
2060042 T/AW084/21 D3.1: Report on DG performance
in Nektar++

Edward Laughton, University of Exeter
David Moxey, King’s College London

Chris Cantwell & Spencer Sherwin, Imperial College London

7th April 2022

Contents

1 Introduction 1
1.1 Executive summary . 1
1.2 Discontinuous formulation . 1
1.3 Case setup . 3

2 Profiling software and hardware setup 4

3 Results 5
3.1 MPI . 5
3.2 Compressible flow solver . 6

4 Conclusion 7

1 Introduction

1.1 Executive summary

This report outlines the current single-node performance of discontinuous Galerkin (DG) opera-
tors within Nektar++ on x86-64 CPU hardware platforms, with the aim of identifying present
bottlenecks in the development of higher-dimensional DG kernels. In the remainder of this
introduction, we outline the mathematical formulation for the DG formulation. In particular,
we aim to profile a realistic test case of the compressible Navier-Stokes equations in order to
indicate areas for performance improvements in real-world simulation cases. Section 2 outlines
the profiling methodology, and results are indicated in Section 3. Both communication and
compute profiling is considered, although these tests are performed in the setting of a single
node since the focus of this task in single-node performance. Finally, Section 4 offers brief
conclusions and areas for development.

1.2 Discontinuous formulation

This work was undertaken on the compressible Navier-Stokes equations, discretised using the
DG method. This section gives a brief overview of the method for the purposes of indicating

1

particular hotspots within the code in the following section; a thorough overview can be found in
several other works, e.g. [1, 2, 3]. Considering a three-dimensional domain Ω ⊂ R3 comprised of
non-overlapping elements Ωe such that Ω =

⋃
e Ωe and given a general hyperbolic conservation

law for conserved variables u taking the form

∂u

∂t
+∇ · F (u) = 0, (1)

where the flux function F (u) = (f(u), g(u),h(u)), we construct the weak form on a single
element via multiplication by a test function v and integrating by parts to obtain(

v,
∂u

∂t

)
Ωe

+
〈
vn, f̃(u+,u−)

〉
∂Ωe
− (∇v,F (u))Ωe = 0, (2)

where (u, v)Ωe =
∫

Ωe uv dx and 〈u, v〉∂Ωe =
∫
∂Ωe uv ds denote inner products on the volume

and surface, respectively. f̃ defines a numerically-calculated flux term which depends on the
element-exterior and interior variables u+ and u−, respectively. Using the notation of Karni-
adakis & Sherwin [3], this can also be written in matrix form for one component of u as

dûe

dt
= [M e]−1 [(De

x1
Be
)ᵀ
W eΛe (f (u)) +

(
De

x2
Be
)ᵀ
W eΛe (g (u))

+
(
De

x3
Be
)ᵀ
W eΛe (h (u))

]
− [M e]−1 be (3)

where M e denotes an elemental mass matrix, the collection of matrix multiplications in the
square bracketed term denotes the volumetric inner product with respect to the derivative of
the basis functions, and b is a vector corresponding to the surface integral such that

be [n(pqr)] =

∫
∂Ωe

φpqrf̃ · neds (4)

of which n(pqr) is the mapping from local tensor-product basis indices p, q and r to a consecutive
numbered list. We represent u using an expansion of high-order polynomials, so that

uδ =
∑
n

ûnφn
(
[χe]−1(x)

)
. (5)

In this expression, we note that the approximation is defined with the use of a standard (ref-
erence) element Ωst, with φn denoting an appropriate set of basis functions. An isoparametric
mapping χe : Ωst → Ωe defines a possibly curvilinear element Ωe, so that x = χe(ξ) for ξ ∈ Ωst.
We additionally equip the standard element with a distribution of quadrature points ξq and
weights wq, so that upon selecting test functions v = φn we then evaluate the terms in eq. (2)
as finite summations, i.e.

