
NEPTUNE Technical Report 2047353-TN-02
Deliverables 1.1, 2.1 and 3.1

Linear systems of equations and preconditioners
relating to the NEPTUNE Programme

A brief overview

Authors: V. Alexandrov, A. Lebedev, E. Sahin, S. Thorne

April 22, 2021



Contents

1 Landscape of Preconditioners 4
1.1 Motivational Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Preconditioner Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Scalings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1.1 Point-Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1.2 Norm-based scaling . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Incomplete Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2.1 D-ILU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2.2 ILU - Incomplete LU Decomposition . . . . . . . . . . . . . . . 7
1.2.2.3 IC - Incomplete Cholesky Decomposition . . . . . . . . . . . . . 7
1.2.2.4 Additive Factorization - Splitting . . . . . . . . . . . . . . . . . 8

1.2.2.4.1 Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.4.2 (Symmetric) Gauss-Seidel . . . . . . . . . . . . . . . . 8
1.2.2.4.3 (Symmetric) SOR . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Approximate Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3.1 SPAI - SParse Approximate Inverse . . . . . . . . . . . . . . . . 9
1.2.3.2 FSAI - Factorized Sparse Approximate Inverse . . . . . . . . . . 9
1.2.3.3 AINV - Approximate INVerse . . . . . . . . . . . . . . . . . . . 9
1.2.3.4 MCMCMI - Markov Chain Monte Carlo Matrix Inversion . . . 9

1.2.4 Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4.1 lAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Stochastic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.5.1 SP -Stochastic Projection . . . . . . . . . . . . . . . . . . . . . 10
1.2.5.2 MCMCMI - Markov Chain Monte Carlo Matrix Inversion . . . 10

1.3 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 On Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1.1 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 On Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Summary of Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Application Cases 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Elliptic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementations 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Elliptic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



3

3.4 Other libraries of interest to the NEPTUNE Programme . . . . . . . . . . . . . 18
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



Chapter 1

Landscape of Preconditioners

1.1 Motivational Theory
Intermediate- and large-scale linear systems

A~x = ~b (1.1)
are most commonly solved using iterative methods such as
• (symmetric) successive over-relaxation ((S)SOR),

• Jacobi over-relaxation (JOR),

• conjugate gradient (CG),

• biconjugate gradient stabilized (BiCGstab),

• conjugate gradient squared (CGS),

• minimal residual method (MINRES),

• generalized minimal residual method (GMRES),

• quasi-minimal residual (QMR) and

• transpose-free QMR (TFQMR),
see [1], [8], [12], [24] or any university-level introduction to numerical mathematics, such as [30].
These methods do not compute the inverse system matrix A−1 or factors of A but approximate
the solution via an iterative method of the form

~xk = ~xk−1 + ~sk . (1.2)
Their convergence rates are typically bounded from above by expressions involving the condition
number of the system matrix A, which is given here for the 2-norm:

κ2(A) = ‖A‖2‖A−1‖2 ≡
maxλi∈σ(A) |λi|
minλj∈σ(A) |λj|

, (1.3)

where σ(A) denotes the spectrum of A. In general, the larger the value of the condition number,
the slower the rate of convergence but other characteristics such as the eigenvalues being highly
clustered into a few groups can significantly reduce the number of iterations required to achieve
the desired level of accuracy. The above immediately shows that matrices which are almost
singular, i.e., for which an eigenvalue λk exists s.t. |λk| ≈ 0 the condition number becomes
very large, are likely to have slow convergence. For example, this occurs when a finite-element
discretization of a PDE is performed with very high spatial resolution or with almost degenerate
finite elements.

4



Ta
bl

e
1.

1:
Su

m
m

ar
y

of
ite

ra
tiv

e
m

et
ho

ds
w

ith
th

ei
rp

ro
pe

rt
ie

sa
nd

an
y

pr
ec

on
di

tio
ne

rr
eq

ui
re

m
en

ts
.H

er
e

“s
.p

.d
.”

de
no

te
sa

sy
m

m
et

ric
po

sit
iv

e
de

fin
ite

m
at

rix
. It

er
at

iv
e

M
et

ho
d

Sy
m

m
et

ric
A

N
on

-s
ym

m
et

ric
A

O
th

er
re

qu
ire

m
en

ts
on

A
Pr

ec
on

di
tio

ne
r

re
qu

ire
m

en
ts

SO
R

Ye
s

Ye
s

di
ag

(A
)

no
n-

sin
gu

la
r

N
/A

SS
O

R
Ye

s
N

o
di

ag
(A

)
no

n-
sin

gu
la

r
N

/A
JO

R
Ye

s
Ye

s
di

ag
(A

)
no

n-
sin

gu
la

r
N

/A
C

G
Ye

s
N

o
po

sit
iv

e
de

fin
ite

s.p
.d

.
Bi

C
G

ST
A

B
Ye

s
Ye

s
N

on
e

N
on

e
C

G
S

Ye
s

Ye
s

N
on

e
N

on
e

M
IN

R
ES

Ye
s

N
o

N
on

e
s.p

.d
.

