on numerical

simulation software using HPC systems. As a recent review for applications in the computational fluid

dynamics (CFD) domain [4] elucidates, three key factors can be identified when considering the development

and maintenance of large-scale simulation software, particularly aimed at production:

1. Performance: running at a reasonable/good fraction of peak performance on given hardware.

2. Portability: being able to run the code on different hardware platforms/architectures with minimum

manual modifications

3. Productivity: the ability to quickly implement new application, features and maintain existing ones.

Over the years, attempts at developing a general programming model that delivers all three has not had much

success. Auto-parallelising compilers for general purpose languages have consistently failed [5]. Compilers

for imperative languages such as as C/C++ or Fortran, the dominant languages in HPC, have struggled

to extract sufficient semantic information, enabling them to safely parallelise a program from all, but the

simplest structures. Consequently, the programmer has been forced to carry the burden of “instructing”

the compiler to exploit available parallelism in applications, targeting the latest, and purportedly greatest,

hardware.

In many cases, the use of very low-level techniques, some only exposed by a particular programming mod-

el/language extension are required with careful orchestration of computation and communications to obtain

the best performance. Such a deep understanding of hardware is difficult to gain, and even more so unreason-

able for domain scientist/engineers to be proficient in – especially given that the expertise required rapidly

1

changes with the technology of the moment following hardware trends. A good example is the many-core

path originally touted by Intel with accelerators such as the Xeon Phi which has been discontinued – the

first US Exascale systems will now all be GPU based, with two systems containing AMD GPUs, and one

containing Intel GPUs.

As such, it is near impossible to keep re-implementing large science codes for various architectures. This

has led to a separation of concerns approach where the description of what to compute is separated from

how the computation is implemented. This is in direct contrast to languages such as C or Fortran, which

explicitly describe the computation.

1.1 Project NEPTUNE

The NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale) project is concerned with the

development of a new computational model of the complex dynamics of high temperature fusion plasma. It

is an ambitious programme to develop new algorithms and software that can be efficiently deployed across

a wide range of supercomputers, to help guide and optimise the design of a UK demonstration nuclear

fusion power plant. The goal of the code structure and coordination work package within NEPTUNE is to

establish a series of “best practices” on how to develop such a next-generation simulation application that

is performance portable.

In this report, we aim to review and evaluate the key approaches and tools currently used to develop new

numerical simulation applications targeting modern HPC architectures and systems, including methods of

re-engineering existing codes to modernise them. We focus on applications from the plasma fusion domain

and related supporting applications from engineering. Our aim is to survey and present the state-of-the-art

in achieving “performance portability” for Fusion, where an application can achieve efficient execution across

a wide range of HPC architectures without significant manual modifications.

As many of the applications, libraries and programming models used in this report are under active de-

velopment, the data presented here is subject to change. New data is being collected and analysed all the

time, and will be updated in the future where necessary. This document should therefore be considered a

living document, reflecting the current state of performance portable application development focused on

applications of interest for the simulation of plasma physics.

The remainder of this report is organised as follows:

Section 2 outlines the method of evaluating performance portability that will be taken throughout this

report;

Section 3 discusses current approaches to performance portable scientific application development;

Section 4 describes the applications that will be used to evaluate the performance portability of various

approaches to software development;

2

Section 5 provides evaluation data for each of these applications, and evaluates the performance portability

of the various implementations;

Section 6 analyses the approaches to Exascale application development with reference to the evaluation

data;

Section 7 concludes this report, providing recommendations for the NEPTUNE project.

3

2 Evaluation Methodology

In this report we evaluate the performance portability of these applications using the metric introduced by

Pennycook et al. [6], and use the visualisation techniques outlined by Sewall et al. [7]. The Pennycook metric

allows us to calculate the performance portability of an application according to Equation (1).

PP(a, p,H) =

|H|
∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

In the equation, the performance portability (PP) of an application a, solving problem p, on a given set of

platforms H, is calculated by finding the harmonic mean of an application’s performance efficiency (ei(a, p)).

The performance efficiency for each platform can be calculated by comparing achieved performance against

the best recorded (possibly non-portable) performance on each individual target platform (i.e. the appli-

cation efficiency, or by comparing the achieved performance against the theoretical maximum performance

achievable on each individual platform (i.e. the architectural efficiency). Should the application fail to run

on one of the target platforms, a performance portability score of 0 is awarded.

2.1 Visualising Performance Portability

While Equation (1) provides a formal definition for performance portability, this single value metric may not

answer all questions a developer might have about their application. In recognising this, in this report we

use visualisations of performance portability introduced by Sewall et al. [7]. These visualisations are best

explained with an example.

un
po

rta
ble

sin
gle

tar
ge

t

mult
i ta

rge
t

co
nsi

ste
nt

(30
%)

inc
on

sis
ten

t

co
nsi

ste
nt

(70
%)

A
B
C
D
E
F
G
H
I
J

100%
0%
0%
0%
0%
0%
0%
0%
0%
0%

100%
10%
10%
10%
10%
10%
10%
10%
10%
10%

100%
10%

100%
10%

100%
10%

100%
10%

100%
10%

30%
30%
30%
30%
30%
30%
30%
30%
30%
30%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

70%
70%
70%
70%
70%
70%
70%
70%
70%
70%

Higher is better

20

40

60

80

100

Fig. 1: Heatmap of synthetic application efficiencies.

a distinct efficiency distribution that could realistically arise
during application development; taken together, these data sets
can be used as a litmus test for the intuition gained from
different metrics and visualizations. We believe that synthetic
distributions like these could serve a similar role to mathemat-
ical basis functions or classifiers in the space of performance
efficiency distributions, but leave this investigation to future
work. A detailed description of each data set is given below.

Unportable: Applications in this class are written to support
only a single target platform, possibly using a proprietary
programming model that excludes some classes of platforms.
This is represented by an efficiency of zero on one or more
platforms (where the application does not run).

Single Target: Applications may be written in a portable
model but with significant optimization efforts applied to a
limited set of platforms. For example, if an application is
only ever expected to run on one platform, that platform will
be the development team’s optimization focus. However, the
application remains capable of achieving non-zero efficiencies
(i.e. it will run correctly) on the remaining platforms.

Multi-Target: A multi-target application shares many sim-
ilarities with one targeting a single platform, but expands the
target to a larger set of platforms. For example, the application
might be optimized specifically for one class of architectures
(such as GPUs). The result is often a bimodal distribution of
efficiencies, with two distinct groups: one high and one low.

Consistent: Some applications achieve similar performance
efficiencies on all platforms. This may result from the nature
of the application (e.g. a micro-benchmark intended to stress
a particular architectural feature) or project goals (e.g. a desire
for a code to attain similarly high levels of performance across
all platforms [17]). We use two distributions to represent
such applications, separating cases where the efficiency is
consistently low (30%) and high (70%), to determine whether
the approaches tested can differentiate between them.

Inconsistent: An application that prioritizes portability over

TABLE II: “Averages” of synthetic efficiency data.

Unportable Single Multi Consistent Inconsistent Consistent
Target Target (30%) (70%)

Minimum 0.0 10.00 10.00 30.0 10.00 70.0
Arith. Mean 10.0 19.00 55.00 30.0 55.00 70.0
Geo. Mean 0.0 12.59 31.62 30.0 45.29 70.0
Har. Mean NaN 10.99 18.18 30.0 34.14 70.0
Median 0.0 10.00 55.00 30.0 55.00 70.0
PP 0.0 10.99 18.18 30.0 34.14 70.0

performance is unlikely to achieve consistent levels of per-
formance efficiency. Such applications may be continually
adapted as they move between platforms and developers add
new features, resulting in wide-ranging results with high vari-
ance. We represent this as a linearly increasing performance
efficiency, but could have drawn these numbers from a uniform
distribution.

III. SINGLE NUMBER METRICS

Representing the performance portability of an application
using a single numeric value is highly desirable, providing
a simple way to compare the distributions of performance
efficiency results across applications.

When confronted with a slew of data, it is tempting to reach
for familiar statistical measures (e.g. average and standard
deviation); Question 2 and Question 3 may be answered di-
rectly, with Question 1 answered by defining a value (or range
of values) representing a sufficiently performance portable
application. However, as we will see, common statistical tools
may not provide the insight we’re looking for. It is also highly
unlikely that any single number could answer all three of
these questions simultaneously; combining multiple metrics
– or using different metrics for different analyses – may be
necessary.

A. Average Performance Efficiency

Table II compares several “averages” computed for our syn-
thetic data set. In addition to standard statistical averages
(arithmetic mean, geometric mean, harmonic mean, median),
we include the minimum value and the value of the perfor-
mance portability metric from [1], [2], calculated as:

PP(a, p, H) =

8
>><
>>:

|H|
P

i2H

1

ei(a, p)

if i is supported 8i 2 H

0 otherwise

that is, the harmonic mean of application a’s performance
efficiency e(a, p) when executing problem p on a set of
platforms H . PP differs from the harmonic mean only in that
the latter is not defined if the input data contains a zero (since
it would require the computation of 1/0).

The ranking of the synthetic data sets according to the
performance portability metric is the most aligned with the
authors’ intuition of which hypothetical application is the most
performance portable (from least to most): 1) unportable;

Figure 1: Synthetic data set for six implementations running across 10 platforms taken from Sewall et al. [7]

Figure 1 presents a simple synthetic data set for six implementations of an application running across

10 platforms. These implementations are: unportable with high performance on a single platform, but

4

not portable to any other platform; single target with high performance on a single platform, and low

performance on all others; multi target achieving high performance on some platforms, and low performance

on others; inconsistent showing a range of performance across all platforms; and consistent showing

consistent low (30%) or high (70%) performance across all platforms.

We could simply apply the performance portability metric in Equation (1) to this synthetic data but this

may mean that we lose some information about how the performance portability is spread across platforms,

and how the metric changes as we add and remove platforms from the evaluation set.

The cascade plot in Figure 2 shows how the application’s performance portability and efficiency change as

platforms are added to the evaluation set in descending order of efficiency. A more in-depth analysis of these

visualisation techniques can be found in Sewall et al. [7].

Figure 2: Example plots for the synthetic data provided in Figure 1

We will use these cascade plots to analyse the performance portability of various approaches to developing

future-proofed software throughout this report. We generate these plots using Intel’s P3 Analysis Library [8].

In some cases, where only a single implementation is available, we will use architectural efficiency rather than

application efficiency. In these constrained cases, we will augment our analysis with Roofline analysis [9].

2.2 Roofline Analysis

Roofline is a visual heuristic model, that allows developers to plot the performance of a kernel in terms

of its operational intensity and its floating-point performance. These opposing axes allow us to reason

about whether the performance of a kernel is being bound by the memory bandwidth available, or by the

computational power available.

5

In a Roofline model, multiple ceilings can be plotted (e.g. maximum floating point performance, maximum

performance without SIMD, etc.), alongside unit slops calculated based on the memory bandwidth of various

memory subsytems (e.g. L1 bandwidth, L2 bandwidth, DRAM bandwidth). Figure 3 shows the calculated

data from an AMD Opteron X2.

Figure 3: A Roofline model for an AMD Opteron X2 taken from Williams et al. [9]

In the figure, peak performance is only attanable if thread-level and instruction-level parallelism are used

– if a kernel is unable to use either, its performance will be bound by the lowest horizontal line. The

computational intensity (i.e. how many FLOP/s are performed per byte of data moved from memory) will

also dictate its performance. I f an application runs at most 1 floating point operation per 4 bytes loaded,

even with SIMD, ILP and TLP, the performance would be bound to 4 GFLOP/s (i.e. at most 25% of the

peak performance available).

Importantly, a Roofline model is plotted using the maximum attainable values, and then a kernels perfor-

mance can be plotted as a single point within the chart.

• If that point lies in the yellow region, we would say that the kernel is memory bound, and that

memory optimisations are the most appropriate optimisations to try (e.g. improving caching behaviour,

etc.);

• If the point lies in the blue region, we would say that the kernel is compute bound, and that compute

optimisations are the most appropriate (e.g. better vectorisation, etc.);

• If the point lies in the green region, both types of optimisation might be applicable (and might shift

the performance into one of the other regions).

6

3 Approaches to Exascale Application Development

Considering the systems that are likely to be available in the next 5-10 years, it is clear that heterogeneity

is likely to be a key feature, particularly with the efforts to build Exascale systems. With the exception of

Fugaku, all announced pre- and post-Exascale systems make use of a CPU architecture coupled with GPU

accelerators. As such, achieving high performance on such systems requires a programming language/model

that is able to exploit hierarchical parallelism.

On heterogeneous platforms, a significant proportion of the available performance comes from the acceler-

ators, with the host CPU primarily providing problem setup, synchronisation, and I/O operations. Each

of the major GPU manufacturers provide a different programming model to interact with their accelerators

and so application developers must consider their approach when targeting a heterogeneous system. Further

consideration must also be given to vendor-supported approaches that may lead to vendor lock-in.

In this section, we outline the programming languages, models and libraries that provide abstractions for

developers at various levels to develop applications targeting these systems. Our survey follows much of the

findings from [4] together with specific considerations for algorithms of interest for the fusion domain. Some

code examples are provided in Appendix A.

3.1 General Purpose Programming Languages

In this class we consider traditional programming languages with long history of usage and support in scientific

computing. These languages typically allow fine control over every aspect of an algorithms implementation.

Scientific computing is dominated by the Fortran, C and C++ programming languages. On ARCHER,

the UK’s recently retired Tier-1 resource, Fortran applications accounted for 69.3% of the machine’s core

hours, while C and C++ applications made up 6.3% and 7.4%, respectively [10]. This skew towards Fortran

is in part due to a number of mature applications with large user bases, such as CASTEP and VASP, and its

longevity in HPC, meaning that it benefits from mature compiler support more than most other languages.

Although usage of Fortran-based applications currently dwarfs C/C++ applications in HPC, there are signs

that this is changing, likely as a result of the levels of support for C/C++ in new programming models and

libraries [11]. Of particular note are those that make extensive use of templates. These programming models

encourage portability across different hardware – a key motivation as HPC becomes more heterogeneous.

Another language growing in popularity in HPC is Python. While not traditionally a “high performance”

language, it provides interfaces to many external libraries, often written using languages such as C and

Fortran. This has meant that Python can provide an easy interface for developers to write their applications

at a high-level, leaving the implementation and execution to optimised libraries (see Section 3.5). Due to

Python’s use in a wide range of fields, by large corporations such as Alphabet, the community has invested

significant effort into improving the performance of pure Python. The flexibility of the language and dynamic

type system limits opportunities for static analysis and optimisation; instead Just-In-Time (JIT) compilers

7

have been developed, both as libraries to target particular code hotspots (Numba), and whole programs

(PyPy). However, threading within Python, and thus its parallel performance, remains poor, limited by

the Global Interpreter Lock (GIL) present in the reference CPython implementation, PyPy and Stackless

Python. Removing this lock has proven difficult, limiting Python’s use in HPC to primarily a “glue” language,

coordinating work done in components implemented in higher-performance languages.

There is a long history of research and development of languages for scientific and high performance com-

puting, including those such as Chapel, Fortress and X10 (DARPA 2002) which target parallel computation.

These have tended to remain niche languages and have not been widely adopted. A promising language

which is general purpose but designed in particular for scientific computing, is the Julia language1. This

has a syntax which is familiar to Matlab or Fortran programmers, but is built on a sophisticated type sys-

tem and language design, and uses LLVM to perform JIT compilation for CPU and GPU hardware. It is a

relatively new language (version 1.0 was released in August 2018), but is seeing rapid adoption in scientific

and machine-learning communities, and already has some libraries which are recognised as best in class (e.g.

DifferentialEquations.jl [12]). It aims to combine the flexibility and high productivity of Python, with high

performance.

Developing applications in these general purpose programming languages present a number of challenges:

1. The languages are very prescriptive, and optimising an application for one system may harm perfor-

mance on another system. In fact optimising for one architecture can obfuscate the science source so

much so that future maintenance and addition of new features becomes difficult.

2. Applications developed with multiple code paths may provide portable performance, but requires

duplicated effort keeping each code path up to date.

3. Parallelism must be explicitly written into the application, almost always using parallel programming

extensions to the languages (as discussed in the next section), significantly increasing the complexity

of development.

3.2 Parallel Programming Models

In this class we consider the programming models that extend from traditional general purpose programming

languages to provide parallelisation both on-node (e.g. vectorisation, threading) and off-node (e.g. message

passing). We also consider programming models that are designed specifically for heterogeneous computation

with accelerator devices.

The parallelism available on modern supercomputers is hierarchical in nature. Vector operations (in the

form of SSE and AVX) provide parallelism within a core, while threading (or Symmetric Multithreading

(SMT)) provides parallelism within a node. Parallelism across a system is usually provided in the form of

message passing or shared global memory techniques.

1https://julialang.org/

8

https://julialang.org/

Vectorised code can be achieved during the compilation phase, if there are no data dependencies present

in the code. All modern compilers attempt to generate vectorised code through auto-vectorisation, usually

when higher optimisation levels are specified (e.g. with compiler flags such as -O2 and above). However, the

compiler will only produce vectorised code when it is absolutely certain that no dependencies exist. In almost

all non-trivial (especially real-world) codes a conclusive determination cannot be made and auto-vectorisation

fails.

