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1 Introduction

In our previous report we provided a state-of-the-art review of available hard-

ware and software for the development of post-Exascale applications. The report

highlights two key observations:

• The hardware landscape is diversifying. At Exascale there will likely be

a diverse range of hardware available, and many of the largest systems

will employ heterogeneous/hierarchical parallelism, characterised predom-

inantly by the use of GPU accelerators.

• There is a wide range of approaches to software development which allow

for portability between architectures. However, whether these approaches

enable us to obtain the best performance on each architecture (perfor-

mance portability) without significant manual modifications (productiv-

ity) is a key question.

The focus of this project is to establish best practice for developing a new

plasma-fusion application that might achieve the trinity of Performance, Porta-

bility and Productivity.

In this project we seek to evaluate a number of hardware platforms and asso-

ciated software development methodologies. This report outlines how we will

assess these factors for the remainder of the project. We will also identify a

number of representative applications, in the form of mini-applications that

implement algorithms of interest with similar computational/communication

patterns to those likely to be present in the NEPTUNE codebase.

1.1 Evaluating Performance Portability

The basis for this investigation will be to analyse the performance portability of

a number of software development methodologies using the established metric

introduced by Pennycook et al. [1] and restated in Equation 1.
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PP(a, p,H) =


|H|∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

The performance portability ( PP) of an application a, solving problem p, on a

given set of platforms H, is calculated by finding the harmonic mean of an ap-

plications performance efficiency (ei(a, p)). The performance efficiency for each

platform can be calculated by comparing achieved performance against the best

recorded (possibly non-portable) performance on each individual target plat-

form (i.e. the application efficiency, or by comparing the achieved performance

against the theoretical maximum performance achievable on each individual

platform (i.e. the architectural efficiency). Should the application fail to run on

one of the target platforms, a performance portability score of 0 is awarded.

The work by Pennycook et al. highlights a number of alternative measures of

performance portability, highlighting their shortcomings at providing actionable

insights [1]. They outline five criteria a useful metric should aspire to, and then

demonstrate how their metric meets each of these criteria. Specifically, a useful

metric should: (i) be measured specific to a set of platforms of interest H; (ii)

be independent of the absolute performance across H; (iii) be zero if a platform

in H is unsupported, and approach zero as the performance of platforms in H

approach zero; (iv) increase if performance increases on any platform in H; and

(v) be directly proportional to the sum of scores across H.

Since publication of this metric, it has been used extensively to assess the

performance portability of a number of applications and programming mod-

els [2, 3, 4, 5, 6, 7]. This project aims to replicate this effort with a focus on

applications and algorithms of interest to the plasma fusion community.

While a single, numeric metric has a number of advantages, there are also

some shortcomings. For example, if a particular application fails to run on one

platform then it will score 0, even if the application is performant on all other

platforms. To overcome issues such as this, Sewall et al. have proposed a number

of methods for visualising performance portability metrics [8].

The first of these is box plots, as demonstrated on synthetic data in Figure 1.
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Fig. 2: Box plots of synthetic performance data.

Such visualizations would enable developers to quickly (albeit
subjectively) answer Question 1, Question 2 and Question 3.

A. Box Plots

Box plots are a common, well-understood figure showing
the spread of data around the median, and are an obvious
candidate for summarizing the distribution of performance
efficiency data. The graph consists of a box formed by the
lower and upper quartiles, which is divided by the median.
Many software packages produce box plots with whiskers at
1.5 times the interquartile range from the box edge, and plot
outliers beyond this range as circles.

Figure 2 shows box plots for the synthetic data introduced in
Section II-C. This data is intended to stress test the approaches,
and we can clearly see that the box plots fail to show useful
information for many of these data sets. In the multi-target
case, the fact that the data has two clusters is not represented
in any way. The large box shows that the data is spread far
from the median, but doesn’t provide insight into the amount
of data around these points. Likewise, the inconsistent data
shows a fairly large box and a similar median value to the
multi-target data, as we found in Table II. The data is evenly
spread throughout the entire range, but this is not represented.
The consistent data sets do not utilize the visible space on
the graph well, but the lack of visible boxes conveys that the
data is highly clustered around the median. Additionally, the
difference in absolute performance between the two consistent
data sets (30% and 70%) is clearly represented. For the
unportable and single target data sets, the lack of boxes
reflects the clustering around the low performance efficiency
values. The single platforms with high performance efficiency
are represented as outliers, reflecting that these results are not
characteristic of this application – however, it is important to
note that the decision to label these results as outliers is under
user control, and therefore subject to abuse.