G
M

R
ES

Ye
s

Ye
s

N
on

e
N

on
e

Q
M

R
Ye

s
Ye

s
N

on
e

N
on

e
T

FQ
M

R
Ye

s
Ye

s
N

on
e

N
on

e



6 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

To speed-up the iteration, one can use left and/or right preconditioners PL and PR, respec-
tively, and solve the equivalent system

PLAPR~y = PL~b where x = PRỹ, (1.4)

and choose preconditioners for which PLAPR has lower condition number than A or clusters
the eigenvalues into a few groups such that the number of iterations is significantly reduced,
and for which calculating the action of PL and PR multiplied by a vector is relatively cheap to
initialise and then compute. For simplicity within this report, we will assume that one of PL
or PR is the identity matrix and we will refer to the other preconditioner as P.

When considering a preconditioner for a given problem it is beneficial to keep in mind what
category of PDE has given rise to the linear system at hand as well as the structure properties
of the system matrix A. The latter are especially important if methods relying on the symmetry
and positive definiteness of the system matrix A are employed (e.g., CG iteration). In such
a case, usage of a preconditioner that is not symmetric and positive definite may slow the
convergence of the iterative method or result in the method breaking down. We provide a
summary of the different methods mentioned in Table 1.1.

1.2 Preconditioner Classes

1.2.1 Scalings
A simple way to reduce the condition number of a matrix is to scale its rows/columns to be
of approximately equal magnitude w.r.t. a given norm [24],[1]. Generally, the effectiveness of
scaling preconditioners can be neglected when comparing them to the other classes listed below.
They should, nevertheless, not be neglected, given that they are extremely cheap to compute
and can be beneficial in cases where the computation of the matrix-vector product is highly
susceptible to round-off errors (i.e., when using mixed precision computations).

1.2.1.1 Point-Jacobi

The simplest preconditioner is the so-called point-Jacobi preconditioner [30], [17], [8]. It is
defined as

P := diag(A)−1 . (1.5)

Due to its simplicity the preconditioner can be directly computed and applied to the iterations
of the chosen method. A further benefit of the simplicity is the trivial parallelizability (there
are no data-dependencies). The simplicity comes at the cost of effectiveness, this preconditioner
will generally only slightly reduce the number of iterations required to achieve convergence.

1.2.1.2 Norm-based scaling

If one chooses

P = diag
({ 1

dii

}n
i=1

)
:= diag

({
1
‖~ai‖m

}n
i=1

)
(1.6)

where ~ai can be either the i-th row of the matrix A or its i-th column and ‖ · ‖m is the m
norm of a vector, then the preconditioner can be trivially inverted for a direct application to
the iteration vector. Such preconditioners are generally referred to as row-/column-scalings.
Formally it can be proven that

κ∞(P̃A) ≤ κ∞(PA) (1.7)



1.2. PRECONDITIONER CLASSES 7

for any scaling P if P̃ is computed using the 1 norm (‖~a‖1 = ∑
j |aj|) in (1.6), i.e., the precon-

ditioner is an optimal scaling.

1.2.2 Incomplete Factorizations
Factorization methods that decompose a matrix into a product of matrices, i.e., A = LU , can
be used as a basis to derive preconditioners. Note that the factors of the matrix will generally
become dense, even if A is sparse. This is generally avoided by performing the factorization only
for a pre-defined number of non-zero elements. Such a factorization is generally incomplete,
hence the name of this preconditioner class. One strategy is to preserve the non-zero pattern
of the matrix A, which results in zero-fill preconditioners.

Due to the sequential nature of the underlying factorization, these methods generally require
a preliminary graph partitioning (element reordering) to be parallelized. The scalability of
such methods is thus limited by the number of (strongly) connected components of the graph
obtained if the matrix is interpreted as an adjacency matrix of a graph.

1.2.2.1 D-ILU

The second on the triviality scale is the D-ILU preconditioner [11]. It is based on the decom-
position of the matrix A similar to the Jacobi iteration:

P := (D + LA)D−1(D + UA) , (1.8)

where D is now not simply the diagonal of A but determined according to a different scheme
and UA, LA are the strict upper/lower triangular parts of the matrix A.

1.2.2.2 ILU - Incomplete LU Decomposition

A solution of LUx = b, where L,U are obtained by LU-decomposition (Gaussian elimination)
of A is equivalent to x = A−1b. Here, L is a lower triangular matrix and U is an upper
triangular matrix. As such one obvious choice for a preconditioner is the LU-decomposition of
A. However, a full LU-decomposition may change a sparse matrix A into a dense one so we
could, instead, only perform a step of the LU decomposition if and only if ai,j 6= 0. This yields
the so-called zero-fill incomplete LU factorization - in short: ILU(0).

ILU(k) denotes an ILU preconditioner with a user-defined fill-in level k ≥ 0. Higher k
correspond generally to a better approximation of the LU decomposition but result in a much
denser preconditioner. As a rule k > 3 is seldom used [11].

ILUT(ρ,τ) is a threshold variant of ILU, in which entries are removed from the precondi-
tioner if their magnitude falls under the threshold τ or the fraction ρ of additional values per
row is exceeded.

1.2.2.3 IC - Incomplete Cholesky Decomposition

Applying the same methodology to the Cholesky decomposition for symmetric positive definite
matrices, the IC(k) (incomplete Cholesky decomposition with fill-level k) factorization is ob-
tained. Similar to the common Cholesky decomposition [1], it requires ∼ 1

2 as many operations
to compute, as ILU and the resulting decomposition is symmetric, positive definite, making it a
prime candidate for an incomplete factorization preconditioner for symmetric (positive definite)
matrices and methods which rely on the symmetry of the linear operator (e.g. CG). The same
caveats regarding fill-in as for ILU(k) apply.



