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Many activities are joint with the EPSRC SEAVEA project due to synergies and cost efficiencies
(e.g. PI time, events, HPC access to ARCHER2, international interactions and dissemination) as
mentioned in the AQUIFER project description. The team includes:

• Prof Serge Guillas, PI

• Prof Peter Coveney, coI

• Dr. Matthew Graham, Senior Research Data Scientist

• Dr. Tuomas Koskela, Senior Research Software Engineer

• Yiming Yang, PhD student

1 Events and reporting

Our level of direct interactions is high, as we meet and report

• fortnightly at NEPTUNE Progress Meetings on Thursdays,

• fortnightly in AQUIFER technical meetings on Mondays: Ed Threlfall, Ander Gray and James
Buchanan represent UKAEA.

Our events have been joint with EPSRC SEAVEA. These have included:

• Hackathons 23/06/2022 (linked to ICCS 2022), 8-9/12/2022, with another one planned for Spring
2023.

• Hack session with the developers on 2022-05-06 fully capturing the new work in SEAVEAtk
(FabNEPTUNE)

• UKAEA workshop, 05-06/09/2022 (Abingdon)

• Applications Meeting, 12/12/2022, UCL

• UCL-UKAEA collaborative workshop, 10/03/2023, UCL
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2 Functional Emulation for temperature profile: Reduced Order
Modelling

2.1 Study Case: An-isotropic Heat Transportation

The model for time evolution of the temperature field T is thermal diffusion, which in a plasma after
Braginskii parametrization gives:

3

2
N

∂T

∂t
= ∇ ·

(
(k∥b(b∇T ) + k⊥(∇T − b[b∇T ])

)
where b indicates the magnetic field and k∥, k⊥ are the thermal conductivities with respect to the
direction parallel or perpendicular along the b. The homogeneous Dirichlet boundary conditions are
set on the left, top, and right boundaries of the spatial domain.

In this case, we are interested in emulating the relationship between direction θ of b and the temper-
ature profile Tx on the bottom boundary at steady state by emulator such that:

femulator : θ → Tx, θ ∈ [0,
π

2
], Tx ∈ C[0, 1]

Figure 1: (left) Temperature transfer with incident angle θ (right) Temperature profile on bottom
boundaries given θ

2.2 Methods: Outer Product Emulator

The high-resolution physical simulation generates high-dimensional data over discretized spatial do-
mains, such as wave heights in a particular region of the ocean or temperature fields over a heating
system. However, the high dimensionality of the data poses significant challenges when building sta-
tistical emulators. Traditional emulators often struggle with scalability or accuracy.

To balance scalability and accuracy, the Outer Product Emulator (OPE) has been introduced. The
OPE creates a single emulator for all simulation outputs over the entire domain and simplifies the
representation of fitted functions using products of component functions. In general, the OPE takes
the form:

f(r, s) =
v∑

j=1

βjgj(r, s) + ϵ(r, s)

Here, f(r, s) is the simulator output with input r at output location s, gj are the regressor functions,
βj are unknown coefficients, and ϵ is the residual assumed to be a Gaussian Process (GP) such that
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ϵ ∼ GP (0, kλ(, ·, )).

The OPE has two main characteristics that distinguish it from conventional multivariate emula-
tors. First, the covariance function of the residuals is separated into inputs r and outputs s, that
is, kλ(r, s, r

′, s) = krλ(r, r
′) × ksλ(s, s

′). Second, the regressor functions gj are given by products
gj(r, s) = grj (r)

⊗
gsj (s) where

⊗
is the outer product symbol. In this case, the Legendre Poly-

nomials are used as the input regressor, with grj (θ) = 1, 6θ − 1, 6θ2 − 6. However, due to the sharp
changes in the temperature profile shown in Figure 1, commonly used smooth basis functions such as
Legendre polynomials and Fourier basis are not suitable. Instead, we select the Haar wavelets as the
basis functions for our output regressors, see Figures 2a and 2b.

(a) Legendre Polynomials (b) Haar Wavelet Functions

Figure 2: Choices for Regressor Functions

2.3 Results

We run the simulator over 40 different θs which are evenly chosen to cover the input parameter space.
For each run, there are 641 discretised values over spatial field. We implement the OPE in two settings:

• Emulation for Simulation: In this case, We use all the 641 discretised values to fit the OPE
for emulating the computational model.

• Emulation for pseudo-experimental “observation”: We uniformly sampled 80 values from
the 641 discretised values and added with random noise for fitting a profile by observed experi-
mental data.

The results demonstrate the benefits and robustness (for pseudo observations) of the reduced order
modelling approach using functional emulation, see Figure 3. However, with more input parameters,
higher dimensional outputs and coupled models, and for sharper input-output functional forms (e.g.
lower angles) more investigation is under consideration: possible use of linked emulations (Ming and
Guillas 2021) and output dimension reduction (Zhang, Mak, and Dunson 2022) as well as Deep GPs
(Ming, Williamson, and Guillas 2022).

3 Deep GPs and physics-aware emulation

3.1 Deep Gaussian Process (DGP)

A Deep Gaussian Process (DGP) is a probabilistic model that builds on the idea of a Gaussian process
(GP) by extending it to multiple layers. The model is comprised of multiple layers of GP models,
where each layer is a GP that takes the output of the previous layer as its input (see Figure 4). One
of the key advantages of DGPs over traditional GPs is their ability to model complex, highly non-
linear functional forms more effectively, which makes them well-suited for emulating non-stationary

3



Figure 3: Emulation results for simulation outputs (first row) and pseudo observations with two
different θs. The red curves are the mean emulation result, the blue dotted red curves are the 95%
Confidence Interval, the blue curves are the true simulation result, and the dotted gray curves are
sampled emulation result.
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Figure 4: The generic DGP hierarchy

functions, as we will discuss in the following case study. Furthermore, DGPs provide more informative
uncertainty estimation in predictions (Ming, Williamson, and Guillas 2022), making them valuable in
applications where accurate risk assessment is critical.

3.2 Study Case: Simplified Lorenz Model

The Lorenz Model is derived from a 2D model of Rayleigh-Benard convection:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

where ρ, σ, β are respectively the Rayleigh Number (Ra), the Prandtl Number (Pr), and the coupling
strength. The Nusselt number (Nu) for this model, representing the heat flux out is Nu = 1+ 2z

ρ . The
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(Ra, Pr) −Nu surface of the Lorenz model is non-stationary and exists many sub-regimes behaving
differently which are shown in Figure 5. In the study, we fixed the coupling strength to 1. The domain
for Rayleigh number and Prandtl number is [0, 100].