(∇φn,F (u))Ωe ≈
∑
q

∇χe(ξq)−ᵀ∇φn(ξq) · F (u(xq)) det (χe(ξq))wq (6)

Following from this general formulation the Navier-Stokes equations in conservative form ex-
pressed similarly to eq. (1) can be written as

∂u

∂t
+∇ · F (u) = ∇ · Fv(u,∇u), (7)

2

where u = [ρ, ρu, ρv, ρw,E] is the vector of conserved variables in terms of density ρ, velocity
v = (u1, u2, u3) = (u, v, w) and E is the specific total energy. In three dimensions we have that

F (u) =

ρu ρv ρw

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p

u(E + p) v(E + p) w(E + p)

 , (8)

To close the system we need to specify an equation of state; in this case we use the ideal gas
law p = ρRT where T is the temperature and R is the gas constant. The tensor of viscous
forces Fv(u,∇u) is defined as

Fv(u,∇u) =

0 0 0
τxx τyx τzx
τxy τyy τzy
τxz τyz τzz
A B C

 , (9)

with

A = uτxx + vτxy + wτxz + k∂xT,

B = uτyx + vτyy + wτyz + k∂yT,

C = uτzx + vτzy + wτzz + k∂zT,

where in tensor notation the stress tensor τxixj = 2µ(∂xiui + ∂xiuj − 1
3
∂xkukδij), µ is the dy-

namic viscosity calculated using Sutherland’s law, k is the thermal conductivity and δij is the
Kronecker delta. We note that the inclusion of the viscous term Fv(u,∇u) requires additional
treatment, in particular a careful selection of flux terms in order to preserve spatial accuracy.
In the simulations below, we adopt the local discontinuous Galerkin (LDG) approach, wherein
an auxiliary variable q = ∇u is introduced and discretised alongside equation (7). With a
careful choice of alternating fluxes (so that q̃ = q+ and ũ = u−, or vice versa), high-order
accuracy can be preserved [4].

1.3 Case setup

A three-dimensional Taylor-Green vortex was chosen as the most suitable case to profile. Al-
though it is certainly more representative of realistic fluid dynamics simulations, it is also the
highest spatial dimension presently supported by Nektar++. This is also important from the
perspective of parallelisation. Assuming that the basis functions admit a boundary-interior de-
composition, the volume of data to be communicated between processors is proportional to the
number of modes which lie on the boundary facets of the element, which are called the ‘trace’
or ‘skeleton’ of the mesh. In moving up a dimension from 2D to 3D simulations, the volume of
data to be transferred is now a power of 2 larger, i.e. going from a 1D segment of order O(p)
to a 2D quadrilateral or triangle of order O(p2), significantly increasing the complexity of mesh
partitioning and the volume of communicated data.

Although the precise choice of test case is typically relatively unimportant in the context of
performance profiling, we have elected to consider a benchmark test case for fluid dynamics
solvers: the Taylor-Green vortex at Re = 1600. In this case, starting vortices are defined in
a periodic box Ω = [−Lπ, Lπ]3, given a reference length L, which break down into turbulent

3

eddies before decaying due to viscous effects. The initial conditions are given in primitive
variables (v, p) as

u = V∞ sin(x/L) cos(y/L) cos(z/L),

v = −V∞ cos(x/L) sin(y/L) cos(z/L),

w = 0,

p = ρ∞V
2
∞

[
1

γMa2
∞

+
1

16
(cos(2x/L) + cos(2y/L)) · (cos(2z/L) + 2)

]
,

with the Reynolds number Re = ρ∞U∞L/µ and the Prandtl number Pr = 0.71. Although the
Taylor-Green vortex problem is traditionally examined in the setting of an incompressible flow,
we approach this limit by considering flows with low compressibility effects so that the Mach
number Ma∞ = 0.1. We select an explicit fourth-order Runga-Kutta time integration scheme,
with the time-step fixed at 2 × 10−5 and the case is run for a quarter of the time interval of
tc ∈ [0, 20] where tc = tU∞/L is the convective timescale, in this case corresponding to 7347
time-steps. We also make use of the exact Riemann solver of Toro [5] to evaluate the numerical
flux term f̃ . An 8× 8× 8 hexahedral mesh is used, shown in figure 1, with the modified basis
functions of Karniadakis & Sherwin (eq. 3.1.1 in [3]) with order 6.