8 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

1.2.2.4 Additive Factorization - Splitting

Methods which rely on a splitting of the matrix A into A = L+D+R which are, by themselves,
not modified are designated ”splitting methods” and can roughly be assigned to the class
of factorization methods. In the following, we assume that D is defined as for the Jacobi
preconditioner, L is the strict lower triangular part of A and R is the strict upper triangular
part of A.

While we provide the preconditioner matrices below these are generally never computed and
an application of any splitting preconditioner corresponds to the execution of one iteration step
of the corresponding iterative solver method.

1.2.2.4.1 Jacobi This preconditioner, which is also considered in Section 1.5, can be con-
sidered a splitting or scaling preconditioner, since it corresponds to the preconditioner matrix
P = D−1.

1.2.2.4.2 (Symmetric) Gauss-Seidel The preconditioner matrix of the simple Gauss-
Seidel preconditioner is

P = (D + L)−1 . (1.9)

For the symmetric form, the preconditioner matrix is

P = (D +R)−1D(D + L)−1 . (1.10)

1.2.2.4.3 (Symmetric) SOR This preconditioner is equivalent to the Successive Overre-
laxation (SOR) method, resulting in the preconditioner matrix

P = ω(D + ωL)−1 . (1.11)

Here ω is a parameter supplied by the user with ω ∈ (0, 2). Its symmetrised counterpart is
given by

P = ω(2− ω)(D + ωR)−1D(D + ωL)−1 . (1.12)

The (s)SOR preconditioners correspond to shortened (ω < 1) or prolonged (ω > 1) Gauss-Seidel
steps and, as such, can be attempted once it has been established that the (s)GS preconditioners
do not result in the desired reduction of step number. Since an iterative solution is, simply
put, an update of the proposed solution ~xk at step k by a correction - the residual ~rk - one
may introduce an importance weighting of the correction ω: ~xk+1 = ~xk + ω~rk. Dependent
upon the problem and the current approximation ~xk a larger or smaller correction to ~xk can be
performed.

1.2.3 Approximate Inverses
Instead of computing an approximate factorization of the sparse matrix A sequentially, one
may directly approximate its inverse by minimizing

‖I −BA‖2 (1.13)

w.r.t. B in one go. This class of preconditioners generally yields better to parallelisation
attempts, at the cost of higher memory complexity, since (1.13) essentially factorizes into
independent least-squares approximations. Note that while for the true inverse holds A−1A =
I = AA−1 this does not hold for approximate inverses, i.e. a right-inverse obtained using
‖I − AB‖2 will generally differ from a left inverse, obtained from ‖I −BA‖2.



1.2. PRECONDITIONER CLASSES 9

1.2.3.1 SPAI - SParse Approximate Inverse

The method enlarges the non-zero pattern of the approximant B dynamically until the mini-
mization problem is solved to within a provided tolerance. Minimisation of the residual results
in the method providing robust preconditioners at the cost of being time-consuming. This
approach does not guarantee that the approximate inverse B of a symmetric matrix will be
symmetric.

1.2.3.2 FSAI - Factorized Sparse Approximate Inverse

This variant of SPAI does not approximate B = A−1 directly but rather the Cholesky factors
of B, i.e., L in A−1 ≈ LtL. Usage of Cholesky factors imposes the same restrictions on the
matrix A as the (incomplete) Cholesky decomposition 1.2.2.3 - A has to be symmetric positive
definite. If A is s.p.d., then FSAI is well-defined, the converse - in general - does not hold.

1.2.3.3 AINV - Approximate INVerse

Similar to FSAI this method approximates the inverses of triangular factors which, if fully
computed, transform the matrix A into a diagonal matrix: L−1AU−1 = D.

1.2.3.4 MCMCMI - Markov Chain Monte Carlo Matrix Inversion

This method computes a sparse approximate inverse approximation via a random walk on
the graph defined by interpreting A as an adjacency matrix. We discuss this further in Sec-
tion 1.2.5.2.

1.2.4 Multigrid Methods
Similar to the splitting preconditioners, multigrid preconditioners originate from multigrid so-
lution methods. The latter are intended to accelerate the convergence of, e.g., Gauss-Seidel
iterations for large systems by essentially coarsening the solution vector ~x (e.g., by selecting
only every second element), computing a solution with ~x as the right-hand side vector ~b of a
smaller linear system and finally interpolating the coarse solution onto the original solution and
updating the original ~x [31].

Originally, the methods were conceived for the solution of elliptic PDE where highly oscilla-
tory components of the residual solution can be damped by solving computing a solution on a
coarser mesh and updating the solution on the finer mesh. Algebraic multigrid methods (AMG)
abstract the geometric picture of a mesh away and attempt to replicate the procedure given only
the system matrix A. Multigrid methods vary by the choice of the coarsening and interpolation
operators as well as of the coarsening/refinement cycles. These methods are very well suited for
linear systems resulting from the discretization of elliptic PDE. They are especially suited for
approaches where iterative mesh refinement is utilised. Furthermore, these methods scale well,
provided the utilised solver is well-parallelised. In the case of a strongly heterogeneous system
(i.e., multiscale system) or of strongly irregular meshes (e.g., mesh refinement at a sharp tip)
these methods are known to fail.

