
Report 2070839-TN-02 1

Implementing distributed-memory in the 2D-3V

drift-kinetic edge code

M. R. Hardman1,2, J. Omotani3, and M. Barnes2

1 Tokamak Energy Ltd, 173 Brook Drive, Milton Park, Abingdon, OX14 4SD, United

Kingdom
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon

Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
3 Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14

3DB, United Kingdom

E-mail: michael.hardman@tokamakenergy.co.uk

1. Introduction

The aim of this report is to describe the progress towards implementing the drift-

kinetic model described in earlier ExCALIBUR reports [1, 2, 3, 4, 5, 6, 7, 8, 9].

The main outstanding challenge is the successful testing of the 2D-3V model in the

presence of a wall boundary when there is variation in the radial direction. To keep

this report brief, we do not reintroduce the model, but instead focus on describing

the code development that has taken place to support the testing of the model

implementation. The source code described in this document can be found here

https://github.com/mabarnes/moment_kinetics.

In the previous report on the 2D-3V model, we were able to demonstrate using

the method of manufactured solutions that the implementation of the wall boundary

condition was likely correct by showing that the error in the numerical solutions became

small as the number of velocity elements Nelement increased in cases where there was

no radial variation and the radial electric field Er = 0 everywhere in the simulation

domain. Since the Er does appear in the wall boundary condition, this demonstration

is not sufficient to conclude that the entire model is implemented correctly. Indeed,

when Er ̸= 0, we were not able to demonstrate convergence with increasing Nelement.

The reasons for this lack of convergence in the 2D case remain unclear. One

possibility was that the numerical resolution available for the tests was inadequate to

demonstrate convergence. In the 1D-3V case, errors of order 10−8 were only reached for

Nelement ≈ 16, whereas in the 2D-3V case we are only able to scale to Nelement = 4

using only a single node on our preferred HPC resource. To perform larger tests,

we implemented distributed-memory MPI alongside the shared-memory MPI that was

implemented into the code by J. Omotani. This feature now allows to code to utilise

thousands of cores on a HPC resource, and allows much larger problem sizes to be

considered. Both these MPI features use the Julia MPI library [10].

https://github.com/mabarnes/moment_kinetics

Report 2070839-TN-02 2

2. Implementing distributed-memory MPI

To understand the description of the implementation, it is important to know that the

ion species are evolved with a (v∥, v⊥, z, r) grid whereas the neutral species are evolved

with a (vz, vr, vζ , z, r) grid. There are Nsi species and Nsn species. (Strictly, only

Nsi = Nsn = 1 is supported because of the initilisation options).

In the shared-memory MPI implementation arrays of dimension (Nv∥ , Nv⊥ , Nz, Nr, Nsi)

and (Nvz , Nvr , Nvζ , Nz, Nr, Nsn) are parallelised across all cores in a given node (or

shared-memory region, if smaller than a node). The parallelisation operates with each

core looping over a subset of array elements, with all-to-all communicates making the

results of the calculations consistent at checkpoints in the calculation. The all-to-all com-

munications are assumed to be relatively inexpensive because they occur only within a

shared-memory region, rather than across nodes.

Naturally, a shared-memory MPI code can only scale to the size permitted by

the memory on a single shared-memory region. To extend beyond this limit, we

implemented distributed-memory MPI for the (z, r) spatial coordinates. We limited

the distributed memory to the spatial coordinates for the following reasons: (i) velocity

integration can be neatly carried out without significant communication overhead in

the shared-memory formalism, (ii) since we can run simple 1D-3V problems adequately

in a single shared-memory region, extension to 2D-3V problems seems to require extra

memory only because we need a larger spatial problem size, (iii) all particle species share

common spatial coordinates (z, r) allowing the use of the same domain decomposition for

all distribution functions, fields, and fluid moments, (iv) parallelisation of the spatial

coordinates can be carried out with minimal inter-node communication as described

shortly.

All coordinates are assumed to be discretised with a Chebyshev spectral-element

method. Within each element the derivative is computed using a Chebyshev transform

(via an FFT carried out by FFTW). At element boundaries we must enforce continuity

by taking the average or by copying the value from one element to another (depending

on the upwind direction). In this framework we can obtain an efficient parallelisation if

we parallelise over elements: then the computation of the FFT is always performed using

local data and we must only communicate boundary points through the MPI interface.