A developer can aid the compiler with the use of compiler directives or vector intrinsics. SIMD

compiler directives, such as #pragma omp simd, were added to the OpenMP 4.0 standard, and should be

supported in any compliant compiler. The pragmas allow a developer to indicate that an assumed dependency

can be ignored, potentially resulting in the compiler generating vectorisable code that is portable across

architectures. However, the compiler may still believe there is a dependency present; in this case, the

developer must use a lower-level API (e.g. Intel Intrinsics) to directly manipulate the vector registers. This

is likely to result in higher performance at the expense of both portability and productivity [13].

Distributing execution across all cores in a node can be achieved through threading and shared memory, or

through message passing.

In HPC applications threading is often achieved through OpenMP [14], while message passing is usually

implemented using the Message Passing Interface (MPI) [15]. In rare cases, both threading and message

passing can be achieved through the POSIX Threads (pthreads) library.

In OpenMP, parallelism is achieved by annotating loop structures with compiler directives (i.e. #pragma),

such that the compiler can thread each iteration for execution in parallel. In MPI, parallelisation must be

implemented explicitly with send/receive/scatter/gather operations.

Parallelisation beyond a single node requires inter-node communications. The de facto standard in HPC is

MPI. MPI provides a number of functions for distributed computation, including point-to-point communi-

cations, one-sided communications, collective operations and reduction operations. In an MPI-parallelised

program, each process operates on its own data, and communicates edge values to surrounding processes

where a dependency exists.

There are also a number of programming models that treat the distributed memory space as a single homo-

geneous block. This partitioned global address space (PGAS) approach is taken by Coarray Fortran and

Unified Parallel C, among others. In this model, communications are hidden to the application developer,

but are typically implemented using MPI in the backend library.

3.2.1 Accelerator Extensions

For heterogeneous systems, host code is typically written using the programming languages mentioned previ-

ously to coordinate between compute nodes, however, the accelerators themselves usually require a different

approach. This is a consequence of the significant differences in the accelerator architectures compared to

traditional CPUs.

9

Each vendor offers their own platform-specific programming model, such as CUDA from NVIDIA and

ROCm/HIP from AMD. However, these approaches are typically not portable between vendors and algo-

rithms often require significant re-engineering. Although proprietary, CUDA has been the most dominant

accelerator programming extension and has maintained a high level of adoption in HPC given the widespread

use of NVIDIA GPU hardware and the maturity and support that NVIDIA put into the numerical solver

libraries based on CUDA. It follows a Single Instruction Multiple Data (SIMD) programming model where

large number of threads are executed in lock-step on different data. OpenCL largely mirrors the SIMD

model of CUDA, having a one-to-one equivalent API, but is developed as an open standard. With CUDA

and OpenCL, the programmer is given the opportunity to write explicit computational kernels for devices,

with significant control over the orchestration of parallelism. OpenCL is supported by all major vendors

(Intel, AMD, NVIDIA) and has been promoted as a vendor agnostic model. However the same OpenCL

application will not necessarily give the best performance on all architectures, where some level of device

specific optimisations are required to obtain best performance.

While offering much less control, OpenACC directives can be used to indicate/instruct a compiler what code

can be executed on an accelerator. OpenACC also provides directives to indicate whether memory should

be allocated on the host or the device, and when to move data between the two. Memory management,

such as when data is moved to/from the device, and how often, are key considerations to achieving good

performance. If not handled correctly, directives can lead to frequent data movement to/from a device

and lead to significant slowdowns. Currently OpenACC is provided in commercial compilers from NVIDIA

(previously PGI) and Cray, with the latter only supporting Cray-supplied hardware. GCC also offers nearly

complete support for OpenACC 2.5, targeting both NVIDIA and AMD devices.

OpenMP added support similar to OpenACC for offloading computation to accelerators in version 4.0 of

the standard. Similar to its counterpart, data locality is controlled through compiler directives, with paral-

lelisable loops being specified using the #pragma omp target directive. OpenMP 4.0 is a good example of

standards attempting to catch up with evolving hardware, where support for accelerator directives (which

were introduced as a proprietary solution first in 2011 with OpenACC with the adoption of NVIDIA GPUs

in HPC) were only added to the OpenMP standard in 2013. Even then OpenMP supporting compilers took

several years more to fully implement the standard for working code.

Support for the OpenMP 4.0 and above can be found in commercial compilers from Intel, IBM, AMD

and Cray, with a variety of target architectures. Support also exists in the Clang/LLVM [16] and GCC

open-source compilers, with support for accelerators from NVIDIA, AMD and Intel2.

While the explicit device control provided by the CUDA and OpenCL programming model may be more

powerful than directive-based approaches, it may also significantly increase developer effort. More recently,

the Khronos Group released SYCL, a new high-level cross-platform abstraction layer, which can be viewed

as a data-parallel version of C++ inspired by OpenCL. Much of the concepts remain the same, but the

significant amount of “boiler-plate” code required to setup parallelism in OpenCL applications is now not

required where SYCL uses a heavily templated C++ API.

2https://www.openmp.org/resources/openmp-compilers-tools/

10

https://www.openmp.org/resources/openmp-compilers-tools/

In SYCL, there is typically a queue that work items can be submitted to. Parallelisation is achieved using

constructs such as the parallel for function.

Building on SYCL, Intel announced their new programming model, OneAPI, in 2018. OneAPI is a unified

programming model, that combines several libraries (e.g. the Math Kernel Library), with Thread Building

Blocks (TBB) and Data Parallel C++ (DPC++). DPC++ is a cross-architecture language built upon the

C++ and SYCL standard, providing some extensions to SYCL. Support for SYCL and DPC++ is provided

in a number of compilers from vendors such as AMD, Intel, Codeplay and Xilinx, and can target a number

of device types directly, or via existing OpenCL targets3. In the case of the Intel and Xilinx compilers, it is

even possible to use SYCL to target FPGA devices. However, the question of whether one code written in

SYCL is able to obtain the best performance on all supported hardware remains to be answered [17–19].

Parallelisation based on OpenMP and MPI have a long history in HPC application development. CUDA also

now has about a decade of development, with OpenACC, and OpenCL following close behind. SYCL/DPC++

is the latest addition to the parallel programming extensions available. While CUDA, OpenMP, OpenACC

all support C/C++ and Fortran, OpenCL and SYCL only support C/C++. If indeed C/C++ based ex-

tensions and frameworks dominate the parallel programming landscape for emerging hardware, there could

well be a need for porting existing Fortran-based applications to C/C++.

The key considerations and challenges when using the above programming models and extensions to general

purpose languages include:

1. Open standards lagging hardware development – especially when the standard is developed by a large

number of organisations.

2. The complete implementation of these standards into many compilers can be slow.

3. Some of these programming models offer low-level fine control over parallelism and therefore may lead

to overly complex code. In some cases different code-paths are required to get the best performance

on different architectures [18], for example to handle the different memory layouts required to optimise

for CPUs vs GPUs.

3.3 Software Libraries

In this class we consider classical software libraries that target scientific application development, implement-

ing a diverse set of numerical algorithms.

Beyond the programming models mentioned previously, portability can also be achieved using kernel libraries

provided by various vendors. These software libraries typically provide common mathematical functions and

are often highly optimised for particular architectures.

3https://www.khronos.org/sycl/

11

https://www.khronos.org/sycl/

The basis of many of these libraries is BLAS (Basic Linear Algebra Subprograms), first developed in

1979. BLAS provides vector operations, matrix-vector operations and matrix-matrix operations. LAPACK

(Linear Algebra Package) builds on BLAS, providing routines for solving systems of linear equations. The

FFTW library provides functions for computing discrete Fourier transforms, and is known to be the fastest

free software implementation of the FFT.

Architecture-tuned implementations of BLAS, LAPACK and FFTW are often available, with notable ex-

amples being AMD Optimized CPU Libraries, ARM Performance Libraries, Intel Math Kernel

Library, cuBLAS, clBLAS, OpenBLAS, and Boost.uBLAS. Similarly, MAGMA provides dense lin-

ear algebra kernels for multicore and accelerator architectures [20].

The Portable, Extensible Toolkit for Scientific Computation (PETSc) provides a number of data

structures and routines for solving PDEs. It was developed by Argonne National Laboratory and employs

MPI for distributing algorithms across an HPC system. Recently PETSc has implemented an abstraction

layer for scalable communications over MPI and between host and GPU devices, PetscSF [21].

Similarly, HYPRE is a library of data structures, preconditioners and solvers developed at Lawrence Liver-

more National Laboratory. It can be built with support for GPU devices through CUDA, OpenMP offload,

or using RAJA or Kokkos.

Trilinos is an extensive collection of open-source libraries that can be used to build scientific software,

developed by Sandia National Laboratories. It provides a large number of packages for solving linear systems,

preconditioning, using sparse graphs and matrices, among many others. It supports distributed memory

computation through MPI and also provides shared memory computation through its own Kokkos package.

Trilinos is included on Cray supercomputers as part of the Cray Scientific and Math Libraries.

The CoPA Cabana library provides a number of data structures, algorithms and utilities specifically for

particle-based simulations [22, 23]. Parallel execution of particle kernels is achieved through Kokkos for on-

node parallelism (see Section 3.4) and MPI for off-node communication. Each of these libraries can be used

to abstract away some of the mathematical operations and data storage requirements needed by scientific

applications.

Using these libraries introduces a number of key considerations and challenges:

1. While the standard interfaces to these libraries may restrict their usefulness to some applications, it

does encourage vendors to produce optimised and portable versions of performance critical functions.

2. Library functions often operate in lock-step, meaning operations cannot typically be fused. This may

necessitate a number of unnecessary CPU-GPU transfers.

12

3.4 C++ Template Libraries

For this class we consider libraries that facilitate scheduling and execution of data parallel or task-parallel

algorithms in general, but themselves do not implement numerical algorithms.

An approach, exclusive to C++, is the use of template libraries, that enable developers to write a generic

“template” to express the operation such as a parallel-loop iteration, but at compile time select a specific

implementation of a method or function (known as static dispatch). This allows users to express algorithms

as a sequence of parallel primitives executing user-defined code at each iteration, e.g., providing a loop-level

abstraction. These libraries follow the design philosophy of the C++ Standard Template Library [24] –

indeed, their specification and implementation is often considered as a precursor towards inclusion in the

C++ STL. The largest such projects are Boost [25], Eigen [26], Thrust [27] and HPX [28]. While there

are countless such libraries, here we focus on ones that also target performance portability in HPC.

Kokkos [29] is a C++ performance portability layer that provides data containers, data accessors, and a

number of parallel execution patterns. It supports execution on shared-memory parallel platforms, such as

CPUs and GPUs; it does not consider distributed memory parallelism, rather it is designed to be used in

conjunction with MPI (or another off-node communication library). Kokkos is a package within Trilinos,

and is used to parallelise many of its solver libraries, but it can also be used as a standalone tool. Its data

structures can describe where data should be stored (CPU memory, GPU memory, non-volatile, etc.), how

memory should be laid out (row/column-major, etc.), and how it should be accessed. Similarly, one can

specify where algorithms should be executed (CPU/GPU), what algorithmic pattern should be used (parallel

for, reduction, tasks), and how parallelism is to be organised. It is a highly versatile and general tool capable

of addressing a wide set of needs, but as a result is more restricted in what types of optimisations it can apply

compared to a tool that focuses on a narrower application domain. Kokkos is able to target CUDA, OpenMP,

pthreads, HIP or SYCL, meaning it can target all of the post-Exascale platforms currently deployed or in

development.

RAJA is a similar abstraction developed by Lawrence Livermore National Laboratory [30]. It is similar

to Kokkos in many respects, but offers more flexibility for manipulating loop scheduling, particularly for

complex nested loops. It supports CPUs (with OpenMP and TBB), as well as NVIDIA GPUs with CUDA.

Both Kokkos and RAJA were designed by US DoE labs to help move existing software to new heterogeneous

hardware, and this very much is apparent in their design and capabilities – they can be used in an iterative

process to port an application, loop-by-loop, to support shared-memory parallelism. Of course, for practical

applications, one needs to convert a substantial chunk of an application; on the CPU that is because non-

multithreaded parts of the application can become a bottleneck, and on the GPU because of the cost of

moving data to/from the device. Kokkos and RAJA are used heavily within the Exascale Computing

Project (ECP) [31], and due to their reliance on template meta programming, can be used alongside almost

any modern C++ compiler.

Using C++ template libraries comes with the following considerations:

13

1. Development time may be high due to the compilation times associated with heavily templated code.

2. Applications are restricted to being developed in modern C++.

3. Debugging heavily templated code can be difficult, with errors obfuscated by numerous templates.

This can be particularly problematic for novice physicist programmers.

4. Platform specific code can be easily integrated into templated code to achieve higher performance on

some platforms, provided that the abstraction used is carefully designed and at a sufficiently high level.

3.5 Domain Specific Languages

In this category we consider a wide range of languages and libraries – the key commonality is that their scope

is limited to a particular application or algorithmic domain.

Domain Specific Languages (DSLs) and approaches by definition restrict their scope to a narrower problem

domain, set of algorithms, or computation/communication patterns. By sacrificing generality, it becomes

feasible to attempt and address challenges in gaining all three of performance, portability and productivity.

A wide range of approaches exist, at different levels of abstractions starting from libraries focusing on

specific numerical methods (e.g. Finite Element method) to low-level parallel computation patterns and

loop abstractions. Some are embedded in general purpose languages (eDSLs) such as C/C++/Fortran or

Python allowing them to make use of the compiler and development infrastructure (debuggers and profilers)

of these languages. Others develop an entirely new language of their own.

Restricting to a specific domain allows DSLs to apply more powerful optimisations to help deliver performance

as well as portability. The key reason being that a lot of assumptions are already built into the programming

interface (the domain specific API). As such, explicit description of the problem need not occur when

programming with DSLs, significantly improving productivity. Conversely, the key deficiency of DSLs then

is their limited applicability – if they cannot develop a considerable userbase, they will lack the support

required to maintain them. As such two key challenges to building a successful DSL or framework are:

1. An abstraction that is wide enough to cover a range of interesting applications, but narrow enough so

that powerful optimisations can be applied.

2. An approach to long-term support. A feasible model would be to follow the maintenance pattern of

classical libraries.

DSLs can be categorised based on their level of abstraction. At a low level, a DSL might provide abstractions

for sequences of basic algorithmic primitives, such as parallel for-each loops, reduction, scan operations etc.

Kokkos and RAJA can be thought of as such loop-level abstractions supporting a small set of computation-

communication “patterns”.

14

3.5.1 DSLs for Stencil Computations

At a higher-level we could consider DSLs for stencil computations, providing abstractions for structured or

unstructured stencil-based algorithms. This class of DSLs are for the most part oblivious to the numerical

methods being implemented, which in turn allows them to be used for a wider range of algorithms, e.g.,

finite differences, finite volumes, or finite elements. The key goal here is to create an abstraction that allows

the description of parallel computations over either structured or unstructured meshes (or hybrid meshes),

with neighbourhood-based access patterns. Similar DSLs can be constructed for domains such as molecular

dynamics that help express N-body interactions.

There are a number of notable and currently active DSLs at this level of abstractions. Halide [32] is a DSL

intended for image processing pipelines, but generic enough to target structured-mesh computations [33],

it has its own language, but is also embedded into C++ – it targets both CPUs and GPUs, as well as

distributed memory systems. YASK [34] is a C++ library for automating advanced optimisations in stencil

computations, such as cache blocking and vector folding. It targets CPU vector units, multiple cores with

OpenMP, as well as distributed-memory parallelism with MPI. OPS [35] is a multi-block structured mesh

DSL embedded in both Fortran and C/C++, targeting CPUs, GPUs and clusters of CPUs/GPUs – it uses

a source-to-source translation strategy to generate code for a variety of parallelisations. ExaSlang [36]

is part of a larger European project, ExaStencils, which allows the description of PDE computations at

many levels – including at the level of structured-mesh stencil algorithms. It is embedded in Scala, and

targets MPI and CPUs, with limited GPU support. Another DSL for stencil computations, Bricks [37]

gives transparent access to advanced data layouts using C++, which are particularly optimised for wide

stencils, and is available on both CPUs, and GPUs.

OP2 [38] and its Python derivative, PyOP2 [39], give an abstraction to describe neighbourhood computa-

tions for unstructured meshes. They are embedded in C/Fortran and Python respectively, and can target

CPUs, GPUs, and distributed memory systems. Unlike the structured-mesh motif (which uses a regular sten-

cil), unstructured mesh computations are based on explicit connectivity information between mesh elements,

leading to indirect increments. Indirect increments need to be carefully handled when parallelising, given

the existence of data dependencies, and as such need different code-paths to obtain the best performance

on different architectures [18]. OP2 generates parallel code targeting CPU and GPU clusters making use of

a range of parallel programming models (SIMD, OpenMP, CUDA, SYCL etc. and their combinations with

MPI).

For mixed mesh-particle, and particle methods, OpenFPM [40], embedded in C++, provides a comprehen-

sive library that targets CPUs, GPUs, and supercomputers.

A number of DSLs have emerged from the weather prediction domain such as STELLA [41] and PSy-

clone [42]. STELLA is a C++ template library for stencil computations, that is used in the COSMO

dynamical core [43], and supports structured mesh stencil computations on CPUs and GPUs. PSyclone is

part of the effort in modernising the UK Met Office’s Unified Model weather code and uses automatic code

generation. It currently uses only OpenACC for executing on GPUs. A very different approach is taken by

15

the CLAW-DSL [44], used for the ICON model [45], which is targeting Fortran applications, and generates

CPU and GPU parallelisations – mainly for structured mesh codes, but it is a more generic tool based on

source-to-source translation using preprocessor directives. It is worth noting that these DSLs are closely tied

to a larger software project (weather models in this case), developed by state-funded entities, greatly helping

their long-term survival. At the same time, it is unclear if there are any other applications using these DSLs.