Figure 3 shows box plots for the real-world applications
described in Section II-C. Each chart in the figure pertains
to one code, with different box plots for each application
(programming model). The first two box plots for BabelStream
show clearly that much of the efficiency data is consistently

high; however, it is easy to miss that some platforms did not
run (represented by the outliers at zero), and the number of
unsupported platforms is obscured (by nature of all outliers
being at the same point). The other plots for this code do
not yield much information as to the quality of performance
portability; the boxes all cover the complete range [0, 100],
and we are left only with the median to make comparisons.
Many of the box plots shown draw the median line at zero:
most of the efficiency results are classified as not portable (i.e.
most applications did not run on most platforms). It is difficult
to see results where the data is non-zero.

When performance efficiencies are clustered around the
median, box plots intuitively represent the extent of that clus-
tering. However, in more general cases it can be challenging
to understand the number and effect of outliers. In particu-
lar, bimodal distributions (like multi-target) appear severely
distorted and indistinguishable from other distributions. Box
plots therefore suffer from many of the same problems as the
metrics discussed in Section III, and do not provide a clear
way to intuit a ranking of applications.

B. Histograms

Another classic way to visualize the distribution of data is to
produce a histogram. Data are grouped into categories (bins)
and plotted as a bar chart showing the number of items in
each bin, highlighting which bins are highly populated. A
histogram also shows all the data directly (albeit smoothed
into categories), preserving outliers and intermediate values
occurring between regions of high density.

In selecting the bins, it is important to remember the
meaning that we have ascribed to 0% performance efficiency
(i.e. that an application did not run or produced an incorrect
result). This is distinct from (0 + ✏)%, which indicates that
an application ran correctly, but with very low efficiency. As
such, we recommend separating “did not run” results into
their own bin, so as to distinguish them from low efficiencies.
This is a special case of a common problem in constructing
histograms: using too few bins hides useful information; but
using too many bins does nothing to summarize the data. The
significance of being in one bin or another is also open to
interpretation: one might feel that efficiencies of 69% and 71%
are equivalent, yet these results may fall into distinct bins.

Histograms for the synthetic data are shown in Figure 4a.
We show all the data sets on the same graph for brevity also
to allow direct comparison between them. Given the limited
range of the data, it is important to plot the different data
sets as independent bars side-by-side on the chart; in practice,
overlaying them almost always obscures data points.

These histograms capture the characteristics of the data sets
effectively. The two consistent data sets show strong peaks in
the bins corresponding to 30% and 70% efficiency, and the two
peaks of the multi-target data set are similarly intuitive. The
presence of many low frequency bins for the inconsistent data
set reflects the wide spread of data. An approximate ordering
of applications by performance portability can be derived by
examining whether the largest peaks occur for low or high
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Figure 1: Visualising performance portability with box plots [8]

In both Figure 1 and Figure 2: an unportable application does not run on

one or more of the available platforms; a single target solution runs well on a

single platform, and achieves 10% performance on all other platforms; a multi-

target application runs at 100% on half of the platforms, and 10% on all other

platforms; an inconsistent solution performs increasingly better on each platform

(from 10% to up 100%); and the consistent applications perform at 30% and

70% on all platforms, respectively.

In Figure 1, we can see that although the unportable application scores 0, there is

an outlier showing that the application is performant on some of the platforms

– information that is lost when evaluating based on a single numeric metric.

For the other synthetic datasets, we see the performance portability ( PP), along

with information about the range of efficiencies across all of the platforms. For

some applications or kernels, it may be the case that a performance portability

profile like that of the multi-target solution is acceptable, whereas for others,

a consistent 70% might be more appropriate. Figures such as this can help us

make these assessments, without relying on a single piece of information.