1.2.4.1 lAIR

Classical AMG method variants are available for both symmetric and nonsymmetric problems
although the former are more widely known and used. The lAIR preconditioner is a variation on
classical AMG for nonsymmetric matrices [22]. The method is based on a local approximation
to an ideal restriction operator, which is coupled with F-relaxation. For a given mesh with



10 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

vertex set V, the set V is partitioned into F-points and C-points, where C-points represent
vertices on the coarse grid. The matrix A can then be symbolically ordered into the following
block form:

A =
(
Aff Afc
Acf Acc

)
,

where Aff corresponds to the F-points. F-relaxation improves the solution at the F-points and
this accuracy is then distributed at the C-points via the coarse-grid correction (ideal restriction):

R =
(
−AcfA−1

ff I
)
.

It has been shown to be a robust solver for various discretizations of the advection-diffusion-
reaction equation in regimes ranging from purely advective to purely diffusive and including
time-dependent and steady-state problems.

1.2.5 Stochastic Methods
The methods presented above are deterministic and generally touch each value of the matrix
at least once during the computation. Stochastic methods aim to reduce computational costs
by utilising only the “important subset” of the matrix/vector entries.

A fairly accurate interpretation of stochastic methods would be as “measurement”, where
a systematic error (equivalent to the tolerances for deterministic methods) is to be balanced
with a stochastic measurement error. Usage of stochastic methods for the computation of
preconditioners uses the fact that a preconditioner does not have to be excellent to be usable,
but instead has to be effective and quick to compute.

1.2.5.1 SP -Stochastic Projection

The basic idea is fairly simple and the implementation follows roughly equation (2.13) of [34].
The main idea is to project the solution vector successively and orthogonally onto arbitrarily
chosen subspaces of the row-space of the matrix until the accumulated effect leads the iteration
into the subspace of the true solution. An obvious extension to block-projections has been
mentioned in [34] with the iteration step given as follows:

~xk+1 = ~xk + Ati
(
AiA

t
i

)−1 (~bi − Ai~xk) . (1.14)

Here Ai is a randomly selected block of rows of the matrix and ~bi the corresponding subset of
entries of the right-hand-side vector of

A~x = ~b . (1.15)

The intuitive simplicity of this approach is paid for by its performance. Furthermore, the
computation of a matrix inverse in each step is required. Depending on the block size of the
computation of said inverse, or a solution of a dense system, may incur a significant cost.

1.2.5.2 MCMCMI - Markov Chain Monte Carlo Matrix Inversion

This method computes a sparse approximate inverse by performing a random walk on the graph
defined by interpreting the matrix A as an adjacency matrix. The entries of the inverse are
computed by utilising the Neumann series:

A−1 =
∞∑
i=0

(I − A)i . (1.16)



1.3. FURTHER REMARKS 11

This requires ρ(A) < 1 in general, but by proper scaling can be used even when this condition is
not fulfilled. The benefit of this method is that it does not require the matrix A to be explicitly
known and the computational cost of computing either one row of the inverse or one element
of the solution vector scales as O(NT ), where N is the number of Markov chains and T the
mean length of a chain.

1.3 Further Remarks

1.3.1 On Parallelism
As has been remarked above, many of the factorization methods require a prior graph-partitioning
to restructure the system matrix - ideally in a block-diagonal form. The Gauss-Seidel precon-
ditioning iteration, for instance, carries an explicit data dependency. This can be circumvented
by usage of so-called wave-front parallelization [13] but is, as a rule, not part of the solver
implementation.

Approximate inverses are generally much more amenable to parallelization due to the afore-
mentioned independence of the least-squares problems that need to be solved. Stochastic
methods such as MCMCMI fall into the same category.

1.3.1.1 Domain decomposition

The decomposition of the computational simulation domain with a local ordering of the nodes
of the mesh improves the feasibility of factorization methods by reducing the effects of data
dependencies and concentrating matrix entries relevant for the local physical domain on the
local computational domain. This in turn simplifies the partitioning of the system matrix into
block-diagonal form (with or without overlap). An additive Schwarz preconditioner performs a
factorization on the (overlapping) blocks in parallel, with an additive averaging on the overlaps.

1.3.2 On Matrices
Most of the aforementioned methods can be used matrix-free, since they generally only require
the ability to determine the elements of the matrix and compute a matrix-vector product.
Incomplete factorizations with fill-in (ILU(k), IC(k)) are less amenable to usage with matrix-
free methods due to the need to compute the fill indices of the matrix elements and to create
a factorization with a non-zero pattern larger than the original system matrix.

Scalings and approximate inverses are more amenable to use with matrix-free methods due
to the only requirement being the computation of the matrix elements.

1.4 Summary of Preconditioners
In Table 1.2, we summarise the preconditioners as well as their prerequisites and limitations.
We distinguish between regular (i.e., non-singular, invertible) matrices and general matrices.
The latter do not have to be square, in which case one computes an approximate pseudo-inverse,
rather than an approximate true inverse.

The column ”CG usable” indicates whether a preconditioner computed with a given method
is usable with an iterative solver which requires a symmetric, positive matrix (represented by the
CG iteration), i.e., whether the method produces a symmetric, positive definite preconditioner.
This information is intended as a rough guide only, since asymmetric preconditioners (e.g., as
computed by SPAI or MCMCMI) may still work as intended.



