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1 Executive summary

This report focuses on the initial phase of work undertaken by King’s College London and
Imperial College London to investigate challenges for generation of high-order meshes for the
NEPTUNE project. In this second report that comprises Deliverable 1.1 of our workplan, we
extend the two-dimensional high-order mesh generation process for producing meshes for the
tokamak edge region, with a particular focus on anisotropic element clustering leveraging the
r-adaptation method.
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2 Introduction

The main objective of Task 1.1 is to modify NekMesh with capabilities to generate high-order
meshes with adequate resolution for modelling the X-point, plasma separatrix and, if required,
the flux surfaces in the tokamak edge region. It is paramount that the refined mesh elements
conform exactly to the geometry of these internal features. We propose the use of internal CAD
curves which will guide the mesh generation process in NekMesh on how refine and adapt the
mesh appropriately, using modified mesh refinement techniques and leveraging the r-adaptation
scheme of [1] within the variational framework outlined in [2].

This report discusses the extensions added to NekMesh to achieve the goals stated above beyond
those already reported on in our previous deliverable [3]. We assume the reader is familiar with
the processes described there and, in order to reduce the length of this report, we do not repeat
the same information here and will refer to specific sections of the previous report instead.

The report is structured as follows: first, we discuss the technical modifications implemented in
NekMesh for both the mesh refinement and r-adaptation in Section 3, followed by detailed user
documentation of how to use the new features in Section 4. Two examples are then provided in
Section 5: first of a simple circle in a square, where the CAD preparation and pipeline process
are discussed in detail, followed by a prototype high-order mesh of the tokamak edge region
with the plasma separatrix and X-points used for refinement and clustering of mesh elements.
Finally, conclusions and future work are discussed in Section 6.

3 New features in NekMesh

To achieve the requirements specified above, two additional features have been added to
NekMesh. The first extends the ability to specify mesh spacing along CAD curves which in-
creases the mesh density in a desired regions, as explained in Section 3.1. The second additional
feature uses the r-adaptation scheme, initially developed for shock capturing in compressible
fluid simulations. This process shifts mesh nodes towards regions of interest, whilst preserving
the connectivity and the number of degrees of freedom in the mesh. This scheme is modified
to shift the mesh towards user-selected CAD curves, resulting in anisotropic elements that
conform exactly the curve. These changes are documented in Section 3.2.

3.1 CAD curve defined refinement

The current release version of NekMesh uses an automatic refinement technique based on cur-
vature where the mesh spacing is obtained with the help of an underlying octree, as explained
in Section 3.2 of [3] and in more detail in reference [4]. In addition to the automatic mesh
spacing, an option to define refinement lines in the mesh is provided where a user can specify
two points, the mesh spacing, D, and a radius of influence around the line, R, to provide ad-
ditional control of the mesh refinement to the user. To achieve the objectives of task 1.1, it is
paramount to provide additional refinement control where D and R can be specified over more
complex geometries than just straight lines. As such, we extended this functionality to work
on any CAD edge or curve.

The approach we have taken is similar to the line refinement technique and informs the surface
meshing routines of the minimum mesh spacing between that obtained by the octree and the
manually specified one in the defined region. When the surface mesh is generated using the
adapted version of the code Triangle, it queries the octree where the triangle is to be formed for
its spacing, δ, which is obtained using equation (1) in report D1.3 [3]. We note that δ is defined
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by the curvature of the CAD curve to set the mesh spacing not only for triangles formed on the
CAD curve but for all triangles within the same octant. The user defined refinement adds an
additional constraint on the mesh spacing, where if any of the triangle’s vertices are a distance
of R or less from a line or a CAD curve, the triangle’s spacing is the minimum between the
specified value and the one assigned from the octree, i.e. δ = min(D, δ).

Querying the octree for the mesh spacing in the MeshGen module

NekDouble Octree::Query(Array<OneD, NekDouble> loc)
{

// starting at master octant 0 move through succsesive m_octants which
// contain the point loc until a leaf is found.

