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Changelog

September 2023

• Journal Review Paper has been submitted for consideration in Computer Physics Communications [1].

To prevent duplication and drift, Section 2 and Section 3 have been replaced with reference to the

journal paper submission. These sections will contain any required additions in future. The review

paper is based on the previous version of this report, with the following additions:

– Updated discussion on general purpose programming models, with new data on usage of Fortran,

C and C++ on ARCHER2 and within the US Department of Energy.

– Added discussion on Asynchronous Many Tasking (AMT) frameworks (e.g. Charm++, LEGION,

etc.).

– Added OCCA to discussion of parallel programming models.

– Added discussion on partitioning libraries.

– Added a section on DSLs for Particle-based applications.

– Added a section on Coupling Frameworks (in collaboration with STFC).

– Updated information on assessing productivity (in addition to performance and portability).

– Provided table of various performance studies (some of which are used in this report).

March 2023

• Updated the Evaluation Methodology section to include a reference to the new P3 Analysis Library,

and the new plot style. Removed references to the box plots (which arguably add little information

over the cascade plots).

• Added stdpar and Thrust to discussion on programming models, since they are evaluated for vlp4d.

• Updated data for Heat to include evaluations on Intel HD P630.

• Regenerated all cascade plots to use the new style of plot using the P3 Analysis Library.

• Added data and analysis for the vlp4d mini-application.

• Added data for mini-fem-pic taken from previous report, along with mention of the OP-PIC DSL.

November 2022

• Added some new apps of interest for evaluation (NESO and vlp4d).

• Added section regarding validation of mini-applications against parent applications – to be built upon

in future iterations.

v



• Clarified that hipSYCL uses LLVM-based backend

• Added results for miniFE using different SYCL compilers, gathered by Shilpage et al.

• Added link to repository of apps and results under the ExCALIBUR-NEPTUNE github.

July 2022

• Addressed all reviewer comments from previous submission.

• Added Heat mini app to evaluation set.

• Included link to a repository containing all mini-apps and results.

March 2022

• Reorganisation of document, combining elements of the previous four reports, 2047358-TN-01, 2047358-

TN-02, 2047358-TN-03 and 2047358-TN-04 into a single report on software approaches.

• Described new applications for evaluation, though these have not yet been evaluated.
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⋆ Note: A portion of the work in this report has been submitted as a review paper to Computer

Physics Communications. Consequently, we have removed much of the duplicated work and instead

refer the reader to the submitted manuscript.

[1] Steven A. Wright, Christopher Ridgers, Gihan Mudalige, Zaman Lantra, Josh Williams, Andrew

Sunderland, Sue Thorne, and Wayne Arter. Developing Performance Portable Simulations for

the Design of a Nuclear Fusion Reactor. Computer Physics Communications, (Under Review)

2023
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1 Context

In 2008 Roadrunner became the first supercomputer to break the PetaFLOP/s barrier. Roadrunner was

an AMD Opteron powered system with PowerXCell accelerators connected to each core, making it one

of the first modern heterogeneous systems. This heterogeneous approach has continued ever since, with a

growing proportion of the fastest supercomputers in the world making use of highly-specialised computational

accelerators (e.g. GPUs) alongside traditional multi-CPU hosts; and this trend looks set to continue as we

cross the ExaFLOP/s barrier.

The emergence of computational accelerators has been coupled with a golden age of architectural develop-

ments [2]. Many of the systems likely to be available in the next decade will employ hierarchical parallelism,

delivered by a diverse set of architectures [3,4]. With each architecture potentially requiring a different pro-

gramming model and different optimisation strategies, developing software that is portable across systems

is becoming increasingly difficult.

For most large scientific simulation applications, maintaining multiple versions of a code-base is simply not

a reasonable option given the significant time and effort, not to mention the expertise required. Even with

multiple versions, it does not guarantee a future-proof application where the next innovation in hardware

may well require yet another parallel programming model to obtain best performance for the new device.

These challenges are now general and applicable equally to any scientific domain that relies on numerical

simulation software using HPC systems. As a recent review for applications in the computational fluid

dynamics (CFD) domain [5] elucidates, three key factors can be identified when considering the development

and maintenance of large-scale simulation software, particularly aimed at production:

1. Performance: running at a reasonable/good fraction of peak performance on given hardware.

2. Portability: being able to run the code on different hardware platforms/architectures with minimum

manual modifications

3. Productivity: the ability to quickly implement new application, features and maintain existing ones.

Over the years, attempts at developing a general programming model that delivers all three has not had much

success. Auto-parallelising compilers for general purpose languages have consistently failed [6]. Compilers

for imperative languages such as as C/C++ or Fortran, the dominant languages in HPC, have struggled

to extract sufficient semantic information, enabling them to safely parallelise a program from all, but the

simplest structures. Consequently, the programmer has been forced to carry the burden of “instructing”

the compiler to exploit available parallelism in applications, targeting the latest, and purportedly greatest,

hardware.

In many cases, the use of very low-level techniques, some only exposed by a particular programming mod-

el/language extension are required with careful orchestration of computation and communications to obtain

the best performance. Such a deep understanding of hardware is difficult to gain, and even more so unreason-

able for domain scientist/engineers to be proficient in – especially given that the expertise required rapidly
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changes with the technology of the moment following hardware trends. A good example is the many-core

path originally touted by Intel with accelerators such as the Xeon Phi which has been discontinued – the

first US Exascale systems will now all be GPU based, with two systems containing AMD GPUs, and one

containing Intel GPUs.

As such, it is near impossible to keep re-implementing large science codes for various architectures. This

has led to a separation of concerns approach where the description of what to compute is separated from

how the computation is implemented. This is in direct contrast to languages such as C or Fortran, which

explicitly describe the computation.

1.1 Project NEPTUNE

The NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale) project is concerned with the

development of a new computational model of the complex dynamics of high temperature fusion plasma. It

is an ambitious programme to develop new algorithms and software that can be efficiently deployed across

a wide range of supercomputers, to help guide and optimise the design of a UK demonstration nuclear

fusion power plant. The goal of the code structure and coordination work package within NEPTUNE is to

establish a series of “best practices” on how to develop such a next-generation simulation application that

is performance portable.

In this report, we aim to review and evaluate the key approaches and tools currently used to develop new

numerical simulation applications targeting modern HPC architectures and systems, including methods of

re-engineering existing codes to modernise them. We focus on applications from the plasma fusion domain

and related supporting applications from engineering. Our aim is to survey and present the state-of-the-art

in achieving “performance portability” for Fusion, where an application can achieve efficient execution across

a wide range of HPC architectures without significant manual modifications.

As many of the applications, libraries and programming models used in this report are under active de-

velopment, the data presented here is subject to change. New data is being collected and analysed all the

time, and will be updated in the future where necessary. This document should therefore be considered a

living document, reflecting the current state of performance portable application development focused on

applications of interest for the simulation of plasma physics.

The remainder of this report is organised as follows:

Section 2 outlines the method of evaluating performance portability that will be taken throughout this

report;

Section 3 discusses current approaches to performance portable scientific application development;

Section 4 describes the applications that will be used to evaluate the performance portability of various

approaches to software development;
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Section 5 provides evaluation data for each of these applications, and evaluates the performance portability

of the various implementations;

Section 6 analyses the approaches to Exascale application development with reference to the evaluation

data;

Section 7 concludes this report, providing recommendations for the NEPTUNE project.
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2 Evaluation Methodology

There are numerous methods for evaluating the performance and portability of high-performance parallel

applications. The review paper associated with this report [1] highlights a number of these in Section 8,

along with methods to evaluate productivity.

In this report we focus on the performance portability of applications using the metric introduced by Penny-

cook et al. [7], and use the visualisation techniques outlined by Sewall et al. [8]. In some cases, where only a

single implementation is available, we will use architectural efficiency rather than application efficiency. In

these constrained cases, we augment our analysis with Roofline analysis [9].
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3 Approaches to Exascale Application Development

Figure 1 gives a broad outline of the various components that may be involved when developing multi-

physics simulation applications for execution on heterogeneous systems. Higher-level representations of

physics problems (such as DSLs) allows an application to better synthesise machine-code representations for

various hardware, and potentially enables more developer productivity (in many DSLs partial differential

equations can be represented directly in code). Lower-level representations are more likely to be able to

exploit available parallelism on various platforms, but may limit portability between systems.
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Figure 1: Overview of the potential layers in a software stack for a multi-physics simulation application.

In our review paper [1], we cover the five levels in Figure 1, in Sections 3–7; focusing on the current state-

of-the-art in (i) general purpose programming languages, (ii) parallel programming models, (iii) software

libraries, (iv) domain specific languages, and (v) coupling frameworks.

In future, this section will be used to address any additions to the approaches discussed.
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4 Applications for Evaluation

The exploratory stage of NEPTUNE includes a number of projects that are investigating the behaviour of

plasmas through proxy applications. The applications currently being used broadly fall in to two categories,

fluid models and particle models. In particular, T/NA078/20 used Nektar++ to explore the performance of

spectral elements, T/NA083/20 focused on building fluid referent models in both Bout++ and Nektar++,

and T/NA079/20 explored particle methods with the EPOCH particle-in-cell (PIC) code. It is therefore

likely that the resultant NEPTUNE software stack require both fluid and particle components with a coupling

interface between.

The three aforementioned applications are the result of many years of development and typically consist

of many thousands of lines of C/C++ or Fortran. They are already widely used by the UK’s scientific

computing community on a diverse range of problems.