The second visualisation technique proposed by Sewall et al. is cascade plots,

as shown in Figure 2. In these plots, the target platforms are labelled A-J, and

plotted beneath the graph. Each application is profiled based on an increas-

ing set of platforms (ordered from most efficient to least for each application),

where the filled lines plot the platform efficiencies, and the dotted lines show
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Fig. 7: Efficiency cascade plot for synthetic data sets, along
with platform chart.

better performance portability appear closer to the top-left of
the graph, achieving higher PP scores for larger platform sets.

The study defined the least supported platform as the one
with the fewest non-zero performance efficiencies across all
applications (programming models) being compared. As a
result, the approach cannot be directly applied to studies of a
single application (where the number of non-zero performance
efficiencies for each platform will always be either 0 or
1). We refine that approach here, by considering alternative
constructions of the platform domain (the x-axis).

B. Efficiency Cascade Plots

Consider an application with efficiencies E0 observed for a
platform set H0, and a minimum efficiency min E0. Removing
any one platform among those with the minimum efficiency
gives a new platform set H1 with corresponding efficiencies
E1. We continue in this fashion for n = |H0| steps until we
obtain Hn = ;. We then plot |Hn�1|, |Hn�2|, . . . , |H0| against
min En�1, min En�2, . . . , min E0 (i.e. increasing number of
platforms vs. minimum efficiency in each subset). It is trivial to
compute PP using Ei for each |Hi| and to plot it alongside the
efficiency. The resulting visualization shows how precipitously
an application’s support for various platforms degrades and,
since the plotted values are necessarily non-increasing, we
designate these plots as efficiency cascade plots.

Reading a platform number from the x-axis and consulting
the plotted efficiency gives the number of platforms with at
least that level of efficiency. Conversely, reading right from
an efficiency or PP value on the y-axis to where it intercepts
a plotted value gives the number of platforms that have an
efficiency or PP greater than the chosen y value. Care must
be taken when plotting multiple applications aggregated onto
a single cascade plot, because the platform sets are winnowed
as described above individually; the Hi at each tick on the
x-axis will not necessarily be the same set of platforms across
applications, and only the plotted cardinalities are shared.

Figure 7 demonstrates such a plot for the synthetic data
sets, with solid and dashed lines representing the minimum
efficiency and PP values respectively. By nature of the

harmonic mean, the PP for an application on a given set of
platforms is never lower than the minimum efficiency – for
the consistent data sets, the PP and efficiency are identical.
The bimodal nature of the single target and multi-target
data sets is also reflected in the efficiency cascade, with clear
transitions between two levels of support marked by sharp
drops in efficiency.

Figure 8 shows efficiency cascade plots for the real-world
data. There are numerous distinct patterns that help to quickly
assess application (i.e. language/framework) behavior. The
number of supported platforms is marked by a drop to zero ef-
ficiency. There are some applications that show high efficiency
for a subset of platforms after which efficiency precipitously
drops, reminiscent of the single target data set.

It is reasonable to wonder how the data presented in an
efficiency cascade plot coincides (or does not) with one’s idea
of performance portability, quantitative or qualitative. Since PP
is featured in the plots, these questions are simple to answer:
the highest point in the rightmost column is the application
with the highest PP across all platforms in H0. Comparing
points to the left can be misleading, since the Hi at each of
these points is not necessarily the same across applications.
The exception is the rightmost point for each application,
which shows the minimum efficiency and PP calculated across
all platforms.

Insights into the qualitative question are readily available in
efficiency cascades. Imagine a line of the form y = �↵x + c
sweeping from the top-right of the plot (i.e. by decreasing
c); the first application that is intersected can reasonably be
argued to be the most performance portable. For ↵ � 1, the
line becomes steeper – the first intersected point will be the
application with the highest PP across the most platforms, as
described above. For smaller ↵ (> 0) the line may intersect
an application that supports fewer platforms but does so at a
higher net efficiency than the application that maximizes PP
over all platforms. This process may be used progressively to
sort applications by their performance portability.