12 CHAPTER 1. LANDSCAPE OF PRECONDITIONERS

Constraints on the system matrix given in the second column stem, in part, from theoretical
considerations. Methods such as IC, (s)SOR, FSAI may still compute a valid preconditioner
if the system matrix is indefinite but the theory guarantees that, with exact arithmetic, these
methods will not fail if the matrix is symmetric and positive definite.



Ta
bl

e
1.

2:
Su

m
m

ar
y

of
pr

ec
on

di
tio

ne
rs

an
d

th
ei

ra
pp

lic
at

io
n

sc
en

ar
io

s.
H

er
e

“s
.p

.d
.”

de
no

te
sa

sy
m

m
et

ric
po

sit
iv

e
de

fin
ite

m
at

rix
,“

re
gu

la
r”

an
in

ve
rt

ib
le

m
at

rix
,“

ge
ne

ra
l”

a
ge

ne
ra

l(
no

n-
sq

ua
re

)
m

at
rix

an
d

“d
.d

.”
a

do
m

in
an

t
di

ag
on

al
.

“G
P”

ab
br

ev
ia

te
s

“g
ra

ph
pa

rt
iti

on
in

g”
an

d
“W

P”
“w

av
ef

ro
nt

pa
ra

lle
liz

at
io

n”
[1

3]
.

Pr
ec

on
di

tio
ne

r
Sy

st
em

m
at

rix
PD

E
ty

pe
M

at
rix

-fr
ee

A
re

qu
ire

d
ex

pl
ic

itl
y

pa
ra

lle
liz

ab
le

C
G

us
ab

le
Ja

co
bi

0
/∈

di
ag

(A
),

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

Ye
s

Ye
s

Sc
al

in
g

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

Ye
s

Ye
s

D
-IL

U
0
/∈

di
ag

(A
),

re
gu

la
r

ge
ne

ra
l

Ye
s

N
o

vi
a

G
P

Ye
s

IL
U

(k
≥

0)
/I

LU
T

(ρ
,τ

)
re

gu
la

r
ge

ne
ra

l
N

o
Ye

s
vi

a
G

P
N

o
IC

(k
≥

0)
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

N
o

Ye
s

vi
a

G
P

Ye
s

(s
)G

S
re

gu
la

r,
d.

d.
ge

ne
ra

l
Ye

s
N

o
vi

a
W

P
sG

S
on

ly
(s

)S
O

R
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

Ye
s

N
o

vi
a

W
P

sS
O

R
on

ly
SP

A
I

ge
ne

ra
l

ge
ne

ra
l

N
o

N
o

Ye
s

N
o

FS
A

I
s.

p.
d.

ge
ne

ra
l(

el
lip

tic
)

N
o

N
o

Ye
s

Ye
s

A
IN

V
re

gu
la

r
ge

ne
ra

l
N

o
N

o
lim

ite
d

N
o

A
M

G
re

gu
la

r
el

lip
tic

,h
yp

er
bo

lic
,p

ar
ab

ol
ic

Ye
s

N
o

Ye
s

Ye
s

lA
IR

re
gu

la
r

el
lip

tic
,p

ar
ab

ol
ic

Ye
s

N
o

un
de

te
rm

in
ed

-
SP

ge
ne

ra
l

ge
ne

ra
l

Ye
s

N
o

Ye
s

N
o

M
C

M
C

M
I

ge
ne

ra
l

ge
ne

ra
l

N
o

N
o

Ye
s

N
o



Chapter 2

Application Cases

2.1 Introduction
Due to the limited duration of the NEPTUNE Preconditioning Project, the variety of problems
and test cases available within the NEPTUNE programme [2] has to be reduced to a manageable
level. In the following we present the equations and test cases that will be considered within
the given project.

2.2 Elliptic Problems
For elliptic problems, System 2-2 from [2] is our priority, which consists of a 2-D elliptic solver
in complex geometry. BOUT++ [9] already has some test cases and Nektar++ [35] also has
some suitable cases. BOUT++ has finite difference examples whilst Nektar++ uses finite and
spectral/hp elements for its discretizations. There is a solver in BOUT++ that sets up a matrix
problem and calls PETSc [29], and another implementation of the same problem which calls
HYPRE [10]. Since BOUT++ uses finite differences and not finite, high order, elements, there
are plans within the NEPTUNE Programme to implement the Nektar++ version over the next
6 months or so.

2.3 Hyperbolic Problems
For hyperbolic problems, System 2-3 from [2] is our priority case. There is already a BOUT++
test case called SD1D [9] that models the dynamics along the magnetic field, utilises finite
differences and is a matrix-free implementation that uses SUNDIALS [40]. A version of this
test problem is going to be set up using Nektar++ during the next few months. For the
dynamics across the magnetic field, there are 2D problems like Hasegawa-Wakatani, which are
a similar to incompressible fluid dynamics:

∂n

∂t
= −{φ, n}+ α(φ− n)− κ∂φ

∂z
+Dn∇2

⊥n (2.1a)
∂ω

∂t
= −{ω, n}+ α(ω − n) +Dω∇2

⊥ω (2.1b)

∇2φ = ω . (2.1c)

Here n is the plasma number density, ω := ~b0 ·∇×~v is the vorticity with ~v being the ~E× ~B drift
velocity in a constant magnetic field and ~b0 is the unit vector in the direction of the equilibrium
magnetic field. The operator {·, ·} in (2.1) is the Poisson bracket.