Prior to the development of the NEPTUNE software stack, it is prudent to assess the wide range of avail-

able technologies, without the associated burden of redeveloping these mature simulation applications into

new programming frameworks. In this project, we use a series mini-applications that implement key com-

putational algorithms that are similar to those used by the NEPTUNE proxy applications. These mini-

applications are typically limited to a few thousand lines of code and are often available implemented in a

wide range of programming frameworks already.

Notable collections of such mini-applications includes Rodinia [10], UK-MAC [11], the NAS Parallel Bench-

marks [12], the ECP Proxy Apps [13] and the SPEC benchmarks [14]. In this section we will discuss the

applications we have identified from these benchmark suites that implement computational kernels similar

to those required by NEPTUNE.

4.1 Fluid Models

As previously noted, the fluid modelling aspects of the NEPTUNE project are largely focused on the use of

Bout++ [15, 16] and Nektar++ [17]. Bout++ is a framework for writing fluid and plasma simulations

in curvilinear geometry, implemented using a finite-difference method, while Nektar++ is a framework for

solving computational fluid dynamics problems using the spectral element method.

Both applications are large C++ applications designed primarily for execution across homogeneous clusters.

Parallelisation across a cluster in both applications is achieved using MPI, with Bout++ additionally capable

of on-node parallelism with OpenMP. GPU acceleration is under development in both applications, through

RAJA and HYPRE in Bout++, and through OpenACC in Nektar++ [18].

Rather than redevelop these applications, this project has instead identified a series of mini-applications that

implement similar computational schemes. Specifically, we have identified a small number of finite difference

and finite element mini-apps, each of which are implemented in a range of programming models for rapid

evaluation of approaches to performance portability.
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Heat

Heat is a simple finite-difference application developed at the University of Bristol for their OpenMP

Target training course. Besides OpenMP and OpenMP target, it has also been ported to SYCL1.

TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction equation on a regular grid

using a 5-point stencil. It has been used extensively in studying performance portability already [19–22],

and is available implemented using CUDA, HYPRE, OpenCL, PETSc and Trilinos2.

miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark suite [9,23–25]. It implements

an unstructured implicit finite element method and is available implemented using CUDA, Kokkos,

OpenMP and OpenMP with offload3, and SYCL4.

Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [25–27]. It implements a high-

order curvilinear finite element scheme on an unstructured mesh. It uses HYPRE for parallel linear

algebra, and is additionally available in CUDA, RAJA and OpenMP implementations5.

vlp4d

The vlp4d mini-app is a 2+2D Vlasov-Poisson equation solver, based on the 5D plasma turbulence

code, GYSELA [28]. It is implemented in C++ and has been augmented with OpenMP, OpenACC,

MPI, Kokkos, Thrust, CUDA, HIP and C++ stdpar6.

In future reports we will expand this evaluation set to include the following applications:

FDTD3D

FDTD3D is an implementation of Yee’s method for solving Maxwell’s equations, implemented as part

of the OpenCL examples library, provided by NVIDIA. There are available implementations in CUDA,

HIP, OpenMP and SYCL7.

Maxwell

The Maxwell mini-app is distributed as part of the MFEM library. Since it is implemented using the

MFEM library, it can target any programming model supported by MFEM8.

hipBone

The hipBone mini-app is a GPU port of the Nekbone application. It is implemented in C++, and

leverages the OCCA performance portability framework [29] to provide portability to OpenMP, CUDA

and HIP9.

1https://github.com/UoB-HPC/heat_sycl
2http://uk-mac.github.io/TeaLeaf/
3https://github.com/Mantevo/miniFE
4https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl
5https://github.com/CEED/Laghos
6https://github.com/yasahi-hpc/P3-miniapps
7https://github.com/zjin-lcf/HeCBench
8https://mfem.org/electromagnetics/
9https://github.com/paranumal/hipBone
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4.2 Particle Methods

Particle methods in NEPTUNE have been explored using the EPOCH particle-in-cell code [30], its associated

mini-app minEPOCH [31]10 and the UKAEA-developed NESO11 application.

EPOCH is a PIC code that runs on a structured grid, using a finite differencing scheme and an implementation

of the Boris push. Like Bout++ and Nektar++, EPOCH is a mature software package that is used widely

by the UK science community, and thus is difficult to evaluate in alternative programming models without

a significant redevelopment effort. Furthermore, EPOCH is developed in Fortran, making it increasingly

difficult to adapt to many new programming models that are heavily based in C++. The mini-app variant

of EPOCH, minEPOCH, is likewise developed in Fortran and thus not appropriate for this study.

NESO is a test implementation of a PIC solver developed at UKAEA for 1+1D Vlasov-Poisson. It is written

in C++ using DPC++/SYCL for on-node parallelism, while off-node parallelism uses MPI. The field solve

is implemented using Nektar++.

Besides NESO, there are a number of other particle-based mini-apps that may be of interest to this project,

that implement similar particle schemes, backed by a variety of electric/magnetic field solvers.

CabanaPIC

CabanaPIC is a structured PIC code built using the CoPA/Cabana library for particle-based simula-

tions [25]. Through the CoPA/Cabana library, the application can be parallelised using Kokkos for

on-node parallelism and GPU use, and with MPI for off-node parallelism12.

VPIC/VPIC 2.0

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling kinetic plasmas in one, two

or three dimensions, developed at Los Alamos National Laboratory [32]. VPIC is parallelised on-core

using vector intrinsics, on-node through pthreads or OpenMP, and off-node using MPI. VPIC 2.0 [33]

adds support for heterogeneity, using Kokkos13.

EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma In Realistic En-

vironments (EMPIRE) project [34]. It solves Maxwell’s equations on an unstructured grid using a

finite-element method, and implements the Boris push for particle movement. EMPIRE-PIC makes

extensive use of the Trilinos library, and uses Kokkos as its parallel programming model [35,36].

Mini-FEM-PIC

Mini-FEM-PIC is a mini-application that implements a particle-in-cell method on an unstructured

mesh, using the finite element method. It was developed as part of this project, and is based on the

fem-pic application by Lubos Brieda. It is implemented in C++ and can be executed in parallel using

OpenMP.

10https://github.com/ExCALIBUR-NEPTUNE/minepoch
11https://github.com/ExCALIBUR-NEPTUNE/NESO
12https://github.com/ECP-copa/CabanaPIC
13https://github.com/lanl/vpic
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Each of the particle-based mini-apps identified implement a PIC algorithm that is similar to that found in

EPOCH. However, one weakness of this evaluation set is that three of the four applications are parallelised

on-node through the Kokkos performance portability layer. In future reports we will expand this evaluation

set to include the following application:

NESO

NESO is a test implementation of a PIC solver for 1+1D Vlasov-Poisson. It is implemented in C++,

with DPC++/SYCL parallelism, and a field solve using Nektar++.

Sheath-PIC

Sheath-PIC is a simple 1D GPU implementation from www.particleincell.com. It has been ported

from CUDA to HIP, OpenMP and SYCL14.

4.3 Validation

The mini-applications chosen for this study implement only small subsections of larger applications, or

algorithms that are similar in their structure. In many cases, they are solving much smaller or much simpler

problems and therefore the results are likely not representative of that which is required by NEPTUNE.

What is important for this study is that they are performance representative.

A number of methods have been explored to validate the representativeness of mini-applications and their

parents. In this project, informed by the ECP Project [37], we will adopt cosine similarity to compare

vectors of performance counter values.

For each application, we will sample the accumulated hardware counters for an entire execution. We will

then form an application vector xi, that contains the averaged hardware event counters for the last 5 seconds

of execution. Two applications will be considered similar if the vectors that represent the applications are

a short distance apart. The cosine similarity is calculated as

cos (θ) =

∑d
k=1 xikxjk

∥ xi ∥∥ xj ∥
(1)

The cosine value varies from 1.0 (identical vector direction) to 0.0 (orthogonal vector direction), and the

angle θ varies from 0°to 90°. If two applications are performance representative, we expect their cosine

similarity angle to be closer to 0°.

Our analysis will be added to a future iteration of this report. In contrast to the ECP report, our analysis will

not be based on a parent application and a representative mini-application variant, but instead on generic

mini-applications and target parent applications. Because of this, we do not expect our results to conform as

closely as those in the original study. Nonetheless, we expect that particular performance-sensitive counters

will show the required similarity.

14https://github.com/zjin-lcf/HeCBench
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5 Evaluations of Approaches

In this section we present performance data for a number of mini-applications, across a range of architectural

platforms, using a range of different approaches to performance portability.

The applications chosen in each case are broadly representative of some of the algorithms of interest to

NEPTUNE. In particular, the fluid-method based mini-apps implement algorithms that range from finite-

difference (like Bout++ [16]) to high-order finite element or spectral element (like Nektar++ [17]). Similarly,

the particle-methods mini-apps all implement the particle-in-cell method (like EPOCH [30]).

The data presented in this section, and the applications are available on github, through the linking reposi-

tory: https://github.com/ExCALIBUR-NEPTUNE/performance-portability-for-fusion.