// first search through sourcepoints
NekDouble tmp = numeric_limits<double>::max();

// search line sourcepoints
for (int i = 0; i < m_lsources.size(); i++)
{

if (m_lsources[i].withinRange(loc))
{

tmp = min(m_lsources[i].delta, tmp);
}

}

// search curve sourcepoints
for (int i = 0; i < m_csources.size(); i++)
{

if (m_csources[i].withinRange(loc))
{

tmp = min(m_csources[i].delta, tmp);
}

}

OctantSharedPtr n = m_masteroct;
bool found = false;

while (!found)
{

// ... A lot more code to find the leaf octant ...
n = n->GetChild(quad);
if (n->IsLeaf())
{

found = true;
}

}
// obtain the minimum delta between the leaf octant and the refinement
// lines / curves
return min(n->GetDelta(), tmp);

}

3



The query uses a new struct for the CAD curves used as refinement sources.

curvesource struct used by the Octree in the MeshGen module

struct curvesource
{

CADCurveSharedPtr curve;
NekDouble R, delta;

curvesource(CADCurveSharedPtr c, NekDouble r, NekDouble d)
: curve(c), R(r), delta(d)

{
}

// Tests if a point is within a specified range, R, from the curve
bool withinRange(Array<OneD, NekDouble> p)
{

if (curve->GetMinDistance(p) <= R)
{

return true;
}
else
{

return false;
}

}
};

We note that this modification required the ability to obtain distances from an arbitrary point in
the domain to a CAD curve, implemented in the CAD engine interface of NekMesh as a function
CADCurveOCE::GetMinDistance. Although NekMesh is designed to support multiple backends
(specifically OpenCASCADE and the ITI interface CFI), at present we have only implemented
this capability in the OpenCASCADE backend and hence is not currently supported in other
CAD systems.

Obtaining the minimum distance of a point from the CAD curve.

// Nektar++ distances are in m, OpenCASCADE are in mm
NekDouble CADCurveOCE::GetMinDistance(Array<OneD, NekDouble> xyz)
{

gp_Pnt loc(xyz[0] * 1000.0, xyz[1] * 1000.0, xyz[2] * 1000.0);
GeomAPI_ProjectPointOnCurve proj(loc, m_c, m_b[0], m_b[1]);
if(proj.NbPoints())
{

return proj.LowerDistance() / 1000.0;
}
else
{

return std::min(loc.Distance(m_c->Value(m_b[0])),
loc.Distance(m_c->Value(m_b[1]))) / 1000.0;
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(a) (b)

Figure 1: Portion of a mesh using curve refinement (a) without octree manipulation; (b) with
octree manipulation.

}
}

A limitation of the above approach is that it works on-top of the underlying octree structure
(by specifying the minimum spacing in a specific region) which often results in an undesirably
abrupt decrease in mesh spacing, and consequently some level of anisotrapy, as can be seen in
Figure 1(a). To rectify this issue and obtain better meshes, we have implemented additional
logic to manipulate the underlying octree structure. This is done by encouraging the octants
where a refinement line or curve is found to continue subdividing until their spacing is equal
to or smaller than the user defined spacing D of the line or CAD curve. This results in a more
gradual decrease of mesh spacing at the expense of additional degrees of freedom as seen in
Figure 1(b). We note that the octree manipulation exerts the influence of the refinement beyond
the strictly defined region in a manner that is hard to predict due to the nature of the octree’s
subdivision process. The source code for this change is heavily fragmented and left out of this
report. It required significant changes to the source point structs in Octree/SourcePoints.hpp
and most notably the algorithms in Octree::CompileSourcePointList() and Octant::Octant.

3.2 CAD curve based r-adaptation

r-adaptation is a novel scheme available in NekMesh, whereby the position of mesh vertices are
adjusted to obtain additional resolution where it is needed in the domain without changing the
connectivity of the mesh, consequently fixing the number of degrees of freedom. The application
of this process can be seen in [1], where this was combined with p-adaptation to better resolve
discontinuities in the flow region by squeezing elements toward the shock region, resulting in
anisotropic elements surrounding the shock structure. The method utilises the variational mesh
optimisation technique [2] briefly described in Section 3.3.3 of report D1.3 [3], while periodically
scaling the Jacobian of the element mappings based on the discontinuity found in the solution
field during the optimisation iterations.

For our purposes of generating highly anisotropic mesh elements conforming to the shape of the
plasma core separatrix and flux surfaces, we have adapted the r-adaptation method to be able
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to scale and shift elements towards user specified CAD curves. In this way the user can control
a priori where additional resolution will be required. The user needs to specify the scaling
factor and, optionally, a radius of influence around the curve where elements are scaled. This
process is aided by the ability of the optimisation procedure to slide mesh nodes (excluding the
end vertices which remain fixed) along CAD curves which ensures the mesh remains conformal
to the curve during the adaptation process, thus exactly capturing the desired feature within
the domain.

