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1 Disclaimer

We are very grateful to Dr Patrick Farrell for the provision of the proxyApp modelling the

anisotropic heat transport problem. It is the only fusion model we could access over the short

period of the funded project (4 January 2021 - 31 July 2021). We discussed with the NEPTUNE

team (Benjamin Dudson and Patrick Farrell) the possibility of using another model to couple two

models in a one-way coupling for UQ using ROM: the anisotropic heat transport model and the

isotropic heat conduction to the solid wall. But the wall boundary proxyApp is not yet available.

As a result, we could not examine in practice the possibility of implementing ROM for UQ in

the context of nuclear fusion modelling where models are coupled. We nevertheless provided

some examples of UQ coupling at the end of this report from the paper [16] and discussed future

directions below.

2 Introduction

Many modern physical computer models involve solving PDEs with numerical solvers, such as

finite element methods (FEM), which can be computationally expensive due to

• ever more complex and larger-scale models;

• high-dimensional input and output;

• large demands on computational resources.

These create challenges to efficient uncertainty quantification of computer models, such as the

fusion models, as we often need to run the models many times for tasks such as sensitivity

analysis, uncertainty propagation and model calibration. To tackle these challenges, reduced

order models (ROM) are needed to

• serve as low-dimensional replacements with comparable accuracy;

• reduce evaluation time of original solvers;

• save storage, e.g., for high-dimensional output.
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Traditional reduced order models, also known as intrusive reduced order models, often are con-

structed using reduced basis methods [19], among which the Proper Orthogonal Decomposition

(POD) is perhaps the most popular technique. The intrusive reduced order models for orig-

inal high-fidelity models with high-dimensional output are typically built using a two-phase

procedure called offline-online decomposition:

• offline phase: high-fidelity solutions/outputs are obtained and reduced basis is calculated;

• online phase: the original problems are projected onto the reduced space for efficient

computation of solutions at new inputs.

However, the online phase of the intrusive reduced order modelling is challenging in practice

because:

• expertise and domain knowledge are required to project the equations and physics of the

original high-fidelity problems to constructed reduced space;

• dimensionality reduction techniques are largely constrained by the problem formulation;

• uncertainty is not incorporated.

For these reasons, in this report we focus on non-intrusive reduced order models for problems

with high dimensional outputs, utilising the family of Gaussian process (GP) surrogates (also

known as emulators). GP emulators have been successfully implemented for dimension reduction

of either outputs or inputs. For instance:

• [10] used Functional Principal Components Analysis (FPCA) as an equivalent approach

to POD for time series outputs of tsunami waves, and [1] used Spherical Harmonics and

Gaussian Markov Random Fields for optimal reduction of surfaces outputs.

• For inputs, [14] employed a kernel-based approach to extract the few input field directions

of most influence for the outputs in order to build GPs with few input dimensions (orders

of magnitude gain in dimension).

The report is organised as follows. In Section 3, a non-intrusive ROM with GP surrogates

and POD is described and applied in a anisotropic heat transport problem. We then propose

and discuss an active learning procedure to construct the introduced non-intrusive ROM with

an illustrative example in Section 4. Future directions are discussed in Section 5.

3 Non-intrusive ROM with Gaussian Process Surrogates

The non-intrusive reduced order modelling is a data-driven approach that uses a statistical

surrogate model to mimic the functional relations between the model input and constructed

reduced output space in the online phase of the offline-online decomposition. The utilisation of

statistical surrogates alleviates the difficulties involved in reformulating the original high-fidelity

problems under the intrusive reduced order modelling. In particular, with GP surrogates we
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are able to quantify uncertainty of the high-dimensional outputs predicted at unobserved input

positions.

Let X ∈ RN×D contain N sets of D dimensional input of a computer model, which produces

N corresponding sets of K dimensional output Y ∈ RN×K accordingly. Then, one can mimic

the functional relationships between the input X and each output dimension Yk ∈ RN×1 by a

GP surrogate GPk independently for k = 1, . . . ,K without considering the dependence between

output dimensions [7]. Ignoring the potential cross-dependence does not pose a serious issue

unless we are interested in the joint distribution of the output, and it can be shown [12] that

the independently constructed GP surrogates correspond to the marginal GPs of a joint GP

surrogate under certain dependence structures. The GP surrogate GPk is formally defined as a

multivariate normal distribution with respect to Yk:

Yk ∼ N (µk(X), σ2kRk(X)),

in which the i-th element of µk(X) ∈ RN×1 is often specified by a trend function fk(Xi) with

Xi ∈ R1×D being the i-th row of X, and the ij-th element of Rk(X) ∈ RN×N is given by

ck(Xi,Xj), where ck is a given kernel function. The trend function fk can be formulated as a

linear combination of a set of basis functions of Xi and we assume a constant trend function

fk(Xi) = bk in this report.