5.1 Heat

Heat is a benchmark from the University of Bristol that is used for teaching parallelisation. It is the simplest

finite difference application used in this evaluation, and as such is mostly representative of the data access

pattern, rather than the compute intensity. The data presented in this section has been collected for a

10000× 10000 problem over 1000 time steps on Isambard.
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Figure 2: Heat runtime data

5.1.1 Performance

Performance data for the Heat code was collected as part of a project to evaluate three implementations of

the SYCL standard. As such, there are three SYCL data points per platform, acquired with Intel’s DPC++

compiler, Heidelberg’s hipSYCL compiler (through a custom LLVM build), and Codeplay’s ComputeCpp

compiler. The runtimes achieved with each compiler can be compared to OpenMP with offload and CUDA.

11

https://github.com/ExCALIBUR-NEPTUNE/performance-portability-for-fusion


The runtime data for Heat is presented in Figure 2, split for CPU and GPU platforms due to the magnitude

difference in runtime on the NVIDIA GPU platforms. From this data, we can see that generally the SYCL

runtimes are competitive with the OpenMP and CUDA variants, and in some cases better, regardless of

compiler.

The main difference between each compiler is in the level of platform support; hipSYCL is able to target

every architecture except the Intel HD P630 GPU, but on KNL and AMD Rome, its performance is worse

than the same code compiled by Intel’s DPC++ compiler. The ComputeCpp compiler has the worst support,

being unable to target the Arm platforms or the GPUs, due to lack of an OpenCL driver.

For the two Arm platforms on Isambard (ThunderX2 and A64FX), the performance in both OpenMP

and hipSYCL is relatively poor compared to alternative architectures. However, the overhead of SYCL is

reasonably small (15-30% slowdown). For the x86 CPUs and the GPUs, the fastest SYCL variant matches

or outperforms the OpenMP with offload variant; on GPUs the CUDA variant is still marginally faster.
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Figure 3: Cascade visualisation of performance portability of Heat

5.1.2 Portability

Figure 3 show the performance portability of the Heat application, where the data for SYCL is taken as the

best performing SYCL compiler on each platform.

As can be seen from the right side of the figure, only OpenMP 4.5 and SYCL achieve performance portability,

with SYCL typically outperforming OpenMP 4.5. Figure 3 additionally shows that as platforms are added

to the evaluation set, SYCL achieves near perfect efficiency until the 7th and 8th platforms are added (the

two Arm platforms in this case).
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Conversely, CUDA shows the lowest portability, only being executable on the two NVIDIA GPU platforms.

As can be seen in Figure 2, DPC++ provides better performance than hipSYCL on the KNL and Rome

platforms, highlighting the importance of compiler selection currently. Both the hipSYCL and DPC++

compilers are now based on the LLVM compiler infrastructure, and so it is likely that the performance of

each of these compilers will eventually converge.

The simplicity of the Heat code lends itself to rapid porting efforts and so the results are a good indication of

what can be achieved by any larger code using the SYCL programming model. However, as will be seen later

in this report, larger codes require significantly more re-engineering to achieve similar levels of performance

portability in newer programming models such as SYCL.

5.2 TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction equation on a regular grid using

a 5-point stencil, developed as part of the UK-MAC (UK Mini-App Consortium) project.

It has been used extensively in studying performance portability already [19–22], and is available implemented

using CUDA, OpenACC, OPS, RAJA, and Kokkos, among others15. The results in this section are extracted

from two of these studies, namely one by Kirk et al. [20] and one by Deakin et al. [19]. In both studies, the

largest test problem size (tea bm 5.in) is used, a 4000× 4000 grid.

5.2.1 Performance

The study by Kirk et al. shows the execution of 8 different implementations/configurations of TeaLeaf across

3 platforms, a dual socket Intel Broadwell system, an Intel KNL system and an NVIDIA P100 system. The

runtime for each implementation/configuration is presented in Figure 4. Note that in the study, some results

are missing due to incompatibility (e.g. CUDA on Broadwell/KNL)16.

The study by Deakin et al. is more recent, using a C-based implementation of TeaLeaf as its base. It

consequently evaluates fewer programming models, but over a wider range of hardware, including a dual

socket Intel Skylake system, both NVIDIA P100 and V100 systems, AMDs Naples CPU, and the Arm-based

ThunderX2 platform. Runtime results are provided in Figure 5.

5.2.2 Portability

Both studies evaluate some portable and some non-portable implementations. In most cases, there is a non-

portable implementation that achieves the lowest runtime, however this places a restriction on the hardware

that it can target.

15http://uk-mac.github.io/TeaLeaf/
16Hybrid represents the best performing configuration of a MPI/OpenMP hybrid execution
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Figure 4: TeaLeaf runtime data from Kirk et al. [20]
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Figure 5: TeaLeaf runtime data from Deakin et al. [19]

For study by Kirk et al. [20], Figure 6 provides a visualisation of the performance portability of each

approach to application development. In terms of efficiency, the non-portable approaches (CUDA, MPI,

and OpenACC) achieve high efficiency, but do not extend to the full evaluation set, while the portable

approaches (Kokkos, OPS and RAJA) span much of the evaluation set, but sacrifice some efficiency. Almost

all approaches (except OpenMP) achieve more than 80% application efficiency on at least one platform, and

in the case of RAJA and OPS, performance above 60% application efficiency is maintained across the three

14



platforms. Referring back to Figure 4, we can see that on the Intel KNL system, the Kokkos performance is

double that of other performance portable approaches, and thus skews its portability calculation. It is likely

that this is the result an unidentified issue in TeaLeaf or Kokkos at the time of evaluation. Otherwise, these

three programming models each achieve similar levels of performance and, importantly, portability across

different architectures.

Figure 7 show the same visualisations for the data from Deakin et al. [19]. Again, the non-portable program-

ming model (CUDA) achieves the highest performance on its target architectures. For CPU architectures

OpenMP produces the highest result, and using offload directives, portability is available to GPU devices.

It should be noted that to support the use of GPU devices, there are two OpenMP implementations that

must be maintained (with and without offload directives), though these results are presented together here.

Much like in the previous study, the performance portability of Kokkos is affected by an anomalous result

on the Intel KNL platform.
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Figure 6: Cascade visualisation of performance portability from Kirk et al. [20]
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Figure 7: Cascade visualisation of performance portability from Deakin et al. [19]
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Figure 8: miniFE runtime data gathered in 2022 for a SYCL maturity study17

17Runtime data above 80s has been clipped. The runtime for hipSYCL on the ThunderX2 platform is 110.921s, while the
runtime for the HD P630 through OpenMP 4.5 is 371.287s
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5.3 miniFE

miniFE is a finite element mini-app, and part of the ECP Proxy apps (previously the Mantevo benchmark

suite) [9,23–25]. It implements an unstructured implicit finite element method and has versions available in

CUDA, Kokkos, OpenMP (3.0+ and 4.5+) and SYCL18.

While there are a number of data sources for miniFE data, most of these are limited in scope. Instead all

data presented in this section has been newly gathered. Previous iterations of this report contained data

gathered in 2021, specifically for Project NEPTUNE. In this iteration of the report, new data is presented

from a 2022 study into the maturity of SYCL implementations.

In all cases, a 256×256×256 problem size has been used, and all runs have been conducted on the platforms

available on Isambard.

5.3.1 Performance

The raw runtime results for these runs can be seen in Figure 8. In many of the miniFE ports available, only

the conjugate solver has been parallelised effectively, so the results presented represent only the timing from

this kernel.

It should be noted that the SYCL data is gathered from a miniFE port that can be found as part of the

oneAPI-DirectProgramming github repository19; this port is based on a conversion from the OpenMP 4.5

implementation of miniFE, and so no SYCL-relevant optimisation has been performed.

The previous data presented in this report contained a number of omissions due to the unavailability of

compilers, or other issues. The data presented in this report resolves many of these issues, and additionally

includes data for an Intel HD P630 GPU. While this GPU is not optimised for HPC workloads (since it is

an embedded GPU), it provides the first glimpse of programmability of Intel’s new Xe GPU line.

Figure 8 shows that the SYCL performance and portability depends largely on the compiler that is used.

Interestingly, hipSYCL is often the best performing SYCL compiler (even when compared to the Intel

DPC++ compiler, on Intel hardware). However, it is clear that there is a SYCL penalty on such a complex

code (in contrast to Heat). Given the nature of the miniFE SYCL port, this indicates that achieving high

performance for a SYCL code likely requires some optimisation after a conversion.

It is also clear from the data presented in Figure 8 that the native approaches (CUDA, MPI/OpenMP) are

typically the fastest. For the two NVIDIA GPU platforms, CUDA is significantly faster than any alternative,

whereas for the CPU platforms Kokkos is competitive. For the two ARM platforms (TX2 and A64FX), the

SYCL performance is typically poor, likely owing to an issue with the custom LLVM compiler that was

required to collect the data.

18https://github.com/Mantevo/miniFE
19https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl
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5.3.2 Portability

Figure 9 presents a visualisation of the performance portability of miniFE, through various approaches. It is

clear from the figure that on CPU platforms, MPI is the most performant (achieving nearly 100% efficiency

across the 5 CPU platforms), while CUDA is the most performant on the NVIDIA GPUs. For the Intel

iGPU, the most performant is SYCL (through DPC++), but the efficiency of SYCL falls away rapidly.

Only OpenMP 4.5 and SYCL are portable across the 8 platforms, but achieve a PP ≈ 0.2. Typically Kokkos

outperforms SYCL (except on the Intel iGPU, where Kokkos has not been executed). Unfortunately, all of

the “portable” approaches achieve a median efficiency below 50%. This is in contrast to the data presented

for the much simpler Heat application, and indicates the need for careful optimisation of the code.
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Figure 9: Cascade visualisation of performance portability of miniFE

5.4 Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [25–27]. It implements a high-order

curvilinear finite element scheme on an unstructured mesh. The majority of the computation is performed

by the HYPRE and MFEM libraries, and can thus use any programming model that is available for these

libraries20.