This necessitates cyclic communication between cores holding individual elements of

arrays of size Nv∥×Nv⊥×Nr×Nsi and Nvz ×Nvr ×Nvζ ×Nr×Nsn (for the z derivatives)

and Nv∥ ×Nv⊥ ×Nz ×Nsi and Nvz ×Nvr ×Nvζ ×Nz ×Nsn (for the r derivatives). These

arrays are not as large as the entire distribution function, so we have avoided the most

expensive of operations – the all-to-all redistribute.

3. The domain decomposition

We now provide some details on the decomposition of the (z, r) domain. As an example,

in figure 1 we show a domain where which we have broken up into different shared-

Report 2070839-TN-02 3

memory regions. There are nblocks=6 shared-memory domains, the z axis is broken

into z nchunks=3 chunks, and the r axis is broken into r nchunks=2 chunks. There are

nrank per zr block=block size=4 cores per shared-memory block.

z

r

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

Figure 1: A (z, r) domain where each square represents a core. The domain

is split up into nblocks=6 separate shared-memory regions, with the irank in

the global MPI communicator MPI WORLD indicated for each core. There are

nrank per zr block=block size=4 cores per shared-memory block.

It is important to note how the domain decomposition is related to the number

of elements in each spatial coordinate: we cannot have more processes than the

number of elements allow. In practice, we specify the variables r nelement global,

r nelement local, z nelement global, and z nelement local that determine the

total number of elements in each grid and the number locally in each chuck of the r or

z domains. We also specify the total number of ranks nproc supplied to the program

via the following command.

mpirun -n nproc julia --project run_moment_kinetics.jl runs/*.toml

Then, we calculate the number of chunks and teh number of blocks in the following way.

get information about how the grid is divided up

number of sections ‘chunks’ of the x grid

r_nchunks = floor(mk_int,r_nelement_global/r_nelement_local)

number of sections ‘chunks’ of the z grid

z_nchunks = floor(mk_int,z_nelement_global/z_nelement_local)

get the number of shared-memorz blocks in the z r decomposition

nblocks = r_nchunks*z_nchunks

get the number of ranks per block

nrank_per_zr_block = floor(mk_int,nrank_global/nblocks)

Report 2070839-TN-02 4

Finally, we must make sure that nproc is an integer multiple of nblocks.

To use the (z, r) domain we must introduce extra labels upon which we can use the

standard MPI functions. We introduce an integer iblock which indexes the blocks, and

an integer irank block which indexes the ranks within a block. We show these integers

in our example in figure 2.

assign information regarding shared-memory blocks

block index -- which block is this process in

iblock = floor(mk_int,irank_global/nrank_per_zr_block)

rank index within a block

irank_block = mod(irank_global,nrank_per_zr_block)

z

r

(0,0) (1,0) (2,0)

(3,0) (4,0) (5,0)

(0,1)

(0,2) (0,3)

(1,1)

(1,2) (1,3)

(2,1)

(2,2) (2,3)

(3,1)

(3,2) (3,3)

(4,1)

(4,2) (4,3)

(5,1)

(5,2) (5,3)

Figure 2: The (z, r) domain from figure 1 where each square represents a core. The

cores are labelled with (iblock,irank block).

In order to do the spatial derivatives we need to set up communications across

shared-memory blocks. To do this we must map our iblock integers to a 2D grid that

can hold the lead processes in the (z, r) domain. We define the integers

z_igroup = floor(mk_int,iblock/z_nchunks) # iblock(irank) - > z_igroup

z_irank = mod(iblock,z_nchunks) # iblock(irank) -> z_irank

iblock = z_igroup * z_nchunks + z_irank_sub

which determine which group of z points each lead process is in, and which rank

each process has within a group. We do our z spatial derivatives within a single z igroup

grouping, whereas we do our r spatial derivatives within a single z irank grouping. The

indices in our example are given in figure 3. Note that only lead processes are involved

in the inter-block communication.

Report 2070839-TN-02 5

z

r

X

X X

X

XX

X

X X

X

X X X X

X

XX

X[0,1][0,0] [0,2]

[1,0] [1,1] [1,2]

Figure 3: The (z, r) domain from figure 1 where each square represents a core. The lead

process on each block is labelled with (z igroup,z irank). Processes that are not lead

processes are labelled with ‘X’.