To allow the mesh nodes more freedom of movement, it is best to apply the r-adaptation on
a linear mesh and elevate it to a high order mesh after the adaptation procedure. The r-
adaptation procedure when applied to the CAD curves using a linear mesh however is very
sensitive to the scaling factor and radius of influence, which are problem specific parameters
that require manually tuning. If the scaling factor is too small, this can result in such highly
stretched elements that the high-order optimisation scheme cannot be guaranteed to resolve
under lower resolutions. Thus, depending on the desired level of anisotropy, a finer resolution
might be required using the CAD curve refinement process described above in Section 3.1.
Some discussion on safe values found through trial and error can be found in Section 5. How-
ever, a detailed study of the parameters is left for future work, for the main reason that in
upcoming Task 1.2, we will consider quad-based mesh generation approaches to this problem.
One significant part of this is to utilise isoparametric boundary layer mesh generation in these
regions, based on the work in [5]. This may give better control over the anisotropy required in
this region.

From the implementation perspective, several changes to the elements class of the optimisation
module, ElUtil, were required. The current function where the mapping is updated was
overhauled to become CAD aware and to allow for either the shock-based or the CAD-based
adaptation to work seamlessly. The CAD-based r-adaptation was further split for performance
reasons into cases where elements have a vertex on a CAD curve and those where a radius of
influence extending from the curve is defined. In the latter, a brute force approach is utilised
to check the distance of each vertex of each element from the CAD curve.

UpdateMapping function using CAD curves inside the ProcessVarOpti module’s elements
utility ElUtil

if (m_adapt_scale)
{

// Using elements with a node with a radius from the curve
if(m_adapt_radius)
{

[&]{
for (auto &vert :m_el->GetVertexList())
{

Array<OneD, NekDouble> x(3);
x[0] = vert->m_x;
x[1] = vert->m_y;
x[2] = vert->m_z;
for (auto &curve : m_adaptcurves)
{

if (curve->GetMinDistance(x) < m_adapt_radius)
{

scaling = m_adapt_scale;
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return; // return lambda function to break loop
}

}
}

}();
}
// Using only elements with a node on the curve
else
{

[&]{
for (auto &vert :m_el->GetVertexList())
{

for (auto &curve : vert->GetCADCurves())
{

std::vector<CADCurveSharedPtr>::iterator it =
std::find(m_adaptcurves.begin(), m_adaptcurves.end(),

curve);↪→

if (it != m_adaptcurves.end())
{

scaling = m_adapt_scale;
return; // return lambda function to break loop

}
}

}
}();

}
}

if (scaling)
{

for (int i = 0; i < m_maps.size(); ++i)
{

for (int j = 0; j < 9; ++j)
{

maps[i][j] = m_maps[i][j] / scaling;
mapsStd[i][j] = m_mapsStd[i][j] / scaling;

}

if (m_dim == 2)
{

maps[i][9] = m_maps[i][9] * scaling * scaling;
mapsStd[i][9] = m_mapsStd[i][9] * scaling * scaling;

}
else if (m_dim == 3)
{

maps[i][9] = m_maps[i][9] * scaling * scaling * scaling;
mapsStd[i][9] = m_mapsStd[i][9] * scaling * scaling * scaling;

}
else
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{
ASSERTL0(false, "not coded");

}
}

}
else
{

maps = m_maps;
mapsStd = m_mapsStd;

}

This approach is suitable for the prototype phase, but further improvements such as utilising
the octree structure to reduce the search space can be made. However, within the 2D framework
considered in this report, and taking into account the adaptation process that takes place on a
linear mesh, we found the performance to be acceptable.

Additionally, a bug related to the identification of nodes that are attached to the CAD curves
was found, whereby the end vertices of CAD curves were not identified and were allowed to
be move as regular optimisation nodes (i.e. not attached to a CAD curve). Since the mesh
is generated in a bottom-up fashion, this can lead to some elements no longer conforming to
the curve and/or general degradation of the mesh quality, as demonstrated by Figure 2(a). To
address this issue, the end vertices of CAD curve are now removed from the optimisation and
are considered to be permanently fixed in space. This avoids any degradation of the geometry
during the optimisation process, as seen in 2(b).

(a) (b)

Figure 2: Section of mesh showing the intersection between two edges after applying r-
refinement to a linear mesh then upgrading it to higher order: (a) bug - CAD curve vertices
unidentified and allowed to move; (b) bug fix - CAD curve vertices fixed in space.