Figure 5: The (Ra, Pr) − Nu surface of Lorenz Model. There are many level sets which show an
extreme non-stationarity. (left) 2D contour plot (right) 3D plot.

3.3 DGP Results

In this section, we demonstrate the powerful ability of Deep GP to emulate non-stationary function:
the (Ra, Pr) − Nu surface of the Lorenz model. We compare Deep GP with the original GP, and
Treed GP which combine the flexibility of decision trees with the smoothness of Gaussian processes
to emulate functions with complex structures. The sampling scheme is the Latin hypercube sampling
with domain x ∈ [0.1, 100.1]2, which is implemented by the MOGP package 1. The settings for each
model are outlined below:

• Gaussian Process: The GP model with mean function m(x) = 0 and Matérn-2.5 Kernel

K(x, x′) = (1 +
√
5|x−x′|
γ + 5(x−x′)2

3γ2 ) exp (−
√
5|x−x′|
γ ) with length parameter γ = 0.5.

• Deep Gaussian Process The DGP model consists of 2 GPs model above, with length param-
eters γ1 = 1.0, γ2 = 0.5 for stabilizing the numerical computation. The 2 GPs are connected in
serial: We use the dgpsi2 package for implementing the DGP, which are available in both python
and R.

• Treed Gaussian Process The treed GP method employs a decision tree algorithm to divide
a domain into multiple non-overlapping subsets. Let r ∈ 1, ..., R denote the R non-overlapping
regions partitioned by the tree T drawn from the tree prior. In each region, a GP regression
is carried out using a default GP prior, as set in the tgp3 package. The kernel used is also
Matérn-2.5 with length parameter γ = 0.5, which is the same as the other models compared to
ensure fairness. The tree structure and each component GP are jointly optimized by maximizing
the likelihood.

The qualitative results are presented in Figure 6. As shown in the figure, both GP and DGP start
to capture the discontinuities with only 30 samples, whereas Tree GP requires 100 samples. This
could be due to the requirement that splits of Tree GP must be parallel to the axis, making it less
flexible with fewer samples. With 100 fitting samples, we observe that DGP outperforms the other
models and shows the discontinuous boundaries more clearly. In Figure 7, we compute the Root
Mean Square Error (RMSE) to measure the performance improvements with an increasing number of

1https://github.com/alan-turing-institute/mogp-emulator
2https://github.com/mingdeyu/DGP
3https://cran.r-project.org/web/packages/tgp/index.html
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Figure 6: The mean of emulation result: GP, DGP Tree GP and True surface (left to right) with 5,
30, 100, 200 samples (top to bottom)

training samples. Each model is fitted with n = 5, 10, 15, 30, 50, 100, 200 samples and evaluated over
2500 test points evenly spaced over the domain [0.1, 100.1]× [0.1, 100.1]. Overall, DGP has the lowest
RMSE for all numbers of fitting samples. However, RMSE averages the results over the entire domain,
which may obscure the emulation performance of our specific region of interest - the discontinuities.
In the future, a more comprehensive metric should be developed to evaluate emulation results for
non-stationary functions.

In some downstream tasks, such as uncertainty quantification and parameter calibration, multiple
runs of the emulator may be required over the same evaluated point. Therefore, it’s important to
consider the running time of the emulator. We measured the predicting time over 2500 test points and
demonstrated the fitting and predicting time of each model in Figure 8. We observed that the fitting
and predicting time of GP and Treed GP remained constant with the increase of the number of fitting
samples. On the other hand, the fitting time of DGP increased linearly with the increase of the number
of fitting samples, whereas the predicting time increased exponentially. This is a crucial limitation
in large-scale and high-resolution emulation. For DGP, the prediction complexity is O(mk(n3 + n)),
where m is the number of prediction samples, k is the number of GP components in DGP structure,
and n is the number of fitting samples.
In summary, DGP outperforms standard GP and Treed GP in emulating non-stationary functions in
terms of accuracy and boundary detection. However, the heavy computational burden may hinder its
applications in large-scale and high-resolution emulations.
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Figure 7: The Root Mean Square Error (RMSE) of emulation means with respect to the number of
fitting samples.

Figure 8: Comparison of Fitting (left) and Prediction (right) Time with respect to the number of
fitting samples over 2500 test samples.

3.4 Physics Aware Emulation

In this section, we integrate established principles of physics into our sampling methodologies to assess
their potential for emulating non-stationary functions. In the Lorenz model’s (Ra, Pr)−Nu surface,
there are known asymptotes that dictate the stability of the fixed points in Lorenz dynamics. These
asymptotes are represented by the discontinuous boundaries shown in Figure 5, and are characterized
by upper and lower limits Pru(Ra) and Prl(Ra) (see Figure 9), Pru = Ra−2(b+2) and Prl = b+1.

We created a physics-aware sampling region that covers both asymptotes, with a margin of 15 units (as
shown in Figure 9). To cover the non-cube region, we utilized two Latin Hypercube designs (as depicted
in Figure 10). In the following investigation, we compared the physics-aware sampling approach with
the Latin Hypercube sampling method over the entire domain. In particular, we employed an initial
sampling of one-third of the total number of samples over the entire domain for the physics-aware
approach, followed by the remainder of the samples being taken from the physics-aware region.

3.5 Physics-aware Emulation Result

The results presented in Figure 11 demonstrate the effectiveness of physics-aware sampling in identi-
fying boundary contours. The figure illustrates that GP with physics-aware sampling requires fewer
samples as compared to GP without the sampling scheme. However, DGP requires more samples
to detect the boundary contours than both GP with and without physics-aware sampling but DGP
outperform others in terms of accuracy with enough samples. Furthermore, Figure 12 shows that
both GP and DGP with the physics-aware sampling have lower RMSE values compared to the GP
without the sampling scheme. This indicates that the physics-aware sampling scheme significantly
enhances the emulation of non-stationarity, especially with a limited number of samples (see RMSE
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Figure 9: Left: The upper and lower asymptotes Pru(Ra) and Prl(Ra). Right: Physics-aware sam-
pling region.

Figure 10: (left) Physics-aware Sampling Scheme (right) An example for the sampling scheme

of 30 samples in Figure 12). Moreover, the RMSEs are also smaller for larger number of samples
compared to conventional space-filling schemes.
Although our setup has some evident flaws, such as an overlapping sampling region by two Latin Hy-
percube designs and a small uncovered area at the left-bottom corner (see Figure 10 (left)), the results
show that the sampling scheme improves accuracy and sample efficiency. These findings confirm the
effectiveness of incorporating prior knowledge of physics into the emulation approaches. Although this
prior knowledge is very strong and can not be available for every problem, we can use such applications
under a careful design. In conclusion, the results of this study demonstrate the potential benefits of
combining machine learning with physical priors. Moving forward, further research in this area will
be critical for advancing our understanding in complex systems and developing more effective tools
for solving real-world problems.