For example, in Figure 7, consistent (70%) has the highest
PP across all platforms. If a developer values performance on

a subset of platforms more than what PP expresses over a
larger set, multi-target may satisfy. Likewise, in Figure 8,
Kokkos has the highest PP for Cloverleaf and Neutral, but
valuing the highest maximum for these applications may result
in OpenMP appearing the most performance portable. These
valuations can quickly become subjective, but remain useful
in guiding discussions.

Other observations are notable for requiring subjective
evaluation. In all data sets, OpenMP leads or ties all other
applications through most of the platforms. In some cases,
Kokkos supports more platforms, or supports later platforms
with higher efficiency than OpenMP. For additional discourse
on this subject, we refer the reader to the study of Deakin
et al. [17]. It is an interesting exercise for the developer or
application user to consider whether they prefer performance
or portability: in some cases, it is most important that as many
platforms be supported as possible; while in other cases, higher
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Figure 2: Visualising performance portability with cascade plots [8]

the corresponding performance portability as the platform set grows. Again,

visualising performance portability data using these visual heuristics allows a

developer to make a reasoned assessment about what might be acceptable for a

particular application or kernel.

2 Proxy Applications

The exploratory stage of NEPTUNE includes a number of projects that are

investigating the behaviour of plasmas through proxy applications. The appli-

cations currently being used broadly fall in to two categories, fluid models and

particle models. In particular, T/NA078/20 is using Nektar++ to explore the

performance of spectral elements, T/NA083/20 is focused on building a fluid

referent model in both Bout++ and Nektar++, and T/NA079/20 is exploring

the use of particle methods with the EPOCH particle-in-cell (PIC) code. It

is therefore likely that the resultant NEPTUNE software stack will be a fluid

model, based on the output of T/NA078/20 and T/NA083/20, coupled with a

particle model, based on the output of T/NA079/20.

The three aforementioned applications are the result of many years of develop-

ment and typically consist of many thousands of lines of C/C++ or Fortran.

They are already widely used by the UK’s scientific computing community on

a diverse range of problems.
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Prior to the development of the NEPTUNE software stack, it is prudent to

assess the wide range of available technologies, without the associated burden

of redeveloping these mature simulation applications into new programming

frameworks. In this project, we have therefore decided to identify a series mini-

applications that implement key computational algorithms that are similar to

those used by the NEPTUNE proxy applications. These mini-applications are

typically limited to a few thousand lines of code and are often available imple-

mented in a wide range of programming frameworks already.

Notable collections of such mini-applications includes Rodinia [9], UK-MAC [10],

the NAS Parallel Benchmarks [11], the ECP Proxy Apps [12] and the SPEC

benchmarks [13]. In this section, we will discuss the applications we have iden-

tified from these benchmark suites, that may be relevant to our performance

investigations.

2.1 Fluid Models

As previously noted, the fluid modelling aspects of the NEPTUNE project are

largely focused on the use of Bout++ [14, 15] and Nektar++ [16]. Bout++

is a framework for writing fluid and plasma simulations in curvilinear geometry,

implemented using a finite-difference method, while Nektar++ is a framework

for solving computational fluid dynamics problems using the spectral element

method.

Both applications are large C++ applications designed primarily for execution

across homogeneous clusters. Parallelisation across a cluster in both appli-

cations is achieved using MPI, with Bout++ additionally capable of on-node

parallelism with OpenMP. GPU acceleration is under development in both ap-

plications, through RAJA and HYPRE in Bout++, and through OpenACC in

Nektar++ [17].

Rather than redevelop these applications, this project has instead identified

a series of mini-applications that implement similar computational schemes.

Specifically, we have identified a finite difference mini-app, two finite element

mini-apps and one spectral element mini-app, each of which are implemented

in a range of programming models for rapid evaluation of approaches to perfor-

mance portability.
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TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduc-

tion equation on a regular grid using a 5-point stencil. It has been used

extensively in studying performance portability already [7, 2, 18, 19], and

is available implemented using CUDA, HYPRE, OpenCL, PETSc and

Trilinos1.

miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark

suite [20, 21, 22, 23]. It implements an unstructured implicit finite element

method and is available implemented using CUDA, Kokkos, OpenMP and

OpenMP with offload2.

Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [24,

25, 23]. It implements a high-order curvilinear finite element scheme on

an unstructured mesh. It uses HYPRE for parallel linear algebra, and is

additionally available in CUDA, RAJA and OpenMP implementations3.

Nekbone

Nekbone is a mini-app that is representative of one of the core kernels

of the incompressible Navier-Stokes solver Nek5000, from Argonne Na-

tional Laboratory [26, 27, 28, 23]. Like Nek5000, it uses a high-order

spectral element discretisation. The mini-app is available implemented

using OpenMP, and with accelerator support via CUDA and OpenACC4.

2.2 Particle Methods

The optimal use of particles in NEPTUNE is currently being explored using the

EPOCH particle-in-cell code [29], and its associated mini-app, minEPOCH [30]5.

EPOCH is a PIC code that runs on a structured grid, using a finite differencing

scheme and an implementation of the Boris push. Like Bout++ and Nek-

tar++, EPOCH is a mature software package that is used widely by the UK

science community, and thus is difficult to evaluate in alternative programming

1http://uk-mac.github.io/TeaLeaf/
2https://github.com/Mantevo/miniFE
3https://github.com/CEED/Laghos
4https://github.com/Nek5000/Nekbone
5https://github.com/ExCALIBUR-NEPTUNE/minepoch
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models without a significant redevelopment effort. Furthermore, EPOCH (and

minEPOCH) is developed in Fortran, making it increasingly difficult to adapt

to many new programming models that are heavily based on C++.

The mini-app variant of EPOCH, minEPOCH, is likewise developed in Fortran

and thus not appropriate for this study. However, there are a number of particle-

based mini-apps that may be of interest to this project, that implement similar

particle schemes, backed by a variety of electric/magnetic field solvers.

CabanaPIC

CabanaPIC is a structured PIC code built using the CoPA Cabana library

for particle-based simulations [23]. Through the CoPA Cabana library, the

application can be parallelised using Kokkos for on-node parallelism and

GPU use, and with MPI for off-node parallelism6.

VPIC/VPIC 2.0

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for mod-

elling kinetic plasmas in one, two or three dimensions, developed at Los

Alamos National Laboratory [31]. VPIC is parallelised on-core using vec-

tor intrinsics, on-node through pthreads or OpenMP and off-node using

MPI. VPIC 2.0 [32] adds support for heterogeneity by using Kokkos to

optimise the data layout and allow execution on accelerator devices7.

EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMag-

netic Plasma In Realistic Environments (EMPIRE) project [33]. It solves

Maxwell’s equations on an unstructured grid using a finite-element method,

and implements the Boris push for particle movement. EMPIRE-PIC

makes extensive use of the Trilinos library, and uses Kokkos as its parallel

programming model [34, 35].

Each of the three particle-based mini-apps identified implement a PIC algo-

rithm that is similar to that found in EPOCH. However, one weakness of this

evaluation set is that all three applications are parallelised on-node through

the Kokkos performance portability layer. Currently, we are unaware of any

SYCL/DPC++-based PIC codes, however Kokkos has a range of backends

6https://github.com/ECP-copa/CabanaPIC
7https://github.com/lanl/vpic
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including OpenMP target, and preliminary support for SYCL/DPC++ code

generation.

Alongside the minEPOCH mini-app, there was a C++ mini-app port called

miniEPOCH that is now orphaned [36], but may prove a useful evaluation ve-

hicle should time allow a porting exercise.

Beyond the PIC method, there are other particle-based applications that we may

consider as part of our evaluation, such the molecular dynamic mini-application,

miniMD [37]. The evaluation set will be re-evaluated as the project progresses.

3 Evaluation Platforms

The primary focus of this project is to provide an assessment of the options

available when developing Exascale-capable software. In the previous section

we identified a series of mini-applications that have been implemented using

a range of techniques that we believe will be important to developing future-

proofed fusion simulations.

Many of these applications have already been evaluated on various platforms

by others, and this project does not seek to re-run these experiments. Instead,

wherever possible we will seek to collect performance data from existing stud-

ies and apply the metrics and visualisation techniques described in Section 1.