3.5.2 Higher-Level DSLs

Domain specificity can be at an even higher level, where the DSL focuses on the declaration and solution

of particular numerical problems. The most widely implemented DSLs at such a high level are frameworks

for the solution of PDEs. The problem is specified starting at the symbolic expression of the problem (e.g.

in Einstein notation). An intepretter or a compiler then (semi-) automatically discretises the problem and

generates a solution. Most are focused on a particular set of equations and discretisation methods, and they

can offer excellent productivity – assuming the problem to be solved matches the focus of the library.

Many of these libraries, particularly ones where portability is important, are built with a layered abstractions

approach; the high-level symbolic expressions are transformed, and then passed to a layer that maps them

to a discretisation, then this is given to a layer that arranges parallel execution – the exact layering of course

depends on the library. This approach allows the developers to work on well-defined and well-separated layers,

without having to gain a deeper understanding of the whole system. These libraries are most commonly

embedded in the Python language, which has the most commonly used tools for symbolic manipulation

in this field – although functional languages are arguably better suited for this, they still have little use

in HPC. Due to the poor performance of interpreted Python, these libraries ultimately generate low-level

C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [46], which targets the Finite Element Method. However

it only supports CPUs and distributed memory cluster execution with MPI. Firedrake [47] is a similar

project with a different feature set, which also only supports CPUs – it uses the aforementioned PyOP2 library

for parallelising and executing generated code. A feature of Firedrake is that it generates code at runtime to

exploit further optimisation opportunities, for example based on the mesh being available/input at runtime.

The ExaStencils project [48] uses four layers of abstraction to create code running on CPUs or GPUs

from the continuous description of the problem – its particular focus is structured meshes and multigrid.

OpenSBLI [49] is a DSL embedded in Python, focused on resolving shock-boundary layer interactions and

uses finite differences and structured meshes – it generates C code using the OPS library which provides

the stencil abstraction. As noted before, OPS then generates parallel code targeting distributed memory

machines with both CPUs and GPUs. Devito [50] is a DSL embedded in Python which allows the symbolic

description of PDEs, and focuses on high-order finite difference methods, with the key target being seismic

inversion applications. Devito also supports CPU and GPU parallelisation, where GPU acceleration is

obtained by generating OpenACC directives.

At this higher-level of abstraction, there is a limited number of libraries targetting particle methods. How-

ever one such example is the PPMD library, which provides a Python interface for molecular dynamics

16

applications, parallelising computation using OpenMP, MPI and CUDA [51].

In fusion research, the BOUT++ framework has been developed as a flexible toolbox for solving a wide

range of PDEs [52, 53]. Its design was in large part driven by the need for physicist users to modify and

customise the model equations being solved. BOUT++ therefore uses C++ features to implement models

in a way which closely mimics their mathematical form.

The BOUT++ framework then solves these equations, and allows the user runtime control over the finite

difference methods and stencils used, as well as time integration solver, Laplacian inversions, and so on.

BOUT++’s physics model implementation language is an example of a eDSL, in this case C++ is the host

language. eDSLs have the advantage of the user/developer being able to easily “break out” of the DSL

and write generic code for situations not handled by the DSL, for example to handle complicated boundary

conditions. The cost of this approach is that certain transformations of the code are harder to achieve. For

example, each physics and arithmetic operator in BOUT++ contains a loop over the whole domain for its

own kernel. To achieve the full performance with OpenMP or accelerators requires merging these loops into

a single loop. This in turn necessitates rewriting the top-level set of equations to include this loop explicitly,

or to use something akin to expression templates (as is done in libraries such as Eigen or Blitz++), which

have their own downsides.

In addition to the above eDSL for implementing physics models, BOUT++ has a second DSL to specify

the inputs and initial conditions for the simulations. This started from a simple .ini input format, but

has developed over time into a Turing-complete language of its own, with a custom interpreter included in

BOUT++. This gradual increase in complexity has been driven by the needs of physics studies, improving

ease of use (reducing or eliminating pre-processing steps), and to facilitate testing with complex analytical

expressions using the Method of Manufactured Solutions (MMS).

This flexibility in the input has proven to be extremely useful to users, and as a DSL the format is well

suited to its specialised task of providing input expressions to BOUT++ simulations. Because of how it

has gradually evolved in BOUT++, it is however a DSL with a very limited number of users, with all the

disadvantages which come with this discussed previously. BOUT++ currently only supports execution on

CPUs with OpenMP for multi-threading and MPI for distributed memory execution. Experimental branches

exists with ongoing development to support GPU execution. These include (1) using Hypre [54] with GPU

support for the Laplacian inversion parts of the problem (which in practice can take about half the total

time) and (2) with RAJA for putting the user physics model on GPUs, with Umpire [55] to handle memory.

This requires modifying the physics DSL to enable operations to be fused together, reducing the number of

separate kernels which need to be launched.

Similar to BOUT++, the Unified Form Language (UFL), used in FEniCS and Firedrake provides a

high-level language to describe variational forms. The problem to be solved is specified at a high level, which

corresponds closely to the mathematical form.

Firedrake uses the FEniCS Form Compiler (FFC) to convert UFL to an intermediate representation, and

then uses PyOP2 to generate code for target architectures, aiming to be performance portable on both CPUs

17

and GPUs.

The most common challenges when using DSLs include:

1. Difficulties in debugging due to the extra hidden layers of software between user code and code exe-

cuting on the hardware. However, DSLs generating low-level C/C++/Fortran codes can use standard

debuggers or profilers.

2. Extensibility – implementing algorithms that fall slightly outside of the abstraction defined by the DSL

can be an issue.

3. Customisability – it is often difficult to modify the implementation of high-level constructs generated

automatically.

To mitigate some of these issues, systems can be provided with “escape hatches”, which provide ways

for users to implement components of the problem which cannot be expressed in the high-level DSL. An

example is custom flux-limiters, which cannot currently be expressed in UFL; instead a user needs to be

able to implement their own kernels, and integrate these into the remainder of the system in an elegant way.

Firedrake provides such escape hatches for direct access to linear algebra operators (PETSc), and allows

implementation of custom PyOP2 kernels. However it should be noted that such modifications may not

deliver the best performance on all hardware and should be used only sparingly or for prototyping. As it is

the case with many complex performance issues there is no silver-bullet to solve all cases.

3.6 Summary

The increasingly diverse range of hardware being used in modern day HPC systems is making programming

for these systems much more difficult. While most vendors provide hardware-specific programming models

for dealing with heterogeneous parallelism, these are typically not portable between competing architectures

and therefore may require significant redevelopment for any new hardware platforms.

Instead, a number of performance portable approaches have been proposed and developed. These approaches

range from lightweight directive-based approaches, instructing a compiler to parallelise code effectively, to

kernelising code specifically for execution on an accelerator.

Achieving high performance on the today’s largest HPC systems requires application developers to deal with

hierarchical parallelism. For many new applications, this will likely require a mix of programming languages

and programming models (e.g. so called “MPI+X”). Additionally, this may require multiple levels of DSL,

e.g., a DSL that allows users (domain scientists) to express the equations required, while a lower-level DSL

generates efficient application code for execution on a wide-range of hardware. Certainly combining the

expertise of DSL developers at these different levels, optimising for a multi-layered solution seems to be

the most feasible and performant. Additionally, such an approach appears to provide the best future-ready

option with transparent layers aiding in maintenance and extensibility.

18

4 Applications for Evaluation

The exploratory stage of NEPTUNE includes a number of projects that are investigating the behaviour of

plasmas through proxy applications. The applications currently being used broadly fall in to two categories,

fluid models and particle models. In particular, T/NA078/20 used Nektar++ to explore the performance of

spectral elements, T/NA083/20 focused on building fluid referent models in both Bout++ and Nektar++,

and T/NA079/20 explored particle methods with the EPOCH particle-in-cell (PIC) code. It is therefore

likely that the resultant NEPTUNE software stack require both fluid and particle components with a coupling

interface between.

The three aforementioned applications are the result of many years of development and typically consist

of many thousands of lines of C/C++ or Fortran. They are already widely used by the UK’s scientific

computing community on a diverse range of problems.

Prior to the development of the NEPTUNE software stack, it is prudent to assess the wide range of avail-

able technologies, without the associated burden of redeveloping these mature simulation applications into

new programming frameworks. In this project, we use a series mini-applications that implement key com-

putational algorithms that are similar to those used by the NEPTUNE proxy applications. These mini-

applications are typically limited to a few thousand lines of code and are often available implemented in a

wide range of programming frameworks already.

Notable collections of such mini-applications includes Rodinia [56], UK-MAC [57], the NAS Parallel Bench-

marks [58], the ECP Proxy Apps [31] and the SPEC benchmarks [59]. In this section we will discuss the

applications we have identified from these benchmark suites that implement computational kernels similar

to those required by NEPTUNE.

4.1 Fluid Models

As previously noted, the fluid modelling aspects of the NEPTUNE project are largely focused on the use of

Bout++ [52, 60] and Nektar++ [61]. Bout++ is a framework for writing fluid and plasma simulations

in curvilinear geometry, implemented using a finite-difference method, while Nektar++ is a framework for

solving computational fluid dynamics problems using the spectral element method.

Both applications are large C++ applications designed primarily for execution across homogeneous clusters.

Parallelisation across a cluster in both applications is achieved using MPI, with Bout++ additionally capable

of on-node parallelism with OpenMP. GPU acceleration is under development in both applications, through

RAJA and HYPRE in Bout++, and through OpenACC in Nektar++ [62].

Rather than redevelop these applications, this project has instead identified a series of mini-applications that

implement similar computational schemes. Specifically, we have identified a small number of finite difference

and finite element mini-apps, each of which are implemented in a range of programming models for rapid

evaluation of approaches to performance portability.

19

Heat

Heat is a simple finite-difference application developed at the University of Bristol for their OpenMP

Target training course. Besides OpenMP and OpenMP target, it has also been ported to SYCL4.

TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction equation on a regular grid

using a 5-point stencil. It has been used extensively in studying performance portability already [63–66],

and is available implemented using CUDA, HYPRE, OpenCL, PETSc and Trilinos5.

miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark suite [9,67–69]. It implements

an unstructured implicit finite element method and is available implemented using CUDA, Kokkos,

OpenMP and OpenMP with offload6, and SYCL7.

Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [69–71]. It implements a high-

order curvilinear finite element scheme on an unstructured mesh. It uses HYPRE for parallel linear

algebra, and is additionally available in CUDA, RAJA and OpenMP implementations8.

vlp4d

The vlp4d mini-app is a 2+2D Vlasov-Poisson equation solver, based on the 5D plasma turbulence

code, GYSELA [72]. It is implemented in C++ and has been augmented with OpenMP, OpenACC,

MPI, Kokkos, Thrust, CUDA, HIP and C++ stdpar9.

In future reports we will expand this evaluation set to include the following applications:

FDTD3D

FDTD3D is an implementation of Yee’s method for solving Maxwell’s equations, implemented as part

of the OpenCL examples library, provided by NVIDIA. There are available implementations in CUDA,

HIP, OpenMP and SYCL10.

Maxwell

The Maxwell mini-app is distributed as part of the MFEM library. Since it is implemented using the

MFEM library, it can target any programming model supported by MFEM11.

hipBone

The hipBone mini-app is a GPU port of the Nekbone application. It is implemented in C++, and

leverages the OCCA performance portability framework [73] to provide portability to OpenMP, CUDA

and HIP12.

4https://github.com/UoB-HPC/heat_sycl
5http://uk-mac.github.io/TeaLeaf/
6https://github.com/Mantevo/miniFE
7https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl
8https://github.com/CEED/Laghos
9https://github.com/yasahi-hpc/P3-miniapps

10https://github.com/zjin-lcf/HeCBench
11https://mfem.org/electromagnetics/
12https://github.com/paranumal/hipBone

20

https://github.com/UoB-HPC/heat_sycl
http://uk-mac.github.io/TeaLeaf/
https://github.com/Mantevo/miniFE
https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl
https://github.com/CEED/Laghos
https://github.com/yasahi-hpc/P3-miniapps
https://github.com/zjin-lcf/HeCBench
https://mfem.org/electromagnetics/
https://github.com/paranumal/hipBone

4.2 Particle Methods

Particle methods in NEPTUNE have been explored using the EPOCH particle-in-cell code [74], its associated

mini-app minEPOCH [75]13 and the UKAEA-developed NESO14 application.

EPOCH is a PIC code that runs on a structured grid, using a finite differencing scheme and an implementation

of the Boris push. Like Bout++ and Nektar++, EPOCH is a mature software package that is used widely

by the UK science community, and thus is difficult to evaluate in alternative programming models without

a significant redevelopment effort. Furthermore, EPOCH is developed in Fortran, making it increasingly

difficult to adapt to many new programming models that are heavily based in C++. The mini-app variant

of EPOCH, minEPOCH, is likewise developed in Fortran and thus not appropriate for this study.

NESO is a test implementation of a PIC solver developed at UKAEA for 1+1D Vlasov-Poisson. It is written

in C++ using DPC++/SYCL for on-node parallelism, while off-node parallelism uses MPI. The field solve

is implemented using Nektar++.

Besides NESO, there are a number of other particle-based mini-apps that may be of interest to this project,

that implement similar particle schemes, backed by a variety of electric/magnetic field solvers.

CabanaPIC

CabanaPIC is a structured PIC code built using the CoPA/Cabana library for particle-based simula-

tions [69]. Through the CoPA/Cabana library, the application can be parallelised using Kokkos for

on-node parallelism and GPU use, and with MPI for off-node parallelism15.

VPIC/VPIC 2.0

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling kinetic plasmas in one, two

or three dimensions, developed at Los Alamos National Laboratory [76]. VPIC is parallelised on-core

using vector intrinsics, on-node through pthreads or OpenMP, and off-node using MPI. VPIC 2.0 [77]

adds support for heterogeneity, using Kokkos16.

EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma In Realistic En-

vironments (EMPIRE) project [78]. It solves Maxwell’s equations on an unstructured grid using a

finite-element method, and implements the Boris push for particle movement. EMPIRE-PIC makes

extensive use of the Trilinos library, and uses Kokkos as its parallel programming model [79,80].

Mini-FEM-PIC

Mini-FEM-PIC is a mini-application that implements a particle-in-cell method on an unstructured

mesh, using the finite element method. It was developed as part of this project, and is based on the

fem-pic application by Lubos Brieda. It is implemented in C++ and can be executed in parallel using

OpenMP.

13https://github.com/ExCALIBUR-NEPTUNE/minepoch
14https://github.com/ExCALIBUR-NEPTUNE/NESO
15https://github.com/ECP-copa/CabanaPIC
16https://github.com/lanl/vpic

21

https://github.com/ExCALIBUR-NEPTUNE/minepoch
https://github.com/ExCALIBUR-NEPTUNE/NESO
https://github.com/ECP-copa/CabanaPIC
https://github.com/lanl/vpic

Each of the particle-based mini-apps identified implement a PIC algorithm that is similar to that found in

EPOCH. However, one weakness of this evaluation set is that three of the four applications are parallelised

on-node through the Kokkos performance portability layer. In future reports we will expand this evaluation

set to include the following application:

NESO

NESO is a test implementation of a PIC solver for 1+1D Vlasov-Poisson. It is implemented in C++,

with DPC++/SYCL parallelism, and a field solve using Nektar++.

Sheath-PIC

Sheath-PIC is a simple 1D GPU implementation from www.particleincell.com. It has been ported

from CUDA to HIP, OpenMP and SYCL17.

4.3 Validation

The mini-applications chosen for this study implement only small subsections of larger applications, or

algorithms that are similar in their structure. In many cases, they are solving much smaller or much simpler

problems and therefore the results are likely not representative of that which is required by NEPTUNE.

What is important for this study is that they are performance representative.

A number of methods have been explored to validate the representativeness of mini-applications and their

parents. In this project, informed by the ECP Project [81], we will adopt cosine similarity to compare

vectors of performance counter values.

For each application, we will sample the accumulated hardware counters for an entire execution. We will

then form an application vector xi, that contains the averaged hardware event counters for the last 5 seconds

of execution. Two applications will be considered similar if the vectors that represent the applications are

a short distance apart. The cosine similarity is calculated as

cos (θ) =

∑d
k=1 xikxjk

∥ xi ∥∥ xj ∥
(2)

The cosine value varies from 1.0 (identical vector direction) to 0.0 (orthogonal vector direction), and the

angle θ varies from 0°to 90°. If two applications are performance representative, we expect their cosine

similarity angle to be closer to 0°.

Our analysis will be added to a future iteration of this report. In contrast to the ECP report, our analysis will

not be based on a parent application and a representative mini-application variant, but instead on generic

mini-applications and target parent applications. Because of this, we do not expect our results to conform as

closely as those in the original study. Nonetheless, we expect that particular performance-sensitive counters

will show the required similarity.

17https://github.com/zjin-lcf/HeCBench

22

www.particleincell.com
https://github.com/zjin-lcf/HeCBench

5 Evaluations of Approaches

In this section we present performance data for a number of mini-applications, across a range of architectural

platforms, using a range of different approaches to performance portability.

The applications chosen in each case are broadly representative of some of the algorithms of interest to

NEPTUNE. In particular, the fluid-method based mini-apps implement algorithms that range from finite-

difference (like Bout++ [60]) to high-order finite element or spectral element (like Nektar++ [61]). Similarly,

the particle-methods mini-apps all implement the particle-in-cell method (like EPOCH [74]).