Figure 1: 8× 8× 8 hexahedral 3D mesh for the Taylor-Green vortex case.

2 Profiling software and hardware setup

The profiling of the compressible flow solver in Nektar++ was performed on the latest master
branch compiled in release mode with debug symbols attached, i.e. RelwithDebInfo. This
still applies O2 level optimisation but allows for more descriptive data to be gathered from the

4

sampling done by the profiler. It is also worth noting that the O2 level optimisation will inline
functions and so the call trees may be missing some of the deeper functions, however this will
not change the overall picture as the major patterns will still be evident.

Oracle Developer Studio was used as the profiling tool, because it has the capability to profile
processes running using MPI, allowing for a more in-depth look at the MPI communication
patterns. It is worth emphasising that the profiler introduces some substantial overhead to
the communication when tracing the MPI calls for each individual process, and therefore for
the main profiling of ‘hotter’ functions during the simulation, this case is also run without the
MPI tracing enabled to better look at the raw performance. Nektar++ makes use of tuning
to pick the fastest MPI method dynamically for the given system it is being run on: the four
methods implemented are AllToAll, AllToAllV, PairwiseSendRecv, and NeighborAllToAllV.
Each of these implements a slightly different communication strategy. Of these methods,
the PairwiseSendRecv and NeighborAllToAllV are usually the fastest, unless with exactly
symmetric partitioning at core counts ≤ 8. Unfortunately the creation of the communica-
tor with the distributed graph topology attached, which is needed for the collective MPI-3.0
NeighborAllToAllV method, breaks the MPI tracing as it is still attached to the old communi-
cator, so the PairwiseSendRecv was forced for MPI tracing case. Oracle Developer Studio was
also already installed on a suitable machine which can be challenging on a shared academic sys-
tem due to the level of permissions required for the necessary sampling potentially introducing
security vulnerabilities.

The profiling was undertaken on a dual-socket Broadwell micro-architecture Intel Xeon E5-2697
v4 system with 18 physical cores per socket, for a total of 36 physical cores across two NUMA
domains, and 192GB RAM. During profiling, only 18 cores were used; bound to a single socket
by using the mpirun -np 18 --bind-to socket command to prevent processes dynamically
switching cores and adding unnecessary overhead.

3 Results

3.1 MPI

Figure 2 shows a subsection of the MPI communication timeline with all 18 processes in the
vertical direction, with the horizontal axis representing time and black lines indicating inter-
process communication using MPI. The MPI functions are coloured while the main Nektar++
functions are labelled “Application”. This subsection represents a single RK4 timestep, with
the cyan boxes on the far left and right indicating a MPI AllReduce checking for the presence
of an abort file. The four RK4 stages are clearly visible as clusters of two communication
groups, an initial larger followed by a secondary smaller; both groups consist of a number of
pairwise communications between all individual processes that share a mesh partition boundary.
In each communication group the variable fields are communicated consecutively, so for the
compressible flow solver in 3D we operate on the ρ, ρu, ρv, ρw and the E field in that order.

The first large communication group consists of a call to DisContField::GetFwdBwdTracePhys
in the AdvectionLDGNS::NumericalFluxO2 function. As the name suggests, this combination of
functions extracts the q+ and q− terms, meaning that this is a two-way communication which
fills the auxiliary variable q, as needed in the LDG method, trace space from neighbouring
elements that are across the mesh partition boundary. It is particularly worth emphasising
that using q = ∇u in the LDG formulation we artifically increase the time-advected variables
by d per field variable, where d is the problem dimension. So in this 3D case by including
the diffusion component it increases the number of advection equations from one to four for

5

each conserved variable, leading to additional communication overhead and computational cost
associated with the additional fields.