The results presented in this section have all been collected on the Isambard platform.

20https://github.com/CEED/Laghos
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5.4.1 Performance

Figure 10 shows the runtime for Laghos, running problem #1 (Sedov blast wave), in three dimensions, up

to 1.0 second of simulated time, using partial assembly (i.e., ./laghos -p 1 -dim 3 -rs 2 -tf 1.0 -pa

-f).

Across the six platforms evaluated, RAJA performance is typically in line with the fastest non-portable

approach (MPI and CUDA). Since the parallelisation in Laghos is in the MFEM and HYPRE shared libraries,

that were developed at LLNL alongside RAJA, that these routines are well optimised in RAJA is perhaps

not surprising.
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Figure 10: Laghos runtime data

5.4.2 Portability

Figure 11 demonstrates the remarkable efficiency of the RAJAMFEM and HYPRE implementations, showing

consistently above 80% performance efficiency. In contrast to some of our previous results, OpenMP performs

poorly across most platforms (except KNL). The difference between OpenMP and RAJA on the CPU

platforms suggests that either the RAJA parallelisation on these systems is achieved through SIMD and

Thread Building Blocks (TBB), or that there are performance issues in the OpenMP implementation. On

the GPU platforms, CUDA does marginally outperform RAJA, but this is perhaps to be expected, given

the potential overhead in using a third party performance library.
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Figure 11: Cascade visualisation of performance portability of Laghos

5.5 vlp4d

The vlp4d application solves the Vlasov-Poisson equations in 4D (2D space and 2D velocity space). It is based

on the 5D plasma turbulence code, GYSELA, but is miniaturised specifically for performance portability

studies [38].

In this report, we have collected data running the two-dimensional Landau damping problem (SLD10),

documented by Crouseilles et al. [39]. We have collected results on the Isambard system, making use of all

available architectures (including the Phase 3 system).

5.5.1 Performance

Figure 12 plots the runtime of vlp4d across the 7 programming models, and 9 evaluation platforms. It

should be noted that the NVIDIA and AMD GPU platforms are an order of magnitude faster than the CPU

platforms, and so are plotted separately.

In the general case, OpenMP and Kokkos achieve similar performance on almost every platform, where

Kokkos is marginally better on the Arm and NVIDIA architectures, and marginally worse on the Intel and

AMD architectures. The two NVIDIA supported programming models (Thrust and Stdpar) perform very

well on the NVIDIA platforms (through the NVHPC compiler), and are also among the best performing

programming models across other platforms – though neither extends to the Arm platforms.
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Figure 12: vlp4d runtime data
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Figure 13: Cascade visualisation of performance portability of vlp4d

5.5.2 Portability

The right of Figure 13 shows that only the OpenMP and Kokkos programming models are portable to every

platform evaluated, and they achieve a PP ≈ 0.65; Thrust is portable to the AMD GPU, but not the Arm

platforms, while Stdpar relies on the NVHPC compiler, which does not currently support the AMD or Arm

platforms. The Kokkos and OpenMP programming models also show a similar trend of efficiency across

platforms (and while the ordering of the platforms is not identical between both, it is similar).

21



Interestingly, on the A100 platform, CUDA is not the most performant programming model, with both

Thrust and Stdpar achieving a lower runtime. On the AMD Instinct MI100, HIP and Thrust both achieve

a similar level of performance.

As shown in Figure 13, the highest efficiency across platforms is achieved by the Thrust library and the

Stdpar programming model, up to the inclusion of the Arm platforms or the AMD GPU (in the case of

Stdpar).

5.6 CabanaPIC
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Figure 14: CabanaPIC data

CabanaPIC is a structured PIC demonstrator application built using the CoPA/Cabana [40] library for

particle-based simulations [25]. CoPA/Cabana provides algorithms and data structures for particle data,

while the remainder of the application is built using Kokkos as its programming model for on-node parallelism

and GPU use, and MPI for off-node parallelism21.

5.6.1 Performance

Since there is only a single implementation of CabanaPIC, it is not possible for us to evaluate how the

programming model affects its performance portability, however, we can show how the performance changes

between architectures.

Figure 14 shows the achieved runtime for CabanaPIC across four of Isambard’s platforms, running a simple

1D 2-stream problem with 6.4 million particles.

21https://github.com/ECP-copa/CabanaPIC
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Approximately equivalent performance can be seen on the Cascade Lake, Rome and V100 systems. Similar

to our TeaLeaf Kokkos results on KNL, the runtime is significantly worse than expected, possibly indicating

a Kokkos bug, or a configuration issue. Otherwise performance is similar on all platforms in terms of the

raw runtime. Given the significantly higher peak performance of the NVIDIA V100 system, it is perhaps

surprising that its performance is not significantly better. This may be due to serialisation caused by atomics,

or significant data movement between the host and the accelerator; further investigation is necessary to

identify this loss of efficiency.

5.7 VPIC

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling kinetic plasmas in one, two or

three dimensions, developed at Los Alamos National Laboratory [32]. VPIC is parallelised on-core using

vector intrinsics and on-node through a choice of pthreads or OpenMP. It can additionally be executed across

a cluster using MPI22. The recently developed VPIC 2.0 [33] code has been developed to add support for

heterogeneity using Kokkos to optimise the data layout and allow execution on accelerator devices.
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Figure 15: VPIC runtime data from Bird et al. [33]

5.7.1 Performance

Figure 15 shows the runtime for the three variants of the VPIC code running on seven platforms23. This

data is taken from the VPIC 2.0 study, comparing the non-vectorised, vectorised and Kokkos variants of the

VPIC code. In each case, the runtime is the time taken for 500 time steps, with 66 million particles.

22https://github.com/lanl/vpic
23https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf
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Figure 16: Cascade visualisation of performance portability of VPIC

In Figure 15 we can observe that the SIMD vectorised implementations are always the fastest for each

platform, however it should be noted that each of these are hand-optimised for each individual instruction

set (i.e. every implementation is platform specific). This means that, alongside the additional coding effort

of writing an implementation for each platform, potential additions or fixes must also be applied to all

implementation individually, significantly affecting the productivity. While the Kokkos implementation is

typically the slowest on each platform, performance is usually in-line with the unvectorised original VPIC

application, suggesting that the slowdown is caused by the inability of the compiler to autovectorise.

5.7.2 Portability

In terms of the performance portability of VPIC, we can see that the original and vectorised variants are

only viable on the CPU architectures. Figure 16 visualises how the performance portability varies as more

platforms are evaluated.

The highest performance on each of the CPU platforms comes from the vectorised variant of VPIC, as it

achieves the best performance on all CPU platforms (except the ThunderX2, where no data is provided).

However, since it cannot execute on the GPU platform, its performance portability is 0.

Figure 16 shows that while Kokkos performs worse than the vectorised implementation, its performance is

similar the non-vectorised variant, but is also capable of execution on the V100 platform.

It should be noted that this data is from a study based on the initial implementation of VPIC using Kokkos.

It is likely that these performance figures will be improved in future, potentially closing the performance gap
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on the vectorised implementation, while maintaining portability to heterogeneous architectures. Indeed, a

recent study presented at the PASC conference [41] has shown that the Kokkos runtime can be improved by

up to 55% using Kokkos SIMD24.

5.8 EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma In Realistic Environments

(EMPIRE) project [34]. It solves Maxwell’s equations on an unstructured grid using a finite-element method,

and implements the Boris push for particle movement. EMPIRE-PIC makes extensive use of the Trilinos

library, and subsequently uses Kokkos as its parallel programming model [35,36].
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Figure 17: EMPIRE-PIC runtime data

5.8.1 Performance

The EMPIRE-PIC application is export controlled, and thus the results in this section come from the study

by Bettencourt et al. [35], looking specifically at the particle kernels within EMPIRE-PIC.

Figure 17 shows the runtime of the Accelerate, Weight Fields, Move and Sort kernels within EMPIRE-PIC

for an electromagnetic problem with 16 million particles (8 million H+, 8 million e-). The geometry for this

problem is the tet mesh that can be seen in Figure 7 in Bettencourt et al. [35].
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Figure 18: Cascade visualisation of performance portability for four particle kernels in EMPIRE-PIC

5.8.2 Portability

While there is only a single programming model implementation of EMPIRE-PIC, we can use the equations

given in Table 2 of Bettencourt et al. [35] to calculate the FLOP/s achieved and compare this to each

machines maximum floating-point performance, thus calculating the architectural efficiency. The equations

presented assume the best case performance, where particles are evenly distributed, there is no particle

migration, and they are sorted at the start of the simulation. Nevertheless, they provide an opportunity to

analyse the performance portability of Kokkos for particle-based kernels.

Figures 18 provides a visualisation of EMPIRE-PIC’s performance portability across six platforms25.

It is important to note that although Figure 18 shows incredibly low efficiency, this is compared to each

platform’s peak performance, where a vectorised fused-multiply-add instruction must be executed each clock

cycle. Achieving less than 10% of this peak performance is not unusual for a real application. In the case of

the Sort kernel, the efficiency is lower still, as this is not a kernel that is bound by floating point performance.