The data presented in this section, and the applications are available on github, through the linking reposi-

tory: https://github.com/ExCALIBUR-NEPTUNE/performance-portability-for-fusion.

5.1 Heat

Heat is a benchmark from the University of Bristol that is used for teaching parallelisation. It is the simplest

finite difference application used in this evaluation, and as such is mostly representative of the data access

pattern, rather than the compute intensity. The data presented in this section has been collected for a

10000× 10000 problem over 1000 time steps on Isambard.

CLX Rome KNL ThunderX2 A64FX
0

50

100

CPU Platforms

R
u
n
ti
m
e
(s
)

OpenMP 4.5 CUDA hipSYCL DPC++ ComputeCpp

P100 V100 HD P630
0

20

40

60

GPU Platforms

Figure 4: Heat runtime data

5.1.1 Performance

Performance data for the Heat code was collected as part of a project to evaluate three implementations of

the SYCL standard. As such, there are three SYCL data points per platform, acquired with Intel’s DPC++

compiler, Heidelberg’s hipSYCL compiler (through a custom LLVM build), and Codeplay’s ComputeCpp

compiler. The runtimes achieved with each compiler can be compared to OpenMP with offload and CUDA.

23

https://github.com/ExCALIBUR-NEPTUNE/performance-portability-for-fusion

The runtime data for Heat is presented in Figure 4, split for CPU and GPU platforms due to the magnitude

difference in runtime on the NVIDIA GPU platforms. From this data, we can see that generally the SYCL

runtimes are competitive with the OpenMP and CUDA variants, and in some cases better, regardless of

compiler.

The main difference between each compiler is in the level of platform support; hipSYCL is able to target

every architecture except the Intel HD P630 GPU, but on KNL and AMD Rome, its performance is worse

than the same code compiled by Intel’s DPC++ compiler. The ComputeCpp compiler has the worst support,

being unable to target the Arm platforms or the GPUs, due to lack of an OpenCL driver.

For the two Arm platforms on Isambard (ThunderX2 and A64FX), the performance in both OpenMP

and hipSYCL is relatively poor compared to alternative architectures. However, the overhead of SYCL is

reasonably small (15-30% slowdown). For the x86 CPUs and the GPUs, the fastest SYCL variant matches

or outperforms the OpenMP with offload variant; on GPUs the CUDA variant is still marginally faster.

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6 7 8
Platform

C B F H G A D E

G F

D E B G H C A F OpenMP 4.5
CUDA
SYCL

A CLX
B Rome
C KNL
D ThunderX2
E A64FX
F P100
G V100
H HD P630

Figure 5: Cascade visualisation of performance portability of Heat

5.1.2 Portability

Figure 5 show the performance portability of the Heat application, where the data for SYCL is taken as the

best performing SYCL compiler on each platform.

As can be seen from the right side of the figure, only OpenMP 4.5 and SYCL achieve performance portability,

with SYCL typically outperforming OpenMP 4.5. Figure 5 additionally shows that as platforms are added

to the evaluation set, SYCL achieves near perfect efficiency until the 7th and 8th platforms are added (the

two Arm platforms in this case).

24

Conversely, CUDA shows the lowest portability, only being executable on the two NVIDIA GPU platforms.

As can be seen in Figure 4, DPC++ provides better performance than hipSYCL on the KNL and Rome

platforms, highlighting the importance of compiler selection currently. Both the hipSYCL and DPC++

compilers are now based on the LLVM compiler infrastructure, and so it is likely that the performance of

each of these compilers will eventually converge.

The simplicity of the Heat code lends itself to rapid porting efforts and so the results are a good indication of

what can be achieved by any larger code using the SYCL programming model. However, as will be seen later

in this report, larger codes require significantly more re-engineering to achieve similar levels of performance

portability in newer programming models such as SYCL.

5.2 TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction equation on a regular grid using

a 5-point stencil, developed as part of the UK-MAC (UK Mini-App Consortium) project.

It has been used extensively in studying performance portability already [63–66], and is available implemented

using CUDA, OpenACC, OPS, RAJA, and Kokkos, among others18. The results in this section are extracted

from two of these studies, namely one by Kirk et al. [64] and one by Deakin et al. [63]. In both studies, the

largest test problem size (tea bm 5.in) is used, a 4000× 4000 grid.

5.2.1 Performance

The study by Kirk et al. shows the execution of 8 different implementations/configurations of TeaLeaf across

3 platforms, a dual socket Intel Broadwell system, an Intel KNL system and an NVIDIA P100 system. The

runtime for each implementation/configuration is presented in Figure 6. Note that in the study, some results

are missing due to incompatibility (e.g. CUDA on Broadwell/KNL)19.

The study by Deakin et al. is more recent, using a C-based implementation of TeaLeaf as its base. It

consequently evaluates fewer programming models, but over a wider range of hardware, including a dual

socket Intel Skylake system, both NVIDIA P100 and V100 systems, AMDs Naples CPU, and the Arm-based

ThunderX2 platform. Runtime results are provided in Figure 7.

5.2.2 Portability

Both studies evaluate some portable and some non-portable implementations. In most cases, there is a non-

portable implementation that achieves the lowest runtime, however this places a restriction on the hardware

that it can target.

18http://uk-mac.github.io/TeaLeaf/
19Hybrid represents the best performing configuration of a MPI/OpenMP hybrid execution

25

http://uk-mac.github.io/TeaLeaf/

Broadwell KNL P100

500

1,000

1,500

Platform

R
u
n
ti
m
e
(s
)

OpenMP MPI Hybrid CUDA
OpenACC OPS Kokkos RAJA

Figure 6: TeaLeaf runtime data from Kirk et al. [64]

Skylake Naples Power9 TX2 KNL P100 V100

200

400

600

800

Platform

R
u
n
ti
m
e
(s
)

OpenMP CUDA
OpenACC Kokkos

Figure 7: TeaLeaf runtime data from Deakin et al. [63]

For study by Kirk et al. [64], Figure 8 provides a visualisation of the performance portability of each

approach to application development. In terms of efficiency, the non-portable approaches (CUDA, MPI,

and OpenACC) achieve high efficiency, but do not extend to the full evaluation set, while the portable

approaches (Kokkos, OPS and RAJA) span much of the evaluation set, but sacrifice some efficiency. Almost

all approaches (except OpenMP) achieve more than 80% application efficiency on at least one platform, and

in the case of RAJA and OPS, performance above 60% application efficiency is maintained across the three

26

platforms. Referring back to Figure 6, we can see that on the Intel KNL system, the Kokkos performance is

double that of other performance portable approaches, and thus skews its portability calculation. It is likely

that this is the result an unidentified issue in TeaLeaf or Kokkos at the time of evaluation. Otherwise, these

three programming models each achieve similar levels of performance and, importantly, portability across

different architectures.

Figure 9 show the same visualisations for the data from Deakin et al. [63]. Again, the non-portable program-

ming model (CUDA) achieves the highest performance on its target architectures. For CPU architectures

OpenMP produces the highest result, and using offload directives, portability is available to GPU devices.

It should be noted that to support the use of GPU devices, there are two OpenMP implementations that

must be maintained (with and without offload directives), though these results are presented together here.

Much like in the previous study, the performance portability of Kokkos is affected by an anomalous result

on the Intel KNL platform.

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0 Perform
ance Portability

1 2 3
Platform

B A C
A C B
B A C
A C
C
B A
B A
B A OpenMP

MPI
Hybrid
CUDA
OpenACC
OPS
Kokkos
RAJA

A Broadwell
B KNL
C P100

Figure 8: Cascade visualisation of performance portability from Kirk et al. [64]

27

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6 7
Platform

B A D F G E
F G C
F G
A B C D E F G OpenMP

CUDA
OpenACC
Kokkos

A Skylake
B Naples
C Power9
D TX2
E KNL
F P100
G V100

Figure 9: Cascade visualisation of performance portability from Deakin et al. [63]

CLX Rome KNL ThunderX2 A64FX P100 V100 HD P630

20

40

60

80

Platform

R
u
n
ti
m
e
(s
)

MPI OpenMP OpenMP 4.5 CUDA
Kokkos DPC++ hipSYCL ComputeCpp

Figure 10: miniFE runtime data gathered in 2022 for a SYCL maturity study20

20Runtime data above 80s has been clipped. The runtime for hipSYCL on the ThunderX2 platform is 110.921s, while the
runtime for the HD P630 through OpenMP 4.5 is 371.287s

28

5.3 miniFE

miniFE is a finite element mini-app, and part of the ECP Proxy apps (previously the Mantevo benchmark

suite) [9,67–69]. It implements an unstructured implicit finite element method and has versions available in

CUDA, Kokkos, OpenMP (3.0+ and 4.5+) and SYCL21.

While there are a number of data sources for miniFE data, most of these are limited in scope. Instead all

data presented in this section has been newly gathered. Previous iterations of this report contained data

gathered in 2021, specifically for Project NEPTUNE. In this iteration of the report, new data is presented

from a 2022 study into the maturity of SYCL implementations.

In all cases, a 256×256×256 problem size has been used, and all runs have been conducted on the platforms

available on Isambard.

5.3.1 Performance

The raw runtime results for these runs can be seen in Figure 10. In many of the miniFE ports available,

only the conjugate solver has been parallelised effectively, so the results presented represent only the timing

from this kernel.

It should be noted that the SYCL data is gathered from a miniFE port that can be found as part of the

oneAPI-DirectProgramming github repository22; this port is based on a conversion from the OpenMP 4.5

implementation of miniFE, and so no SYCL-relevant optimisation has been performed.

The previous data presented in this report contained a number of omissions due to the unavailability of

compilers, or other issues. The data presented in this report resolves many of these issues, and additionally

includes data for an Intel HD P630 GPU. While this GPU is not optimised for HPC workloads (since it is

an embedded GPU), it provides the first glimpse of programmability of Intel’s new Xe GPU line.

Figure 10 shows that the SYCL performance and portability depends largely on the compiler that is used.

Interestingly, hipSYCL is often the best performing SYCL compiler (even when compared to the Intel

DPC++ compiler, on Intel hardware). However, it is clear that there is a SYCL penalty on such a complex

code (in contrast to Heat). Given the nature of the miniFE SYCL port, this indicates that achieving high

performance for a SYCL code likely requires some optimisation after a conversion.

It is also clear from the data presented in Figure 10 that the native approaches (CUDA, MPI/OpenMP) are

typically the fastest. For the two NVIDIA GPU platforms, CUDA is significantly faster than any alternative,

whereas for the CPU platforms Kokkos is competitive. For the two ARM platforms (TX2 and A64FX), the

SYCL performance is typically poor, likely owing to an issue with the custom LLVM compiler that was

required to collect the data.

21https://github.com/Mantevo/miniFE
22https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl

29

https://github.com/Mantevo/miniFE
https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl

5.3.2 Portability

Figure 11 presents a visualisation of the performance portability of miniFE, through various approaches. It

is clear from the figure that on CPU platforms, MPI is the most performant (achieving nearly 100% efficiency

across the 5 CPU platforms), while CUDA is the most performant on the NVIDIA GPUs. For the Intel

iGPU, the most performant is SYCL (through DPC++), but the efficiency of SYCL falls away rapidly.

Only OpenMP 4.5 and SYCL are portable across the 8 platforms, but achieve a PP ≈ 0.2. Typically Kokkos

outperforms SYCL (except on the Intel iGPU, where Kokkos has not been executed). Unfortunately, all of

the “portable” approaches achieve a median efficiency below 50%. This is in contrast to the data presented

for the much simpler Heat application, and indicates the need for careful optimisation of the code.

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6 7 8
Platform

H A C B E F G D
E C A B G D F
G F
C A B E D H F G
C B A E D
A B D E C MPI

OpenMP
OpenMP 4.5
CUDA
Kokkos
SYCL

A CLX
B Rome
C KNL
D ThunderX2
E A64FX
F P100
G V100
H HD P630

Figure 11: Cascade visualisation of performance portability of miniFE

5.4 Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [69–71]. It implements a high-order

curvilinear finite element scheme on an unstructured mesh. The majority of the computation is performed

by the HYPRE and MFEM libraries, and can thus use any programming model that is available for these

libraries23.

The results presented in this section have all been collected on the Isambard platform.

23https://github.com/CEED/Laghos

30

https://github.com/CEED/Laghos

5.4.1 Performance

Figure 12 shows the runtime for Laghos, running problem #1 (Sedov blast wave), in three dimensions, up

to 1.0 second of simulated time, using partial assembly (i.e., ./laghos -p 1 -dim 3 -rs 2 -tf 1.0 -pa

-f).

Across the six platforms evaluated, RAJA performance is typically in line with the fastest non-portable

approach (MPI and CUDA). Since the parallelisation in Laghos is in the MFEM and HYPRE shared libraries,

that were developed at LLNL alongside RAJA, that these routines are well optimised in RAJA is perhaps

not surprising.

CSL KNL Rome A64FX P100 V100

20

40

60

80

100

120

Platform

R
u
n
ti
m
e
(s
)

MPI OpenMP
CUDA RAJA

Figure 12: Laghos runtime data

5.4.2 Portability

Figure 13 demonstrates the remarkable efficiency of the RAJAMFEM and HYPRE implementations, showing

consistently above 80% performance efficiency. In contrast to some of our previous results, OpenMP performs

poorly across most platforms (except KNL). The difference between OpenMP and RAJA on the CPU

platforms suggests that either the RAJA parallelisation on these systems is achieved through SIMD and

Thread Building Blocks (TBB), or that there are performance issues in the OpenMP implementation. On

the GPU platforms, CUDA does marginally outperform RAJA, but this is perhaps to be expected, given

the potential overhead in using a third party performance library.

31

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6
Platform

A B D E C F
E F
B C D A
C D B A MPI

OpenMP
CUDA
RAJA

A CascadeLake
B KNL
C Rome
D A64FX
E Pascal
F Volta

Figure 13: Cascade visualisation of performance portability of Laghos

5.5 vlp4d

The vlp4d application solves the Vlasov-Poisson equations in 4D (2D space and 2D velocity space). It is based

on the 5D plasma turbulence code, GYSELA, but is miniaturised specifically for performance portability

studies [82].

In this report, we have collected data running the two-dimensional Landau damping problem (SLD10),

documented by Crouseilles et al. [83]. We have collected results on the Isambard system, making use of all

available architectures (including the Phase 3 system).

5.5.1 Performance

Figure 14 plots the runtime of vlp4d across the 7 programming models, and 9 evaluation platforms. It

should be noted that the NVIDIA and AMD GPU platforms are an order of magnitude faster than the CPU

platforms, and so are plotted separately.

In the general case, OpenMP and Kokkos achieve similar performance on almost every platform, where

Kokkos is marginally better on the Arm and NVIDIA architectures, and marginally worse on the Intel and

AMD architectures. The two NVIDIA supported programming models (Thrust and Stdpar) perform very

well on the NVIDIA platforms (through the NVHPC compiler), and are also among the best performing

programming models across other platforms – though neither extends to the Arm platforms.

32

CLX ILX Milan KNL TX2 A64FX
0

100

200

300

400

CPU Platforms

R
u
n
ti
m
e
(s
)

OpenMP Thrust Kokkos Stdpar
CUDA OpenACC HIP

V100 A100 MI100
0

2

4

GPU Platforms

Figure 14: vlp4d runtime data

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6 7 8 9
Platform

I
G H
G H
A B H C G D
E F C G I H A D B
C D G I A H B
C F E I G A H B D OpenMP

Thrust
Kokkos
Stdpar
CUDA
OpenACC
HIP

A CLX
B ILX
C Milan
D KNL
E TX2
F A64FX
G V100
H A100
I MI100

Figure 15: Cascade visualisation of performance portability of vlp4d

5.5.2 Portability

The right of Figure 15 shows that only the OpenMP and Kokkos programming models are portable to every

platform evaluated, and they achieve a PP ≈ 0.65; Thrust is portable to the AMD GPU, but not the Arm

platforms, while Stdpar relies on the NVHPC compiler, which does not currently support the AMD or Arm

platforms. The Kokkos and OpenMP programming models also show a similar trend of efficiency across

platforms (and while the ordering of the platforms is not identical between both, it is similar).

33

Interestingly, on the A100 platform, CUDA is not the most performant programming model, with both

Thrust and Stdpar achieving a lower runtime. On the AMD Instinct MI100, HIP and Thrust both achieve

a similar level of performance.

As shown in Figure 15, the highest efficiency across platforms is achieved by the Thrust library and the

Stdpar programming model, up to the inclusion of the Arm platforms or the AMD GPU (in the case of

Stdpar).

5.6 CabanaPIC

CSL KNL Rome V100

100

200

300

Platform

R
u
n
ti
m
e
(s
)

Kokkos

Figure 16: CabanaPIC data

CabanaPIC is a structured PIC demonstrator application built using the CoPA/Cabana [22] library for

particle-based simulations [69]. CoPA/Cabana provides algorithms and data structures for particle data,

while the remainder of the application is built using Kokkos as its programming model for on-node parallelism

and GPU use, and MPI for off-node parallelism24.

5.6.1 Performance

Since there is only a single implementation of CabanaPIC, it is not possible for us to evaluate how the

programming model affects its performance portability, however, we can show how the performance changes

between architectures.

Figure 16 shows the achieved runtime for CabanaPIC across four of Isambard’s platforms, running a simple

1D 2-stream problem with 6.4 million particles.

