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1. Introduction

We expect that one of the biggest challenges in numerically solving drift kinetic equations

in the plasma edge is treating the motion of electrons along the magnetic field. Because

the electrons are light, they move rapidly along the field, placing a severe stability

restriction on the step size for explicit time advance schemes. Unfortunately, an implicit

treatment is not straightforward due to an implicit dependence of the electrostatic

potential on the charged particle distribution functions. One of the main aims of

our research is to develop and test a novel analytical model and associated numerical

algorithm for relaxing this restriction. As a first step towards this goal, we have

developed a new code in the programming language Julia to simulate a simple model for

parallel dynamics (described in our Jan 2021 report [1]) without the novel moment-based

approach that we intend to ultimately employ. This code will be used to test different

numerical approaches and will be built upon to create the code for the moment-based

approach. It will also be a useful benchmark against which the moment-based approach

can be tested.

In this report we give a brief description of a simple model for parallel plasma

dynamics before describing the corresponding code and presenting a comparison of

numerical results with the analytical benchmark we have derived.

2. Model equations

A detailed derivation of the model we consider is provided in the previous (Jan 2021)

report [1]. Here we provide a brief overview of the model for the Reader’s convenience.

The model we consider consists of a single ion species of charge e, a single neutral

species, and an electron species modelled as having a Boltzmann response, all immersed

in a straight, uniform magnetic field in the z direction. We allow for charge exchange

collisions between ions and neutrals but do not account for intra-species collisions.

Finally, we assume that the plasma is homogeneous in the plane perpendicular to the
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magnetic field. With these assumptions, our model system of equations is

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin (nnfi − nifn) , (1)

∂fn
∂t

+ v‖
∂fn
∂z

= −Rin (nifn − nnfi) , (2)

ns(z, t) =

∫ ∞

−∞
dv‖fs(z, v‖, t), (3)

and

ni = Ne exp

(
eφ

Te

)
, (4)

with fs
.
=
∫
dϑdv⊥v⊥Fs the marginalized particle distribution function for species s,

v‖ and v⊥ the components of the particle velocity parallel and perpendicular to the

magnetic field, respectively, ϑ the gyro-angle, mi the ion mass, t the time, φ the

electrostatic potential, and Rin the charge exchange collision frequency.

For our boundary conditions, we impose periodicity on fs in both z and v‖, with

periods Lz and Lv‖ , respectively. There is also the option to impose zero boundary

conditions on z and v‖ at the upwind boundary of the domain. As fs should go to

zero in v‖ as v‖ → ±∞, imposition of zero boundary conditions and periodic boundary

conditions should be equivalent as long as Lv‖ is sufficiently large. Note that with either

choice of boundary conditions, the line-averaged density
∫ Lz

0
dz ns is conserved.

We normalize Eqs. (1)-(4) by defining

f̃s
.
= fs

vth,i
√
π

Ne

, (5)

t̃
.
= t

vth,i
Lz

, (6)

z̃
.
=

z

Lz
, (7)

ṽ‖
.
=

v‖
vth,i

, (8)

ñs
.
=
ns
Ne

, (9)

φ̃
.
=
eφ

Te
, (10)

and

R̃in
.
=
Rin

Ne

Lz
vth,i

(11)

with vth,i
.
=
√

2Te/mi. In terms of these normalised quantities, Eqs (1)-(4) become

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= −R̃in

(
ñnf̃i − ñif̃n

)
, (12)
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∂f̃n

∂t̃
+ ṽ‖

∂f̃n
∂z̃

= −R̃in

(
ñif̃n − ñnf̃i

)
, (13)

eφ̃ = ñi =
1√
π

∫ ∞

−∞
dṽ‖f̃i, (14)

and

ñn =
1√
π

∫ ∞

−∞
dṽ‖f̃n. (15)

3. Numerical implementation

The algorithms described in this Section have been implemented in the code, written in

the Julia programming language, currently available on GitHub at https://github.

com/mabarnes/moment_kinetics.