4 Treed-GPs with using non-axis aligned splits

We have done some initial exploration of extending the Treed Gaussian (TGP) approach above to
using non-axis aligned splits, in anticipation of this being able to better reflect the sort of input-
output relationships we expect for the phase-diagrams of both the toy Lorenz 1963 + diffusion model,
and the Nektar++ natural vertical convection model. As a simpler starting case we look a model
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Figure 11: Contour level plots of the predicted means (red curves) and true discontinuous boundaries
(black curves). Columns represent methods used, namely GP, GP with physics-aware sampling, and
DGP with physics-aware sampling (left to right). Rows correspond to the number of fitting samples
used, with 30, 60, 120, and 150 samples (top to bottom).

Figure 12: The RMSE for GP, GP with physics-aware sampling, and DGP with physics-aware sampling

Figure 13: Proof-of-concept (no fit) splitting examples using TGP with non-axis aligned splits

which uses linear inequalities (a × x + b > 0 for parameters a and b and input x) to do the splits at
each level of the tree and uses a fixed-degree polynomial in the input as the prediction models at each
tree leaf (with the polynomial coefficients parameters to be fitted); it should be tractable to extend
this to instead use Gaussian process predictors at the leaf nodes, as in the original Bayesian treed GP
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model. For example for a 2D input space generating random parameters for a tree of fixed depth of
4 produces outputs surface like Figure 13 for this simplified model.

This can then be combined with a simple independent Gaussian observation noise model to give
a parametric model which can be fitted to simulations using Markov chain Monte Carlo (MCMC).
For a fixed tree topology the parameters of the model – the coefficients for the split linear equal-
ities, plus polynomial coefficients of the outputs predictors – are of fixed dimension and we can
apply standard MCMC methods to update them. As the forward model is implemented in JAX
(https://jax.readthedocs.io/) we can use automatic differentiation to compute the gradient of the pos-
terior density with respect to these parameters to use gradient based MCMC methods such as the
Metropolis-adjusted Langevin algorithm and Hamiltonian Monte Carlo.

The posterior density is non-smooth with respect to the split parameters so it is unclear how
effective gradient based methods will be at updating these parameters, but we can alternate updates
to the predictor parameters with the split parameters fixed (with the posterior density then a smooth
function of the predictor parameters) with updates to the split parameters using non-gradient based
proposals. The split tree topology can also be updated using a reversible jump MCMC type approach
as in the original Bayesian treed GP paper.

5 Polynomial Chaos Expansion (PCE) and Stochastic Collocation
(SC) surrogate models: novel Simplex Stochastic Collocation (SSC)

Figure 14: Discontinuous test function and standard SC surrogate.

As stated in the proposal, in D2.1 (Surrogate models, Model Order Reduction and verification) we
have extended EasyVVUQ with capability to handle QoIs which display discontinuities or high gradient
in the stochastic input space. This is important since surrogate models based on global polynomials
(PCE/SC) will display nonphysical oscillations, see Figure 14. In particular we implemented the
Simplex Stochastic Collocation (SSC) method (Edeling, Dwight, and Cinnella 2016), which (unlike
SC) employs the Delaunay triangulation to discretize the probability space into simplex elements.
Using such a multi-element technique has the advantage that local mesh adaptation can be performed,
such that only regions of interest are adaptively refined.

The SSC method is ‘physics-aware’ (related to D2.6) in the sense that it can automatically detect
regions in the input space where the function is irregular. It achieves this by enforcing the so-called
Local Extremum Conserving (LEC) limiter in all simplex elements. Skipping details for brevity, this
limiter flags elements through which a discontinuity runs, increasing the probability that the code is
evaluated within that element at the next iteration. Simultaneously, the local polynomial order of
the interpolation point stencil of that element is reduced, which avoids nonphysical oscillations as in
Figure 14 b. The SSC sampling plan and surrogate are shown in Figure 15, which can be replicated
by running the Jupyter notebook tutorial in the EasyVVUQ ‘tutorials’ folder 4. Next steps involving

4https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tutorials/simplex stochastic collocation tutorial.ipynb
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Figure 15: Local mesh and resulting SSC surrogate for the test function in 14 a.

applying the SSC method to a Nektar++ case.

6 Calibration and data assimilation in ANAET model

6.1 Introduction

In this section we consider the problem of inferring the state trajectories, and potentially parameters,
of models of dynamical systems in which the evolution of the state over time is governed by a set
of differential equations. We consider both cases in which the state evolution is deterministic and
described by a system of ordinary differential equations (ODEs), and where the dynamics are driven
by random noise processes, described by a system of stochastic differential equations (SDEs). We
describe two computational approaches for estimating the posterior distribution on the model param-
eters and/or state trajectories given (noisy) observations of the state over time — a gradient-based
Markov chain Monte Carlo method and particle filtering — and illustrate these approaches on a test
model of magnetohydrodynamic instability. We identify some of the challenges inherent to performing
inference and filtering in such models and discuss some alternative computational methods which may
be relevant to deal with these issues.

6.2 Notation

Bold symbols, for example x indicate vector quantities. The set of consecutive integers from a to
b inclusive is denoted a:b and when used to subscript a symbol this indicates an indexed collection,
for example x1:N = (xn)

N
n=1. The set of real numbers is denoted R, and non-negative reals R≥0. A

random variable x being distributed to or sampled from a distribution P is denoted x ∼ P ; similarly
x | y ∼ P (y) indicates the conditional distribution of x given y is P (y). We will use probability
distribution to refer to probability measures, that is [0, 1] valued functions on sets of outcomes (events)
in the sample space, which we distinguish from a density function for the distribution with respect to an
appropriate reference measure, that is a R≥0 valued function on the sample space. In all cases here we
will consider distributions on real values or real vector spaces and will define densities with respect to
the Lebesgue measure, so that for a distribution P with density function p we have P (A) =

∫
A p(x) dx

for all events A. A Dirac measure (point mass) at x is denoted δx, a normal distribution with mean m
and variance v is Normal(m, v), a multivariate normal distribution with mean vector m and covariance
matrix C is Normal(m, C) and a half-normal distribution with scale parameter s (that is a normal
distribution Normal(0, s2) truncated below at zero) is HalfNormal(s).

11



6.3 Deterministic evolution models

A wide class of dynamical systems can be modelled by an explicit system of autonomous first order
ODEs

dx(t)

dt
= f(x(t),θ),

where x : R≥0 → RX is the trajectory of the X-dimensional state of the system over time, θ ∈ Θ is
a set of parameters of the model and f : RX × Θ → RX is a vector-valued function describing the
dynamics of the system.