24https://github.com/ECP-copa/CabanaPIC

34

https://github.com/ECP-copa/CabanaPIC

Approximately equivalent performance can be seen on the Cascade Lake, Rome and V100 systems. Similar

to our TeaLeaf Kokkos results on KNL, the runtime is significantly worse than expected, possibly indicating

a Kokkos bug, or a configuration issue. Otherwise performance is similar on all platforms in terms of the

raw runtime. Given the significantly higher peak performance of the NVIDIA V100 system, it is perhaps

surprising that its performance is not significantly better. This may be due to serialisation caused by atomics,

or significant data movement between the host and the accelerator; further investigation is necessary to

identify this loss of efficiency.

5.7 VPIC

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling kinetic plasmas in one, two or

three dimensions, developed at Los Alamos National Laboratory [76]. VPIC is parallelised on-core using

vector intrinsics and on-node through a choice of pthreads or OpenMP. It can additionally be executed across

a cluster using MPI25. The recently developed VPIC 2.0 [77] code has been developed to add support for

heterogeneity using Kokkos to optimise the data layout and allow execution on accelerator devices.

Skylake KNL TX2 Naples Rome Power9 V100

100

200

300

Platform

R
u
n
ti
m
e
(s
)

Original SIMD

Kokkos

Figure 17: VPIC runtime data from Bird et al. [77]

5.7.1 Performance

Figure 17 shows the runtime for the three variants of the VPIC code running on seven platforms26. This

data is taken from the VPIC 2.0 study, comparing the non-vectorised, vectorised and Kokkos variants of the

VPIC code. In each case, the runtime is the time taken for 500 time steps, with 66 million particles.

25https://github.com/lanl/vpic
26https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf

35

https://github.com/lanl/vpic
https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ic
at

io
n

E
ff

ic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

Perform
ance Portability

1 2 3 4 5 6 7
Platform

G C E D A B F

A B D E F

C E D B F A Reference
SIMD
Kokkos

A Skylake
B KNL
C TX2
D Naples
E Rome
F Power 9
G V100

Figure 18: Cascade visualisation of performance portability of VPIC

In Figure 17 we can observe that the SIMD vectorised implementations are always the fastest for each

platform, however it should be noted that each of these are hand-optimised for each individual instruction

set (i.e. every implementation is platform specific). This means that, alongside the additional coding effort

of writing an implementation for each platform, potential additions or fixes must also be applied to all

implementation individually, significantly affecting the productivity. While the Kokkos implementation is

typically the slowest on each platform, performance is usually in-line with the unvectorised original VPIC

application, suggesting that the slowdown is caused by the inability of the compiler to autovectorise.

5.7.2 Portability

In terms of the performance portability of VPIC, we can see that the original and vectorised variants are

only viable on the CPU architectures. Figure 18 visualises how the performance portability varies as more

platforms are evaluated.

The highest performance on each of the CPU platforms comes from the vectorised variant of VPIC, as it

achieves the best performance on all CPU platforms (except the ThunderX2, where no data is provided).

However, since it cannot execute on the GPU platform, its performance portability is 0.

Figure 18 shows that while Kokkos performs worse than the vectorised implementation, its performance is

similar the non-vectorised variant, but is also capable of execution on the V100 platform.

It should be noted that this data is from a study based on the initial implementation of VPIC using Kokkos.

It is likely that these performance figures will be improved in future, potentially closing the performance gap

36

on the vectorised implementation, while maintaining portability to heterogeneous architectures. Indeed, a

recent study presented at the PASC conference [84] has shown that the Kokkos runtime can be improved by

up to 55% using Kokkos SIMD27.

5.8 EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma In Realistic Environments

(EMPIRE) project [78]. It solves Maxwell’s equations on an unstructured grid using a finite-element method,

and implements the Boris push for particle movement. EMPIRE-PIC makes extensive use of the Trilinos

library, and subsequently uses Kokkos as its parallel programming model [79,80].

Accelerate Weight Fields Move Sort
0

10

20

30

Kernel

R
u
n
ti
m
e
(s
)

BDW CSL KNL TX2 P100 V100

Figure 19: EMPIRE-PIC runtime data

5.8.1 Performance

The EMPIRE-PIC application is export controlled, and thus the results in this section come from the study

by Bettencourt et al. [79], looking specifically at the particle kernels within EMPIRE-PIC.

Figure 19 shows the runtime of the Accelerate, Weight Fields, Move and Sort kernels within EMPIRE-PIC

for an electromagnetic problem with 16 million particles (8 million H+, 8 million e-). The geometry for this

problem is the tet mesh that can be seen in Figure 7 in Bettencourt et al. [79].

37

0.00

0.01

0.02

0.03

0.04

0.05

Ar
ch

ite
ct

ur
al

 E
ff

ic
ie

nc
y

0.00

0.01

0.02

0.03

0.04

0.05

Perform
ance Portability

1 2 3 4 5 6
Platform

D A F B E C
D A F E B C
D A F B E C
D A F B E C Accelerate

Weight Fields
Move
Sort

A BDW
B CSL
C KNL
D TX2
E P100
F V100

Figure 20: Cascade visualisation of performance portability for four particle kernels in EMPIRE-PIC

5.8.2 Portability

While there is only a single programming model implementation of EMPIRE-PIC, we can use the equations

given in Table 2 of Bettencourt et al. [79] to calculate the FLOP/s achieved and compare this to each

machines maximum floating-point performance, thus calculating the architectural efficiency. The equations

presented assume the best case performance, where particles are evenly distributed, there is no particle

migration, and they are sorted at the start of the simulation. Nevertheless, they provide an opportunity to

analyse the performance portability of Kokkos for particle-based kernels.

Figures 20 provides a visualisation of EMPIRE-PIC’s performance portability across six platforms28.

It is important to note that although Figure 20 shows incredibly low efficiency, this is compared to each

platform’s peak performance, where a vectorised fused-multiply-add instruction must be executed each clock

cycle. Achieving less than 10% of this peak performance is not unusual for a real application. In the case of

the Sort kernel, the efficiency is lower still, as this is not a kernel that is bound by floating point performance.

What is clear from Figure 20 is that the variance in achieved efficiency between platforms is not large,

indicating that Kokkos is able to achieve a similar portion of the available performance for EMPIRE-PIC’s

particle kernels. Achieved efficiency is higher on the ThunderX2 and Broadwell systems, due to less reliance

on well vectorised code, and a lower available peak performance.

27The data in this report will be updated to reflect this in future iterations.
28Please note that the y-axis in each of these Figures has been scaled, since the architectural efficiency is very low.

38

0.01 0.1 1 10 100
1

10

100

1000

10000

2968.8 GF/s (Max)

371.1 GF/s (No Vec)

185.6 GF/s (No Vec/FMA)L1
:
89
79
.2
G
B
/s

L2
:
32
87
.6
G
B
/s

D
R
A
M
:
23
0.
1
G
B
/s

Accelerate

Weight FieldsMove

Sort

FLOPs/Byte

G
F
L
O
P
/
se
c

(a) Cascade Lake

0.01 0.1 1 10 100
1

10

100

1000

10000

953.0 GF/s (Max)

285.0 GF/s (No Vec)

D
R
A
M
:
23
5
G
B
/s

LL
C
:
11
45

G
B
/s

L1
:
35
20

G
B
/s

Accelerate

Weight Fields
Move

Sort

FLOPs/Byte

(b) ThunderX2

0.01 0.1 1 10 100
1

10

100

1000

10000

2274.0 GF/s (Max)

284.3 GF/s (No Vec)

142.1 GF/s (No Vec/FMA)

L1
:
47
35
.6
G
B
/s

L2
:
17
69
.9
G
B
/s

D
R
A
M
:
63
.4
G
B
/s

Accelerate

Weight Fields
Move

Sort

FLOPs/Byte

G
F
L
O
P
s/

se
c

(c) Knights Landing

0.01 0.1 1 10 100
1

10

100

1000

10000

3915.0 GF/s (No FMA)

7830.0 GF/s (Max)

H
B
M
:
77
9
G
B
/s

L2
:
33
50

G
B
/sL1

:
14
33
6
G
B
/s

Accelerate

Weight FieldsMove

Sort

FLOPs/Byte

(d) V100

Figure 21: Roofline plots on four platforms, gathered using the Empirical Roofline Toolkit [85]

The data suggests that EMPIRE-PIC is not able to fully exploit the on-core parallelism available through

vectorisation. Figure 21 shows roofline models for four of these platforms, with the four particle kernels

plotted according to their arithmetic intensity and achieved FLOP/s.

In all cases, we can see that the application is not successfully using vectorisation (and this is confirmed

by compiler reports). As stated in Bettencourt et al. [79], the control flow required to handle particles

crossing element boundaries leads to warp divergence on GPUs and makes achieving vectorisation difficult

39

on CPUs. Nonetheless, on the Cascade Lake and ThunderX2 platforms, we are within an order of magnitude

of the non-vectorised peak performance for the three main kernels, and the sort kernel (with low arithmetic

intensity) is heavily affected by main memory bandwidth. For the two many-core architectures (KNL and

V100), floating-point performance is further from the peak, and the performance of each kernel is further

hindered by the DRAM/HBM bandwidth.

Roofline analyses, like Figure 21, are effective at demonstrating how vital to performance it is to balance

efficient memory accesses with arithmetic intensity. This is especially important in PIC codes, where some

of the kernels are relatively low in arithmetic intensity when compared to the amount of bytes that need

to be moved to and from main memory (e.g. the Boris push algorithm requires many data accesses, but

performs relatively few mathematical operations). An alternative approach to the FEM-PIC method has

been explored using EMPIRE-PIC by Brown et al. [80], whereby complex particle shapes are supported using

virtual particles based on quadrature rules. Using virtual particles in this manner increases the arithmetic

intensity of particle kernels without requiring significantly more data to be moved from and to main memory.

5.9 Mini-FEM-PIC

The Mini-FEM-PIC application has been redeveloped from the fem-pic application, by Lubos Brieda, for

this project. Its development is detailed in Report 2057699-TN-03-03, along with some preliminary reports

that are partially repeated here.

Currently the mini-application is developed in C++ and provides OpenMP directives for parallel execution.

Alongside this, an OPS-like Domain Specific Language is being developed, named OP-PIC, that will allow

the application to execute across a range of platforms from a single source. The development of this DSL

and the results achieved are documented in Report 067270-TN-02.

The base application implements the electrostatic PIC method (i.e. it assumes that ∂B⃗
∂t = 0). The mini-

application is run on a test system, consisting of Deuterium ion flow through a pipe. The pipe is 4 mm in

length with a 1 mm radius, and is divided up into 9337 elements with an average edge length of ∼0.2 mm.

The plasma is fixed at 2× 108K and the ions are injected with an input velocity of 1× 108m/s.

5.9.1 Performance

Both the Sequential and OpenMP variants are limited to CPU architectures, while the OPS-PIC variant

can target CPU platforms through OpenMP, and NVIDIA GPU platforms through CUDA. In this report,

we only provide data for the Sequential and OpenMP variants, executed on the Isambard system.

Results have been collected from Intel’s Cascade Lake and KNL architectures, AMD’s Rome architecture

and Cavium’s ThunderX2 platform. In all cases, the input is the “coarse” mesh, with 7511 elements, and

∼15,600 particles injected each time step.

40

CLX KNL TX2 Milan

50

100

150

200

250

300

Platform

R
u
n
ti
m
e
(s
)

Sequential OpenMP

(a) Total Runtime

CLX KNL TX2 Milan

50

100

150

200

250

300

Platform

R
u
n
ti
m
e
(s
)

Sequential OpenMP

(b) Move Particles Runtime

Figure 22: Runtime performance of Mini-FEM-PIC for the Coarse problem size on four of Isambard’s
platforms

Figure 22 shows the runtime on four of Isambard’s CPU-based systems. The performance of our mini-

application is dominated by the MoveParticles routine, and so Figure 22(b) shows the isolated runtime for

this function. In each case, we plot only the fastest runtime, regardless of the number of parallel processes

assigned (though in most cases this was achieved with either half or a full node – likely maximising memory

bandwidth per core). OpenMP reduces the runtime on all four platforms by at least 2×, and in the case of

the KNL and Milan platforms by almost 4×.

41

6 Analysis of Approaches

There are currently a large number of projects focused on preparing scientific applications for the complex-

ities of Exascale. With many of the largest Supercomputers edging towards heterogeneity and hierarchical

parallelism, many of these efforts are in ensuring that applications are performant and portable between

different architectures. Section 3 outlines a wide number of options available for developing performance

portable applications, and each approach comes with various advantages and disadvantages.

To date, only a small number of these approaches have seen widespread adoption, including OpenMP, Kokkos,

and RAJA [63,64,86,87]. Because of the availability of mini applications that use these programming models,

the majority of our evaluation has been based on these approaches. We have also conducted some preliminary

work in assessing DPC++/SYCL, since adoption of this programming model is growing (owing to the backing

of Intel).

6.1 Pragma-based Approaches

The two pragma-based approaches of OpenMP and OpenACC are perhaps the easiest to implement into an

existing application and require only minimal code changes. Our evaluation shows that both programming

models are typically performant on CPUs and GPUs, respectively, but potentially lack portability. In the

case of OpenACC, which is specifically targeted at accelerator devices, this is expected; for OpenMP, it is

perhaps more surprising.

The best data we have for this comes from the miniFE application, where we have runtime data for an

OpenMP 3.0-compliant implementation and an OpenMP 4.5-compliant implementation. Figure 10 shows

that for the CPU-only platforms, OpenMP 3.0 is competitive with (or is) the best performing miniFE variant,

but does not run at all on the GPU platforms. While on some platforms, performance is lost when compared

to MPI, it is a much simpler approach to parallelisation.

Figure 11 shows a cascade plot for all miniFE variants, showing that OpenMP offers good portability across

the CPU platforms but no portability to accelerator devices, while The OpenMP 4.5 variant is portable

to all architectures (except the Intel GPU currently). However, the performance on GPUs is significantly

lacking that of native approaches, such as CUDA. Recent studies have suggested that different parallelisation

strategies may be required for high performance between different platforms, and therefore it is possible that

multiple implementations would need to be maintained. This can certainly be achieved within a single code

base, using the preprocessor to select the correct code path, but essentially means maintaining multiple

versions of each kernel.

Another useful example of the portability of OpenMP can be seen in the TeaLeaf data taken from Deakin

et al. [63]. In Figure 7 OpenMP is typically shown to be performance portable, however these figures

come from a C-based variant of the TeaLeaf application, in which multiple compute kernels are provided

42

targeting different versions of the OpenMP specification, different hardware and even different compilers29.

This is another illustration that if we were to maintain multiple kernel implementations, we may be able to

achieve good performance with a mixture of OpenMP 3.0 and 4.5 directives (though whether this approach

is “portable” is questionable).

6.2 Programming Model Approaches

The next approach we have explored in this report, is the use of alternative programming models that

are targeted at parallel architectures. The template libraries Kokkos and RAJA are most mature of these

approaches. Both are being developed as part of the Exascale Computing Project within the US Department

of Energy, at Sandia National Laboratories and Lawrence Livermore National Laboratory, respectively. They

are each capable of targeting the range of hardware that is going to be present in the Aurora, Frontier and

El Capitan systems, through a combination of OpenMP, CUDA, HIP and DPC++. Our initial results (and

many other studies [63, 64, 86, 87]) have shown that both are typically able to deliver good and portable

performance from a single source code base.

The results in Figure 8 shows this for TeaLeaf, with both Kokkos and RAJA typically being able to achieve

good application efficiency over all platforms, with the exception of using multiple GPUs (which has not yet

been implemented in TeaLeaf).

For the high-order FEM Laghos application, Figure 12 shows that RAJA is the only portable programming

model available and is shown to be competitive with (or is) the fastest performing variant on each platform.

It should be noted that Laghos is an exceptional case in our evaluation set, since portability is implemented

in the HYPRE and MFEM libraries, rather than the core Laghos code itself.

For the PIC codes in our evaluation set, Kokkos is the only performance portable programming model

that has been extensively used. The best source for comparison is therefore the VPIC code, where there

is a vectorised CPU-only variant for comparison. The vectorisation in VPIC is largely hand-coded, with

multiple versions of each kernel available for selection at compile time (depending on vector-size and vector

instruction availability). Figure 17 demonstrates that while the optimal implementation on each of the CPU-

based platforms is the hand-vectorised variant, the Kokkos version is competitive with the unvectorised

implementation; better compiler autovectorisation may help close this performance gap in the future30.

Importantly, the Kokkos variant can be executed across GPUs, where much of the available performance is

likely to lie in post-Exascale systems.

While Kokkos and RAJA have both shown promise as approaches to performance portable application

development, each also carry a small element of risk. For each API there is potentially a single point of

failure – the API may be changed at short notice; support for the API or development of the library may

be withdrawn at any time; and hardware backends may never be developed. Nonetheless, a high level of

29See: https://github.com/UoB-HPC/TeaLeaf/tree/master/2d/c_kernels
30Indeed, a similar issue was seen during the development of EMPIRE-PIC, where the compiler is not able to fully vectorise

some segments of Kokkos code, despite no apparent dependencies [79]. The new SIMD feature in Kokkos should reduce this
performance gap significantly [84]

43

https://github.com/UoB-HPC/TeaLeaf/tree/master/2d/c_kernels

support is likely to be maintained while the APIs form the backbone of many of the Department of Energy’s

most important post-Exascale HPC applications. There are also ongoing efforts to include parts of the API

in the C++ standard31.