What is clear from Figure 18 is that the variance in achieved efficiency between platforms is not large,

indicating that Kokkos is able to achieve a similar portion of the available performance for EMPIRE-PIC’s

particle kernels. Achieved efficiency is higher on the ThunderX2 and Broadwell systems, due to less reliance

on well vectorised code, and a lower available peak performance.

24The data in this report will be updated to reflect this in future iterations.
25Please note that the y-axis in each of these Figures has been scaled, since the architectural efficiency is very low.
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Figure 19: Roofline plots on four platforms, gathered using the Empirical Roofline Toolkit [42]

The data suggests that EMPIRE-PIC is not able to fully exploit the on-core parallelism available through

vectorisation. Figure 19 shows roofline models for four of these platforms, with the four particle kernels

plotted according to their arithmetic intensity and achieved FLOP/s.

In all cases, we can see that the application is not successfully using vectorisation (and this is confirmed

by compiler reports). As stated in Bettencourt et al. [35], the control flow required to handle particles

crossing element boundaries leads to warp divergence on GPUs and makes achieving vectorisation difficult
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on CPUs. Nonetheless, on the Cascade Lake and ThunderX2 platforms, we are within an order of magnitude

of the non-vectorised peak performance for the three main kernels, and the sort kernel (with low arithmetic

intensity) is heavily affected by main memory bandwidth. For the two many-core architectures (KNL and

V100), floating-point performance is further from the peak, and the performance of each kernel is further

hindered by the DRAM/HBM bandwidth.

Roofline analyses, like Figure 19, are effective at demonstrating how vital to performance it is to balance

efficient memory accesses with arithmetic intensity. This is especially important in PIC codes, where some

of the kernels are relatively low in arithmetic intensity when compared to the amount of bytes that need

to be moved to and from main memory (e.g. the Boris push algorithm requires many data accesses, but

performs relatively few mathematical operations). An alternative approach to the FEM-PIC method has

been explored using EMPIRE-PIC by Brown et al. [36], whereby complex particle shapes are supported using

virtual particles based on quadrature rules. Using virtual particles in this manner increases the arithmetic

intensity of particle kernels without requiring significantly more data to be moved from and to main memory.

5.9 Mini-FEM-PIC

The Mini-FEM-PIC application has been redeveloped from the fem-pic application, by Lubos Brieda, for

this project. Its development is detailed in Report 2057699-TN-03-03, along with some preliminary reports

that are partially repeated here.

Currently the mini-application is developed in C++ and provides OpenMP directives for parallel execution.

Alongside this, an OPS-like Domain Specific Language is being developed, named OP-PIC, that will allow

the application to execute across a range of platforms from a single source. The development of this DSL

and the results achieved are documented in Report 067270-TN-02.

The base application implements the electrostatic PIC method (i.e. it assumes that ∂B⃗
∂t = 0). The mini-

application is run on a test system, consisting of Deuterium ion flow through a pipe. The pipe is 4 mm in

length with a 1 mm radius, and is divided up into 9337 elements with an average edge length of ∼0.2 mm.

The plasma is fixed at 2× 108K and the ions are injected with an input velocity of 1× 108m/s.

5.9.1 Performance

Both the Sequential and OpenMP variants are limited to CPU architectures, while the OPS-PIC variant

can target CPU platforms through OpenMP, and NVIDIA GPU platforms through CUDA. In this report,

we only provide data for the Sequential and OpenMP variants, executed on the Isambard system.

Results have been collected from Intel’s Cascade Lake and KNL architectures, AMD’s Rome architecture

and Cavium’s ThunderX2 platform. In all cases, the input is the “coarse” mesh, with 7511 elements, and

∼15,600 particles injected each time step.
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Figure 20: Runtime performance of Mini-FEM-PIC for the Coarse problem size on four of Isambard’s
platforms

Figure 20 shows the runtime on four of Isambard’s CPU-based systems. The performance of our mini-

application is dominated by the MoveParticles routine, and so Figure 20(b) shows the isolated runtime for

this function. In each case, we plot only the fastest runtime, regardless of the number of parallel processes

assigned (though in most cases this was achieved with either half or a full node – likely maximising memory

bandwidth per core). OpenMP reduces the runtime on all four platforms by at least 2×, and in the case of

the KNL and Milan platforms by almost 4×.
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6 Analysis of Approaches

There are currently a large number of projects focused on preparing scientific applications for the complex-

ities of Exascale. With many of the largest Supercomputers edging towards heterogeneity and hierarchical

parallelism, many of these efforts are in ensuring that applications are performant and portable between

different architectures. Section 3 outlines a wide number of options available for developing performance

portable applications, and each approach comes with various advantages and disadvantages.

To date, only a small number of these approaches have seen widespread adoption, including OpenMP, Kokkos,

and RAJA [19,20,43,44]. Because of the availability of mini applications that use these programming models,

the majority of our evaluation has been based on these approaches. We have also conducted some preliminary

work in assessing DPC++/SYCL, since adoption of this programming model is growing (owing to the backing

of Intel).

6.1 Pragma-based Approaches

The two pragma-based approaches of OpenMP and OpenACC are perhaps the easiest to implement into an

existing application and require only minimal code changes. Our evaluation shows that both programming

models are typically performant on CPUs and GPUs, respectively, but potentially lack portability. In the

case of OpenACC, which is specifically targeted at accelerator devices, this is expected; for OpenMP, it is

perhaps more surprising.

The best data we have for this comes from the miniFE application, where we have runtime data for an

OpenMP 3.0-compliant implementation and an OpenMP 4.5-compliant implementation. Figure 8 shows

that for the CPU-only platforms, OpenMP 3.0 is competitive with (or is) the best performing miniFE

variant, but does not run at all on the GPU platforms. While on some platforms, performance is lost when

compared to MPI, it is a much simpler approach to parallelisation.

Figure 9 shows a cascade plot for all miniFE variants, showing that OpenMP offers good portability across

the CPU platforms but no portability to accelerator devices, while The OpenMP 4.5 variant is portable

to all architectures (except the Intel GPU currently). However, the performance on GPUs is significantly

lacking that of native approaches, such as CUDA. Recent studies have suggested that different parallelisation

strategies may be required for high performance between different platforms, and therefore it is possible that

multiple implementations would need to be maintained. This can certainly be achieved within a single code

base, using the preprocessor to select the correct code path, but essentially means maintaining multiple

versions of each kernel.

Another useful example of the portability of OpenMP can be seen in the TeaLeaf data taken from Deakin

et al. [19]. In Figure 5 OpenMP is typically shown to be performance portable, however these figures

come from a C-based variant of the TeaLeaf application, in which multiple compute kernels are provided
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targeting different versions of the OpenMP specification, different hardware and even different compilers26.

This is another illustration that if we were to maintain multiple kernel implementations, we may be able to

achieve good performance with a mixture of OpenMP 3.0 and 4.5 directives (though whether this approach

is “portable” is questionable).

6.2 Programming Model Approaches

The next approach we have explored in this report, is the use of alternative programming models that

are targeted at parallel architectures. The template libraries Kokkos and RAJA are most mature of these

approaches. Both are being developed as part of the Exascale Computing Project within the US Department

of Energy, at Sandia National Laboratories and Lawrence Livermore National Laboratory, respectively. They

are each capable of targeting the range of hardware that is going to be present in the Aurora, Frontier and

El Capitan systems, through a combination of OpenMP, CUDA, HIP and DPC++. Our initial results (and

many other studies [19, 20, 43, 44]) have shown that both are typically able to deliver good and portable

performance from a single source code base.

The results in Figure 6 shows this for TeaLeaf, with both Kokkos and RAJA typically being able to achieve

good application efficiency over all platforms, with the exception of using multiple GPUs (which has not yet

been implemented in TeaLeaf).

For the high-order FEM Laghos application, Figure 10 shows that RAJA is the only portable programming

model available and is shown to be competitive with (or is) the fastest performing variant on each platform.

It should be noted that Laghos is an exceptional case in our evaluation set, since portability is implemented

in the HYPRE and MFEM libraries, rather than the core Laghos code itself.

For the PIC codes in our evaluation set, Kokkos is the only performance portable programming model

that has been extensively used. The best source for comparison is therefore the VPIC code, where there

is a vectorised CPU-only variant for comparison. The vectorisation in VPIC is largely hand-coded, with

multiple versions of each kernel available for selection at compile time (depending on vector-size and vector

instruction availability). Figure 15 demonstrates that while the optimal implementation on each of the CPU-

based platforms is the hand-vectorised variant, the Kokkos version is competitive with the unvectorised

implementation; better compiler autovectorisation may help close this performance gap in the future27.

Importantly, the Kokkos variant can be executed across GPUs, where much of the available performance is

likely to lie in post-Exascale systems.

While Kokkos and RAJA have both shown promise as approaches to performance portable application

development, each also carry a small element of risk. For each API there is potentially a single point of

failure – the API may be changed at short notice; support for the API or development of the library may

be withdrawn at any time; and hardware backends may never be developed. Nonetheless, a high level of

26See: https://github.com/UoB-HPC/TeaLeaf/tree/master/2d/c_kernels
27Indeed, a similar issue was seen during the development of EMPIRE-PIC, where the compiler is not able to fully vectorise

some segments of Kokkos code, despite no apparent dependencies [35]. The new SIMD feature in Kokkos should reduce this
performance gap significantly [41]
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support is likely to be maintained while the APIs form the backbone of many of the Department of Energy’s

most important post-Exascale HPC applications. There are also ongoing efforts to include parts of the API

in the C++ standard28.