Given an initial state x(0) = x0 for the system we can (numerically) solve the initial value problem
(IVP) to compute the value of state x(t) at times t > 0 for fixed values of the parameters θ. A
numerical solver for the IVP implicitly defines a family of maps Ft : RX ×Θ → RX such that

x(t) = Ft(x0,θ).

6.4 Stochastic evolution models

For systems where the dynamics are intrinsically noisy or for which we have only a partial description
of the dynamics, an alternative class of models is those described by a system of autonomous SDEs

dx(t) = a(x(t),θ)dt+B(x(t),θ)dw(t)

where x : R≥0 → RX is a vector-valued stochastic process describing the state of the system over
time, θ ∈ Θ is a set of (unknown) parameters of the model, a : RX ×Θ → RX is a function describing
the (deterministic) drift term in the dynamics, w : R≥0 → RW is a W -dimensional vector of standard
Wiener processes and B : RX × Θ → RX×W is a diffusion coefficient defining how the Wiener noise
enters the dynamics.

Numerical integrators for SDEs can be used to (approximately) simulate realisations of the process.
Specifically most numerical schemes can be formulated as a family of forward operators Fh : RX ×Θ×
RV → RX such that for a small time step h ≥ 0 and a V -dimensional vector of standard normal variates
v ∼ Normal(0, I), then Fh(x(t),θ,v) is an approximate sample from the conditional distribution on
x(t + h) given the current state x(t) at time t and parameters θ. The simplest and most commonly
used example of such a numerical integrator is the Euler-Maruyama scheme for which

Fh(x,θ,v) := x+ ha(x,θ) +
√
hB(x,θ)v

and the vector of normal variates v has dimension V = W .
When W = X and B(x(t),θ)B(x(t),θ)T is strictly positive definite, then the Euler-Maruyama

scheme gives an approximation of the conditional distribution on x(t+ h) given x(t) and θ for small
h > 0 as

x(t+ h) | (x(t),θ) ∼ Normal
(
x(t) + ha(x(t),θ), hB(x(t),θ)B(x(t),θ)T

)
.

An alternative approach to approximating the solutions to the SDEs is to decompose the system
into an ODE system and zero-drift SDE system

dx(t)

dt
= a(x(t),θ) (i);

dx(t) = B(x(t),θ)dw(t) (ii);

and use a Strang-splitting like approach which alternates steps numerical solving (i) and (ii). If
we define Ah(x,θ) as a (numerical) solution x(h) to the IVP for the ODE system (i) with initial state
x(0) = x then assuming a simple Euler-Maruyama scheme to solve (ii), we have that a Gaussian
approximation to the conditional (transition) distribution is

x(t+ h) | (x(t),θ) ∼ Normal
(
Ah(x(t),θ), hB(x(t),θ)B(x(t),θ)T

)
.

This allows for example using an ODE solver with adaptive time-stepping and/or implicit steps
suitable for stiff systems for implementing Ah to maintain numerical stability for larger h.
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6.5 Observation model

We assume we noisily observe the system state at N times 0 ≤ t1 < t2 . . . tN−1 < tN . For simplicity
we will assume the observations are subject to additive Gaussian noise with

yn ∼ Normal (H(x(tn),θ), R(θ)) , n ∈ 1:N,

where H : RX × Θ → RY is the (possibly non-linear) observation operator and R : Θ → RY×Y is a
positive-definite valued function defining the observation noise covariance.

6.6 Inference in deterministic evolution models

For deterministic evolution models, the full state trajectories are entirely determined by the initial
state of the system x0 and parameters θ. Given a joint prior distribution π0 on the initial state x0

and parameters θ then our overall generative model for the observations y1:N is

(x0,θ) ∼ π0; yn ∼ Normal(H(Ftn(x0,θ),θ), R(θ)) n ∈ 1:N,

and the posterior distribution π on the initial state x0 and parameters θ is

π(dx0, dθ | y1:N ) ∝

|R(θ)|−N
2 exp

(
− 1

2

N∑
n=1

(
yn −H(Ftn(x0,θ),θ)

)T
R(θ)−1

(
yn −H(Ftn(x0,θ),θ)

))
π0(dx0,dθ).

The posterior is specified up to an unknown normalizing term (the model evidence) depending
only on the observations y1:N . Assuming π0 has a tractable density function, then we can evaluate
an (unnormalized) density function for the posterior. This density function can be used within for
example a Markov chain Monte Carlo (MCMC) method to compute a sequence of (x0,θ) samples
which are approximately distributed according to the posterior distribution.

The posterior (predictive) distribution on all states x(t) for t > 0 is the pushforward of the posterior
distribution on (x0,θ) under Ft. If we have samples from the posterior distribution on (x0,θ) given
y1:N we can therefore just map these through Ft to get posterior samples of x(t) for any t, both when
interpolating between and extrapolating outside the observation times.

While having the full state trajectories determined just by the initial state and parameters both
results in a relatively low (X + dim(Θ)) dimensional inference problem and simplifies making predic-
tions, the rigidity of having the state evolution fully determined by a low-dimensional state can also
be problematic in the case of model mismatch - that is a discrepancy between the generative process
which gave rise to the observed data and the model being fit to the data. When there is model mis-
match there may be no configurations of (x0,θ) which lead to states at the observed times (x(tn))

N
n=1

which are simultaneously consistent with all of the observations y1:N . This can potentially lead to
a posterior with multiple spurious modes corresponding to configurations consistent with different
partial subsets of the observations.

6.7 Filtering in stochastic evolution models

For stochastic evolution models, for now assuming fixed parameters θ, the state trajectories x(t)
are no longer deterministic given the initial state x0 of the system. This means we need to infer
a posterior distribution on a state trajectory rather than an individual state, resulting in a much
higher-dimensional latent space and more challenging inference problem. Conversely, the additional
flexibility in the probabilistic description of the dynamics can mean that such models are more robust
to mismatch with the underlying generative process that gave rise to the observed data, with the
Wiener noise processes able to account for non-modelled aspects in the dynamics.