In contrast to Kokkos and RAJA, the SYCL programming model is an open standard maintained by the

Khronos Group. Interest in SYCL is growing rapidly, driven in part by Intel’s decision to adopt the pro-

gramming model for their Exascale systems, and in particular their Xe HPC accelerators (in the form of

Data Parallel C++).

Due to the relative immaturity of SYCL/DPC++, there are not many NEPTUNE-relevant mini-applications

available for evaluation; our evaluation has so far been limited to a simple heat diffusion code and a code

conversion of the OpenMP 4.5 miniFE implementation. Figure 5 shows that for a simple code implemented

in SYCL, excellent performance portability can be achieved. For a more complex case such as miniFE (see

Figure 11), the performance portability of SYCL is similar to the performance portability of OpenMP 4.5.

We expect that newer SYCL compilers and a more targetted optimisation effort will yield better performance;

revisiting these studies periodically is central to our ongoing work.

Besides our own evaluation, there has been a number of recent efforts to explore the portability of SYCL and

the maturity of SYCL compilers that offer some useful insights. Reguly et al. evaluate SYCL performance

through the unstructured mesh CFD solver, MG-CFD [18]. Figure 23 shows their SYCL runtimes compared

to the best observed performance on each platform; note, the Cascade Lake and Xe LP results were compiled

using Intel’s OneAPI compiler, all other SYCL targets were built using hipSYCL.

Similar to our own evaluation, they observe that SYCL is typically not competitive, but is able to target

each architecture from a single code base. In the case of the ARM Graviton2 platform, the SYCL build

is considerably worse due to the infancy of the ARM target in hipSYCL. For the two Intel platforms,

the OneAPI compiler is slightly more competitive; for the Iris Xe LP (low-power) target, its runtime is

competitive with a single socket Cascade Lake. On the GPU platforms, SYCL is still considerable slower

than native CUDA builds, but has the advantage of being portable to the AMD and Intel GPUs.

The study by Lin et al. provides more data on the maturity of SYCL implementations by evaluating the same

small set of applications periodically against the hipSYCL, Intel DPC++ and ComputeCpp compilers [19].

Their evaluations are based on three applications: BabelStream, a port of the STREAM memory benchmark

for parallel programming frameworks; BUDE (Bristol University Docking Engine), a molecular dynamics

application; and CloverLeaf, a 2D structured grid application. They evaluate each application on a Xeon

Cascade Lake, an AMD EPYC Rome, an NVIDIA V100 and an Intel HD P630 GPU. Although their study is

primarily tracking absolute performance changes with compiler version, rather than comparing to the “best

case”, they do also provide a brief comparison for each application.

For BabelStream, DPC++ and ComputeCpp closely match the OpenCL performance; this is not surprising

since both of these compilers target the OpenCL runtime. Conversely, hipSYCL is competitive with OpenMP

and Kokkos on the Cascade Lake, but is the worst performing on the Rome platform.

31e.g. mdspan, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html

44

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html

CSL ARM Rome V100 A100 Radeon Xe LP

5

10

15

20

25

Platform

R
u
n
ti
m
e
(s
)

Best SYCL

Figure 23: MG-CFD runtime data from Reguly et al. [18]

Measuring the maturity of SYCL implementations via tracking performance IWOCL’21, April 27–29, 2021, Munich, Germany

Figure 10: BabelStream: SYCL vs alternative framework re-
sults

Figure 11: BUDE: SYCL vs alternative framework results

5.4 Alternative SYCL implementations
Finally, we have compared the latest results for all three of our stud-
ied SYCL implementations versus contemporary parallel program-
ming frameworks. We compare SYCL performance to the follow-
ing frameworks: OpenCL, OpenMP, CUDA, and Kokkos. OpenCL,
OpenMP, and CUDA are all C99 derived frameworks that require
direct compiler support. Kokkos is a C++ derived framework that
is implemented as a library with no speci�c compiler requirements
(although runtime requirements such as CUDA libraries are still
required).

Results for the memory bandwidth-bound BabelStream bench-
mark are shown in Figure 10. The bandwidth achieved on each
platform are in line with existing literature[6]. As expected, the
performance pro�le of SYCL implementations that depended on
Intel’s OpenCL runtime is very similar to OpenCL’s, which share
the same runtime environment. Given the higher abstraction level

Figure 12: CloverLeaf: SYCL vs alternative framework re-
sults

of SYCL, it is encouraging to see performance parity with OpenCL
which focuses more on exposing low-level controls.

For independent implementations such as hipSYCL, we see highly
competitive performance compared to vendor speci�c APIs like
CUDA. Because hipSYCL on the CPU uses LLVM’s OpenMP back-
end, we also observe performance parity with the OpenMP imple-
mentation. We attribute hipSYCL’s lower performance on AMD
Rome to LLVM 10’s immaturity on the Zen2 architecture. As later
revision of hipSYCL supports more up-to-date LLVM releases, fu-
ture versions of this study will attempt to accommodate for this.

The results for the compute-bound BUDE benchmark are shown
in Figure 11. Performance disparity on Intel Cascade Lake and
AMD Rome suggests room for improvement for compute-bound
operations. In particular, hipSYCL performed very poorly compared
to the OpenMP implementation. This is surprising and requires
deeper analysis on the emitted code. Results from OpenCL is also
surprising as the implementation shares the same runtime with
DPC++ and ComputeCpp. Considering BUDE’s OpenCL kernel
versus the SYCL kernel, which is nearly identical, this disparity
likely originates from the code emitted by Intel’s OpenCL runtime
online compiler. This isn’t a problem for DPC++ or ComputeCpp
because the SPIR instructions are generated ahead of time.

The results for the memory-bound CloverLeaf benchmark are
shown in Figure 12. Initial analysis suggests hipSYCL has a relatively
high kernel invocation overhead on CUDA platforms. This is less
obvious in both BabelStream and BUDE as both only invoke a single
kernel with no complex kernel dependency requirements and at
a much lower frequency. On the other hand, CloverLeaf contains
more than 170 unique kernels with complex dependencies which is
called in a tight loop for up to 2955 iterations as shown previously
in algorithm 3.

OpenCL once again performed poorly, we observe a ~25% regres-
sion from SYCL implementations hosted on the same runtime. SYCL
results are closer to what we previously observe in BabelStream
although with a further 20~40% regression. Based on CloverLeaf’s
built-in pro�ling data, we suspect the regression again stems from

Figure 24: CloverLeaf: SYCL vs. alternative frameworks from Lin et al. [19]

For the two mini-applications the results are more varied; in some cases there are large differences between

the compilers (see Figure 24). In this study, only hipSYCL was able to target the NVIDIA GPU, due to

compatibility with NVIDIAs outdated OpenCL runtime. Nonetheless, the hipSYCL performance is not com-

petitive with any of the alternatives. On the CPU platforms, hipSYCL often achieves the lowest performance

of the three SYCL compilers, and DPC++ tends to outperform ComputeCpp slightly.

It is important to note that these results are based on compilers that are currently undergoing significant

45

engineering efforts. It is therefore likely that many of the performance gaps that currently exist will reduce

in time.

6.3 High-level DSL Approaches

Many of the approaches discussed above could be considered low-level DSLs, and these approaches have

formed the majority of our analysis in this project. However, we also have a small dataset for the OPS DSL,

which subsequently acts as a code-generator for these lower-level DSLs/programming models.

OPS is an approach specifically targeted at structured mesh applications, and has been used to parallelise

TeaLeaf to good effect. The previously seen TeaLeaf data in Figure 8 demonstrates that OPS is approximately

equal with Kokkos and RAJA in terms of its performance portability. However, the process of porting an

application to OPS is arguable more complex, and therefore may effect programmer productivity32.

There are a number of other high-level DSLs that we have not explored in this project, but may form part

of our future analyses. In particular, the Unified Form Language (UFL) that is used by both Firedrake and

FEniCS is already being used in some of the NEPTUNE work packages. UFL is a DSL, embedded in Python,

that allows scientists to express their equations in PDE form. The Firedrake/FEniCS packages handle the

discretisation of these equations, and use PyOP2 to generate portable executable code. Although we have

not explored these high-level DSLs in this project, we have analysed many of the programming models that

PyOP2 can target.

6.4 Summary

It is likely that in NEPTUNE, multiple DSLs may be present, with high-level DSLs allowing scientists to

express equations, and low-level DSLs and programming models targeting different parallel architectures.

This project has mainly focused on the latter, since these are likely to be performance-critical.

In this project we have evaluated multiple approaches to developing performance portable software, ranging

from pragma-based code annotations, through to purpose-built domain specific languages.

In our analysis we have found that pragma-based approaches like OpenMP and OpenACC are able to achieve

high performance on a variety of platforms, but that OpenMP is typically not portable to GPU accelerators,

and OpenACC is not portable to CPU host platforms. Although the OpenMP 4.5 standard allows for

offloaded computation, achieving high performance across both CPUs and GPUs often requires different

design decisions to be made. However, it is likely that performance of OpenMP 4.5-compliant codes will

improve as compiler support develops.

Of the performance portable programming models explored, Kokkos and RAJA are perhaps the most mature

currently, with both offering good portability for a small performance decrease. Furthermore, the APIs are

32See: https://op-dsl.github.io/docs/OPS/tutorial.pdf

46

https://op-dsl.github.io/docs/OPS/tutorial.pdf

relatively simple, primarily being a drop-in replacement for loop structures, meaning that the effort to port

applications to these programming models is not great.

Currently, the SYCL programming model suffers many of the same issues as OpenMP 4.5. Again, it is likely

that as compiler support improves, the performance penalty will lessen. Furthermore, the open-standard

nature of SYCL means that it potentially carries slightly less risk than the DoE-supported Kokkos and

RAJA programming models – though it should be noted that Kokkos can code-generate to SYCL/DPC++

in order to target Intel Xe GPUs.

Our evaluation of purpose-built DSLs has been limited to OPS, evaluated through the TeaLeaf application.

Although it is able to offer good performance portability, it is limited in the computational methods it can

be applied to, i.e., multi-block structured mesh algorithms.

47

7 Key Findings and Recommendations

This project has evaluated a number of approaches to performance portability, many of which have shown

promise as possible approaches for NEPTUNE. The direction of HPC is clearly moving towards heterogeneity,

but its not clear which software development methodology will win out.

The development of a new simulation code for project NEPTUNE presents an almost unique opportunity to

design and build a code with Exascale execution as a primary concern.

Because of the wealth of choice in approaches to performance portability, and the required longevity of the

NEPTUNE code, it is prudent to consider all available options prior to, and during, development. With this

in mind, we make the following recommendations for the initial development of NEPTUNE. As the hardware

and software landscape continues to evolve over the next decade, it is anticipated that this document will

likewise need to evolve, and that these recommendations will tighten as appropriate.

1. Develop in C++

1.1. Focus Core Development on Modern, Standard C++

 In order to enable the most opportunity for performance portable design and optimi-

sation of NEPTUNE, our first recommendation is that the core of NEPTUNE is initially

written in standard modern C++, making full use of object orientation and template

metaprogramming.

At the present time, the choice of C++ carries a number of advantages over Fortran (the mainstay of scientific

computing).

• Object orientation is at the core of the C++ language, encouraging encapsulation, sensible design and

code reuse33;

• Templating and template metaprogramming can enable some advanced compile-time optimisations, or

compile-time code generation (thus improving code reuse);

• New features in the C++ standard are typically implemented in modern C++ compilers (e.g. Clang)

much faster than equivalent Fortran compilers (e.g. Flang);

• A large number of modern mathematical and scientific libraries are written in C/C++ and provide

native APIs. Although it may be possible to interface with some of these libraries with Fortran, this

may come with a loss of functionality.

33Although Fortran introduced object orientation in the 2003 standard, it lacks many of the advanced features present in
C++ [88].

48

In addition to the benefits of the C++ language, there are other reasons to pursue a C++ code that

relate specifically to producing a performance portable application. The vast majority of new libraries,

programming models and portability layers are developed with C/C++ as their first target language; this

means that an application developed in C++ is more likely to be able to make use of these libraries and

programming models.

A number of these libraries rely specifically on C++ features, such as template metaprogramming, meaning

that C++ is not only the first target, but also the only target language (e.g. RAJA, Kokkos). Another

example of this is in Intel’s OneAPI, where although many of the libraries are language agnostic (e.g. Math

Kernel Library, Data Analytics Library), the central programming language, Data Parallel C++ (DPC++),

is an extension of the C++ language.

1.2. Use Open Standards and Beware of Vendor Lock-in

 Alongside the recommendation to pursue ISO C++, we recommend that open stan-

dards are used where possible (followed by open source solutions). Additionally, caution is

required when adopting vendor specific abstractions unless wider support is forthcoming

(as is the case with Intel’s DPC++).

There are a number of approaches that are open standards and should remain portable across a wide range of

platforms, such as MPI, OpenMP, OpenACC and SYCL. In some cases, the support for these open standards

is very good (e.g. OpenMP), and some where support significantly lags the standard (e.g. OpenACC).

However, pursuing these approaches offers the best chance for NEPTUNE to remain performance portable

in the future.

Alongside these programming models, there are a number of proprietary approaches that target specific

hardware, such as CUDA and HIP/ROCm. These are likely to yield greater performance gains on their

target platforms but are not portable approaches. One possible safeguard against this, is to use an open

source middleware such as Kokkos or RAJA, which can generate native CUDA or HIP/ROCm code at

compile-time.

A vendor-specific approach such as Intel’s OneAPI may also strike a balance between portability and per-

formance. Many of the libraries in OneAPI are implementations of standard libraries such as BLAS, and

the programming model is heavily based on the SYCL open standard.

Typically, open standards may be less agile for targeting the latest hardware and hardware features, but

proprietary approaches are likely to restrict the choice of future hardware.

49

2. Separation of Concerns

2.1. Select a Good High-Level Abstraction

 It is possible that multiple DSLs will be employed within the NEPTUNE code, and

that these DSLs will exist at different levels of abstraction. Selecting a good high-level

abstraction will be vital to the success of NEPTUNE.

Domain Specific Languages exist at multiple levels of abstraction. Many programming models, such as

Kokkos, RAJA and SYCL, could be considered low-level DSLs. They provide functionality targeted at

exploiting the parallel hardware resources that are available on a system.

Above these low-level DSLs are programming models that are targeted at particular algorithmic domains.

The OPS and OP2 libraries are two such examples that provide abstractions for representing computation

over structured and unstructured meshes, respectively. The intermediate compiler can exploit the structure

of the problem space to perform a number of code optimisations to improve performance.

At the highest level are languages such as UFL and BOUT++, that allow scientists to write partial differential

equations (PDEs) directly into the code. At compile-time, these expressions are used to generate code in

lower-level DSLs such as PyOP2 and RAJA, for execution on a parallel system.

Typically, the more abstract a DSL is the greater the space for synthesis [89]. However, adding new features

to, or escaping from, a high-level DSL may be problematic. For this reason, it is important that a good high

level abstraction is chosen (or developed) that allows scientists to accurately represent their science, without

being overly restrictive, and that where possible, it is extensible to new operators and features, allowing

scientists to step outside of the DSL without sacrificing performance.

2.2. Abstract Data Storage

 Performant data structures can be very architecture dependent. Especially as we move

towards heterogeneous platforms, every effort should be made to abstract data storage,

such that transformations can be made that are transparent to the underlying algorithms.

Exploiting full performance on modern architectures is heavily reliant on how efficiently data is moved

between main memory and the various layers of cache. For memory-bound applications, the data structures

that are used to store scientific data can significantly affect performance, and the best data structure for one

platform may not be the best for another.

For this reason, the NEPTUNE design should abstract data storage away from algorithms as much as

possible, such that it does not harm performance. This, coupled with the use of appropriate data libraries, will

ensure that data structures can be changed, without requiring significant re-engineering of key computational

kernels. It will also enable compile-time transformations based on execution target.

50

2.3. Prototype, prototype, prototype

 A well modularised design should enable key computational kernels to be extracted for

prototyping. Before applying particular programming models to the NEPTUNE code,

prototyping will allow rapid evaluation of emerging approaches on kernels that are per-

formance critical.

Following programmes such as the Exascale Computing Project (ECP) and the wider adoption of approaches

such as SYCL, there are currently a wealth of approaches to developing performance portable software that

are in active development. Because of this, it is not entirely clear which approaches will win out.

Therefore to protect against this, it is prudent to develop NEPTUNE alongside a programme of prototyping

key kernels. A well encapsulated, modular design should allow isolated kernels to be evaluated throughout

development.

This will be aided by an inherent similarity in many programming models aimed at performance portability,

where parallelism is largely exposed at the loop-level. As it becomes clearer which programming models

are likely to be most appropriate for NEPTUNE, code changes can be implemented incrementally. In some

cases, where a high-level DSL has been employed, changes in code generators will automate much of the

required effort.

3. Don’t Reinvent the Wheel

 Code reuse should be at the heart of NEPTUNE, and this extends to the use of external

libraries. There are a number of libraries that implement functionality commonly found in

scientific simulation software, and NEPTUNE should make full use of these libraries where

possible. Vendor-optimised versions of these libraries often exist, providing performance

improvements for free.

The work in this project has primarily focused on the programming model in use for parallelisation at a

node-level, given the assumption that it is highly likely that MPI will be the defacto standard for inter-node

communication (the so called MPI+X model). Besides the use of the existing MPI standard, it is likely

that there are a number of other libraries that can provide functionality for NEPTUNE for free, and it is

important that these are used wherever possible.