4 User documentation

In the following sections, a description of how to use the additional NekMesh features is pro-
vided. First, the CAD requirements for generating meshes with internal curves is given followed
by a description of the additional fields used in the NekMesh configuration .mcf file used for the
curve refinement feature. Finally the additional command line options used for the curve-based
r-adaptation feature are outlined.
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4.1 CAD requirement for NekMesh

NekMesh mainly supports the OpenCASCADE CAD system [6] and the use of STEP files. A
discussion on the CAD representation can be found in Section 3.1 of report D1.3 [3]. Here, we
discuss the requirements for generating a valid STEP file for NekMesh with internal edges (or
curves). CAD curves read into NekMesh must:

1. not be periodic, i.e. has distinct two distinct end vertices, or in other words that for the
parametrisation of the curve, r(t), there does not exist a constant T such that r(t+T ) =
r(t);

2. form an edge loop, i.e. both its end vertices must also be an end vertex of another curve,
or in other words it is part of a set of edges that together form a closed loop.

The latter restriction also implies that the internal curves have to split the domain into multiple
unique faces that share some of the same edges with the neighbouring faces. This requires the
decomposition of the computational domain in a particular manner that may not seem intuitive
from the CAD software perspective. Two examples, one of a simple circle in a square and one
of a geometry more representative of the cross section of tokamak reactor with the plasma
separatrix are provided in Sections 5.1 and 5.2 respectively.

4.2 Configuration file (.mcf) for refinement definitions

The .mcf file is the configuration file for the import module in NekMesh. It uses a xml file
formal. In principle, for most aeronautics applications, meshing is done mostly automatically
and only a few basic options have to be explicitly provided. As an example, a typical basic 2D
.mcf file would contain the following:

<NEKTAR>
<MESHING>

<INFORMATION>
<I PROPERTY="CADFile" VALUE="case.stp"/>
<I PROPERTY="MeshType" VALUE="2D"/>

</INFORMATION>

<PARAMETERS>
<P PARAM="MinDelta" VALUE="0.01"/>
<P PARAM="MaxDelta" VALUE="0.01"/>
<P PARAM="EPS" VALUE="0.1"/>
<P PARAM="Order" VALUE="4"/>

</PARAMETERS>
</MESHING>

</NEKTAR>

where the parameters for MinDelta, MaxDelta and EPS are explained in Section 3.2 of report
D1.3 [3] and Order is the order of the mesh, in this example 4th order. For more advanced
meshes containing boundary layers, additional options can be defined, which are described in
the NekMesh user guide [7].

Refinement lines use a separate XML tag with the following format, where the values follow the
same notation use in Section 3.1. The following example shows how a refinement line between

9



points (x1, y1, z1) and (x2, y2, z2) is defined with radius R = 0.005, wherein the mesh spacing is
forced to a value δ = 0.001.

<REFINEMENT>
<LINE>

<X1> -0.01 </X1>
<Y1> -0.01 </Y1>
<Z1> 0.0 </Z1>
<X2> 0.01 </X2>
<Y2> 0.01 </Y2>
<Z2> 0.0 </Z2>
<R> 0.005 </R>
<D> 0.001 </D>

</LINE>
</REFINEMENT>

For consistency reasons, we have followed the same format for CAD curve refinement, except
we have replaced the start and end points of the line with the edge ID as defined in the STEP
file.

<REFINEMENT>
<CURVE>

<ID> 1 </ID>
<R> 0.005 </R>
<D> 0.001 </D>

</CURVE>
</REFINEMENT>

Any number of lines and curves can be specified within the same refinement tag in any order,
one at a time. An example using several curves and lines can be found in the provided plasma
core separatrix test case attached to this report.

4.3 Command line options for r-adaptation

In contrast to the curve refinement which is read by the input module, r-adaptation is part of
the variational optimisation module, varopti. Its parameters are set using the command line
options for varopti, which is important as it allows for multiple instances of the module to be
piped to each other using different parameters.

The option for r-adaptation using curves is activated when a curve is specified using the option
radaptcurves that can take a combination of curve ids in list and range format as follows:

NekMesh -m varopti:<optimisation_method>:radaptcurves=<int id_item1>,<int
id_item2>,<int id_range1_start>-<int id_range1_end>:nq=<order_of_mesh>↪→

where optimisation method is the functional used for the optimisation process as described
in [2] and nq is the number of integration points per element edge, which is equivalent to the
order of the mesh plus 1, i.e. nq=2 for a first order linear mesh and nq=5 for a 4th order mesh.