The transition kernel associated with the exact solution of the SDE defines a conditional distribu-
tion on x(t′) given x(t) for any t′ ≥ t. In general we cannot sample from nor evaluate a density for the
conditional distribution, but we can use numerical schemes to approximate it as described previously.
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If we define xn = x(tn) for n ∈ 1:N the overall generative model for a stochastic evolution described
a system of SDEs with fixed parameters θ can be formulated as a state space model (SSM) defined by

x0 ∼ π0; xn ∼ Mn(·|xn−1), n ∈ 1:N ; yn ∼ Gn(· | xn), n ∈ 1:N ;

for suitable Markov transition kernels M1:N , observation distributions G1:N and initial state (prior)
distribution π0. Filtering in SSMs is a process of recursively computing the posterior distribution on
a state xn at time step n given the observations at all time steps up to and including n that is y1:n.
We define two sequences of distributions: the filtering distributions πn for n ∈ 1:N are the posterior
distributions on xn given y1:n while the predictive distributions π⃗n for n ∈ 1:N are the posterior
distributions on xn given y1:n−1. We then have that two sequences of distributions can be recursively
defined by

π⃗n(dxn | y1:n−1) =

∫
RX

Mn(dxn | xn−1)πn−1(dxn−1 | y1:n−1), n ∈ 1:N ;

with the notational convention that π⃗1(dx1 | y1:0) := π⃗1(dx1) and π0(dx0 | y1:0) := π0(dx0), and

πn(dxn | y1:n) =
gn(yn | xn)π⃗n(dxn | y1:n−1)∫
RX gn(yn | x)π⃗n(dx | y1:n−1)

, n ∈ 1:N ;

where gn is a density function for the observation distribution Gn.
In general the integrals in these two recursions will not have analytic solutions and we will need

to use methods which approximate them. One such class of algorithms is particle filtering (Gordon,
Salmond, and Smith 1993) which uses Monte Carlo approximations to the two recursive update steps,
and give asymptotically (in the limit of the number of Monte Carlo samples going to infinity) exact
estimates of expectations with respect to the filtering distributions.

A particle filter constructs a sequence of ensembles of particles, x
(1:P )
n := (x

(p)
n )Pp=1 for time indices

n ∈ 0:N (where P is the ensemble size, an integer greater than zero), corresponding to empirical
approximations of the filtering distributions,

πn(dxn | y1:n) ≈
1

P

∑
p=1

δ
x
(p)
n
(dxn), n ∈ 0:N.

This sequence of filtering ensembles is initialised by sampling the particles independently from the
initial state distribution π0, that is

x
(p)
0 ∼ π0, p ∈ 1:P.

For time indices n ≥ 1, an ensemble of particle proposals x̃
(1:P )
n are computed from the previous

filtering ensemble x
(1:P )
n−1 , as

x̃(p)
n ∼ Qn(· | x(p)

n−1,yn), p ∈ 1:P

where Qn is the proposal distribution for time index n, for which various choices are discussed below.
These particle proposals can be considered as an importance weighted empirical approximation to the
filtering distribution πn

πn(dxn | y1:n) ≈
∑P

r=1wn(x⃗
(r)
n ,x

(r)
n−1,yn) δx⃗(r)

n
(dxn)∑P

s=1wn(x⃗
(s)
n ,x

(s)
n−1,yn)

,

with importance weighting function

wn(xn,xn−1,yn) =
mn(xn | xn−1) gn(yn | xn)

qn(xn | xn−1,yn)
,

where mn is a density function for the Markov transition kernel Mn and qn is a density function

for the proposal distribution Qn. A new filtering ensemble x
(1:P )
n−1 is computed from the weighted
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particle proposal ensemble by resampling, that is independently sampling from the weighted empirical
approximation to the filtering distribution πn,

x(p)
n ∼

∑P
r=1wn(x⃗

(r)
n ,x

(r)
n−1,yn) δx⃗(r)

n
(·)∑P

s=1wn(x⃗
(s)
n ,x

(s)
n−1,yn)

, p ∈ 1:P.

These proposal and resampling steps can then be iteratively applied for each n ∈ 1:N to compute the
full sequence of filtering ensembles.

The choice of proposal distributions Q1:N are a key factor in determining the statistical efficiency
of a particle filter. A common choice is the bootstrap proposal

Qn(dxn | xn−1,yn) = Mn(dxn | xn−1),

that is, sampling the proposals directly from the Markov transition kernels of the SSM. This choice of
proposal distributions leads to a particularly simple weighting function

wn(xn,xn−1,yn) = gn(yn | xn),

which depends only on the proposed particle and observation values, and does not require access
to an explicit density function mn for the Markov transition kernel Mn. However, by ignoring the
observations when proposing new values for the particles and simply sampling from the prior SSM, the
proposals may end up in regions of the state space where gn(yn | xn) is small (that is the proposal are
inconsistent with the observed data yn), corresponding to being in the tails of the filtering distribution
πn. In such cases, the particle filter will typically suffer from weight degeneracy whereby due to the
high variance of the importance weights, once normalized most particles have weights very close to zero
other than a single particle with weight close to one, resulting in an ensemble of effectively only one
sample. Particle filters suffering from weight degeneracy will tend to give poor filtering distribution
estimates.

To minimize the tendency towards weight degeneracy, an alternative choice of proposal distribution
is to use the conditional distribution on the state at the next time index given both the previous state
and current observations, that is

Qn(dxn | xn−1,yn) =
Mn(dxn | xn−1) gn(yn | xn)∫
RX Mn(dx | xn−1) gn(yn | x) .

In this case the weighting function simplifies to

wn(xn,xn−1,yn) =

∫
RX

Mn(dx | xn−1) gn(yn | x),

which does not depend on the value of the sampled proposals. By eliminating the dependence on
the stochastically sampled proposals, this choice of proposal minimises the variance of the importance
weights associated with the proposed particles, and is therefore sometimes termed the locally optimal
proposal, in terms of minimising the variance of the importance weights).

While attractive from a statistical efficiency standpoint, the locally optimal proposal is only ap-
plicable to a subset of models for which the proposal distribution and weighting function have closed
form solutions. One class of SSMs for which using locally optimal proposal is tractable are those with
Gaussian Markov transition kernels M1:N and observation distributions G1:N where additionally the
mean of the observation distribution is a linear function of the state (Doucet, Godsill, and Andrieu
2000).

Returning to the specific case of an SDE model as described previously, if we assume the inter-
observation intervals tn − tn−1, n ∈ 1:N are sufficiently small, then the Markov transition kernels for
the state updates can be approximated as Gaussian distributions using the splitting numerical scheme
described above as

Mn(· | xn−1) = Normal(Atn−tn−1(xn−1,θ), Cn(xn−1,θ)), n ∈ 1:N,
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where Cn(xn−1,θ) := (tn − tn−1)B(xn−1,θ)B(xn−1,θ)
T. We also have that the observation distribu-

tions are Gaussian
Gn(· | xn) = Normal(H(xn,θ), R(θ)), n ∈ 1:N.