In contrast to Kokkos and RAJA, the SYCL programming model is an open standard maintained by the

Khronos Group. Interest in SYCL is growing rapidly, driven in part by Intel’s decision to adopt the pro-

gramming model for their Exascale systems, and in particular their Xe HPC accelerators (in the form of

Data Parallel C++).

Due to the relative immaturity of SYCL/DPC++, there are not many NEPTUNE-relevant mini-applications

available for evaluation; our evaluation has so far been limited to a simple heat diffusion code and a code

conversion of the OpenMP 4.5 miniFE implementation. Figure 3 shows that for a simple code implemented

in SYCL, excellent performance portability can be achieved. For a more complex case such as miniFE (see

Figure 9), the performance portability of SYCL is similar to the performance portability of OpenMP 4.5. We

expect that newer SYCL compilers and a more targetted optimisation effort will yield better performance;

revisiting these studies periodically is central to our ongoing work.

Besides our own evaluation, there has been a number of recent efforts to explore the portability of SYCL and

the maturity of SYCL compilers that offer some useful insights. Reguly et al. evaluate SYCL performance

through the unstructured mesh CFD solver, MG-CFD [45]. Figure 21 shows their SYCL runtimes compared

to the best observed performance on each platform; note, the Cascade Lake and Xe LP results were compiled

using Intel’s OneAPI compiler, all other SYCL targets were built using hipSYCL.

Similar to our own evaluation, they observe that SYCL is typically not competitive, but is able to target

each architecture from a single code base. In the case of the ARM Graviton2 platform, the SYCL build

is considerably worse due to the infancy of the ARM target in hipSYCL. For the two Intel platforms,

the OneAPI compiler is slightly more competitive; for the Iris Xe LP (low-power) target, its runtime is

competitive with a single socket Cascade Lake. On the GPU platforms, SYCL is still considerable slower

than native CUDA builds, but has the advantage of being portable to the AMD and Intel GPUs.

The study by Lin et al. provides more data on the maturity of SYCL implementations by evaluating the same

small set of applications periodically against the hipSYCL, Intel DPC++ and ComputeCpp compilers [46].

Their evaluations are based on three applications: BabelStream, a port of the STREAM memory benchmark

for parallel programming frameworks; BUDE (Bristol University Docking Engine), a molecular dynamics

application; and CloverLeaf, a 2D structured grid application. They evaluate each application on a Xeon

Cascade Lake, an AMD EPYC Rome, an NVIDIA V100 and an Intel HD P630 GPU. Although their study is

primarily tracking absolute performance changes with compiler version, rather than comparing to the “best

case”, they do also provide a brief comparison for each application.

For BabelStream, DPC++ and ComputeCpp closely match the OpenCL performance; this is not surprising

since both of these compilers target the OpenCL runtime. Conversely, hipSYCL is competitive with OpenMP

and Kokkos on the Cascade Lake, but is the worst performing on the Rome platform.

28e.g. mdspan, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html
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Figure 21: MG-CFD runtime data from Reguly et al. [45]
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Figure 10: BabelStream: SYCL vs alternative framework re-
sults

Figure 11: BUDE: SYCL vs alternative framework results

5.4 Alternative SYCL implementations
Finally, we have compared the latest results for all three of our stud-
ied SYCL implementations versus contemporary parallel program-
ming frameworks. We compare SYCL performance to the follow-
ing frameworks: OpenCL, OpenMP, CUDA, and Kokkos. OpenCL,
OpenMP, and CUDA are all C99 derived frameworks that require
direct compiler support. Kokkos is a C++ derived framework that
is implemented as a library with no speci�c compiler requirements
(although runtime requirements such as CUDA libraries are still
required).

Results for the memory bandwidth-bound BabelStream bench-
mark are shown in Figure 10. The bandwidth achieved on each
platform are in line with existing literature[6]. As expected, the
performance pro�le of SYCL implementations that depended on
Intel’s OpenCL runtime is very similar to OpenCL’s, which share
the same runtime environment. Given the higher abstraction level

Figure 12: CloverLeaf: SYCL vs alternative framework re-
sults

of SYCL, it is encouraging to see performance parity with OpenCL
which focuses more on exposing low-level controls.

For independent implementations such as hipSYCL, we see highly
competitive performance compared to vendor speci�c APIs like
CUDA. Because hipSYCL on the CPU uses LLVM’s OpenMP back-
end, we also observe performance parity with the OpenMP imple-
mentation. We attribute hipSYCL’s lower performance on AMD
Rome to LLVM 10’s immaturity on the Zen2 architecture. As later
revision of hipSYCL supports more up-to-date LLVM releases, fu-
ture versions of this study will attempt to accommodate for this.

The results for the compute-bound BUDE benchmark are shown
in Figure 11. Performance disparity on Intel Cascade Lake and
AMD Rome suggests room for improvement for compute-bound
operations. In particular, hipSYCL performed very poorly compared
to the OpenMP implementation. This is surprising and requires
deeper analysis on the emitted code. Results from OpenCL is also
surprising as the implementation shares the same runtime with
DPC++ and ComputeCpp. Considering BUDE’s OpenCL kernel
versus the SYCL kernel, which is nearly identical, this disparity
likely originates from the code emitted by Intel’s OpenCL runtime
online compiler. This isn’t a problem for DPC++ or ComputeCpp
because the SPIR instructions are generated ahead of time.

The results for the memory-bound CloverLeaf benchmark are
shown in Figure 12. Initial analysis suggests hipSYCL has a relatively
high kernel invocation overhead on CUDA platforms. This is less
obvious in both BabelStream and BUDE as both only invoke a single
kernel with no complex kernel dependency requirements and at
a much lower frequency. On the other hand, CloverLeaf contains
more than 170 unique kernels with complex dependencies which is
called in a tight loop for up to 2955 iterations as shown previously
in algorithm 3.

OpenCL once again performed poorly, we observe a ~25% regres-
sion from SYCL implementations hosted on the same runtime. SYCL
results are closer to what we previously observe in BabelStream
although with a further 20~40% regression. Based on CloverLeaf’s
built-in pro�ling data, we suspect the regression again stems from

Figure 22: CloverLeaf: SYCL vs. alternative frameworks from Lin et al. [46]

For the two mini-applications the results are more varied; in some cases there are large differences between

the compilers (see Figure 22). In this study, only hipSYCL was able to target the NVIDIA GPU, due to

compatibility with NVIDIAs outdated OpenCL runtime. Nonetheless, the hipSYCL performance is not com-

petitive with any of the alternatives. On the CPU platforms, hipSYCL often achieves the lowest performance

of the three SYCL compilers, and DPC++ tends to outperform ComputeCpp slightly.

It is important to note that these results are based on compilers that are currently undergoing significant
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engineering efforts. It is therefore likely that many of the performance gaps that currently exist will reduce

in time.

6.3 High-level DSL Approaches

Many of the approaches discussed above could be considered low-level DSLs, and these approaches have

formed the majority of our analysis in this project. However, we also have a small dataset for the OPS DSL,

which subsequently acts as a code-generator for these lower-level DSLs/programming models.

OPS is an approach specifically targeted at structured mesh applications, and has been used to parallelise

TeaLeaf to good effect. The previously seen TeaLeaf data in Figure 6 demonstrates that OPS is approximately

equal with Kokkos and RAJA in terms of its performance portability. However, the process of porting an

application to OPS is arguable more complex, and therefore may effect programmer productivity29.

There are a number of other high-level DSLs that we have not explored in this project, but may form part

of our future analyses. In particular, the Unified Form Language (UFL) that is used by both Firedrake and

FEniCS is already being used in some of the NEPTUNE work packages. UFL is a DSL, embedded in Python,

that allows scientists to express their equations in PDE form. The Firedrake/FEniCS packages handle the

discretisation of these equations, and use PyOP2 to generate portable executable code. Although we have

not explored these high-level DSLs in this project, we have analysed many of the programming models that

PyOP2 can target.

6.4 Summary

It is likely that in NEPTUNE, multiple DSLs may be present, with high-level DSLs allowing scientists to

express equations, and low-level DSLs and programming models targeting different parallel architectures.

This project has mainly focused on the latter, since these are likely to be performance-critical.

In this project we have evaluated multiple approaches to developing performance portable software, ranging

from pragma-based code annotations, through to purpose-built domain specific languages.

In our analysis we have found that pragma-based approaches like OpenMP and OpenACC are able to achieve

high performance on a variety of platforms, but that OpenMP is typically not portable to GPU accelerators,

and OpenACC is not portable to CPU host platforms. Although the OpenMP 4.5 standard allows for

offloaded computation, achieving high performance across both CPUs and GPUs often requires different

design decisions to be made. However, it is likely that performance of OpenMP 4.5-compliant codes will

improve as compiler support develops.

Of the performance portable programming models explored, Kokkos and RAJA are perhaps the most mature

currently, with both offering good portability for a small performance decrease. Furthermore, the APIs are

29See: https://op-dsl.github.io/docs/OPS/tutorial.pdf
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relatively simple, primarily being a drop-in replacement for loop structures, meaning that the effort to port

applications to these programming models is not great.

Currently, the SYCL programming model suffers many of the same issues as OpenMP 4.5. Again, it is likely

that as compiler support improves, the performance penalty will lessen. Furthermore, the open-standard

nature of SYCL means that it potentially carries slightly less risk than the DoE-supported Kokkos and

RAJA programming models – though it should be noted that Kokkos can code-generate to SYCL/DPC++

in order to target Intel Xe GPUs.