There are various choices for ck (see [20]). In this report, we use the separable kernel function:

ck(Xi, Xj) =

D∏
d=1

ck,d(Xid, Xjd),

where ck,d is a one-dimensional kernel function. A typical choice for ck,d in computer model

emulation is the squared exponential (SExp) kernel:

ck,d(Xid, Xjd) = exp

{
−

(Xid −Xjd)
2

γ2k,d

}
,

where γk,d > 0 is the range parameter. However, the SExp kernel has been criticised for its over-

smoothness [25] for physical problems as well as its associated ill-conditioned problems [3, 9].

Another popular kernel choice is the Matérn kernel [20]:

ck,d(Xid, Xjd) = exp

(
−
√

2p+ 1 rij,d
γk,d

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2rij,d

√
2p+ 1

γk,d

)p−i
,

where rij,d = Xid − Xjd. The Matérn kernel is known to be less prone to ill-conditioning

issues and provides a reasonably adequate smoothness to the GP surrogates. In particular, the

Matérn-2.5 kernel, which is defined as the Matérn kernel with p = 2:

ck,d(Xid, Xjd) =

(
1 +

√
5|Xid −Xjd|

γk,d
+

5(Xid −Xjd)
2

3γ2k,d

)
exp

{
−
√

5|Xid −Xjd|
γk,d

}
,

is the default kernel choice for many computer model emulation packages, such as DiceKriging [22]
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and RobustGaSP [8]. Therefore, we employ the Matérn-2.5 kernel in this report.

The posterior predictive distribution N (µ̂k(x
∗), σ̂2k(x

∗)) of GPk with respect to the output

Y ∗k (x∗) at an unobserved input position x∗ is given in different analytical forms depending

on how the model parameters bk, σ
2
k and {γk,d}d=1,...,D are estimated. Different maximum-

likelihood-based estimation approaches and the corresponding expressions for µ̂k(x
∗) and σ̂2k(x

∗)

are discussed in [22, 9].

The main computational bottlenecks of the GP surrogate construction are the number of

data points N and the dimension K of the output of a computer model. Since the inference

of GP surrogates involve inversions of the correlation matrix Rk ∈ RN×N with computational

complexity of O(N3), it soon becomes computationally prohibitive to build GP surrogates in

practice when N is more than several thousands. In such a case, one may need sparse approxi-

mations [13] to the GP to reduce the computational complexity induced by the big data.

In computer model experiments, one often does not have big data (i.e., realisations from

the underlying computer model) due to the limited computational budget. However, if the

input dimension D is large, then small data are insufficient to explore adequately the whole

input domain and thus the resulting GP surrogates can be inaccurate. High input dimension

also causes challenges to the model estimation because a large number of range parameters

{γk,d}d=1,...,D need to be estimated for each output dimension. To alleviate this issue, one can

reduce the input dimension D to P such that P � D by dimension reduction techniques such

as POD, kernel dimension reduction [14], and active subspace [26].

A high output dimension K creates the issue that it can be computational burdensome to

build K independent GP surrogates: without parallel implementation the training and validation

of a huge amount of GP surrogates are practically infeasible. This report tackles the latter issue

on high-dimensional outputs (e.g., a snapshot where each point on the snapshot represents a FE

solution and contributes to the output dimensionality) produced by computer models. Perhaps

the most straightforward approach to address the issue is to reduce the output dimension K to

L such that L� K by POD.

The POD of Y ∈ RN×K can be done with following steps:

1. Compute the sample mean µY ∈ R1×K of Y and obtain the centred output matrix Yc =

Y − µY;

2. Implement the eigendecomposition of G = 1
NYcY

>
c such that G = VΛV>, where the

columns of V ∈ RN×N contains the eigenvectors of G and the diagonal of Λ ∈ RN×N

contains the corresponding eigenvalues (λ1, . . . , λN ) in descending order;

3. Compute Ṽ = Y>c V ∈ RK×N , which contains the eigenvectors of sample covariance matrix

C = 1
NY>c Yc;

4. Choose L ≤ N and obtain the low dimensional output Ŷ = YcṼL ∈ RN×L, where

ṼL ∈ RK×L contains the first L eigenvectors included in Ṽ.