To carry out the communication, we must use the MPI function library to make

use of the labels that we have defined. An invaluable function is Comm split. It is

conventional to split the ‘communicator’ MPI WORLD that contains all the nrank processes

into useful subsets. This is carried out with the following command

MPI.Comm_split(comm,color,key)

comm -> communicator to be split

color -> label of group of processes

key -> label of process in group

We assign color and key appropriately in each case using the integers that

we have defined above. The domain decomposition is carried out in the

source code in the file https://github.com/mabarnes/moment_kinetics/blob/

radial-vperp-standard-DKE-Julia-1.7.2-mpi/src/communication.jl.

4. Application of the MPI formalism to larger problem sizes

To demonstrate that the distributed-memory MPI version of the code is working, we

carry out MMS tests where we use the distributed-memory capability. The specific

branch where inter-node MPI is implemented may be found at https://github.com/

mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.7.2-mpi. We

carry out a manufactured solutions test using the version of the code in commit

cc0f04226ef0650171dd459de2236906083a09c6 and the input file

2D-sound-wave cheb nel r 16 z 16 vpa 16 vperp 16.toml in appendix Appendix A.

This input file forces the solution to be a time-independent sine wave in space and a

Maxwellian in velocity space. We vary

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-Julia-1.7.2-mpi/src/communication.jl
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-Julia-1.7.2-mpi/src/communication.jl
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.7.2-mpi
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.7.2-mpi

Report 2070839-TN-02 6

Figure 4: The measures of the numerical error on the ion density and distribution

function in the collisionless sound wave MMS test.

z nelement=r nelement=vpa nelement=vperp nelement= Nelement from 4 to 16. We

simulate to a time of Lref/cref = 1.0, halving dt and doubling nstep as we double

Nelement. We do not include neutral species to avoid the significant extra memory re-

quirements implied by a 3V velocity space. The largest simulation in the series required

32 × 48 cores on MARCONI to meet the memory requirements of the ion distribution

function. The key output of the MMS test is the numerical error ϵ – this error should

decrease with increasing resolution. The results of the test can be observed in figures

4 and 5. We see that the error decreases linearly on the log-log plots, revealing good

convergence with resolution

To generate these figures from input file in the appendix, make the input files

2D-sound-wave_cheb_nel_r_2_z_2_vpa_2_vperp_2.toml

2D-sound-wave_cheb_nel_r_4_z_4_vpa_4_vperp_4.toml

2D-sound-wave_cheb_nel_r_8_z_8_vpa_8_vperp_8.toml

2D-sound-wave_cheb_nel_r_16_z_16_vpa_16_vperp_16.toml

by modifying dt and z nelement=r nelement=vpa nelement=vperp nelement appro-

priately. Then, run the following commands within the appropriate mpirun or srun

commands where input file.toml is a placeholder.

$ julia -O3 --project run_moment_kinetics.jl input_file.toml

To analyse the results of these simulations, run the script run MMS test.jl with the

following command.

$ julia -O3 --project run_MMS_test.jl

Report 2070839-TN-02 7

Figure 5: The measures of the numerical error in the ion density and the electric fields

collisionless sound wave MMS test.

5. Dicussion and future outlook

Having performed a simple test of the upgraded software, we are now able to leverage the

abilities of the code to test in more detail the 2D-3V implementation in the presence

of wall boundary conditions. The development described here was vital because the

problems with MMS tests and the wall boundary condition only arise where there radial

variation in the problem. This places large memory requirements on any test. We will be

able to determine if the errors observed previously are simply due to poor convergence

of the velocity integrals and a lack of resolution.

Assuming that the problems with the wall boundary condition can be properly

identified and fixed, the code is now in an excellent position to exploit a large fraction

of a state of the art HPC resource. With relevant physics features implemented, the

software promises to become a relevant tool for high-fidelity modelling of edge plasmas.