The second communication group starts with an DisContField::ExtractTracePhys in the
CompressibleFlowSolver::SetBoundaryConditions routine, which is used to fill the trace on
the boundary elements. This communication is not actually needed, since by definition a
boundary trace is not connected to any other element (unless it is periodic, but this special case
is handled in the DisContField::GetFwdBwdTracePhys call subsequently), and so wholly exists
on the current process. This unwanted communication occurs because the ExtractTracePhys
function is generically written to get the Fwd trace space in the domain from the physical fields,
which means it also fills the spaces across the partitions and thus needs the communication
with neighbouring processes. This is then followed by another GetFwdBwdTracePhys in DoOdeRhs
which is a two-way communication to fill the Bwd trace space from neighbouring elements Fwd
trace space that are across the mesh partition boundary. The Fwd and Bwd are analogous to the
element-exterior and interior velocities u+ and u− in equation (2) and are used to calculate
the numerical flux f̃ using a Riemann solver.

The amount of time spent in the MPI processes when compared to the remaining intra-process
compute is exaggerated in figure 2 due to the overhead required when sampling the MPI
communication and tracing the processes. As noted above, a second profiling case was run with
the MPI tracing disabled. It is then possible to see what percentage of time was spent in the
PerformExchange function, which is responsible for the trace communication between processes
in all usages above. This was collected using standard timer routines. Across all processes in
this case 7.37% of total CPU time was spent in PerformExchange. It is also possible to see the
split of time for each process independently as shown in figure 3. This shows that the time
spent in PerformExchange is not equally distributed among processes, and so there is some load
imbalance where some processes will be idle waiting for the MPI communication to complete
on others. There a number of reasons this could be the case such as an imbalance in the
partitioning, or due to certain cores performing better than others (although efforts were made
to run sampling on ’clean’ cores). If we take the difference between the shortest and longest
CPU time, to mimic a worst case scenario, and multiply by the total CPU time spent, we only
get 0.3% inefficiency from the MPI communications load imbalancing, which we consider to be
acceptable and would not adversely affect total compute time.

3.2 Compressible flow solver

Again using the case with the MPI tracing disabled we can now observe a performance profile
for the main elements of the compressible flow solver. Sorting the functions by exclusive CPU
time, i.e. time spent in that function alone and not any functions called by it, 4 out of the
top 5 most time spent functions are calls to lower-level BLAS linear algebra routines. The
Nektar++ function DiagonalBlockMatrixMultiply consists of 44.67% inclusive CPU time,
using the BLAS routine dgemv shown in a leaf-filtered call tree in figure 6. This is called by the
Nektar++ ExpList::MultiplyByElmtInvMass function which is used in both the DoDiffusion
(72.81%) and DoAdvection (21.78%) segments of the Navier-Stokes compressible flow solver;
additionally it is also used in the main DoSolve function as FwdTrans IterPerExp (5.42%) to
project functions on the physical space to coefficient space.

As the name suggests, this routine performs a block-diagonal inverse mass matrix multiplication,
which is required in equation (3) showing the use in the inner-product of the volume and surface,
as well as the surface integral. (However we do highlight that the surface and volume terms are
collected before the mass matrix multiplication is performed.) This split in cost between the
diffusion and advection component fairly accurately represents the theoretical expectations as

6

discussed in the LDG formulation above.

Another significant BLAS call is to the matrix-matrix multiplication kernel dgemm, which is
9.34% of inclusive CPU time. These methods are used within matrix-free operations inside local
elemental operations, namely StdHexExp::v IProductWRTBase (52.23%), StdHexExp::v BwdTrans
(25.32%), and StdQuadExp::v IProductWRTBase (22.44%) as shown in figure 7. Of these meth-
ods, the IProductWRTBase method is used to calculate the inner product of an input array with
respect to the elemental basis functions basis. The BwdTrans function translates from coeffi-
cient space to physical space (performing the action Bû), and is used in both the DoDiffusion
(78.85%) and DoAdvection (21.15%) routines.