One can also obtain Ṽ by performing the singular value decomposition (SVD) of Yc that is

implemented, e.g., in the PCA function of Python package scikit-learn [18]. After obtaining
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the low dimensional data Ŷ, we then construct L independent GP surrogates of each of L

dimensions of Ŷ. Let N (µ̂l(x
∗), σ̂2l (x

∗)) be the posterior predictive distribution of Ŷ ∗l (x∗),

the l-th dimension of the low dimensional output, predicted at an unobserved input position

x∗. Then the posterior predictive distribution of the corresponding high dimensional output

Y∗(x∗) ∈ R1×K is given by

N
(
µ̂(x∗)Ṽ>L + µY, ṼLΣ̂(x∗)Ṽ>L

)
,

where µ̂(x∗) = (µ̂1(x
∗), . . . , µ̂L(x∗)) and Σ̂(x∗) = diag(σ̂21(x∗), . . . , σ̂2L(x∗)).

Figure 1 demonstrates the procedure to build non-intrusive reduced order model with GP

surrogates. In the offline phase, dimension-reduction techniques, e.g., POD, are applied to

reduce the high-dimensional output to a low-dimensional space. Then in the online phase, GP

surrogates are constructed independently on each reduced dimension. Using the constructed

GP surrogate and reduced basis, one can obtain the predicted low-dimensional and in turn the

high-dimensional output at new input positions with little computational efforts.

SolverInput
High-dim
Output

GP
Surrogate

New Input
Low-dim
Output

Figure 1: The workflow to construct non-intrusive ROM with GP. The black arrows represent the
offline phase; the blue arrows represent the online phase; the red arrows represent the prediction
procedure using the constructed non-intrusive ROM with GP.

3.1 Example: 2-D model of anisotropic heat transport

In this section, we explore the non-intrusive ROM with GP to mimic the FE solver to the 2-D

problem “Open field lines with oscillating anisotropy directions” in [5]. The problem has two

key inputs m and α that control the anisotropy of the solution field, i.e., the anisotropy direction

is defined by

b =
B

|B|
, B =

(
α(2y − 1) cos(mπx) + π

παm(y2 − y) sin(mπx)

)
,

where m/2 is the number of oscillation periods in the computational domain and α is the

amplitude. The output is a high-dimensional 2-D field defined on the square computational

domain [0, 1]× [0, 1] and allows a closed form solution.

3.1.1 Experimental Setup

To construct the reduced basis via the POD and the GP surrogate, N=40 samples are arranged

in a Latin hypercube over m ∈ [0, 12] and α ∈ [0, 3] (see the left plot in Figure 2). We then run
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the FE solver (implemented in Firedrake [21]) of the toy problem to obtain the corresponding

2-D outputs, each of which contains FE solutions on K = 78961 nodes. These 40× 78961 high-

dimensional outputs are then reduced to 40 low-dimensional outputs (40 × 25) using POD by

retaining the first 25 principal components out of the total 40 components, see the right plot in

Figure 2, where the cumulative explained variance is defined as
∑L
i=1 λi∑N
i=1 λi

with L be the number

of components.

Figure 2: (Left): Training and designing points generated for the inputs m and α. The blue
points are design input locations generated from the Latin hypercube design and the red points
are testing input locations; (Right): cumulative explained variance given by the POD.

GP surrogates are then constructed independently for each of the 25 dimensions of the

reduced order data. GP surrogates are trained with the Matérn-2.5 kernel using the RobustGaSP

package in R.

3.1.2 Experimental Results

We test the constructed non-intrusive ROM at four testing input positions (m,α) = (6, 2),

(10, 2), (1, 2) and (10, 0) (see the left plot of Figure 2). The FE solutions (from the Firedrake)

and the predicted solutions from the built ROM are compared in Figure 3. The normalised (to

the range of FE solutions) errors between the FE solutions and the predicted solutions from the

built ROM are shown in Figure 4. The coverage of the ROM (i.e., the instances that the FE

solutions fall within the predictive bounds of GP-based ROM) are also given in Figure 5.

It can been seen from these results that the constructed ROM with GP could predict well

the FE solutions of the anisotropic problem at input locations that are not realised. Among

the four testing positions, the final case with m = 10 and α = 0 presents the largest normalised

errors up to 13%. This is not a surprising result because m has no effect on the FE solution of

the problem when α = 0. However, this information is not fully captured in the training data

and thus not gained by the non-intrusive ROM with GP, which is pure data-driven method that

only understands the functional relation between m, α and the solution field from the training

set. As a result, we could observe 5 blurred oscillation periods in the predicted solutions from

ROM in Figure 3. However, the predictive interval (whose upper and lower bounds are given

at two standard deviations 2σ̂ above and below the predictive mean µ̂) of the GP-based ROM

covers the FE solutions sufficiently in this case, demonstrating that one can benefit from the

predictive uncertainty embedded in the non-intrusive ROM coupled with GP emulation.
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Figure 3: Comparisons of FE solutions to the predicted solutions given by the constructed GP-
based ROM. The first row gives the FE solutions. The second row gives the predicted solutions
from the GP-based ROM. The columns from left to right correspond to testing input positions
(m,α) = (6, 2), (10, 2), (1, 2) and (10, 0) respectively.