Much of computation in NEPTUNE is likely to be in solving complex linear systems, and for that there

are number of industry-standard libraries (such as LAPACK and BLAS) that are highly optimised. Where

possible, these libraries should be used to provide functionality, since this reduces the technical burden and

means that we can take advantage of vendor-led optimisations for free. Beside the algorithmic optimisations

in these libraries, the vendor-produced implementations are often architecturally optimised.

Besides the availability of vendor-optimised libraries, the choice of some libraries may naturally encourage

the adoption of particular parallel programming models. For example, Intel’s OneAPI Math Kernel Library

51

(MKL) would motivate the use of DPC++/SYCL; the Trilinos library would perhaps motivate the use of

Kokkos; the HYPRE and MFEM libraries would lend themselves to RAJA.

But, its important that the available libraries are explored by domain specialists to ensure any library chosen

fits its purpose without being overly restrictive.

7.1 Future Work

The key findings and recommendations in this report are the result of an extensive study into parallel

programming models and mini-applications relevant to fusion modelling. Both of these fields are constantly

evolving, and so it is necessary that the content and recommendations of this report also evolve. To this end

there are a number studies in progress that will enhance this report.

Specifically, we aim to:

1. Add new applications to the evaluation set (e.g. HipBone, SheathPIC, etc).

2. Evaluate our newly developed EM-PIC mini-application.

3. Enhance our evaluation of SYCL-based codes.

4. Evaluate the similarity of mini-applications to host codes such as Bout++.

52

References

[1] John L. Hennessy and David A. Patterson. A new golden age for computer architecture. Commun.

ACM, 62(2):48–60, January 2019.

[2] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski,

Bradford M. Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi,

Onur Kayiran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt,

Greg Sadowski, and Vilas Sridharan. Design and analysis of an apu for exascale computing. In 2017

IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 85–96,

2017.

[3] Jack Dongarra, Steven Gottlieb, and William T. C. Kramer. Race to exascale. Computing in Science

and Engg., 21(1):4–5, January 2019.

[4] István Z. Reguly and Gihan R. Mudalige. Productivity, performance, and portability for computational

fluid dynamics applications. Computers & Fluids, 199:104425, 2020.

[5] Jaswinder Pal Singh and John L Hennessy. An empirical investigation of the effectiveness and limitations

of automatic parallelization. Shared memory multiprocessing, pages 203–207, 1992.

[6] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for performance portability. Future

Generation Computer Systems, 92:947–958, 2019.

[7] Jason Sewall, S. John Pennycook, Douglas Jacobsen, Tom Deakin, and Simon McIntosh-Smith. Inter-

preting and visualizing performance portability metrics. In 2020 IEEE/ACM International Workshop

on Performance, Portability and Productivity in HPC (P3HPC), pages 14–24, 2020.

[8] S. John Pennycook, Jason Sewall, Douglas Jacobsen, Tom Deakin, Yuliana Zamora, and Kin Long Kelvin

Lee. Performance, Portability and Productivity Analysis Library. https://doi.org/10.5281/zenodo.

7733678, March 2023.

[9] Alan B. Williams. Cuda/GPU version of miniFE mini-application. 2 2012.

[10] Andrew Turner. Parallel Software usage on UK National HPC Facilities 2009-2015: How well have ap-

plications kept up with increasingly parallel hardware? Technical report, Edinburgh Parallel Computing

Centre, April 2015.

[11] Abigail Hsu, David Neill Asanza, Joseph A. Schoonover, Zach Jibben, Neil N. Carlson, and Robert

Robey. Performance portability challenges for fortran applications. In 2018 IEEE/ACM International

Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 47–58, 2018.

[12] Christopher Rackauckas and Qing Nie. Differentialequations.jl–a performant and feature-rich ecosystem

for solving differential equations in julia. Journal of Open Research Software, 5(1), 2017.

[13] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. Jarvis. Exploring simd for molecular dynamics,

using Intel Xeon processors and Intel Xeon Phi coprocessors. In Parallel and Distributed Processing

53

https://doi.org/10.5281/zenodo.7733678
https://doi.org/10.5281/zenodo.7733678

Symposium, International, pages 1085–1097, Los Alamitos, CA, USA, may 2013. IEEE Computer So-

ciety.

[14] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard API for Shared-Memory Pro-

gramming. IEEE Computational Science & Engineering, 5(1):46–55, January–March 1998.

[15] Message Passing Interface Forum. MPI: A Message Passing Interface Standard Version 2.2. High

Performance Computing Applications, 12(1–2):1–647, 2009.

[16] David Truby, Carlo Bertolli, Steven A. Wright, Gheorghe-Teodor Bercea, Kevin O’Brien, and Stephen A.

Jarvis. Pointers inside lambda closure objects in openmp target offload regions. In 2018 IEEE/ACM

5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages 10–17, 2018.

[17] Tom Deakin and Simon McIntosh-Smith. Evaluating the Performance of HPC-Style SYCL Applications.

In Proceedings of the International Workshop on OpenCL, IWOCL’20, New York, NY, USA, 2020.

Association for Computing Machinery.

[18] I. Z. Reguly, A. M. B. Owenson, A. Powell, S. A. Jarvis, and G. R. Mudalige. Under the Hood of

SYCL – An Initial Performance Analysis With an Unstructured-mesh CFD Application. In Bradford L.

Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and Piotr Luszczek, editors, Proceedings of the

International Supercomputing Conference (ISC 2021), pages 391–410. Springer International Publishing,

June 2021.

[19] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. On measuring the maturity of sycl imple-

mentations by tracking historical performance improvements. In International Workshop on OpenCL,

IWOCL’21, New York, NY, USA, 2021. Association for Computing Machinery.

[20] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Computing, 36(5-6):232–240, June 2010.

[21] Junchao Zhang et al. The petscsf scalable communication layer. arXiv, page 2102.13018, 2021.

[22] Stuart Slattery, Samuel Temple Reeve, Christoph Junghans, Damien Lebrun-Grandié, Robert Bird,

Guangye Chen, Shane Fogerty, Yuxing Qiu, Stephan Schulz, Aaron Scheinberg, Austin Isner, Kwitae

Chong, Stan Moore, Timothy Germann, James Belak, and Susan Mniszewski. Cabana: A Performance

Portable Library for Particle-Based Simulations. Journal of Open Source Software, 7(72):4115, 2022.

[23] Los Alamos National Laboratory. CoPA Cabana - The Exascale Co-Design Center for Particle Appli-

cations Toolkit. https://github.com/ECP-copa/Cabana (accessed April 20, 2021), 2021.

[24] P.J. Plauger, Meng Lee, David Musser, and Alexander A. Stepanov. C++ Standard Template Library.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[25] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[26] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

54

https://github.com/ECP-copa/Cabana

[27] Nathan Bell and Jared Hoberock. Chapter 26 - thrust: A productivity-oriented library for cuda. In

Wen mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications of GPU Computing Series,

pages 359–371. Morgan Kaufmann, Boston, 2012.

[28] Hartmut Kaiser, Bryce Adelstein Lelbach, Thomas Heller, Agust́ın Bergé, Mikael Simberg, John Bid-

discombe, Anton Bikineev, Grant Mercer, Andreas Schäfer, Adrian Serio, Taeguk Kwon, Kevin Huck,

Jeroen Habraken, Matthew Anderson, Marcin Copik, Steven R. Brandt, Martin Stumpf, Daniel Bour-

geois, Denis Blank, Shoshana Jakobovits, Vinay Amatya, Lars Viklund, Zahra Khatami, Devang Bachar-

war, Shuangyang Yang, Erik Schnetter, Patrick Diehl, Nikunj Gupta, Bibek Wagle, and Christopher.

STEllAR-GROUP/hpx: HPX V1.2.1: The C++ Standards Library for Parallelism and Concurrency,

February 2019.

[29] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore perfor-

mance portability through polymorphic memory access patterns. Journal of Parallel and Distributed

Computing, 74(12):3202–3216, 2014. Domain-Specific Languages and High-Level Frameworks for High-

Performance Computing.

[30] Rich Hornung, Holger Jones, Jeff Keasler, Rob Neely, Olga Pearce, Si Hammond, Christian Trott, Paul

Lin, Courtenay Vaughan, Jeanine Cook, et al. ASC Tri-lab Co-design Level 2 Milestone Report 2015.

Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2015.

[31] Exascale Computing Project. ECP Proxy Applications. https://proxyapps.exascaleproject.org/

(accessed April 20, 2021), 2021.

[32] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman

Amarasinghe. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recom-

putation in Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA,

2013. ACM.

[33] B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlishwaran. Roofline Guided Design and Analysis

of a Multi-stencil CFD Solver for Multicore Performance. In 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 753–762, May 2018.

[34] C. Yount, J. Tobin, A. Breuer, and A. Duran. Yask—yet another stencil kernel: A framework for

hpc stencil code-generation and tuning. In 2016 Sixth International Workshop on Domain-Specific

Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), pages 30–39,

Nov 2016.

[35] István Z. Reguly, Gihan R. Mudalige, Michael B. Giles, Dan Curran, and Simon McIntosh-Smith. The

OPS Domain Specific Abstraction for Multi-block Structured Grid Computations. In Proceedings of

the 2014 Fourth International Workshop on Domain-Specific Languages and High-Level Frameworks

for High Performance Computing, WOLFHPC ’14, pages 58–67, Washington, DC, USA, 2014. IEEE

Computer Society.

55

https://proxyapps.exascaleproject.org/

[36] Sebastian Kuckuk, Gundolf Haase, Diego A. Vasco, and Harald Köstler. Towards generating efficient

flow solvers with the ExaStencils approach. Concurrency and Computation: Practice and Experience,

29(17):e4062, 2017.

[37] T. Zhao, S. Williams, M. Hall, and H. Johansen. Delivering performance-portable stencil computations

on cpus and gpus using bricks. In 2018 IEEE/ACM International Workshop on Performance, Portability

and Productivity in HPC (P3HPC), pages 59–70, Nov 2018.

[38] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J. Kelly. OP2: An active library framework

for solving unstructured mesh-based applications on multi-core and many-core architectures. In 2012

Innovative Parallel Computing (InPar), pages 1–12, May 2012.

[39] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant, David A Ham, Carlo

Bertolli, and Paul HJ Kelly. PyOP2: A high-level framework for performance-portable simulations

on unstructured meshes. In 2012 SC Companion: High Performance Computing, Networking Storage

and Analysis, pages 1116–1123. IEEE, 2012.

[40] Pietro Incardona, Antonio Leo, Yaroslav Zaluzhnyi, Rajesh Ramaswamy, and Ivo F. Sbalzarini.

OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers.

Computer Physics Communications, 241:155–177, 2019.

[41] Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cumming, Mauro Bianco, Andrea

Arteaga, and Thomas Schulthess. Towards a performance portable, architecture agnostic implementa-

tion strategy for weather and climate models. Supercomputing Frontiers and Innovations, 1(1), 2014.

[42] PSyclone Project, 2018. http://psyclone.readthedocs.io/.

[43] Michael Baldauf, Axel Seifert, Jochen Förstner, Detlev Majewski, Matthias Raschendorfer, and

Thorsten Reinhardt. Operational convective-scale numerical weather prediction with the COSMO

model: description and sensitivities. Monthly Weather Review, 139(12):3887–3905, 2011.

[44] Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne, Carlos E. Osuna, Robert Pin-

cus, Jon Rood, and William Sawyer. The CLAW DSL: Abstractions for Performance Portable Weather

and Climate Models. In Proceedings of the Platform for Advanced Scientific Computing Conference,

PASC ’18, pages 2:1–2:10, New York, NY, USA, 2018. ACM.

[45] V. Clément, P. Marti, O. Fuhrer, and W. Sawyer. Performance portability on GPU and CPU with

the ICON global climate model. In EGU General Assembly Conference Abstracts, volume 20 of EGU

General Assembly Conference Abstracts, page 13435, April 2018.

[46] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris

Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The FEniCS Project Version 1.5.

Archive of Numerical Software, 3(100), 2015.

[47] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.

Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: Automating

the Finite Element Method by Composing Abstractions. ACM Trans. Math. Softw., 43(3):24:1–24:27,

December 2016.

56

http://psyclone.readthedocs.io/

[48] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig, Harald Köstler,

Ulrich Rüde, Jürgen Teich, Alexander Grebhahn, Stefan Kronawitter, Sebastian Kuckuk, Hannah Rit-

tich, and Christian Schmitt. ExaStencils: Advanced Stencil-Code Engineering. In Lúıs Lopes, Julius

Žilinskas, Alexandru Costan, Roberto G. Cascella, Gabor Kecskemeti, Emmanuel Jeannot, Mario

Cannataro, Laura Ricci, Siegfried Benkner, Salvador Petit, Vittorio Scarano, José Gracia, Sascha

Hunold, Stephen L. Scott, Stefan Lankes, Christian Lengauer, Jesús Carretero, Jens Breitbart, and

Michael Alexander, editors, Euro-Par 2014: Parallel Processing Workshops, pages 553–564, Cham,

2014. Springer International Publishing.

[49] David J. Lusher, Satya P. Jammy, and Neil D. Sandham. Shock-wave/boundary-layer interactions in

the automatic source-code generation framework OpenSBLI. Computers & Fluids, 173:17–21, 2018.

[50] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo, P. Velesko, P. Kazakas,

and G. Gorman. Devito: Towards a generic finite difference dsl using symbolic python. In 2016 6th

Workshop on Python for High-Performance and Scientific Computing (PyHPC), pages 67–75, Nov 2016.

[51] William Robert Saunders, James Grant, and Eike Hermann Müller. A domain specific language for

performance portable molecular dynamics algorithms. Computer Physics Communications, 224:119–

135, 2018.

[52] Benjamin Daniel Dudson, Peter Alec Hill, David Dickinson, Joseph Parker, Adam Dempsey, Andrew

Allen, Arka Bokshi, Brendan Shanahan, Brett Friedman, Chenhao Ma, David Schwörer, Dmitry Mey-

erson, Eric Grinaker, George Breyiannia, Hasan Muhammed, Haruki Seto, Hong Zhang, Ilon Joseph,

Jarrod Leddy, Jed Brown, Jens Madsen, John Omotani, Joshua Sauppe, Kevin Savage, Licheng Wang,

Luke Easy, Marta Estarellas, Matt Thomas, Maxim Umansky, Michael Løiten, Minwoo Kim, M Leconte,

Nicholas Walkden, Olivier Izacard, Pengwei Xi, Peter Naylor, Fabio Riva, Sanat Tiwari, Sean Farley,

Simon Myers, Tianyang Xia, Tongnyeol Rhee, Xiang Liu, Xueqiao Xu, and Zhanhui Wang. BOUT++,

10 2020.

[53] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson. BOUT++: A framework for

parallel plasma fluid simulations. Computer Physics Communications, 180:1467–1480, 2009.

[54] Robert D Falgout, Jim E Jones, and Ulrike Meier Yang. The design and implementation of hypre,

a library of parallel high performance preconditioners. In Numerical solution of partial differential

equations on parallel computers, pages 267–294. Springer, 2006.

[55] D. Beckingsale, M. Mcfadden, J. Dahm, R. Pankajakshan, and R. Hornung. Umpire: Application-

Focused Management and Coordination of Complex Hierarchical Memory. IBM Journal of Research

and Development, 2019.

[56] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin

Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International

Symposium on Workload Characterization (IISWC), pages 44–54, 2009.

[57] UK Mini-App Consortium. Uk-mac. http://uk-mac.github.io (accessed April 20, 2021), 2021.

57

http://uk-mac.github.io

[58] David H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,

P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, Horst D. Simon, V. Venkatakrishnan, and S. K.

Weeratunga. The NAS Parallel Benchmarks. International Journal of High Performance Computing

Applications, 5(3):63–73, 1991.

[59] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman, Shuai Che, Mathew

Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel, Wen-Mei W. Hwu, Huian Li, Matthias S.

Müller, Wolfgang E. Nagel, Maxim Perminov, Pavel Shelepugin, Kevin Skadron, John Stratton, Alexey

Titov, Ke Wang, Matthijs van Waveren, Brian Whitney, Sandra Wienke, Rengan Xu, and Kalyan Ku-

maran. SPEC ACCEL: A Standard Application Suite for Measuring Hardware Accelerator Performance.

In Stephen A. Jarvis, Steven A. Wright, and Simon D. Hammond, editors, High Performance Computing

Systems. Performance Modeling, Benchmarking, and Simulation, pages 46–67. Springer International

Publishing, 2015.

[60] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson. BOUT++: A framework for

parallel plasma fluid simulations. Computer Physics Communications, 180:1467–1480, 2009.

[61] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev,

J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,

R.M. Kirby, and S.J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer

Physics Communications, 192:205–219, 2015.

[62] Jan Eichstädt. Implementation of High-performance GPU Kernels in Nektar++, 2020.

[63] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkinson, Codrin Popa,

and Justin Salmon. Performance portability across diverse computer architectures. In 2019 IEEE/ACM

International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 1–13,

2019.

[64] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau, and S. A. Jarvis. Achieving

Performance Portability for a Heat Conduction Solver Mini-Application on Modern Multi-core Systems.

In 2017 IEEE International Conference on Cluster Computing (CLUSTER), pages 834–841, Sep. 2017.

[65] Matthew Martineau, Simon McIntosh-Smith, and Wayne Gaudin. Assessing the performance portability

of modern parallel programming models using tealeaf. Concurrency and Computation: Practice and

Experience, 29(15):e4117, 2017.