14



2.3. HYPERBOLIC PROBLEMS 15

Let us assume for simplicity, that n, ω, φ are discretized using the same basis in space and
an implicit Euler method is used for the time evolution, then the following set of non-linear
equations is obtained from (2.1):

0 = M(~ni − ~ni−1) + ∆t
(
diag

(
Lx~φi

)
Lz~ni − diag

(
Lz~φi

)
Lx~ni

− αM
(
~φi − ~ni

)
− κLz~φi −DnK~ni

)
(2.2a)

0 = M (~ωi − ωi−1) + ∆t
(
diag

(
Lx~φi

)
Lz~ωi − diag

(
Lz~φi

)
Lx~ωi

− αM
(
~φi − ~ni

)
−DωK~ωi

)
(2.2b)

0 = K~φi −M~ωi , (2.2c)

where K,M are the stiffness and mass matrices respectively and Lx, Lz are transport matrices
and represent the discretized versions of ∂x, ∂z [6]. Note that the first two terms in the ∆t bracket
in the first two equations (the terms with two L operators) are straightforward discretizations
of the Poisson bracket {f, g} = ∂xf∂zg − ∂zf∂xg where the recasting of, e.g. Lz~φ, is necessary
to ensure that the result of diag

(
Lz~φi

)
Lx~ni is again a vector (a discretized function).

Since the equations are non-linear they have to be solved e.g. via Newton’s method, which
requires the Jacobian of the system. The latter has the following form:

J :=

A 0 E
B C G
0 −M K

 , (2.3)

where the constituent matrices are the following

A = M + ∆t
(
diag

(
Lx~φi

)
Lz − diag

(
Lz~φi

)
Lx + αM −DnK

)
(2.4a)

B = α∆tM (2.4b)
C = M + ∆t

(
diag

(
Lx~φi

)
Lz − diag

(
Lz~φi

)
Lx −DωK

)
(2.4c)

E = ∆t (diag (Lz~ni)Lx − diag(Lx~ni)Lz − αM − κLz) (2.4d)
G = ∆t (diag(Lz~ωi)Lx − diag(Lx~ωi)Lz) . (2.4e)

Alternatively the last equation of (2.2) can be used to eliminate ~φi by virtue of ~φi = K−1M~ωi.
The Jacobian of the reduced system is then of the form

J̃ :=
[
P R
Q S

]
, (2.5)

with the constituent matrices

P = M + ∆t
(
diag

(
LxK

−1M~ωi
)
Lz − diag

(
LzK

−1M~ωi
)
Lx + αM −DnK

)
(2.6a)

Q = α∆tM (2.6b)
R = ∆t

(
diag (Lz~ni)LxK−1M − diag(Lx~ni)LzK−1M − αMK−1M − κLzK−1M

)
(2.6c)

S = M + ∆t
(
diag

(
LxK

−1M~ωi
)
Lz + diag (Lz~ωi)LxK−1M − αMK−1M −DωK

)
(2.6d)

As mentioned above, even if the stiffness matrix K is sparse its inverse will generally be
dense. Hence, for the discretization methods of interest for the project, the Jacobian of the
reduced system J̃ will not be sparse. Therefore, one of the questions is whether to (a) use the



16 CHAPTER 2. APPLICATION CASES

reduced system but have a dense Jacobian, or (b) treat the elliptic problem as a constraint
but have a sparse, larger and more ill-conditioned Jacobian. Option (a) is normally done but
experiments have also been done in BOUT++ (b) in order to use PETSc’s matrix coloring to
extract an approximate matrix for pre- conditioning from our matrix-free code. Nektar++ also
has an implementation of the Hasegawa-Wakatani problem.

2.4 Comments
When possible, Nektar++ examples should have higher priority than BOUT++ due to the
expectation that finite element and spectral discretizations will be the method of choice for
future simulations. In addition, we should expect adaptive hp-refinement to be used. Nektar++
is moving towards matrix-free implementations. For Nektar++, we need to keep in contact with
David Moxey.



Chapter 3

Implementations

3.1 Introduction
For scientific computing, there are widely-used platforms such as (among others) PETSc/TAO
[29], Trilinos, BOUT++ [9], Nektar++[35] and SUNDIALS [40] available. According to the
prioritised equations in Chapters 2, there are several studies using these platforms accessible
in the literature.

3.2 Elliptic Problems
As indicated in Chapter 2, the Grad-Shafranov equations is used to generate spectrally accurate
magnetic fields to use in other proxyapps [2]. There are highly-scalable, multi-physics imple-
mentations for Grad-Shafranov using finite difference [20] [41] and finite element [28] methods
with PETSc as well as finite element methods [32] [5] with Trilinos. To solve another equation
of interest, the non-Boussinesq vorticity equation, [3] used preconditioned Conjugate Gradient
with a Block–Jacobi preconditioner from PETSc. In [18], an inexact Newton-Krylov approach
with PETSc was used to solve a similar problem. In addition, [4] uses a matrix-free method from
PETSc to solve a non-Boussinesq formulation of polythermal ice flow. In [33], similar problems
were solved with massive MPI parrallelism using Krylov methods with preconditioners (ILU(k)
and block Jacobi) from PETSc. As discussed in Chapter 2, there are implementations and
suitable cases available in BOUT++ [9] and Nektar++ [35]. There are also tools which use the
mixture of platforms such as libMesh [16] and CoolFluiD[19] framework specialised for plasma
and multi-physics simulations.