3.1. Time advance

We evolve Eqs. (12)-(15) using a time-marching scheme (as opposed to an eigensolver)

due to its efficiency and to the nonlinear nature of the system of partial differential

equations. In particular, we employ a member of the family of Strong Stability

Preserving (SSP) Runge-Kutta (RK) schemes; see, e.g., [2, 3, 4]. Current SSPRK

options implemented in the code are SSPRK1 (forward Euler), SSPRK2 (Heun’s

method) and SSPRK3 (Shu-Osher method). The user can also specify the use of ‘flip-

flop’ Lie operator splitting, described in Appendix A. Operator splitting limits the time

advance scheme to second order accuracy in step size, but could be useful for separately

treating different pieces of physics. Here we describe the current default option, which

is the Shu-Osher method (SSPRK3) without operator splitting.

For convenience of notation, we express the normalised drift kinetic equations for

the ions and neutrals in the vector form

∂f

∂t
= G[f ], (16)

with f = (f̃i, f̃n)T and G the drift kinetic operator account for parallel streaming, parallel

acceleration (for the ions) and charge exchange collisions. The Shu-Osher method for

advancing this system of equations is a 3-stage, SSPRK scheme that is 3rd order accurate

in time step size ∆t. It is given by

f (1) = fn + ∆tG [fn] ,

f (2) =
3

4
fn +

1

4

(
f (1) + ∆tG

[
f (1)
])
,

fn+1 =
1

3
fn +

2

3

(
f (2) + ∆tG

[
f (2)
])
,

(17)

where the superscript n denotes the time level.

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
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3.2. Spatial discretisation

There are two discretisation schemes implemented in the code: finite differences and

Chebyshev (pseudo)spectral elements. The user can choose at run-time which scheme

to use for each of the z and v‖ coordinates.

3.2.1. Finite difference discretisation. For the finite difference discretisation, the

corresponding coordinate grid is uniform on the domain [−L/2, L/2], with L the

coordinate box length. The default method employed for derivatives is 3rd order upwind

differences, though 1st and 2nd order schemes are also available as options. For an

overview of upwind differences and a discussion of the merits of the different upwind

schemes, see, e.g. [5]. The associated integration weights used for field-line averages in z

and/or for the v‖ integration required for obtaining fields/moments are obtained using

the composite Simpson’s rule (sometimes referred to as composite Simpson’s 1/3 rule:

∫ L

0

dx f(x) ≈ h

3

(N−1)/2∑

j=1

(f(x2j−1) + 4f(x2j) + f(x2j+1)) , (18)

where N is the number of grid points in the coordinate x, and h = L/(N − 1) is the

uniform grid spacing. The composite rule (18) is only applicable for N odd, so it is

supplemented at the boundary by Simpson’s 3/8 rule when N is even.

3.2.2. Chebyshev spectral elements. When using Chebyshev spectral elements (see,

e.g., [6]), the corresponding coordinate grid is the Gauss-Chebyshev-Lobatto grid on

each element. For a description of Chebyshev-Gauss quadrature, see, e.g. [7]. Inclusion

of the endpoints within each element facilitates enforcement of continuity at element

boundaries, and the use of Chebyshev polynomials as a basis enables the use of Fast

Fourier Transforms. In our code, these transforms are done using the widely-used FFTW

library [8]. The associated integration weights used for field-line averages in z and/or for

the v‖ integration required for obtaining fields/moments are obtained using Clenshaw-

Curtis quadrature rules [9]. Clenshaw-Curtis quadrature is convenient, as it allows for

the use of endpoints in the integration domain (which is dictated by the use of a Gauss-

Chebyshev-Lobatto grid) while still exactly integrating polynomials up to degree N −1,

with N the number of points within the element.

4. Numerical results

To benchmark our numerical implementation of Eqs. (12)-(15), we compare our

simulation results with the analytical benchmarks developed in [1]. In particular, we

have initialised the distribution functions for the ions and neutrals to be of the form

f̃s =
ns
Ne

(
Te

T s

)1/2

exp

(
−ṽ2‖

Te

T s

)
, (19)
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with ns = ns+δns, and an overline denoting a field line average. The piece of the density

that varies along z, δns, is chosen to be small compared to ns (δns/ns = 0.001) so that

the system of equations can be linearised to a good approximation. This facilitates

comparisons with the linear analytical theory presented in [1]. For all cases shown here,