Additionally, a scaling factor must be set for the adaptation to take effect, using the option
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-m varopti:<previous_options>:radaptscale=<double scaling_factor>:...

Setting the radius is optional and can be set with

-m varopti:<previous_options>:radaptrad=<double scaling_radius_value>:...

Finally, an additional parameter for selecting the number of optimisation iterations between
scaling updated can be set with

-m varopti:<previous_options>:subiter=<int number_of_iterations>

This option is required as applying the scaling too often can prevent the optimisation process
to reach the desired tolerance.

Crucially, NekMesh can run a pipeline modules in a single command, so multiple passes through
varopti can be easily run. For instance

NekMesh
-m varopti:linearelsatic:radaptcurves=1-4:radaptscale=0.4:subiter=5:nq=2
-m varopti:linearelsatic:radaptcurves=1-4:radaptscale=0.45:radaptrad=0.0 c

05:subiter=15:nq=2↪→

-m varopti:hyperelastic:nq=5
<case_name>.mcf <mesh_name>.xml

would be a typical way to use the r-adaptation process, where: the first use of varopti uses the
linear elastic method for optimisation, curves 1-4 are selected for the adaptation, the scaling
factor is 0.4 applied every 5th iteration and the optimisation is done on a linear mesh; the
second use of varopti is identical to the first only with a larger scaling factor applied every
15th iteration to all elements with a vertex within 5 mm from the selected curves; the last call
to varopti uses the hyper-elastic model on a 4th order mesh without applying any further
adaptation and optimising the high order mesh nodes.

5 Test cases

The following section contains two test cases. The first is a simple circle embedded in a square
used to illustrate in detail the pipeline process to generate a high-order anisotropic mesh refined
and adapted towards the CAD curves of the circle. The second case resembles a tokamak cross
section with the plasma separatrix. Due to the unavailability of the real geometry, this is our
best attempt at recreating one by tracing an image in FreeCAD.

5.1 Circle in square

This test case consists of a square of width 100 mm with an embedded circle of radius 70 mm
in its centre. Although simple, it serves as a demonstration of the entire pipeline, exploring
the various modifications and their individual influences on the mesh generation process when
considering internal curves for clustering elements in regions of interest.
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Two files, a STEP file containing the CAD information, Cases/2d circle square.stp, and a
configuration file, Cases/2d circle square.mcf, are attached to this report in order to recreate
any steps of this example and made available as part of the NekMesh test suite.

5.1.1 CAD preparation

Following Section 4.1, the domain is split into two non-overlapping faces with eight distinct
edges (see Figure 3). Edges 1–4 represent the curves of the circle and are present in both the
square and the circle faces, as illustrated in Figures 4.

Figure 3: Illustration of the faces and edges of the circle in square test case.

5.1.2 Curve refinement

Meshing the above case with the unmodified NekMesh using a large initial mesh spacing of
10 mm, as seen in the 2d circle square.mcf file below, we execute the following commands:

NekMesh -v -m varopti:hyperelastic:nq=5 2d_circle_square.mcf
2d_circle_square.xml↪→

<NEKTAR>
<MESHING>

<INFORMATION>
<I PROPERTY="CADFile" VALUE="2d_circle-square.stp"/>
<I PROPERTY="MeshType" VALUE="2D"/>

</INFORMATION>

<PARAMETERS>
<P PARAM="MinDelta" VALUE="0.0015"/>
<P PARAM="MaxDelta" VALUE="0.01"/>
<P PARAM="EPS" VALUE="0.1"/>
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(a) (b)

Figure 4: Illustration of the separate faces and associated edges of the circle in square test case
showing (a) the square region without the embedded circle; (b) the circle region without the
surrounding square.

<P PARAM="Order" VALUE="4"/>
</PARAMETERS>

</MESHING>
</NEKTAR>

This results in a sparse 4th order mesh consisting of 294 elements and 4,470 degrees of freedom,
as shown in Figure 5(a). We can see that no automatic refinement took place due to the
curvature being adequately captured with the specified MaxDelta of 10 mm in mesh spacing,
resulting in 10 discrete segments per edge of the square.

To better resolve the circle, we select curves 1–4 as refinement curves and set the mesh spacing
to D = 0.15mm with a radius of influence R = 0.5 mm, by adding the following <REFINEMENT>
tag to the 2d circle square.mcf.