For linear-in-the-state observation operators H(xn,θ) = H(θ)xn, then the locally optimal proposal
for this SSM is tractable, specifically

Qn(· | xn−1,yn) = Normal
(

Atn−tn−1(xn−1) + Cn(xn−1)H
T(HCn(xn−1)H

T +R)−1(yn −HAtn−tn−1(xn−1)),

Cn(xn−1)− Cn(xn−1)H
T(HCn(xn−1)H

T +R)−1HCn(xn−1))
where we have elided the dependence of terms on θ for compactness.

6.8 Test model

As a test case we consider a model of magnetohydrodynamic instability coupled to a slow dissipa-
tive background evolution (Arter 2012). The resulting axissymmetric non-axissymmetric extended
(ANAET) model is described by the system of ODEs

ä = −γra− (µ1 + µ2b)a
3 − µ6a

6ȧ, ḃ = ν1 − ν2b
2 − (δ0 + δ1b)a

2,

where a is a non-axissymmetric ideal mode coupled to an axissymmetric mode b, and (γr, µ1, µ2, µ6, ν1, ν2, δ0, δ1)
are free parameters. Defining x = (a, ȧ, b), these equations can be written as a first order ODE system

dx(t)

dt
=

 x2(t)
−γrx1(t)− (µ1 + µ2x3(t))x1(t)

3 − µ6x1(t)
6x2(t)

ν1 − ν2x3(t)
2 − (δ0 + δ1b)x1(t)

2

 .

We also consider a simple stochastic evolution variant of this model defined by the SDE system

dx(t) =

 x2(t)
−γrx1(t)− (µ1 + µ2x3(t))x1(t)

3 − µ6x1(t)
6x2(t)

ν1 − ν2x3(t)
2 − (δ0 + δ1b)x1(t)

2

 dt+ βdw(t),

with W = X = 3, with Wiener noise of magnitude controlled by a shared scalar parameter β > 0
introduced in to each of the three state components.

We assume only observations of first (a) state component and independent Gaussian observation
noise, that is an observation model

yn ∼ Normal(x1(tn), σ
2), n ∈ 1:N.

6.8.1 Inference with PyMC

As a first example we consider jointly inferring the initial state x0 = (a0, ȧ0, b0) and parameters
θ = (γr, µ1, µ2, µ6, ν1, ν2, δ0, δ1, σ) of the original (deterministic) ANAET test model, given simulated
observed data generated from the model. We generate simulated observed data y1:N for N = 100
times tn = n, n ∈ 1:100 (see Figure 16) using the parameter and initial state values defined in Table 1.

Table 1: True values of model variables used to generate simulated data and prior distributions.

Variable True value Prior distribution

a0 1 Normal(0, 1)
ȧ0 2.5 Normal(0, 1)
b0 0.01 Normal(0, 1)
γr 1 Normal(0, 1)
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Variable True value Prior distribution

µ1 0 Normal(0, 1)
µ2 -2 Normal(0, 1)
µ6 0.001 Normal(0, 1)
ν1 0.005 Normal(0, 1)
ν2 0.0001 Normal(0, 1)
δ0 0.0001 Normal(0, 1)
δ1 0 Normal(0, 1)
σ 0.5 HalfNormal(1)

We assign independent weakly informative standard normal priors to all variables other than than
the observation noise scale parameter σ to which we give a half-normal prior to reflect the constraint
that the parameter is non-negative.

We use a gradient-based Hamiltonian Monte Carlo (HMC) (Duane et al. 1987; Neal et al. 2011)
MCMC method to generate approximate samples from the posterior distribution on the initial state
and parameters (x0,θ) given the simulated observations y1:N . Specifically we use the implementation
of the No-U-Turn-Sampler (NUTS) (Hoffman, Gelman, et al. 2014) in PyMC (Wiecki et al. 2023),
which uses dual-averaging algorithm to adaptively set the step size and mass matrix during a warm-
up sampling phase and uses a heuristic to dynamically set the number of steps in the simulated
Hamiltonian trajectories in each proposed move.

To solve the ODE system we use a backwards differentiation formula (BDF) solver with adaptive
time stepping, and propagate derivatives using an adjoint sensitivity analysis approach. Specifically
we use the CVODES solver in the SUNDIALS suite (Hindmarsh et al. 2005; Gardner et al. 2022)
via the Python package sunode (Seyboldt et al. 2022) which provides a PyTensor wrapper of the
CVODES solver which is compatible with PyMC.

Table 2: Convergence diagnostics for MCMC output.

ESS(bulk) ESS(tail) R̂

γr 17 112 1.22
µ1 13 40 1.57
µ2 9 19 1.63
µ6 5 31 2.16
ν1 19 28 1.27
ν2 6 52 1.85
δ0 12 59 1.3
δ1 6 37 1.88
rσ 7 15 1.53
a0 7 35 1.55
ȧ0 10 29 1.77
b0 8 75 1.44

We simulate four independent Markov chains in parallel to facilitate cross-chain convergence diag-
nostics, using 1000 adaptive warm-up iterations per chain and 1000 iterations in the main sampling
phase. Simulating the chains took approximately 12 hours on a system with Intel Core i7-10610U
CPU. Convergence diagnostics for the sampled chains are summarized in Table 2, specifically effec-
tive sample size (ESS) estimates and split-R̂ potential scale reduction factor convergence diagnostics
computed using the rank-normalization based approach described in Vehtari et al. (2021). R̂ values
greater than 1.01 are indicative of poorly converged Markov chains, which we can see is the case for all
parameters here. The ESS estimates give an approximation of how many independent samples would
given an equivalent variance in estimates for different summary statistics using the dependent Markov
chain samples (ESS(bulk) here gives an indication of the effective sample size in the main bulk of the

17



0 20 40 60 80 100

Time t

−10

−5

0

a
(t

)

0 20 40 60 80 100

Time t

−0.05

0.00

0.05

b(
t)

0 20 40 60 80 100

Time t

−4

−2

0

2

4

ȧ
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Figure 16: Simulated trajectories (blue lines) and noisy observations (orange markers) for ANAET
model.

posterior and ESS(tail) in the tails). As here the number of samples Markov chain samples is 4000
and so we would expect ESS values of close to 4000 if the chain samples were close to independent,
we can see the low ESS estimates here indicate chains which will give poor posterior estimates.

Figure 17 shows the estimates univariate and pairwise posterior marginal distributions for all (pairs
of) variables in blue with the prior marginals shown in blue and true values used to generated the
data shown in orange. Given the convergence issues with the Markov chains the posterior estimates
here are likely to be very poor and so should be treated cautiously. The ‘roughness’ of the kernel
density estimates of the posterior are likely a result of the high correlation between chain samples
and the multimodality observed in the univariate marginals may also be an artefact of the poor chain
convergence rather than being reflective of the true posterior.