ni = nn = Ne/2, T i = T n and mi = mn. Both the electron-ion temperature ratio and

the charge exchange collision frequency are varied, and damping rates and frequencies

are extracted by considering the time evolution of the spatially-varying component of

the electrostatic potential, δφ. In particular, a least-squares fit for δφ(t)/δφ(t0) is done

for each simulation to a function of the form exp(γ(t − t0)) cos(ωt − ϕ)/ cos(ωt0 − ϕ)

to obtain the damping rate −γ, frequency ω and phase ϕ. The results are given in

Fig. 1. There is excellent agreement across a wide range of temperature ratios and

charge exchange collision frequencies, both for the damping of finite frequency modes

(corresponding to the solid lines) and to a zero frequency mode that appears at larger

collisionalities (dashed-dotted lines).
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Figure 1. Normalized growth rate and real frequency as a function of the ion-electron

temperature ratio. Note that the normalising vth employed here differs from the vth,i
employed in the text: It is chosen to be vth =

√
2Ti/mi to facilitate comparison with

the analytical results obtained in [1].

The minor discrepancies between the analytical and numerical damping rates that

are apparent for a handful of the cases are due to the simultaneous presence of both

modes with similar damping rates. This necessitates in some cases resolving the damping

of both modes over many orders of magnitude before the least damped mode dominates

the numerical solution – a challenging task given the ever-increasing filamentation of the

velocity space due to phase mixing. This should be possible to eliminate by carefully

initialising the simulation so that only the least damped mode is present, though we

have not yet attempted this. An example of a case in which both modes are present, as

well as a case in which they are not, is given in Fig. 2.
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Figure 2. Time evolutions of the absolute value of the spatially-varying electrostatic

potential δφ (blue) and the result of a least-squares fit (orange) to obtain the damping

rate, frequency and phase. The left plot corresponds to Te/Ti = 2 and R̃in = 0, and

the right plot corresponds to Te/Ti = 1 and R̃in = 4 (≈ 0.7 in terms of the normalised

frequency used in Fig. 1).

5. Future plans

With the core 1+1D code developed and successfully benchmarked against analytical

theory, we will now turn our attention to including kinetic electron dynamics and to

trialing a version of the moment-based approach in which the density moment is split

off from the kinetic equation. In parallel, we plan to explore the idea of using an

interpolation-free semi-Lagrange scheme [10] for the solution of the kinetic equation as

a novel approach to ameliorating the time step restriction posed by the kinetic electron

dynamics.

Appendix A. Operator splitting

We evolve Eqs. (12)-(15) using Heun’s method with ‘flip-flop’ Lie operator splitting.

To facilitate this it is convenient to define the vector f whose components are the

distribution functions f̃i and f̃n; i.e., f = (f̃i, f̃n)T . In terms of f the system of equations

is
∂f

∂t
+ A[f ] +B[f ] = C[f ], (A.1)

where

A[f ]
.
= ṽ‖

(
1 0

0 vth,n/vth,i

)
∂f

∂z
, (A.2)

B[f ]
.
= −1

2

(
∂φ̃/∂z̃ 0

0 0

)
∂f

∂ṽ‖
, (A.3)

and

C[f ]
.
= −R̃in

(
ñn −ñi
−ñn ñi

)
f . (A.4)
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Splitting the operators and employing Heun’s method results in the following time

advance scheme:

f
(1),n
A = fn −∆tA [fn]

f
(2),n
A = fn −∆tA

[
f
(1),n
A

]

fnA =
1

2

(
f
(1),n
A + f

(2),n
A

)
,

(A.5)

f
(1),n
B = fnA −∆tB [fnA]

f
(2),n
B = fnA −∆tB

[
f
(1),n
A

]

fnB =
1

2

(
f
(1),n
B + f

(2),n
B

)
,

(A.6)

and

f
(1),n
C = fnB −∆tC [fnB]

f
(2),n
C = fnB −∆tC

[
f
(1),n
B

]

fn+1 =
1

2

(
f
(1),n
C + fC(2), n

)
,

(A.7)

with the order of operations (A, followed by B, followed by C) reversed every time step

to obtain second order acuracy in ∆t.
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