[66] Simon McIntosh-Smith, Matthew Martineau, Tom Deakin, Grzegorz Pawelczak, Wayne Gaudin, Paul

Garrett, Wei Liu, Richard Smedley-Stevenson, and David Beckingsale. TeaLeaf: A Mini-Application

to Enable Design-Space Explorations for Iterative Sparse Linear Solvers. In 2017 IEEE International

Conference on Cluster Computing (CLUSTER), pages 842–849, 2017.

[67] Richard Frederick Barrett, Li Tang, and Sharon X. Hu. Performance and Energy Implications for

Heterogeneous Computing Systems: A MiniFE Case Study. 12 2014.

[68] Meng Wu, Can Yang, Taoran Xiang, and Daning Cheng. The research and optimization of parallel

finite element algorithm based on minife. CoRR, abs/1505.08023, 2015.

58

[69] David F. Richards, Yuri Alexeev, Xavier Andrade, Ramesh Balakrishnan, Hal Finkel, Graham Fletcher,

Cameron Ibrahim, Wei Jiang, Christoph Junghans, Jeremy Logan, Amanda Lund, Danylo Lykov,

Robert Pavel, Vinay Ramakrishnaiah, et al. FY20 Proxy App Suite Release. Technical Report LLNL-

TR-815174, Exascale Computing Project, September 2020.

[70] J. C. Camier. Laghos summary for CTS2 benchmark. Technical Report LLNL-TR-770220, Lawrence

Livermore National Laboratory, March 2019.

[71] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cer-

veny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell,

Vladimir Tomov, Ido Akkerman, Johann Dahm, David Medina, and Stefano Zampini. Mfem: A modular

finite element methods library. Computers & Mathematics with Applications, 81:42–74, 2021. Develop-

ment and Application of Open-source Software for Problems with Numerical PDEs.

[72] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier, Ch.

Ehrlacher, D. Esteve, X. Garbet, Ph. Ghendrih, G. Latu, M. Mehrenberger, C. Norscini, Ch. Passeron,

F. Rozar, Y. Sarazin, E. Sonnendrücker, A. Strugarek, and D. Zarzoso. A 5d gyrokinetic full-f global

semi-lagrangian code for flux-driven ion turbulence simulations. Computer Physics Communications,

207:35–68, 2016.

[73] David S Medina, Amik St-Cyr, and T. Warburton. OCCA: A unified approach to multi-threading

languages, 2014.

[74] T D Arber, K Bennett, C S Brady, A Lawrence-Douglas, M G Ramsay, N J Sircombe, P Gillies, R G

Evans, H Schmitz, A R Bell, and C P Ridgers. Contemporary particle-in-cell approach to laser-plasma

modelling. Plasma Physics and Controlled Fusion, 57(11):113001, sep 2015.

[75] Michael Bareford. minEPOCH3D Performance and Load Balancing on Cray XC30. Technical Report

eCSE03-1, Edinburgh Parallel Computer Centre, 2016.

[76] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J. Kerbyson. 0.374 Pflop/s

Trillion-Particle Kinetic Modeling of Laser Plasma Interaction on Roadrunner. In Proceedings of the

2008 ACM/IEEE Conference on Supercomputing, SC ’08. IEEE Press, 2008.

[77] Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Harrell, Michela Taufer, and Brian Albright. VPIC

2.0: Next Generation Particle-in-Cell Simulations. IEEE Transactions on Parallel and Distributed

Systems, pages 1–1, 2021.

[78] Matthew T. Bettencourt and Sidney Shields. EMPIRE Sandia’s Next Generation Plasma Tool. Technical

Report SAND2019-3233PE, Sandia National Laboratories, March 2019.

[79] Matthew T. Bettencourt, Dominic A. S. Brown, Keith L. Cartwright, Eric C. Cyr, Christian A. Glusa,

Paul T. Lin, Stan G. Moore, Duncan A. O. McGregor, Roger P. Pawlowski, Edward G. Phillips,

Nathan V. Roberts, Steven A. Wright, Satheesh Maheswaran, John P. Jones, and Stephen A. Jarvis.

EMPIRE-PIC: A Performance Portable Unstructured Particle-in-Cell Code. Communications in Com-

putational Physics, x(x):1–37, March 2021.

59

[80] Dominic A.S. Brown, Matthew T. Bettencourt, Steven A. Wright, Satheesh Maheswaran, John P. Jones,

and Stephen A. Jarvis. Higher-order particle representation for particle-in-cell simulations. Journal of

Computational Physics, 435:110255, 2021.

[81] Jeanine Cook, Omar Aaziz, Si Chen, William Godoy, Amy Powell, Gregory Watson, Courtenay

Vaughan, and Avani Wildani. Quantitative performance assessment of proxy apps and parents (re-

port for ecp proxy app project milestone adcd-504-28). 4 2022.

[82] Yuuichi Asahi, Guillaume Latu, Julien Bigot, and Virginie Grandgirard. Optimization strategy for a

performance portable vlasov code. In 2021 International Workshop on Performance, Portability and

Productivity in HPC (P3HPC), pages 79–91, 2021.

[83] Nicolas Crouseilles, Guillaume Latu, and Eric Sonnendrücker. A parallel Vlasov solver based on local

cubic spline interpolation on patches. Journal of Computational Physics, 228(5):1429–1446, 2009.

[84] Nigel Phillip Tan, Scott Vernon Luedtke, Robert Bird, Stephen Lien Harrell, Michela Taufer, and

Brian James Albright. The Performance-Portability Trade-Off Challenge in Next Generation Particle-

In-Cell Simulations. 6 2022.

[85] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J. Cordery, Nicholas J.

Wright, Mary W. Hall, and Leonid Oliker. Roofline Model Toolkit: A Practical Tool for Architectural

and Program Analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Hammond, editors,

High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, pages

129–148. Springer International Publishing, 2015.

[86] Simon McIntosh-Smith. Performance Portability Across Diverse Computer Architectures. In P3MA: 4th

International Workshop on Performance Portable Programming models for Manycore or Accelerators,

2019.

[87] T. R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J. A. Herdman, and S. A. Jarvis. Per-

formance portability of an unstructured hydrodynamics mini-application. In 2018 IEEE/ACM Inter-

national Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 0–12, Nov

2018.

[88] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V.W. Reynders, and Paul J. Hinker.

Comparison of C++ and Fortran 90 for object-oriented scientific programming. Computer Physics

Communications, 105(1):20–36, 1997.

[89] Paul Kelly. Synthesis versus Analysis: What Do We Actually Gain from Domain-Specificity? In-

vited talk at The 28th International Workshop on Languages and Compilers for Parallel Comput-

ing, Available: https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-09-LCPC-Keynote-

PaulKelly-V03-ForDistribution.pdf, 2015.

60

https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-09-LCPC-Keynote-PaulKelly-V03-ForDistribution.pdf
https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-09-LCPC-Keynote-PaulKelly-V03-ForDistribution.pdf

A Code Examples

A.1 OpenMP

Figure 25 shows a simple vector addition, where the loop iterations are distributed across OpenMP threads.

The number of threads used is typically specified with the environmental variable OMP NUM THREADS, but

usually will default to the number of cores available if unset. Finer control over the parallelism can be

achieved with more complex annotations, such as schedule and collapse.

1 #pragma omp parallel for

2 for (int i = 0; i < 100; i++) {

3 c[i] = a[i] + b[i];

4 }

Figure 25: OpenMP code listing

A.2 OpenMP Target Directives

An example of the same vector addition seen previously is provided in Figure 26 with target directives. In

addition to specifying the parallel region, data mapping information is also required, indicating which data

should be moved to and from an accelerator device.

1 #pragma omp target map (to:a[:size]) map (to:b[:size]) map (tofrom:c[:size])

2 #pragma omp teams distribute parallel for default(none)

3 for (int i = 0; i < 100; i++) {

4 c[i] = a[i] + b[i];

5 }

Figure 26: OpenMP 4.5 using target directives

61

A.3 SYCL and DPC++

Figure 27 provides an equivalent vector-add written in SYCL. Similar to OpenMP with offload, data move-

ment is expressed explicitly in the language; in the case of SYCL this is through device buffers with access

specifiers.

1 sycl::queue myqueue;

2 std:: vector h_a (100) , h_b (100), h_c (100);

3 sycl:: buffer d_a(h_a), d_b(h_b), d_c(h_c);

4

5 auto ev = myqueue.submit ([&](handler &h){

6 auto a = d_a.get_access <access ::read >();

7 auto b = d_b.get_access <access ::read >();

8 auto c = d_c.get_access <access ::write >();

9 h.parallel_for(count , kernel_functor ([=](id<> item) {

10 int i = item.get_global (0);

11 c[i] = a[i] + b[i];

12 }));

13 });

Figure 27: SYCL

A.4 Kokkos

Figure 28 outlines a vector add using Kokkos’s parallel for function.

1 Kokkos :: parallel_for (100, KOKKOS_LAMBDA (const int& i) {

2 c[i] = a[i] + b[i];

3 });

Figure 28: Kokkos

Kokkos also provides fully managed multi-dimensional arrays through its View class. Figure 29 provides a

simple example of a two dimensional array in Kokkos. Because Kokkos Views are fully managed, they are

allocated and reference counted, additional arguments can be provided to specify the memory space in which

they are allocated, and whether to use column-major or row-major layout can be specified in code. This

may allow some very simple performance optimisations to be made at a single point in an applications code.

1 const size_t num_rows = ...;

2 const size_t num_cols = ...;

3 Kokkos ::View <int**> array ("some label", num_rows , num_cols);

4 array (0,0) = ...;

Figure 29: Use of Kokkos::View for multi-dimensional arrays

62

A.5 RAJA

A vector add can be implemented similarly in RAJA, as is provided in Figure 30.

1 RAJA:: RangeSegment seg (0, 100);

2 RAJA::forall <loop_exec > (seg , [=] (int i) {

3 c[i] = a[i] + b[i];

4 });

Figure 30: RAJA

Like Kokkos, RAJA provides a view class for handling multi-dimensional arrays. Figure 31 shows the use of

the RAJA::View class on a simple two-dimensional array.

1 const int DIM = 2;

2 double *array = new double[num_rows * num_cols];

3 RAJA::View <double , RAJA::Layout <DIM > > array_view(array , num_rows , num_cols);

4 Aview (0,0) = ...;

5 ...

6 free(array);

Figure 31: Use of RAJA::View for multi-dimensional arrays

A.6 Bout++

Bout++ provides two Domain Specific Languages (DSLs). The first is in how equations are encoded into the

source, with C++ templates generating parallelised, performant code from these mathematical expressions.

For example the MHD equations (Eq. 3-6) can be expressed in C++ as in Figure 32.

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v (3)

∂p

∂t
= −v · ∇p− γp∇ · v (4)

∂v

∂t
= −v · ∇v +

1

ρ
(−∇p+ (∇×B)×B) (5)

∂B

∂t
= ∇× (v ×B) (6)

1 ddt(rho) = -V_dot_Grad(v, rho) - rho*Div(v);

2 ddt(p) = -V_dot_Grad(v, p) - g*p*Div(v);

3 ddt(v) = -V_dot_Grad(v, v) + (cross(Curl(B),B) - Grad(p))/rho;

4 ddt(B) = Curl(cross(v,B));

Figure 32: BOUT++ MHD equations implementation

63

A second eDSL is provided in Bout++ input files. Figure 33 shows part of an example input file.

1 [n] # Density

2 height = 0.5

3 width = 0.05

4

5 blob1 = height * exp(-((x -0.35)/width)^2

6 - ((z/(2*pi) - 0.5)/width)^2)

7 blob2 = height * exp(-((x -0.15)/width)^2

8 - ((z/(2*pi) - 0.4)/width)^2)

9

10 function = 1 + blob1 + blob2

Figure 33: Part of a BOUT++ input file, specifying the density initial condition as a function of position in
x and z.

A.7 UFL/Firedrake

Firedrake and FEniCS both use a common DSL, known as the Unified Form Language (UFL). Like Bout++,

UFL allows scientists to express their equations in code, with the code generator providing the discretisation

and parallelisation.

For example 34, the modified Helmholtz equation:

−∇2u+ u = f (7)

∇ · n̂ = 0 on boundary Γ (8)

can be transformed into variational form by multiplying by a test function v and integrating over the domain

Ω: ∫

Ω

∇u · ∇v + uvdx =

∫
vfdx+

∫

Γ

v∇u · n̂ds
︸ ︷︷ ︸

→0 due to boundary condition

(9)

This can be implemented in UFL as in Figure 34.

34From ://www.firedrakeproject.org/demos/helmholtz.py.html

64

://www.firedrakeproject.org/demos/helmholtz.py.html

1 from firedrake import *

2 mesh = UnitSquareMesh (10, 10) # Define the mesh

3 V = FunctionSpace(mesh , "CG", 1) # Function space of the solution

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = Function(V) # Define a function and give it a value

7 x, y = SpatialCoordinate(mesh)

8 f.interpolate ((1+8* pi*pi)*cos(x*pi*2)*cos(y*pi*2))

9 # The bilinear and linear forms

10 a = (inner(grad(u), grad(v)) + inner(u, v)) * dx

11 L = inner(f, v) * dx

12 u = Function(V) # Re-define u to be the solution

13 # Solve the equation

14 solve(a == L, u, solver_parameters ={’ksp_type ’: ’cg’})

Figure 34: UFL implementation of the Helmholtz equation

65

A.8 AoS vs SoA

Besides the storage of simple multi-dimensional data, it is often required to store multiple fields about a

single object, for example, particle data. Figure 35 provides a simple example of particle storage using an

array-of-structs (AoS) and a struct-of-arrays (SoA) approach.

1 #define N 1024

2 typedef struct {

3 // position

4 float x, y, x;

5 // momentum

6 float ux , uy , uz;

7 // weight

8 float w;

9 } Particle;

10 Particle particles[N];

11 // access x field from particle

12 particles [0].x;

1 #define N 1024

2 typedef struct {

3 // position

4 float x[N], y[N], x[N];

5 // momentum

6 float ux[N], uy[N], uz[N];

7 // weight

8 float w[N];

9 } Particles;

10 Particles particles;

11 // access x field from particle

12 particles.x[0];

Figure 35: AoS (left) vs SoA (right) for simple particle structure

The most intuitive way to store such data is typically using the AoS approach, but this may not be conducive

to high performance on SIMD and SIMT systems. Conversely, the SoA approach may allow the cache lines to

be used more effectively, but leads to less intuitive code. It may also be the case that different architectures

favour different approaches; switching between AoS and SoA manually may be a significant undertaking.

A.8.1 Intel SDLT

Intel’s SIMD Data Layout Templates (SDLT) offers a convenient way to abstract the in-memory data layout

transparently to the developer. Figure 36 shows how this can be achieved with our previous example of

particle storage. Accesses are expressed in an AoS form, but the accesses are performed through an SoA

container.

A.8.2 VPIC and Kokkos

A similar approach, using Kokkos Views, can be found in the VPIC 2.0 application [77]. In VPIC 2.0, an

enum is used to provide symbolic dereferencing of the fields in the structure to improve readability of the

code (see Figure 37). Effectively this is implemented using a two-dimensional View that can then be stored

using a row-major or a column-major layout to enable a switch between AoS and SoA.

66

1 #define N 1024

2

3 typedef struct particle_data {

4 float x, y, x;

5 float ux , uy , uz;

6 float w;

7 } Particle;

8

9 SDLT_PRIMITIVE(Particle , x, y, z, ux, uy, uz, w)

10 ...

11 sdlt:: soa1d_container <Point2D > pContainer(N);

12 auto particles = pContainer.access ();

13 #pragma omp simd

14 for (int i = 0; i < 1024; i++) {

15 particles[i].x() = ...;

16 ...

17 }

Figure 36: Intel SDLT

1 Kokkos ::View <float *[7]> particles(N); // particle data

2 namespace particle_var {

3 enum p_v { // particle member enum for clean access

4 x, y, z,

5 ux, uy , uz ,

6 w,

7 };

8 };

9 View <int*> particle_indicies(N); // Particle indices

10 // Access x from particle 0

11 particles(0, particle_var ::x) = ...;

Figure 37: Using Kokkos to convert AoS to SoA

67

	Context
	Project NEPTUNE

	Evaluation Methodology
	Visualising Performance Portability
	Roofline Analysis

	Approaches to Exascale Application Development
	General Purpose Programming Languages
	Parallel Programming Models
	Accelerator Extensions

	Software Libraries
	C++ Template Libraries
	Domain Specific Languages
	DSLs for Stencil Computations
	Higher-Level DSLs

	Summary

	Applications for Evaluation
	Fluid Models
	Particle Methods
	Validation

	Evaluations of Approaches
	Heat
	Performance
	Portability

	TeaLeaf
	Performance
	Portability

	miniFE
	Performance
	Portability

	Laghos
	Performance
	Portability

	vlp4d
	Performance
	Portability

	CabanaPIC
	Performance

	VPIC
	Performance
	Portability

	EMPIRE-PIC
	Performance
	Portability

	Mini-FEM-PIC
	Performance

	Analysis of Approaches
	Pragma-based Approaches
	Programming Model Approaches
	High-level DSL Approaches
	Summary

	Key Findings and Recommendations
	Future Work

	References
	Code Examples
	OpenMP
	OpenMP Target Directives
	SYCL and DPC++
	Kokkos
	RAJA
	Bout++
	UFL/Firedrake
	AoS vs SoA
	Intel SDLT
	VPIC and Kokkos