Our evaluation of purpose-built DSLs has been limited to OPS, evaluated through the TeaLeaf application.

Although it is able to offer good performance portability, it is limited in the computational methods it can

be applied to, i.e., multi-block structured mesh algorithms.
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7 Key Findings and Recommendations

This project has evaluated a number of approaches to performance portability, many of which have shown

promise as possible approaches for NEPTUNE. The direction of HPC is clearly moving towards heterogeneity,

but its not clear which software development methodology will win out.

The development of a new simulation code for project NEPTUNE presents an almost unique opportunity to

design and build a code with Exascale execution as a primary concern.

Because of the wealth of choice in approaches to performance portability, and the required longevity of the

NEPTUNE code, it is prudent to consider all available options prior to, and during, development. With this

in mind, we make the following recommendations for the initial development of NEPTUNE. As the hardware

and software landscape continues to evolve over the next decade, it is anticipated that this document will

likewise need to evolve, and that these recommendations will tighten as appropriate.

1. Develop in C++

1.1. Focus Core Development on Modern, Standard C++

 In order to enable the most opportunity for performance portable design and optimi-

sation of NEPTUNE, our first recommendation is that the core of NEPTUNE is initially

written in standard modern C++, making full use of object orientation and template

metaprogramming.

At the present time, the choice of C++ carries a number of advantages over Fortran (the mainstay of scientific

computing).

• Object orientation is at the core of the C++ language, encouraging encapsulation, sensible design and

code reuse30;

• Templating and template metaprogramming can enable some advanced compile-time optimisations, or

compile-time code generation (thus improving code reuse);

• New features in the C++ standard are typically implemented in modern C++ compilers (e.g. Clang)

much faster than equivalent Fortran compilers (e.g. Flang);

• A large number of modern mathematical and scientific libraries are written in C/C++ and provide

native APIs. Although it may be possible to interface with some of these libraries with Fortran, this

may come with a loss of functionality.

30Although Fortran introduced object orientation in the 2003 standard, it lacks many of the advanced features present in
C++ [47].

36



In addition to the benefits of the C++ language, there are other reasons to pursue a C++ code that

relate specifically to producing a performance portable application. The vast majority of new libraries,

programming models and portability layers are developed with C/C++ as their first target language; this

means that an application developed in C++ is more likely to be able to make use of these libraries and

programming models.

A number of these libraries rely specifically on C++ features, such as template metaprogramming, meaning

that C++ is not only the first target, but also the only target language (e.g. RAJA, Kokkos). Another

example of this is in Intel’s OneAPI, where although many of the libraries are language agnostic (e.g. Math

Kernel Library, Data Analytics Library), the central programming language, Data Parallel C++ (DPC++),

is an extension of the C++ language.

1.2. Use Open Standards and Beware of Vendor Lock-in

 Alongside the recommendation to pursue ISO C++, we recommend that open stan-

dards are used where possible (followed by open source solutions). Additionally, caution is

required when adopting vendor specific abstractions unless wider support is forthcoming

(as is the case with Intel’s DPC++).

There are a number of approaches that are open standards and should remain portable across a wide range of

platforms, such as MPI, OpenMP, OpenACC and SYCL. In some cases, the support for these open standards

is very good (e.g. OpenMP), and some where support significantly lags the standard (e.g. OpenACC).

However, pursuing these approaches offers the best chance for NEPTUNE to remain performance portable

in the future.

Alongside these programming models, there are a number of proprietary approaches that target specific

hardware, such as CUDA and HIP/ROCm. These are likely to yield greater performance gains on their

target platforms but are not portable approaches. One possible safeguard against this, is to use an open

source middleware such as Kokkos or RAJA, which can generate native CUDA or HIP/ROCm code at

compile-time.

A vendor-specific approach such as Intel’s OneAPI may also strike a balance between portability and per-

formance. Many of the libraries in OneAPI are implementations of standard libraries such as BLAS, and

the programming model is heavily based on the SYCL open standard.

Typically, open standards may be less agile for targeting the latest hardware and hardware features, but

proprietary approaches are likely to restrict the choice of future hardware.
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2. Separation of Concerns

2.1. Select a Good High-Level Abstraction

 It is possible that multiple DSLs will be employed within the NEPTUNE code, and

that these DSLs will exist at different levels of abstraction. Selecting a good high-level

abstraction will be vital to the success of NEPTUNE.

Domain Specific Languages exist at multiple levels of abstraction. Many programming models, such as

Kokkos, RAJA and SYCL, could be considered low-level DSLs. They provide functionality targeted at

exploiting the parallel hardware resources that are available on a system.

Above these low-level DSLs are programming models that are targeted at particular algorithmic domains.

The OPS and OP2 libraries are two such examples that provide abstractions for representing computation

over structured and unstructured meshes, respectively. The intermediate compiler can exploit the structure

of the problem space to perform a number of code optimisations to improve performance.

At the highest level are languages such as UFL and BOUT++, that allow scientists to write partial differential

equations (PDEs) directly into the code. At compile-time, these expressions are used to generate code in

lower-level DSLs such as PyOP2 and RAJA, for execution on a parallel system.

Typically, the more abstract a DSL is the greater the space for synthesis [48]. However, adding new features

to, or escaping from, a high-level DSL may be problematic. For this reason, it is important that a good high

level abstraction is chosen (or developed) that allows scientists to accurately represent their science, without

being overly restrictive, and that where possible, it is extensible to new operators and features, allowing

scientists to step outside of the DSL without sacrificing performance.

2.2. Abstract Data Storage

 Performant data structures can be very architecture dependent. Especially as we move

towards heterogeneous platforms, every effort should be made to abstract data storage,

such that transformations can be made that are transparent to the underlying algorithms.

Exploiting full performance on modern architectures is heavily reliant on how efficiently data is moved

between main memory and the various layers of cache. For memory-bound applications, the data structures

that are used to store scientific data can significantly affect performance, and the best data structure for one

platform may not be the best for another.

For this reason, the NEPTUNE design should abstract data storage away from algorithms as much as

possible, such that it does not harm performance. This, coupled with the use of appropriate data libraries, will

ensure that data structures can be changed, without requiring significant re-engineering of key computational

kernels. It will also enable compile-time transformations based on execution target.
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2.3. Prototype, prototype, prototype

 A well modularised design should enable key computational kernels to be extracted for

prototyping. Before applying particular programming models to the NEPTUNE code,

prototyping will allow rapid evaluation of emerging approaches on kernels that are per-

formance critical.

Following programmes such as the Exascale Computing Project (ECP) and the wider adoption of approaches

such as SYCL, there are currently a wealth of approaches to developing performance portable software that

are in active development. Because of this, it is not entirely clear which approaches will win out.

Therefore to protect against this, it is prudent to develop NEPTUNE alongside a programme of prototyping

key kernels. A well encapsulated, modular design should allow isolated kernels to be evaluated throughout

development.

This will be aided by an inherent similarity in many programming models aimed at performance portability,

where parallelism is largely exposed at the loop-level. As it becomes clearer which programming models

are likely to be most appropriate for NEPTUNE, code changes can be implemented incrementally. In some

cases, where a high-level DSL has been employed, changes in code generators will automate much of the

required effort.

3. Don’t Reinvent the Wheel

 Code reuse should be at the heart of NEPTUNE, and this extends to the use of external

libraries. There are a number of libraries that implement functionality commonly found in

scientific simulation software, and NEPTUNE should make full use of these libraries where

possible. Vendor-optimised versions of these libraries often exist, providing performance

improvements for free.

The work in this project has primarily focused on the programming model in use for parallelisation at a

node-level, given the assumption that it is highly likely that MPI will be the defacto standard for inter-node

communication (the so called MPI+X model). Besides the use of the existing MPI standard, it is likely

that there are a number of other libraries that can provide functionality for NEPTUNE for free, and it is

important that these are used wherever possible.

Much of computation in NEPTUNE is likely to be in solving complex linear systems, and for that there

are number of industry-standard libraries (such as LAPACK and BLAS) that are highly optimised. Where

possible, these libraries should be used to provide functionality, since this reduces the technical burden and

means that we can take advantage of vendor-led optimisations for free. Beside the algorithmic optimisations

in these libraries, the vendor-produced implementations are often architecturally optimised.

Besides the availability of vendor-optimised libraries, the choice of some libraries may naturally encourage

the adoption of particular parallel programming models. For example, Intel’s OneAPI Math Kernel Library
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(MKL) would motivate the use of DPC++/SYCL; the Trilinos library would perhaps motivate the use of

Kokkos; the HYPRE and MFEM libraries would lend themselves to RAJA.

But, its important that the available libraries are explored by domain specialists to ensure any library chosen

fits its purpose without being overly restrictive.

7.1 Future Work

The key findings and recommendations in this report are the result of an extensive study into parallel

programming models and mini-applications relevant to fusion modelling. Both of these fields are constantly

evolving, and so it is necessary that the content and recommendations of this report also evolve. To this end

there are a number studies in progress that will enhance this report.

Specifically, we aim to:

1. Add new applications to the evaluation set (e.g. HipBone, SheathPIC, etc).

2. Evaluate our newly developed EM-PIC mini-application.

3. Enhance our evaluation of SYCL-based codes.

4. Evaluate the similarity of mini-applications to host codes such as Bout++.
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A Code Examples

A.1 OpenMP

Figure 23 shows a simple vector addition, where the loop iterations are distributed across OpenMP threads.