We see that for most parameters the variable values used to generate data lie within bulk of
the corresponding estimated posterior marginals, as would be expected for for calibrated inference
estimates (Cockayne et al. 2022), however this is not the case for a few variables, most notably the
observation noise scale parameter σ, with the posterior concentrating around a much higher value
(∼ 4.5) that the true value used to generate the data of 0.5. MCMC methods will often struggle to
sample from posteriors where observations are highly informative (Au, Graham, and Thiery 2020),
with a common failure mode in this case being that the sampler gets stuck in a region of space in
which the observation noise scale parameter is large and the signal in the observed data is attributed
to noise. The signal-to-noise ratio in the simulated observed data is relatively high here so this a
potentially a source of some of the convergence issues. MCMC methods such as that described in
Au, Graham, and Thiery (2020) which exploit more information about the geometry of the posterior
distribution may help ameliorate such convergence issues, albeit at the cost of requiring additional
implementation effort to compute the necessary higher order derivatives of the model functions.

Another issue likely contributing to the poor convergence of the MCMC chains here is that the
adaptive ODE solver is failing to converge for many of the (x0,θ) values IVP solves are run for while
simulating the Markov chains. This is likely to be due to the solver being numerically unstable in
some regions of the latent space. During each Markov chain transition, the HMC based method being
used here evaluates the posterior density and its gradients at a sequence of points along a simulated
Hamiltonian dynamics trajectory in the latent space. Evaluating the posterior density and its gradient
requires solving the IVP and if the solver fails to converge at any point in the trajectory the sampler
is forced to fallback to a ‘rejection’ transition whereby it remains at the previous point in the latent

18



4
2
0
2
4

1

4
2
0
2

2

4
2
0
2

6

4
2
0
2
4

1

2
0
2
4

2

4
2
0
2
4

0

4
2
0
2
4

1

0.0
1.5
3.0
4.5

2
0
2
4

a 0

4
2
0

2

a 0

4 2 0 2
r

4
2
0
2
4

b 0

4 2 0 2 4
1

4 2 0 2
2

4 2 0 2
6

4 2 0 2 4
1

2 0 2 4
2

4 2 0 2 4
0

4 2 0 2 4
1

0.0 1.5 3.0 4.5 2 0 2 4
a0

4 2 0 2
a0

4 2 0 2 4
b0

Figure 17: Estimated pairwise and univariate posterior marginals using MCMC chain samples (blue)
against prior distribution (green) and true variable values used to generate data (orange).

space. If the Markov chain ends up in a point in the latent space where moving in most directions in
the latent space will result in the IVP solver failing and a rejection occurring, the Markov chain can
end up ‘stuck’ for many chain samples.

There are various approaches which may help address this issue. A key factor likely contributing
to the poor performance in the test model here is the choice of prior distributions, with weakly-
informative distributions placed on all variables, likely leading to significant prior mass being put on
regions of the latent space which lead to physically implausible dynamics. Using domain expertise to
set more informative prior distributions that avoid putting mass on regions of the latent space which
are likely to lead to IVP solver errors is likely to lead to improved MCMC performance.

Another approach would be to use alternative ODE solvers more tailored to the properties of the
ODE system being considered here or adjust the control parameters of the CVODES solver being cur-
rently used. Arter (2012) noted the challenge posed in accurately numerically simulating the ANAET
system, and little attempt has been made here to identify suitable values for the solver control pa-
rameters such as tolerances and maximum number of steps, or explore alternative numerical solvers.
Timonen et al. (2022) suggests an importance-sampling based approach for iteratively adjusting con-
trol parameters of ODE solvers when performing Bayesian inference in ODE models and accounting
for the approximation error inherent to using coarser numerical approximations. The authors also
note that using adaptive ODE solvers within a MCMC based approximate inference method can be
problematic due to aforementioned convergence issues in regions of the latent space, and suggest a
more robust alternative can be to use a non-adaptive ODE solver within their importance-sampling
based framework for controlling approximation error.
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A complementary approach to addressing these numerical issues to those already discussed, would
be to exploit the sequential nature of the observations here by using a sequential Monte Carlo (SMC)
sampling method (Del Moral, Doucet, and Jasra 2006). The sequence of observations y1:N defines a
natural path of partial posteriors (Dai et al. 2022) corresponding to the posterior distributions on the
latent variables (x0,θ) given observations y1:n for n ∈ 0:N . These N+1 distributions gradually bridge
from the prior distribution for n = 0 to the full posterior for n = N . SMC methods are a generalization
of particle filters, and similarly involve updating an ensemble of particles, here targetting a generic
sequence of distributions rather than specifically the filtering distributions for a SSM. The Markov
kernels used to update each of the particles in the ensemble for a particular target distribution in the
sequence, can be constructed by using a single transition of a MCMC method (such as the NUTS
method used in the experiments here) which leaves the target distribution invariant.

Compared to directly applying a MCMC method SMC samplers offer a number of advantages. The
updates to each particle for each intermediate distribution can be performed in parallel, making them
ideal for deployment on multi-node high performance computing (HPC) systems or single compute
nodes with multiple processing units. For a path of partial posteriors, the earlier target distributions
on the path will only require solving the IVP for a subset of the observation times, significantly
reducing the computational cost of these earlier updates. By updating multiple particles in parallel
across the latent space, SMC samplers can also be less prone to the sticking issues due to failure of
numerical solvers in some regions of the latent space, as if at least some of the particles end up in
regions of the space for which the numerical solver is stable, the updates to these particles will succeed
and particles for which updates are rejected due to solver fails are likely to be subsequently replaced
by these successfully updated particles in the resampling steps between particle updates. Similarly
SMC samplers typically exhibit much more robust performance for posterior distributions exhibiting
multimodality (Dai et al. 2022).

An alternative approach to addressing both the numerical issues involved in repeatedly solving
IVPs, and high computational cost inherent to this, is to a gradient matching based inference approach
which fit a Gaussian process (GP) to the unobserved state trajectories and rather than solving the IVP
match the time derivatives of the GP model to the values of the time derivatives arising from the vector
field function f defining the ODE model (Calderhead, Girolami, and Lawrence 2008; Dondelinger et al.
2013). By avoiding the necessity of solving the IVP to evaluate the posterior density used in these
approaches, we both sidestep the numerical issues involved with ensuring stability of the solver across
the latent space, and significantly reduce the computational cost of inference. The cost is however that
we no longer generate samples from the true posterior of interest but instead from a proxy distribution
which may be less informative about some latent variables in some cases, and which the faithfulness
of which to the true posterior will depend on how well the GPs used to model the state trajectories
reflect the true trajectories of the ODE system.