Figure 4: The normalised errors between FE solutions and the predicted solutions from the
ROM with GP surrogate. The plots from left to right correspond to testing input positions
(m,α) = (6, 2), (10, 2), (1, 2) and (10, 0) respectively.

4 Active learning for Non-intrusive ROM with Gaussian Pro-

cess Surrogates

4.1 Why Active Learning?

Active learning, also known as sequential design, is a collection of approaches that adaptively

enrich the training points for surrogate modelling of computer solvers. In comparison to one-

shot designs, such as Latin hypercube designs (LHD), the active learning is preferred in many

cases:

• One wants a proper utilisation of computational resources. Active learning allows one to

choose computer model input locations adaptively, and therefore can monitor the quality

of the resulting surrogate model while the active learning is in progress and determine
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Figure 5: The coverage of constructed ROM with GP, giving the instances that FE solutions fall
within the predictive bounds provided by the ROM with GP. 1 indicates that the FE solution
is covered by the predictive interval (whose upper and lower bounds are given at two standard
deviations 2σ̂ above and below the predictive mean µ̂) and 0 indicates otherwise. The plots
from left to right correspond to testing input positions (m,α) = (6, 2), (10, 2), (1, 2) and (10, 0)
respectively.

whether to pause or continue the model evaluations;

• More computer model evaluations are needed in the input region of interest. Unlike static

space-filling designs, such as LHD, active learning, depending on the quality of the under-

lying surrogate model (as we will discuss in Section 4.4), could direct the computer models

to evaluate at input locations where the model response exhibits more variations and thus

are more of interest;

• There are existing computer model evaluations, but are potentially large in size and/or

not produced with a careful design. It can be computationally inefficient to generate a

new design, e.g., a static space-filling design, if one has an existing set of model evaluations

because one could utilise the data available. However, it can be both numerically inefficient

(e.g., the design formed by the existing data is poor) and computationally burdensome

(e.g., the existing data is of large size) to use the whole existing model realisations for

surrogate modelling. Thus, one can use active learning to choose training data adaptively

from the existing model evaluations from a small design size while at the same time prevent

from the numerical instabilities induced by poor designs;

• There is a system of coupled computer models. It has been shown in [16] that active

learning is essential to construct Gaussian process (GP) based surrogate models in a com-

putationally efficient and effective manner. Static designs of global inputs can produce

poor designs, and thus numerical issues, to sub-models of a computer system, and can also

waste computational resources over input regions of sub-models that are not contributing

to the global outputs (that correspond to the global input region of interest).

4.2 Implementation

Assume that we have data Dn = {Xn,Yn} that consists of input Xn ∈ Rn×D and the responding

high-dimensional computer model output Yn ∈ Rn×K . Then, a generic active learning procedure
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that selects the next input position xn+1 to be evaluated by the computer model for refinement

of GP based non-intrusive ROM (abbreviated as GP-ROM in the remainder of the report)

introduced in Section 3 is given in Algorithm 1. Once xn+1 is determined, one can then obtain

the augmented data Dn+1 = {Xn+1,Yn+1} by concatenating xn+1 and its corresponding high-

dimensional output yn+1 to Dn and update GP-ROM {GP l} by re-invoking Algorithm 1.

Algorithm 1 Active learning for GP-ROM

Input: (i) Dn = {Xn,Yn}; (ii) a candidate set C of input locations {xi}i=1,...,M .
Output: The next input position xn+1 to be evaluated by the computer model.
1: Compute the low-dimensional output Ŷn ∈ Rn×L of Yn and the corresponding eigenvalues
λl=1,...,L using POD;

2: Construct GP-ROM {GP l} using {Xn, Ŷn};
3: Calculate the criterion Il(x) at each input locations in C using GP l for all l;
4: Choose for the next input position xn+1 by solving

xn+1 = argmax
x∈C

L∑
l=1

wlIl(x) with wl =
λl∑n
i=1 λi

We present two candidates for the criterion Il(x) based on the Active Learning MacKay

(ALM) [15] and the Active Learning Cohn (ALC) [2] respectively for the selection of xn+1.