<REFINEMENT>
<CURVE>

<ID> 1 </ID>
<R> 0.005 </R>
<D> 0.0015 </D>

</CURVE>
<CURVE>

<ID> 2 </ID>
<R> 0.005 </R>
<D> 0.0015 </D>

</CURVE>
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<CURVE>
<ID> 3 </ID>
<R> 0.005 </R>
<D> 0.0015 </D>

</CURVE>
<CURVE>

<ID> 4 </ID>
<R> 0.005 </R>
<D> 0.0015 </D>

</CURVE>
</REFINEMENT>

Note that in the provided configuration file the <REFINEMENT> tag is already present.

Using the modified NekMesh with the CAD curve refinement and executing the same command
as the previous case with the unmodified code, we can see in Figure 5(b) that the resolution
around the circle drastically increases. Additionally, the octree smoothing is exerting its influ-
ence throughout most of the domain, which further increases the resolution, resulting with a
mesh containing 4,184 elements and 66,022 degrees of freedom.

(a) (b)

Figure 5: Mesh of the circle in square test case (a) the unmodified version of NekMesh with no
refinement; (b) the modified version of NekMesh using refinement around the CAD curves of
the circle.

5.1.3 r-adaptation

Despite the increase in resolution, the mesh produced by employing refinement is still isotropic
and there is no clustering within the refined zone around the circle’s curves. To achieve that, we
employed the r-adaptation method, which shall be explored next. Keeping in mind Section 4.3,
we will adopt a pipeline process using multiple executions of the variational optimisation mod-
ule. The different parameters will be demonstrated in the following steps.

First, we attempt to generate a mesh using r-adaptation only on elements adjacent to the
circle’s curve, i.e. without specifying a radius. This is done with following command:
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NekMesh -v
-m varopti:linearelastic:radaptcurves=1-4:radaptscale=0.275:subiter=5:re c

stol=1e-5:nq=2:numthreads=10↪→

-m varopti:hyperelastic:nq=5:numthreads=10
2d_circle_square.mcf 2d_circle_square.xml

We note the use of additional options, namely restol and numthreads which were not pre-
viously explained. The former is the minimum residual required to halt the iterations in the
variational optimisation process, and the latter is number of execution threads on a multi-core
CPU. As explained in Section 3.2, the r-adaptation is executed on a linear mesh by using
nq=2, followed by a second pass of the variational optimisation module without r-adaptation
and using nq=5 to promote the mesh to 4th order whilst ensuring the process of increasing the
polynomial order does not degrade the mesh quality.

The resulting mesh contains the same number of elements and degrees of freedom as the refined
mesh, but as seen in Figure 6, anisotropic mesh elements are now formed on the circle, while
the elements connected to them are still isotropic, resulting in a sharp transition. The scaling
factor of 0.275 was obtained by trial error by decreasing the value until the resulted elements
were too skewed for the selected resolution.

(a)

(b)

Figure 6: Circle in square mesh using curve refinement and r-adaptation applied only to ele-
ments adjacent to the circle’s curve: (a) full view; (b) zoomed in view around a curve.

To address the sharp transition and to cluster more elements around the circle, a radius of
influence of 0.2mm wide is used with the following commands:

NekMesh -v
-m varopti:linearelastic:radaptcurves=1-4:radaptscale=0.275:radaptrad=0. c

002:subiter=20:restol=1e-5:nq=2:numthreads=10↪→

-m varopti:hyperelastic:nq=5:numthreads=10
2d_circle_square.mcf 2d_circle_square.xml

Once again, it was found that a scaling factor value smaller than 0.275 resulted in invalid
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elements when upgrading the mesh to higher-order. As observed in Figure 7, the resulting
mesh displays a wider band of anisotropic elements around the circle’s curves, however the
elements adjacent to the curves are less stretched than before. It is also noted that the value
for subiter is relaxed from applying the scaling every 5 iterations to every 20 iterations. This is
due to the scaling of more elements, which decreases the value of the functional being optimised
within the variational setting (see reference [2]), and the desired residual set for the optimisation
not being reached between the Jacobian mapping scaling updates.

(a)

(b)

Figure 7: Circle in square mesh using curve refinement and r-adaptation applied to elements
within a fixed radius from the circle’s curve: (a) full view; (b) zoomed in view around a curve.