Instead of using GPs as proxies for the unobserved state trajectories, an alternative is to use a
GP as an emulator for the log-likelihood. Specifically within the context of HMC methods, a GP
emulator for the log-likelihood can be used in evaluating the (log) posterior density values gradients
required to simulate Hamiltonian trajectories in the latent space, to propose new a point for the chain
to move to (Paun and Husmeier 2022). Using a GP emulator in place of directly evaluating the log
likelihood avoids both the cost and potential for convergence issues in repeatedly solving IVPs for each
point on the simulated Hamiltonian trajectory. If the probability of accepting a proposal continues
to be evaluated using the true posterior density however, it can be ensured that such an MCMC
method still asymptotically converges to the true posterior. Requiring only one full posterior density
evaluation per Markov chain iteration both dramatically reduces the computational cost of inference
and also sidesteps the need to be able to compute the derivatives of the true posterior density, often
a significant implementation barrier in practice.

6.8.2 Filtering with ParticleDA.jl

As a second example we consider using a particle filter to estimate the state trajectories x1:N (with
xn = x(tn), tn = n and N = 100 as previously) of the stochastic variant of the ANAET model, given
simulated observed data y1:N generated from the model. Here we fix the parameters to the values
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defined in Table 1, with additionally the diffusion coefficient parameter controlling the scale of the noise
introduced into the dynamics set to β = 0.02. We generate a set of simulated observed data from the
SSM using a fixed initial state with components as defined in Table 1 when simulating the observations,
but when filtering use an initial state distribution with a0 ∼ Normal(0, 1), ȧ0 ∼ Normal(2, 1) and
b0 ∼ Normal(0, 1). Our SSM formulation uses a Gaussian approximation to the Markov transition
kernels based on a splitting numerical scheme which uses an adaptive ODE solver to solve for the
deterministic component of the dynamics and Euler-Maruyama discretisation for the driving Wiener
noise processes.

Figure 18: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 125 and locally optimal proposals.

Figure 19: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 125 and bootstrap proposals.

We use the particle filter implementation in the Julia package ParticleDA.jl (Giles et al. 2023)
to compute particle approximations to the filtering distributions π1:N , using its implementations of
both the bootstrap and locally optimal proposals. Figures 18, 20 and 22 show results for the locally
optimal proposals with P = 125, P = 250 and P = 500 particles respectively, and Figures 19, 21 and
23 show results for the bootstrap proposals with P = 125, P = 250 and P = 500 particles respectively.
In all cases, for the filtering estimates, the blue line shows the estimated filtering distribution mean
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Figure 20: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 250 and locally optimal proposals.

Figure 21: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 250 and bootstrap proposals.

and the blue filled region the estimated mean ± three estimated standard deviation interval.
From Figures 22 and 23 see that particle filters using both the locally optimal and bootstrap

proposals appear to give reasonable estimates of the filtering distribution with P = 500 particles,
with the true state trajectories generally within the intervals estimated to contain most of the mass
of the filtering distributions as expected. For the smaller ensembles of P = 250 (Figures 20 and 21)
and P = 125 (Figures 18 and 19), we see that the estimates of filters using both proposals appear to
degrade at some points (particularly at earlier times in the trajectories where the is greater uncertainty
due to fewer observations), but that filters using the locally optimal proposals outperform filters using
the bootstrap proposals.

Here we are using a relatively coarse numerical approximation to the underlying SDE, with a single
step Euler-Maruyama based scheme used to give a Gaussian approximation to Markov transitions
between states at the observation times. If we had larger inter-observation intervals or wanted to use
a fine time resolution when simulating the underlying SDE system, we could a discretisation scheme
which uses multiple smaller steps in each inter-observation interval. There are also numerical schemes
for simulating SDE systems with higher orders of convergence such as the Milstein method (Mil’shtejn

22



Figure 22: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 500 and locally optimal proposals.

Figure 23: True state trajectories (orange), observed data (green markers) and filtering estimates
(blue) for stochastic ANAET model using particle filter with P = 500 and bootstrap proposals. Top
panel shows

1975) which could be used in-place of an Euler-Maruyama approximation. In these cases while we
can sample from the resulting Markov transition kernels M1:N , they would no longer have tractable
density functions. While we could still apply a particle filter with bootstrap proposals to such SSMs,
use of the locally optimal proposals would no longer be possible.

The assumption of fixed known parameters made here is limiting in practice where often we would
wish to jointly infer these parameters with the state trajectories. One option for jointly inferring the
parameters and state trajectories is to use particle MCMC methods (Andrieu, Doucet, and Holenstein
2010) which run a particle filter to generate proposed updates to both the state trajectories and
parameters within a pseudo-marginal MCMC method (Andrieu and Roberts 2009). Nesting a particle
filter within a MCMC scheme can be computationally expensive however, and pseudo-marginal MCMC
schemes often suffer from a ‘sticking’ pathology whereby chains will show long series of rejected
proposals (Murray and Graham 2016). An alternative is to use gradient-based MCMC methods
directly targetting the joint posterior distribution on the state trajectories and parameters. The
high dimensional latent space and complex dependencies between the latent variables can lead to a
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challenging posterior geometry in such settings however MCMC schemes have been proposed which
can perform efficient inference in this setting (Graham, Thiery, and Beskos 2022).

7 Software and Implementation. HPC Deployment

Deliverable D3.1 and D3.2:
D3.1: The new release 28 March 2023 of the SEAVEA toolkit featuring advanced surrogate

modelling (see above new SSC method). Further releases will integrate more of the methods developed
in AQUIFER.

D3.2: Release of the DA platform was achieved as FabParticleDA. The link to the SEAVEA UQ
platform is within the SEAVEA UQ platform released 28 March 2023:
https://github.com/djgroen/FabParticleDA/tree/master. The test case works locally. HPC
deployment at scale is part of Activity 4.

HPC deployment: As part of our efforts to support NEPTUNE, we have been working on cou-
pling codes using MUSCLE3 as outlined in the proposal. Firstly, we replaced the MPI implementation
with MUSCLE3 and verified a test case with both MUSCLE3 and MPI versions. We found that the
results from the MUSCLE3 implementation matched those obtained with the MPI version.

We then conducted a test case on single desktop, which showed that MUSCLE3 was 10x slower
than the MPI version. However, we expected this due to the smaller size of the test case, and
communications time on MUSCLE3 took too much time comparing with the computational time.
Next, we deployed MUSCLE3 on Archer2 using a larger test case and ran both an MPI job and a
MUSCLE3 job on the same resources. We found that they completed almost at the same time. This
gives us confidence that MUSCLE3 has the potential to efficiently couple large HPC codes. Moving
forward, our next step is to evaluate the performance of MUSCLE3 with larger test cases with more
complex scenarios which should help the NEPTUNE project perform HPC simulations across different
scales.
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