3.3 Hyperbolic Problems
As stated in Chapter 2, the hyperbolic case focuses on system 2-3 of [2], of which several related
implementations and test cases exist in BOUT++ and Nektar++.

In the literature, several studies exist in which highly parallelized solvers for a 2-fluid model
have been considered and implemented. In [23], the linearized two-fluid MHD equations were
solved using a matrix-free Newton-Krylov method of solution in XTOR-2F (PETSc) with MPI
parallelism. In [39], an MPI parallelized Vlasov Fokker-Planck (VFP) set of equations was
solved (IMPACT [15]) using BICGstab as solver with an ILU preconditioner provided by
PETSc. In [21], a system of multi-fluid equations was solved using GMRES with a parallel
Additive Schwarz preconditioner provided by PETSc. VFP-based equations are also solved by
a package introduced in [25] and based on PETSc with MPI parallelism. In addition, there is
a package [38] available within Trilinos.

17



18 CHAPTER 3. IMPLEMENTATIONS

3.4 Other libraries of interest to the NEPTUNE Pro-
gramme

Clearly, the preconditioners from PETSc and Trilinos are already highly-used and their applica-
bility for future exascale implementations will need exploring. However, our literature searches
also identified other interesting libraries libraries.

DUNE is an open-source high-performance iterative solver that has an implementation of
the GenEO preconditioner [36] for strongly anisotropic elliptic partial differential equations
implemented within dune-pdelab. This preconditioner has a MPI implementation: good weak
and strong scalability demonstrated on ARCHER. We note that there is a version of the GenEO
preconditioner is available in PETSc.

HYPRE [10] is a library of scalable linear solvers and multigrid methods from Lawrence
Livermore National Laboratory. MPI implementations are provided.

HSL MI20 is an implementation of an algebraic multigrid preconditioner for nonsymmetric
systems from the HSL library [14]. Unfortunately, parallelism is only provided through the use
of parallelized Level 3 BLAS subroutine calls and it is not suitable for matrix-free/operator
only provision of A.

MUMPS [26] is a Fortran 95 library that utilizes MPI and OpenMP to solve large sparse
systems via direct methods and would be a good option for comparing iterative methods with
direct methods. The library is developed within a consortium of people from CERFACS, ENS
Lyon, INPT(ENSEEIHT)-IRIT, Inria, Mumps Technologies and the University of Bordeaux.

PaStiX (Parallel Sparse matriX package) [27] is a scientific library that provides a high
performance parallel solver for very large sparse linear systems based on direct methods. The
library can also be used to form preconditioners. As well as using MPI and OpenMP, the most
recent versions of the library also support the use of GPUs.

The STRUMPACK [37] library provides linear algebra routines and linear system solvers for
sparse and for dense rank-structured linear systems. The library has Fortran and C interfaces
and can also be used to compute incomplete LU factorization-based preconditioners. Paral-
lization is provided via MPI and OpenMP but the preconditioner routines do not currently
support GPUs.

We also direct the reader to Jack Dongarra’s list of freely available software for linear algebra
[7], which provides a list of software and associated attributes, and is periodically updated.



Bibliography

[1] P. Arbenz, O. Chinellato, M. Gutknecht, and M. Sala. Software for Numerical Linear Algebra.
online, 2006.

[2] W. Arter and R. Akers. ExCALIBUR equations for NEPTUNE Proxyapps. techreport, UK
Atomic Energy Authority, 2020.

[3] B. Bigot, T. Bonometti, L. Lacaze, and O. Thual. A simple immersed-boundary method for
solid–fluid interaction in constant-and stratified-density flows. Computers & Fluids, 97:126–142,
2014.

[4] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith. Composable linear solvers
for multiphysics. In 2012 11th International Symposium on Parallel and Distributed Computing,
pages 55–62. IEEE, 2012.

[5] P. Daniel, A. Ern, I. Smears, and M. Vohraĺık. An adaptive hp-refinement strategy with com-
putable guaranteed bound on the error reduction factor. Computers & Mathematics with Appli-
cations, 76(5):967–983, 2018.

[6] P. Deuflhard and M. Weiser. Adaptive Numerical Solution of PDEs. deGruyter, 2013.

[7] J. Dongarra. Freely Available Software for Linear Algebra, 2018. URL
http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

[8] J. Dongarra, R. Barett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 2014.

[9] B. Dudson, P. Hill, and J. Parker. BOUT++. online repository, 2020. URL
http://boutproject.github.io.

[10] R. Falgout, A. Barker, T. Kolev, R. Li, S. Osborn, D. Osei-Kuffuor, V. P. Magri, and
J. Schroeder. HYPRE: Scalable Linear Solvers and Multigrid Methods. online, 2017. URL
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods.

[11] M. Ferronato. Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century:
History, Current Developments, and Future Prospects. ISRN Applied Mathematics, 2012:49,
October 2012. doi: 10.5402/2012/127647.

[12] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU press, 2013.

[13] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and Engi-
neers. Chapman and Hall/CRC, 2011. Asian Reprint.

[14] HSL Development Team. The HSL Mathematical Software Library, 2015. URL
https://www.hsl.rl.ac.uk.

[15] R. Kingham and A. Bell. An implicit Vlasov–Fokker–Planck code to model non-local electron
transport in 2-D with magnetic fields. Journal of Computational Physics, 194(1):1–34, 2004.