Ideally, we wish to combine the highly stretched anisotropic elements around the curve from
the case without using a radius with the wider band of anisotropic elements obtained from
applying the radius. To do so, we can chain both execution of the variational optimiser using
r-adaptation, first without a radius and then with using the following commands:

NekMesh -v
-m varopti:linearelastic:radaptcurves=1-4:radaptscale=0.4:subiter=5:rest c

ol=1e-5:nq=2:numthreads=10↪→

-m varopti:linearelastic:radaptcurves=1-4:radaptscale=0.4:radaptrad=0.00 c

2:subiter=15:restol=1e-5:nq=2:numthreads=10↪→

-m varopti:hyperelastic:nq=5:numthreads=10
2d_circle_square.mcf 2d_circle_square.xml

Finally, we obtain the desired mesh! As seen in Figure 8, the resulting mesh has both highly
stretched elements adjacent to the curve as well as a band of anisotropic elements surrounding
the curves with a smoother transition towards the isotropic elements in the rest of the domain.
In this final trial, the scaling factor was increased to 0.4 to account for the fact that the scaling
is applied twice to the elements adjacent to the curves.

To summarise, the pipeline process used to generate the desired meshes, starting from defining
refinement curves in the .mcf file to the multiple executions of the variational optimisation
module have been demonstrated, with each step in the pipeline explained. The values used
in the different points in the pipeline are problem dependent, although from our experience
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(a)

(b)

Figure 8: Circle in square mesh using curve refinement and r-adaptation applied first only to
elements adjacent to the circle’s curves, then to elements within a fixed radius from the circle’s
curve: (a) full view; (b) zoomed in view around a curve.

the selected scaling factor values are similar for most cases and range between 0.3 to 0.65
when employing r-adaptation once without and once with a radius. Further reduction of the
refinement mesh spacing can allow for the smaller limit of scaling factor range, although further
studies into the relation between the various parameters is still required and left for future work
as explained in Section 3.2.

5.2 Plasma core separatrix

The second test case is a schematic cross section of the tokamak first wall, where the CAD is a
very rough and simplified approximation of the geometry obtained by tracing the illustration in
Figure 9 in FreeCAD. We used mm as the units when tracing which gave an enclosing domain
with a height of 222 mm and width of 106 mm. We are aware that this does not represent
reality, however scaling the units is trivial for the mesh generation process.

Only the plasma separatrix of the edge-region was modelled internally. The flux surfaces were
left out at this stage as: a) it is unclear if these would form part of the requirements; b) due to
the CAD creating process, creating separate faces for each gap between the surfaces could be
extremely time consuming and was judged to not be worth the effort without the availability of
an accurate geometry. The resulting STEP file consists of three distinct and non-overlapping
faces and thirty edges, shown in Figure 10. Edges 1, 2, 4 and 7–22 represent the walls, edge 3
the pump and edges 5, 6 and 23–30 the internal plasma separatrix. The latter group is mainly
of interest for refinement and r-adaptation, however some outer edges also require refinement
to enable a smooth mesh transition between the internal regions and the walls.

The two files for this test case are attached to this report in Cases/cross section.stp for the
CAD file and Cases/cross section.mcf for the configuration file. It is highly recommended that
the reader refers to the configuration file when following this section as the full content of the
refinement definitions is too lengthy to include in the report.

The basic mesh configuration (excluding refinement) is similar to the previous test case. The
minimum and maximum mesh spacing are both set to 10mm, noting that all refinement will
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Figure 9: Illustrative example of a tokamak cross section. Taken from reference [8].

be user defined, and the ε = 1. The order is set to 1 as we know in advance that refinement is
to take place before the last pass of the variational optimisation upgrades the mesh to higher-
order. Refinement is then applied to all internal edges, i.e. edges 5, 6 and 23–30 with a mesh
spacing of 0.75 mm and a radius of influence of 3.5 mm. These parameters were carefully chosen
so that the refinement zones around the internal curves do not contain parts of the outer edges
while obtaining a smooth transition in the mesh. However, in the bottom region surrounding
the X-point where the wall edges are in close proximity to the internal ones, further tuning was
required. The wall edges were split into two groups with slightly different refinement parameters
as follows: edges 1–4, 7–10, 12 and 13 form the first group of edges in close proximity the X-
point, with a mesh spacing set to 1.5mm and different radius of influence values to obtain a
smooth mesh; while edges 11 and 14 which are further away, as subscribed a mesh spacing
of 0.25 mm, again with different radius values. Lastly, to further increase the resolution just
around the X-point, two additional refinement lines were defined using a resolution of 0.2 mm
as follows:

<LINE>
<X1> -0.092 </X1>
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Figure 10: Illustration of the faces and edges of the tokamak cross section test case.
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<Y1> -0.062 </Y1>
<Z1> 0.0 </Z1>
<X2> -0.090 </X2>
<Y2> -0.066 </Y2>
<Z2> 0.0 </Z2>
<R> 0.00020 </R>
<D> 0.00020 </D>

</LINE>
<LINE>

<X1> -0.0925 </X1>
<Y1> -0.0645 </Y1>
<Z1> 0.0 </Z1>
<X2> -0.088 </X2>
<Y2> -0.063 </Y2>
<Z2> 0.0 </Z2>
<R> 0.00020 </R>
<D> 0.00020 </D>

</LINE>

For r-adaptation, only the internal curves are considered. In the first pass of the variational
optimisation module, the scaling factor is set to 0.4, only targeting elements which are adjacent
to the curves. In the second pass the scaling factor is slightly increased to 0.45 and a radius
of influence of 1mm is set. Lastly, in the third and final pass no r-adaptation is employed and
the mesh gets upgraded to 5th polynomial order. The full execution command is given below:

NekMesh -v
-m varopti:linearelastic:radaptcurves=5,6,23-30:radaptscale=0.4:subiter= c

5:restol=1e-5:nq=2:numthreads=10↪→

-m varopti:linearelastic:radaptcurves=5,6,23-30:radaptscale=0.45:radaptr c

ad=0.0010:subiter=15:restol=1e-5:nq=2:numthreads=10↪→

-m varopti:hyperelastic:nq=6:numthreads=10
cross_section.mcf cross_section.xml

The resulting mesh is shown in Figures 11–13. All the selected values for both the refinement
curves and lines, as well as the r-adaptation, were manually tuned through a lot of trial and
error and were the best combination we have tried.

6 Conclusions and future work

The goal of Task 1.1 is the generation of meshes capable of node clustering around and conform-
ing to internal features, with the aim of generating a mesh suitable for the tokamak cross-section
edge case. In this report, we have described in detail the additional features added to NekMesh
to achieve said goal.

First, we extended and improved the user-defined refinement in NekMesh by introducing a
feature that allows CAD curves to be used as sources for refinement and improving the oc-
tree subdivision to generate smoother meshes when user defined refinement is used. Next,
r-adaptation, a method originally designed to cluster nodes and form anisotropic elements
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Figure 11: 5th polynomial order mesh for the tokamak cross section test case with elements
clustering around the plasma separatrix.

around fluid discontinuities in order to better resolve shock regions, was modified to work on
user-defined CAD curves.
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(a) (b)

Figure 12: 5th polynomial order mesh for the tokamak cross section test case with elements
clustering around the plasma separatrix. Zoomed in views of the lower region where the X-point
and surrounding wall edges can be observed.

(a) (b)

Figure 13: 5th polynomial order mesh for the tokamak cross section test case with elements
clustering around the edge-case of the plasma separatrix. Zoomed in views of the top region.
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User documentation for using the new features is then provided for each of the individual
features as well the CAD preparation requirements. A pipeline process is then described from
CAD preparation to mesh generation explaining each step in the process in detail through the
use a simple test case of a circle embedded in a square. A brief discussion of the parameters
and their choices is also presented, highlighting some of the limitations of the new features.

Finally, a simplified geometry mimicking a tokamak cross-section where the plasma separatrix
is modelled using an internal curve is presented. The resulting mesh satisfies the goals set
out for Task 1.1 and paves the way for Task 1.2. However, the manual nature of selecting
refinement and scaling parameters by trial and error is highlighted as a significant drawback.
Further understanding of the refinement and scaling parameters and their combination is clearly
needed. This is left for future work with the knowledge of the inevitable changes following the
completion of Task 1.2.

The next obvious next step is to mesh an accurate geometry of the tokamak cross section once
it becomes available to us. Further, a decision of whether or not the flux surfaces are part of
the requirements should be made to enable proper validation of the meshing capabilities. The
variational optimisation code also requires a refactoring for better readability, maintainability
and, crucially, performance. For instance, the current implementation uses boost pthreads for
parallelisation, which for 2D cases is sufficient although could become a bottleneck when moving
to 3D.

Additional work falls under Task 1.2 where the generation of thin boundary layer meshes will
be explored as a means of refining curves with anisotropic quadrilateral elements surrounding
the curves. This will require significant modifications to the current boundary layer genera-
tion which breaks down on meshes containing internal curves and sharp corners. Lastly, full
quadrilateral mesh generation will be attempted to improve the overall mesh quality.
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