Throughout this, we observe that the diffusion component adds significant computational time,
and in this case accounts for 60% of the total CPU time compared to 22% for the advection
component; this is visualised in the flame chart in figure 4 and the call tree in figure 5. (The
remaining execution time is spent in BLAS calls which are involved in these routines but are
recorded outside of these regions due to oddities in profiling; as well as a small percentage for
other aspects such as limited I/O and projections to/from coefficient space.) For this reason
the compressible Euler flow solver will be significantly faster, since it does not need to calculate
the diffusion component. This also matches the theoretical expectations expressed in the LDG
formulation regarding the number of additional fields to express the auxiliary variable q = ∇u.

4 Conclusion

Overall, the profiling suggests that there are no standout kernels within the code that show ob-
vious signs of requiring major performance improvements. We make the following observations,
however:

• Clearly a key focus for optimisation could be the application of the inverse mass matrix
M−1. The choice of a modified basis leads, in this case, to a full rank mass matrix, and
thus the inverse must be precomputed and stored. For hexahedral elements, one route to
investigate is the evalution of the inverse mass matrix via matrix-free methods; if the ma-
trixB is chosen to be square by selecting the same number of quadrature points as modes,
then the action of M−1u is given by the evaluation (B>WB)−1u = (B−1W−1B−>)u
where W is the diagonal matrix holding quadrature weights and geometric mappings.
This can be evaluated in a matrix-free manner by precomputing the inverse basis matrix
(which is common to all elements) and then applying sum-factorisation via the BwdTrans
kernel for hexahedral elements. The action of W−1 is readily computed owing to its diag-
onal nature. Alternatively, it may be worth investigating change of basis kernels between
the modified basis and orthogonal bases, which then also may yield approaches that can
be considered for unstructured elements.

• The SetBoundaryConditions function could be developed further to reduce communica-
tion overheads by creating a specific ExtractTracePhys function to only extract boundary
condition traces, instead of the current generic function which results in unneeded MPI
communication.

• It would also be beneficial to overlap the computation of the volume term with the surface
MPI communication. This means that instead of waiting for the surface term commu-
nication to finalised immediately, only the surface sends are posted with the volume
computation occurring concurrently. Then, once the volume computation is completed
the volume sends are also posted followed by both the volume and surface receives. This is

7

a more efficient setup because it allows further computation to proceed while the commu-
nication is in progress, effectively reducing the operative MPI communication overhead
with less processes idling.

• Additional benchmarking against other codes could prove useful in terms of identifying
othe areas of overhead.

References

[1] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia,
S. Yakovlev, J. E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source
spectral/hp element framework. Computer Physics Communications, 192:205–219, 2015.

[2] D. Moxey, C. D. Cantwell, Y. Bao, A. Cassinelli, G. Castiglioni, S. Chun, E. Juda,
E. Kazemi, K. Lackhove, J. Marcon, G. Mengaldo, D. Serson, M. Turner, H. Xu, J. Peiró,
R. M. Kirby, and S. J. Sherwin. Nektar++: enhancing the capability and application of
high-fidelity spectral/hp element methods. Computer Physics Communications, 249:107110,
2020.

[3] George Karniadakis and Spencer Sherwin. Spectral/hp Element Methods for Computational
Fluid Dynamics. Oxford University Press, Oxford, 2 edition, 2005.

[4] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous galerkin method for time-
dependent convection-diffusion systems. SIAM Journal on Numerical Analysis, 35(6):2440–
2463, 1998.

[5] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical intro-
duction. Springer, Berlin, New York, 3rd edition, 2009.

8

Figure 2: Subsection of MPI communication timeline showing all 18 processes across a single
RK4 time-step.

9

Figure 3: Split of time spent in PerformExchange across all 18 processes.

Figure 4: Flame chart showing the breakdown of the stack trace by CPU time spent in individual
functions.

Figure 5: Call tree showing the CPU time spent on the advection and diffusion components.

10

Figure 6: Call tree filtered by the dgemv BLAS function.

11

Figure 7: Call tree filtered by the dgemm BLAS function.

12

	Introduction
	Executive summary
	Discontinuous formulation
	Case setup

	Profiling software and hardware setup
	Results
	MPI
	Compressible flow solver

	Conclusion