ALM aims to find the next input location that corresponds to the maximum predictive variance

exhibited by the GP-ROM. Thus, Il(x) is defined by

Il(x) = σ̂2l (x),

where σ̂2l (x) is the posterior predictive variance of GP l evaluated at x. However, ALM has a

well-know issue that it selects excessive input locations around boundaries of the input region

because of the lack of data beyond boundaries. To alleviate this issue, ALC aims to select the

input position such that the integrated predictive variance of GP-ROM over the input region is

minimised after augmenting xn+1 to Xn. Formally, Il(x) under ALC is defined by

Il(x) = −
∫
x∗∈X

σ̂2l

(
x∗|[X>n ,x>]>

)
dx∗.

where σ̂2l
(
x∗|[X>n ,x>]>

)
is interpreted as the posterior predictive variance of GP l evaluated at

x∗ given the input data Xn being augmented by x. It is worth noting that the computation of

σ̂2l
(
x∗|[X>n ,x>]>

)
does not require evaluations of the associated computer model at x because

the predictive variance of GP does not depend on the output data. In practice, the integral

involved in ALC can be approximated by the Monte Carlo integration over a reference set X
(that can be the same as the candidate set C) generated by the LHD. To implement a full active

learning procedure, one often starts with a small data set that is generated by a static design,

such as LHD, and then execute T iterations of Algorithm 1 to enrich the initial data set with T

additional realisations from the computer model.
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4.3 Active learning for the GP-ROM emulation of the 2-D anisotropic heat

transport model

In this section, we demonstrate how efficiency gains can be made using active learning for the

GP-ROM of the FE solver to the 2-D problem described in Section 3.1

4.3.1 Experimental Setup

To initiate the active learning to build GP-ROM, N=20 initial training data points, whose input

locations are generated via the LHD over m ∈ [0, 12] and α ∈ [0, 3] with the corresponding

2-D output (that contains K = 78961 solution nodes) determined by running the FE solver

(implemented in Firedrake [21]). We then iterate Algorithm 1 for both ALM and ALC 80

times to augment additional 80 training data points to the initial data set. At each iteration

of the active learning, we choose the number of components L (in Line 1 of Algorithm 1) to be

retained from POD based on the following criteria:

L = argmin
L∗∈{1,...,n}

∣∣∣∣∣
∑L∗

i=1 λi∑n
i=1 λi

− 0.9998

∣∣∣∣∣ ,
where λ1 > λ2 > · · · > λn. To take into account the effects of initial data set on the active

learning, we repeat both ALM- and ALC-based active learning 10 times, each with a different

initial training data set. For the comparison between ALM and ALC, we generate 2500 testing

data points over m ∈ [0, 12] and α ∈ [0, 3] and compute the Normalised Root Mean Squared

Error (NRMSE) at each active learning iteration by

NRMSE =
1

2500

2500∑
i=1

√
1
K (z̃i − zi)(z̃i − zi)>

max(zi)−min(zi)
× 100%,

where z̃i ∈ R1×K and zi ∈ R1×K are 2-D FE solution fields generated by the GP-ROM and

Firedrake at the i-th testing input location, respectively. max(zi) and min(zi) are maximum

and minimum values of zi for a given i.

In terms of implementation, we construct GP-ROM and compute corresponding ALM and

ALC criteria at each iteration of the active learning using the laGP package in R.

4.3.2 Experimental Results

Figure 6 presents the NRMSEs of GP-ROMs built with ALM- and ALC-based active learning

over 80 iterations, in comparison to those constructed with the static LHD at various design

sizes. It can be observed that for design size less than 50, GP-ROMs trained using the active

learning, regardless of ALM or ALC, provide higher accuracy than those trained using the static

LHD. However, as the design sizes increases, the accuracy of GP-ROMs built by the active

learning and LHD are comparable. This is because with a large design size, the input domain is

densely space-filled by the LHD and thus the NRMSE of the corresponding GP-ROM converges

to that of the GP-ROM trained with the active learning.
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Figure 6: Comparison of NRMSEs of GP-ROM constructed using the ALM-based active learn-
ing, the ALC-based active learning, and the static LHD.

We also observe from Figure 6 that for design size larger than 60 GP-ROMs constructed by

LHD perform better (in terms of overall lower NRMSE) than those built by ALM-based active

learning. This observation can be explained by the fact that ALM-based active learning has

the tendency to choose excessive input locations around boundaries of the input domain (see

Figure 7(a)) and thus could fail to achieve a satisfactory design, in which input locations are

preferred to be scattered within the input domain of interest (see Figure 7(b)).