The number of threads used is typically specified with the environmental variable OMP NUM THREADS, but

usually will default to the number of cores available if unset. Finer control over the parallelism can be

achieved with more complex annotations, such as schedule and collapse.

1 #pragma omp parallel for

2 for (int i = 0; i < 100; i++) {

3 c[i] = a[i] + b[i];

4 }

Figure 23: OpenMP code listing

A.2 OpenMP Target Directives

An example of the same vector addition seen previously is provided in Figure 24 with target directives. In

addition to specifying the parallel region, data mapping information is also required, indicating which data

should be moved to and from an accelerator device.

1 #pragma omp target map (to:a[:size]) map (to:b[:size]) map (tofrom:c[:size])

2 #pragma omp teams distribute parallel for default(none)

3 for (int i = 0; i < 100; i++) {

4 c[i] = a[i] + b[i];

5 }

Figure 24: OpenMP 4.5 using target directives
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A.3 SYCL and DPC++

Figure 25 provides an equivalent vector-add written in SYCL. Similar to OpenMP with offload, data move-

ment is expressed explicitly in the language; in the case of SYCL this is through device buffers with access

specifiers.

1 sycl::queue myqueue;

2 std:: vector h_a (100) , h_b (100), h_c (100);

3 sycl:: buffer d_a(h_a), d_b(h_b), d_c(h_c);

4

5 auto ev = myqueue.submit ([&]( handler &h){

6 auto a = d_a.get_access <access ::read >();

7 auto b = d_b.get_access <access ::read >();

8 auto c = d_c.get_access <access ::write >();

9 h.parallel_for(count , kernel_functor ([=](id<> item) {

10 int i = item.get_global (0);

11 c[i] = a[i] + b[i];

12 }));

13 });

Figure 25: SYCL

A.4 Kokkos

Figure 26 outlines a vector add using Kokkos’s parallel for function.

1 Kokkos :: parallel_for (100, KOKKOS_LAMBDA (const int& i) {

2 c[i] = a[i] + b[i];

3 });

Figure 26: Kokkos

Kokkos also provides fully managed multi-dimensional arrays through its View class. Figure 27 provides a

simple example of a two dimensional array in Kokkos. Because Kokkos Views are fully managed, they are

allocated and reference counted, additional arguments can be provided to specify the memory space in which

they are allocated, and whether to use column-major or row-major layout can be specified in code. This

may allow some very simple performance optimisations to be made at a single point in an applications code.

1 const size_t num_rows = ...;

2 const size_t num_cols = ...;

3 Kokkos ::View <int**> array ("some label", num_rows , num_cols);

4 array (0,0) = ...;

Figure 27: Use of Kokkos::View for multi-dimensional arrays
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A.5 RAJA

A vector add can be implemented similarly in RAJA, as is provided in Figure 28.

1 RAJA:: RangeSegment seg (0, 100);

2 RAJA::forall <loop_exec > (seg , [=] (int i) {

3 c[i] = a[i] + b[i];

4 });

Figure 28: RAJA

Like Kokkos, RAJA provides a view class for handling multi-dimensional arrays. Figure 29 shows the use of

the RAJA::View class on a simple two-dimensional array.

1 const int DIM = 2;

2 double *array = new double[num_rows * num_cols ];

3 RAJA::View <double , RAJA::Layout <DIM > > array_view(array , num_rows , num_cols);

4 Aview (0,0) = ...;

5 ...

6 free(array);

Figure 29: Use of RAJA::View for multi-dimensional arrays

A.6 Bout++

Bout++ provides two Domain Specific Languages (DSLs). The first is in how equations are encoded into the

source, with C++ templates generating parallelised, performant code from these mathematical expressions.

For example the MHD equations (Eq. 2-5) can be expressed in C++ as in Figure 30.

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v (2)

∂p

∂t
= −v · ∇p− γp∇ · v (3)

∂v

∂t
= −v · ∇v +

1

ρ
(−∇p+ (∇×B)×B) (4)

∂B

∂t
= ∇× (v ×B) (5)

1 ddt(rho) = -V_dot_Grad(v, rho) - rho*Div(v);

2 ddt(p) = -V_dot_Grad(v, p) - g*p*Div(v);

3 ddt(v) = -V_dot_Grad(v, v) + (cross(Curl(B),B) - Grad(p))/rho;

4 ddt(B) = Curl(cross(v,B));

Figure 30: BOUT++ MHD equations implementation
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A second eDSL is provided in Bout++ input files. Figure 31 shows part of an example input file.

1 [n] # Density

2 height = 0.5

3 width = 0.05

4

5 blob1 = height * exp(-((x -0.35)/width)^2

6 - ((z/(2*pi) - 0.5)/width)^2)

7 blob2 = height * exp(-((x -0.15)/width)^2

8 - ((z/(2*pi) - 0.4)/width)^2)

9

10 function = 1 + blob1 + blob2

Figure 31: Part of a BOUT++ input file, specifying the density initial condition as a function of position in
x and z.

A.7 UFL/Firedrake

Firedrake and FEniCS both use a common DSL, known as the Unified Form Language (UFL). Like Bout++,

UFL allows scientists to express their equations in code, with the code generator providing the discretisation

and parallelisation.

For example 31, the modified Helmholtz equation:

−∇2u+ u = f (6)

∇ · n̂ = 0 on boundary Γ (7)

can be transformed into variational form by multiplying by a test function v and integrating over the domain

Ω: ∫
Ω

∇u · ∇v + uvdx =

∫
vfdx+

∫
Γ

v∇u · n̂ds︸ ︷︷ ︸
→0 due to boundary condition

(8)

This can be implemented in UFL as in Figure 32.

31From ://www.firedrakeproject.org/demos/helmholtz.py.html
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1 from firedrake import *

2 mesh = UnitSquareMesh (10, 10) # Define the mesh

3 V = FunctionSpace(mesh , "CG", 1) # Function space of the solution

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = Function(V) # Define a function and give it a value

7 x, y = SpatialCoordinate(mesh)

8 f.interpolate ((1+8* pi*pi)*cos(x*pi*2)*cos(y*pi*2))

9 # The bilinear and linear forms

10 a = (inner(grad(u), grad(v)) + inner(u, v)) * dx

11 L = inner(f, v) * dx

12 u = Function(V) # Re-define u to be the solution

13 # Solve the equation

14 solve(a == L, u, solver_parameters ={’ksp_type ’: ’cg’})

Figure 32: UFL implementation of the Helmholtz equation
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A.8 AoS vs SoA

Besides the storage of simple multi-dimensional data, it is often required to store multiple fields about a

single object, for example, particle data. Figure 33 provides a simple example of particle storage using an

array-of-structs (AoS) and a struct-of-arrays (SoA) approach.

1 #define N 1024

2 typedef struct {

3 // position

4 float x, y, x;

5 // momentum

6 float ux , uy , uz;

7 // weight

8 float w;

9 } Particle;

10 Particle particles[N];

11 // access x field from particle

12 particles [0].x;

1 #define N 1024

2 typedef struct {

3 // position

4 float x[N], y[N], x[N];

5 // momentum

6 float ux[N], uy[N], uz[N];

7 // weight

8 float w[N];

9 } Particles;

10 Particles particles;

11 // access x field from particle

12 particles.x[0];

Figure 33: AoS (left) vs SoA (right) for simple particle structure

The most intuitive way to store such data is typically using the AoS approach, but this may not be conducive

to high performance on SIMD and SIMT systems. Conversely, the SoA approach may allow the cache lines to

be used more effectively, but leads to less intuitive code. It may also be the case that different architectures

favour different approaches; switching between AoS and SoA manually may be a significant undertaking.

A.8.1 Intel SDLT

Intel’s SIMD Data Layout Templates (SDLT) offers a convenient way to abstract the in-memory data layout

transparently to the developer. Figure 34 shows how this can be achieved with our previous example of

particle storage. Accesses are expressed in an AoS form, but the accesses are performed through an SoA

container.

A.8.2 VPIC and Kokkos

A similar approach, using Kokkos Views, can be found in the VPIC 2.0 application [33]. In VPIC 2.0, an

enum is used to provide symbolic dereferencing of the fields in the structure to improve readability of the

code (see Figure 35). Effectively this is implemented using a two-dimensional View that can then be stored

using a row-major or a column-major layout to enable a switch between AoS and SoA.
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1 #define N 1024

2

3 typedef struct particle_data {

4 float x, y, x;

5 float ux , uy , uz;

6 float w;

7 } Particle;

8

9 SDLT_PRIMITIVE(Particle , x, y, z, ux, uy, uz, w)

10 ...

11 sdlt:: soa1d_container <Point2D > pContainer(N);

12 auto particles = pContainer.access ();

13 #pragma omp simd

14 for (int i = 0; i < 1024; i++) {

15 particles[i].x() = ...;

16 ...

17 }

Figure 34: Intel SDLT

1 Kokkos ::View <float *[7]> particles(N); // particle data

2 namespace particle_var {

3 enum p_v { // particle member enum for clean access

4 x, y, z,

5 ux, uy , uz ,

6 w,

7 };

8 };

9 View <int*> particle_indicies(N); // Particle indices

10 // Access x from particle 0

11 particles(0, particle_var ::x) = ...;

Figure 35: Using Kokkos to convert AoS to SoA
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