19



20 BIBLIOGRAPHY

[16] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: a C++ library for parallel
adaptive mesh refinement/coarsening simulations. Engineering with Computers, 22(3-4):237–254,
2006.

[17] D. Kressner. Lecture notes for the course on Numerical Methods held by Daniel Kressner in the
spring semester 2010 at the ETH Zurich. (Numerische Methoden Vorlesungsskript zur Veranstal-
tung Numerische Methoden gehalten von Daniel Kressner im FS 2010 an der ETH Zürich). ETH
Zürich, May 2010.

[18] M. Kumar and G. Natarajan. Unified solver for thermobuoyant flows on unstructured meshes.
In Fluid Mechanics and Fluid Power–Contemporary Research, pages 569–580. Springer, 2017.

[19] A. Lani, T. Quintino, D. Kimpe, H. Deconinck, S. Vandewalle, and S. Poedts. The COOLFluiD
framework: design solutions for high performance object oriented scientific computing software.
In International Conference on Computational Science, pages 279–286. Springer, 2005.

[20] S. Liu, Q. Tang, and X.-Z. Tang. A parallel cut-cell algorithm for the free-boundary Grad-
Shafranov problem. arXiv preprint arXiv:2012.06015, 2020.

[21] Y. G. Maneva, A. A. Laguna, A. Lani, and S. Poedts. Multi-fluid modeling of magnetosonic wave
propagation in the solar chromosphere: effects of impact ionization and radiative recombination.
The Astrophysical Journal, 836(2):197, 2017.

[22] T. Manteuffel, J. Ruge, and B. Southworth. Nonsymmetric algebraic multigrid based on local
approximate ideal restriction (lair). SIAM Journal on Scientific Computing, 6(40):4105–4130,
2018.

[23] A. Marx and H. Lütjens. Hybrid parallelization of the XTOR-2F code for the simulation of
two-fluid MHD instabilities in tokamaks. Computer Physics Communications, 212:90–99, 2017.

[24] A. Meister. Numerics of systems of linear equations (Numerik Linearer Gleichungssysteme).
Springer Spektrum, 5 edition, 2014. doi: 10.1007/978-3-658-07200-1. With MATLAB exercises.

[25] S. Mijin, A. Antony, F. Militello, and R. J. Kingham. SOL-KiT—Fully implicit code for kinetic
simulation of parallel electron transport in the tokamak Scrape-Off Layer. Computer Physics
Communications, 258:107600, 2021.

[26] MUMPS Development Team. MUMPS: MUltifrontal Massively Parallel sparse direct Solver,
2020. URL http://mumps.enseeiht.fr/index.php?page=home.

[27] PaStiX Development Team. PaStiX: Parallel Sparse matriX package, 2019. URL
http://pastix.gforge.inria.fr/files/README-txt.html.

[28] Z. Peng, Q. Tang, and X.-Z. Tang. An Adaptive Discontinuous Petrov–Galerkin Method for the
Grad–Shafranov Equation. SIAM Journal on Scientific Computing, 42(5):B1227–B1249, 2020.

[29] PETSc Development Team. PETSc Web page, 2019. URL https://www.mcs.anl.gov/petsc.

[30] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2002.

[31] R. Rabenseifner, A. Meister, et al. Iterative Solvers and Parallelization - Course material for
HLRS Course 2016-ITER-S, 2016.

[32] N. V. Roberts, D. Ridzal, P. B. Bochev, and L. Demkowicz. A toolbox for a class of discontinuous
Petrov-Galerkin methods using Trilinos. Technical Report SAND2011-6678, Sandia National
Laboratories, 2011.

[33] A. L. Rossa and A. L. Coutinho. Parallel adaptive simulation of gravity currents on the lock-
exchange problem. Computers & Fluids, 88:782–794, 2013.



BIBLIOGRAPHY 21

[34] K. Sabelfeld and N. Loshchina. Stochastic iterative projection methods for large linear systems.
Monte Carlo Methods and Applications, 2010. doi: 10.1515/mcma.2010.020.

[35] S. Sherwin, M. Kirby, C. Cantwell, and D. Moxey. Nektar++. online, 2021. URL
https://www.nektar.info.

[36] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust
coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numerische
Mathematik, 1(126):741–770, 2014.

[37] STRUMPACK Development Team. STRUMPACK - STRUctured Matrix PACKage, 2021. URL
https://portal.nersc.gov/project/sparse/strumpack/v5.0.0/index.html.

[38] Trilinos Project Team. Stokhos Package for Intrusive Stochastic Galerkin Methods, 2021. URL
https://trilinos.github.io/stokhos.html.

[39] B. Williams and R. Kingham. Hybrid simulations of fast electron propagation including magne-
tized transport and non-local effects in the background plasma. Plasma Physics and Controlled
Fusion, 55(12):124009, 2013.

[40] C. S. Woodward, D. R. Reynolds, A. C. Hindmarsh, D. J. Gardner, and C. J. Balos. SUN-
DIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers. online, 2021. URL
https://computing.llnl.gov/projects/sundials.

[41] P. Zhu, C. Sovinec, C. Hegna, A. Bhattacharjee, and K. Germaschewski. Nonlinear ballooning
instability in the near-Earth magnetotail: Growth, structure, and possible role in substorms.
Journal of Geophysical Research: Space Physics, 112(A6), 2007.