(a) ALM (b) ALC

Figure 7: Designs produced by a random trial (out of 10 repeated trials) of ALM- and ALC-based
active learning.

4.4 Discussion

In this section, we introduce a simple and effective procedure to implement the active learning

for GP-ROM construction. Although the active learning may eventually produce a space-filling

design, it gives the computer model experimenters more controls over their computational re-

sources. One may criticise that active learning is not computationally efficient in the sense

that it directs model runs sequentially and thus can be time-consuming in comparison to static
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one-shot designs in which model runs can be done in parallel. This statement is sensible when

one possesses sufficient computational power (for parallel computing) and active learning also

produces a space-filling design. However, in real-world data these conditions may not be ful-

filled. Our computational resources may not permit us to obtain model realisations that cover

adequately the input region of interest (for an accurate surrogate model) and a space-filling

design may not capture sufficiently (without tremendous computational efforts) the input re-

gions where the model response exhibits abrupt changes, even if we have an advanced surrogate

model (that is suitable for both stationary and non-stationary data). On the contrary, active

learning has the ability to focus on input regions where the corresponding output surfaces show

more variations, given that the underlying surrogate model provides a satisfactory uncertainty

quantification (e.g., highlighting the regions with higher predictive standard deviations). A fact

often forgotten in computer model experiments is that design and surrogate modelling are not

two separate tasks. Good designs produce good surrogates with less numerical issues and more

reliable uncertainty quantification, which in turn induces designs that better represent the func-

tional behaviours of computer models under the consideration. These are the reasons why active

learning could be preferred to static space-filling designs, which could cause the surrogate mod-

elling difficulty (e.g., a large number of realisations that are needed to capture well the computer

model can make the GP-ROM computationally prohibitive) and do not utilise the uncertainties

quantified by surrogate models for design improvement.

It is worth noting that active learning does not guarantee the locations of (possibly very

small but important) input regions of a computer model that correspond to abrupt changes to

the model responses. The design produced by the active learning depends on the quality of the

underlying surrogate model, which in turn depends on the information contained in the training

data (assuming that the surrogate represents the training data adequately and produces sensible

uncertainty quantification). Therefore, whether active learning could find input regions that has

very localised and important features depends on whether the information of the regions exists

in the training data. For this reason, it is vital to have a good initial design that incorporates

such information for the active learning. However, in practice this can be difficult to achieve,

particularly for high-dimensional cases, even we have some prior knowledge that such non-

stationary features exist in the computer model, and as a consequence we may obtain a surrogate

that completely ignores these regions with significant computational costs being wasted. To

alleviate this issue, one could simply evaluate the computer model with a high-resolution design

using the parallel computing. In this way, the local behaviours of a computer model can be

captured within a reasonable amount of time. Nevertheless, it is not advisable to use all model

evaluations for surrogate modelling, especially for GP-based surrogates because the large amount

of data can cause GP surrogates computationally prohibitive and some evaluations (e.g., that

form a flat response surface) are redundant for surrogate improvement. As a result, we propose

the following hybrid static-active learning procedure to address the scenario in which we aim

to construct efficiently (in terms of computation and time) a surrogate model that could mimic

the underlying computer model with localised behaviours:

1. Generate a data set by evaluating the computer model over a dense space-filling design in
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parallel;

2. Choose a subset of the produced data set as the initial design for the active learning;

3. Implement the active learning that adaptively refines the design and the surrogate model,

e.g., GP-ROM, by selecting data points from the data set produced in Step 1.

There are several benefits provided by the above procedure. Firstly, the high-resolution design

provides some guarantees that our data contain information of localised behaviours embedded in

the underlying computer model. In addition, unlike typical active learning that evaluates models

sequentially, active learning in Step 3 uses the data set already generated with a parallelisable

strategy and thus could save a considerate amount of time (especially when computer models

are very expensive to run). Furthermore, with active learning one is able to pick (potentially

a small amount of) data points (from the generated data set) that contribute most to the

surrogate quality, instead of naively pouring the whole data set into the surrogate construction

(causing computational difficulties). Perhaps the most decisive and challenging step of the

above procedure is Step 2 because, as discussed, one expects to incorporate some information of

localised behaviours of a computer model into the initial design such that the resulting surrogate

is less likely to overlook these features. How to integrate experts’ knowledge about the localised

features into the initial design is worth exploring in the future, but the procedure above indicates

a potentially brutal but simple implementation for Step 2: choose multiple random subsets of the

data set, then proceed to Step 3 for multiple surrogate constructions, and choose the surrogate

that gives the best predictive accuracy (e.g., lowest overall predictive error against the generated

data set). This implementation is computationally efficient because active learnings in Step 3

initiated by different random designs can be executed in parallel and do not involve computer

model evaluations.