Report 2070839-TN-02 8

[1] Parra F I, Barnes M and Hardman M R 2021 Excalibur/Neptune Report 2047357–TN–03–01 M1.2

[2] Parra F I, Barnes M and Hardman M R 2021 Excalibur/Neptune Report 2047357–TN–05–01 M1.3

[3] Parra F I, Barnes M and Hardman M R 2021 Excalibur/Neptune Report 2047357–TN–07–01 M1.4

[4] Parra F I, Barnes M and Hardman M R 2021 Excalibur/Neptune Report 2047357–TN–09–01 M1.6

[5] Parra F I, Barnes M and Hardman M R 2021 Excalibur/Neptune Report 2047357–TN–11–01 M1.7

[6] Barnes M, Parra F I, Hardman M R and Omotani J 2021 Excalibur/Neptune Report 4:2047357–

TN–01–02 M2.2

[7] Barnes M, Parra F I, Hardman M R and Omotani J 2021 Excalibur/Neptune Report 6:2047357–

TN–01–02 M2.3

[8] Barnes M, Parra F I, Hardman M R and Omotani J 2021 Excalibur/Neptune Report 8:2047357–

TN–02 M2.4

[9] Hardman M R, Omotani J, Barnes M and Parra F I 2022 Excalibur/Neptune Report

[10] Byrne S, Wilcox L C and Churavy V 2021 JuliaCon Proceedings 1(1), 68

Report 2070839-TN-02 9

Appendix A. 2D-sound-wave cheb nel r 16 z 16 vpa 16 vperp 16.toml

use_manufactured_solns_for_advance = true

n_ion_species = 1

n_neutral_species = 0

electron_physics = "boltzmann_electron_response"

run_name = "2D-sound-wave_cheb_nel_r_16_z_16_vpa_16_vperp_16"

evolve_moments_density = false

evolve_moments_parallel_flow = false

evolve_moments_parallel_pressure = false

evolve_moments_conservation = false

T_e = 1.0

Bzed = 0.5

Bmag = 1.0

rhostar = 1.0

initial_density1 = 0.5

initial_temperature1 = 1.0

initial_density2 = 0.5

initial_temperature2 = 1.0

z_IC_option1 = "sinusoid"

z_IC_density_amplitude1 = 0.001

z_IC_density_phase1 = 0.0

z_IC_upar_amplitude1 = 0.0

z_IC_upar_phase1 = 0.0

z_IC_temperature_amplitude1 = 0.0

z_IC_temperature_phase1 = 0.0

z_IC_option2 = "sinusoid"

z_IC_density_amplitude2 = 0.001

z_IC_density_phase2 = 0.0

z_IC_upar_amplitude2 = 0.0

z_IC_upar_phase2 = 0.0

z_IC_temperature_amplitude2 = 0.0

z_IC_temperature_phase2 = 0.0

charge_exchange_frequency = 0.0

ionization_frequency = 0.0

nstep = 8000

dt = 0.000125

nwrite = 800

use_semi_lagrange = false

n_rk_stages = 4

split_operators = false

z_ngrid = 9

Report 2070839-TN-02 10

z_nelement = 16

z_nelement_local = 1

z_bc = "periodic"

z_discretization = "chebyshev_pseudospectral"

r_ngrid = 9

r_nelement = 16

r_nelement_local = 1

r_bc = "periodic"

r_discretization = "chebyshev_pseudospectral"

vpa_ngrid = 9

vpa_nelement = 16

vpa_L = 12.0

vpa_bc = "periodic"

vpa_discretization = "chebyshev_pseudospectral"

vperp_ngrid = 9

vperp_nelement = 16

vperp_L = 6.0

vperp_bc = "periodic"

#vperp_discretization = "finite_difference"

vperp_discretization = "chebyshev_pseudospectral"

vz_ngrid = 9

vz_nelement = 16

vz_L = 12.0

vz_bc = "periodic"

vz_discretization = "chebyshev_pseudospectral"

vr_ngrid = 9

vr_nelement = 16

vr_L = 12.0

vr_bc = "periodic"

vr_discretization = "chebyshev_pseudospectral"

vzeta_ngrid = 9

vzeta_nelement = 16

vzeta_L = 12.0

vzeta_bc = "periodic"

vzeta_discretization = "chebyshev_pseudospectral"

	Introduction
	Implementing distributed-memory MPI
	The domain decomposition
	Application of the MPI formalism to larger problem sizes
	Dicussion and future outlook
	2D-sound-wave_cheb_nel_r_16_z_16_vpa_16_vperp_16.toml