Where evaluations do not already exist, we will look to evaluate performance

on UK-based platforms.

Broadly speaking, we can divide UK-based HPC platforms into two categories,

homogeneous systems and heterogeneous systems. The UK’s only Tier-1 system,

ARCHER2, is an homogeneous system with an estimated peak performance of

28 PFLOP/s. Across the UK’s Tier-2 systems, there is a significant degree of

diversity, offering a wide range of homogeneous and heterogeneous platforms/-

partitions.

Where we require additional evaluation of these applications, we will be able to

leverage access to a number of systems in the UK, such as those listed below.

Evaluation on other UK or US based systems may also be possible, through

existing collaborations.
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3.1 Homogeneous Systems

ARHCER2

The national supercomputer, ARCHER2, is installed at the Edinburgh

Parallel Computing Centre (EPCC). ARCHER2 is a Cray Shasta system

interconnected with Cray Slingshot fabric. It consists of 5,848 nodes, each

with two AMD EPYC Rome CPUs.

Avon

Avon will be a homogeneous cluster of 180 nodes, containing dual Intel

Xeon Cascade Lake CPUs installed at the University of Warwick (expected

mid-2021). It will be interconnected with Infiniband.

Isambard

The Isambard Tier-2 service is predominantly composed of Marvell Thun-

derX2 ARM cores, connected by a Cray Aries interconnect. Beside the

ThunderX2 cabinet, Isambard also contains a cabinet of Fujistu A64FX

processors.

Viking

Viking is a large Linux compute cluster supporting research needs at the

University of York. It consists of approximately 170 compute nodes, each

with Intel Xeon Skylake CPUs, connected via Infiniband.

Cirrus

The Cirrus cluster, installed at EPCC, consists of 280 compute nodes,

each with dual Intel Xeon Broadwell processors. The cluster is connected

via Infiniband fabric.

3.2 Heterogeneous Systems

Viking

The Viking cluster, at the University of York, is further bolstered by two

GPU nodes, providing a small heterogeneous compute capability. The two

GPU nodes each contain four NVIDIA V100 GPUs.

Bede

The Bede system, installed at the University of Durham, has an architec-

ture similar to that found on Summit and Sierra. Bede is a single cabinet

of IBM POWER9 CPUs each supporting four NVIDIA V100 GPUs.

9



Isambard

Alongside the two ARM-based partitions on the Isambard system is the

Multi-Architecture Comparison System (MACS). MACS contains four

nodes each with two NVIDIA P100 GPUs, and four nodes each with an

NVIDIA V100 GPU. It also contains four nodes with AMD EPYC Rome

CPUs, and four nodes with Intel Xeon Cascade Lake CPUs. Finally,

there are also eight Intel Xeon Phi nodes, and two IBM Power9 nodes

with NVIDIA V100 GPUs.

CSD3

The Cambridge Service for Data Driven Discovery (CSD3) provide two

supercomputers under EPSRC Tier-2. Peta4 is a system comprising pre-

dominantly of Intel Xeon Skylake CPUs, with a small number of Intel

Xeon Phil nodes. Wilkes2 provides the largest GPU enabled system in

the UK, comprising of 90 nodes each with four NVIDIA P100 GPUs.

Baskerville

The Baskerville system will be the University of Birmingham’s Tier-2 clus-

ter. There are 46 compute nodes, each with four NVIDIA A100 GPUs

alongside Intel Xeon Ice Lake CPUs.

4 Conclusions

This report has identified a number of mini-applications that implement sim-

ilar numerical methods to those of interest in the NEPTUNE project. These

applications will be our focus for the remainder of this project, using these

applications to evaluate approaches to developing performance portable fusion

applications.

Our next report will gather performance data from available sources, and will

begin the process of evaluating performance across a range of architectures using

performance portability metrics and visualisation techniques. Where data is not

available it will be gathered from the systems we have at our disposal.

This analysis will allow us to make comparisons between differing programming

models and in turn make well reasoned recommendations for the NEPTUNE

programme.
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