5 Future Directions

We demonstrate in this report that a GP-ROM could be used to replace computationally expen-

sive computer solvers for problems with high-dimensional output, in one of the building blocks of

nuclear fusion modelling. However, dimension reduction techniques such as POD lose informa-

tion when the original data are projected onto a lower dimensional space, and thus some extreme

but important events could be masked in the low dimensional data, a scenario called the masking

effect. As a result, if the surrogate is built on the low dimensional data one may not be able to

recover these outlying events using the constructed non-intrusive ROM. Therefore, other dimen-

sion reduction methods that may be more resistant to the masking effect could be examined.

In addition, although GP-ROM requires no domain knowledge and access to the source code of

original problems, it ignores the physics implied by the underlying problem and thus may be

inaccurate comparing to the its intrusive counter-party. Therefore, it would be worth exploring

the trade-off between the speed and accuracy of intrusive and non-intrusive MOR, especially

in context of UQ. It would also be interesting to find a middle ground where one could exploit

the benefits (e.g., accuracy, speed and uncertainty) of both intrusive and non-intrusive ROM,

producing a physics-informed non-intrusive ROM. Some relevant literature on physics-informed
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machine learning (say using a boundary condition or other approaches) include [27, 11, 28]. To

give one example, the use of known boundary conditions imposed by the physics can constrain

the emulator much further as it constitutes a sort of infinite number of points on a boundary,

compared to the small and expensive sampling of the simulator used to build the emulator. For

Reduced Order Modelling, use of symmetries, lower limits (e.g. positive values), and boundaries

could further help reduce the complexity of the problem and improve the ROM itself. It is

definitely future work, not existing research.

Recommendation: Investigate how to apply physics-informed GP-ROM in key nuclear fusion

models. Examine how to build new types of GP-ROM for the case of particle-based models (PIC)

whose outputs need to be understood as a continuum.

5.1 Deep GP for Non-intrusive ROM

In Section 4 we explored how to construct GP-ROM using active learning. Active learning is par-

ticularly useful when the underlying computer model exhibits non-stationary features as it has

the ability to produce a non-uniform design that accommodates the non-stationarity. However,

the success of the active learning relies on the quality of uncertainty quantified by the surrogate

model. Since conventional GP surrogates assume stationarity, more advanced non-stationary

GP models, such as deep Gaussian processes [4], would be good candidates for non-intrusive

ROM of fusion models that exhibits non-stationarity. Deep Gaussian processes (DGPs) are

feed-forward compositions of conventional stationary GPs with flexible model expressiveness,

particularly for non-stationary data. However, training and prediction of DGP based emulators

are challenging due to the non-linearity induced by the kernel functions involved in GPs. Var-

ious inference methods thus are introduced to tackle this issue. Variational inferences, such as

Doubly Stochastic Variational Inference (DSVI) [23], is computationally thrifty but is not ac-

curate because simplified assumptions over the latent variables in DGP hierarchy are assumed.

On the contrary, the fully-Bayesian approach introduced by [24] gives a comprehensive uncer-

tainty quantification of DGPs, but at the expense of computation. The stochastic imputation

approach recently proposed by [17] is a DGP inference method that enjoys both computational

speed and the predictive accuracy, and could be a competitive and potential candidate for DGP

emulations of non-stationary fusion models. See Section 3 in [17] for comparisons between

stochastic imputation, DSVI and fully-Bayesian method in terms of computational efficiency on

DGP emulations. The approach is implemented in the dgpsi package1.

Figure 8 showcases the ALM-based active learning using a two-layered DGP surrogate (i.e.,

composition of two stationary GPs with zero means and squared exponential kernels) trained

with the stochastic imputation in comparison to that using a stationary GP (with zero mean

and squared exponential kernel) trained with maximum likelihood approach implemented in the

R package RobustGaSP. It can be observed that DGP surrogate outperforms the GP surrogate in

both mean predictions and uncertainty quantification. In particular, we note that the predictive

uncertainties produced by the stationary GP do not provide useful information to distinguish

the rough region of the function from the flat region over (0.5, 1]. This is because the correlation

1https://github.com/mingdeyu/DGP
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between the outputs of two points specified in a stationary GP is determined by the distance

between the input positions of the two points. As a result, an input position in the rough region

will have a similar predictive variance with that in the flat region if the two input positions

have similar distances to the input positions of the training points. In addition, with DGP the

active learning could produce a non-uniform design that accommodates the non-stationarity of

the underlying data. While the active learning essentially produces a quite space-filling design

under GP, it assigns three time more number of design points to the rough (and more interesting)

regime over [0, 0.5] than the flat regime over (0.5, 1] under DGP. Although this is a simple 1-D

example, it gives motivations why DGP surrogate should be seriously considered if the reduced-

order output of a fusion model is non-stationary and the active learning is employed. In this

illustrative example, we only considered the ALM-based active learning to construct the DGP

surrogate using the stochastic imputation because ALC-based active learning is much more

computationally intensive due to complicated calculations of integrated predictive variances

under the DGP hierarchy. How to implement ALC-based active learning for DGP surrogates

under the stochastic imputation efficiently and effectively is a promising future research direction.

Applications of ALC-based active learning for DGP surrogates using the fully-Bayesian approach

are recently explored by [24].

(a) GP (b) DGP

Figure 8: ALM-based active learning using GP and DGP emulations. Solid line represents
the underlying true function; Dashed line is the mean prediction; Shaded area represents 95%
predictive interval; Dots (6 in total) are initial training points and triangles (14 in total) are
training points enriched by the active learning procedure using GP and DGP surrogates. The
vertical dashed line indicates a visual split of the underlying true function into a rough regime
over [0, 0.5] and a flat regime over (0.5, 1].

Recommendation: Investigate how to reduce dimensionality of outputs for key nuclear fusion

models whose behaviour may present sharp transitions or various regimes, such as turbulence

models. The key question is then how to understand and represent the continuum of outputs

features across regimes. Indeed these features shown in Section 3 can vary across regimes and

must be made consistent by some form of joint augmentation possibly at a small cost but with

large benefits for emulation.
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5.2 Active subspace for efficient dimension reduction of inputs

The efficiency of reducing dimensions in the inputs was demonstrated in [14]. Gains of orders of

magnitude can be achieved. For instance, the application to a surface of inputs (a mesh of 3200

elements) enabled a reduction from dimension 3200 to 5 with fast and accurate emulation. Only

about 100 simulations were needed to come up with 5 key dimensions as a recombination of

the original 3200 dimensions. A summary of the method is presented below. It is implemented

in the Alan Turing Institute Package Multi-Output Gaussian Process Emulator (MOGP)2. The

context is:

• Simulator input X (high dimension Rp) and output Y = f(X) (one dimension R1)

• GP emulation: fit a GP and predict f(xnew) using a sample of simulations f(X1), ..., f(Xn)

• Find a reduced space (known as sufficient dimension reduction SDR) R(X) ∈ Rd, d < p,

such that there is (nearly) no loss of information in predicting Y by providing R(X) instead

of X

• To achieve SDR, employ the gradient-based Kernel Dimension Reduction (gKDR) ap-

proach [6]:

R(X) = BTX, BTB = Id, d < p.

Estimate B from simulation samples (X1, Y1), ..., (Xn, Yn). Note that no strong assumption

are made on the variables (type, distribution, dimension).

The specific technical steps in gKDR involve two Reproducing kernel Hilbert spaces (RKHS):

• Prepare kernels kX and kY , with the associated (RKHS) HX and HY

• The quantities of interest are the gradients ∂E[g(Y )|X]
∂X for any g ∈ HY as their evaluation

is the ingredient for the identification of the reduced subspace, by looking at the most

influential directions.

• Estimate (see [6] for details)

M̂n =
1

n

n∑
i=1

∇kX(Xi)
T (GX + nεnI)−1GY (GX + nεnI)−1∇kX(Xi)

where GX and GY are the Gram matrices (kX (Xi, Xj)) and (kY(Yi, Yj)), and ∇kX(x) =

(∂kX (X1, x)/∂x, ..., ∂kX (Xn, x)/∂x)T ∈ Rn×m for any x ∈ Rm.

• Eigen-decompose M̂n into M̂n = Q̂Λ̂Q̂T and partition

Λ̂ =

[
Λ̂1

Λ̂2

]
, Q̂ = [B̂ Ĉ],

where Λ̂1 = diag(λ̂1, ..., λ̂d) consisting of the first d largest eigenvalues, to ultimately

provide the dimension reduction.

2https://github.com/alan-turing-institute/mogp-emulator
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The emulation with dimension reduction can be carried out and its loss quantified [14]:

• f(X) ≈ f̂(B̂TX)∥∥∥f − f̂∥∥∥
L2

=

Op

 4

λd − λd+1
n
−min{ 1

3
, 2ξ+1
4ξ+4

}
(

d∑
i=1

biλ̂
2
i

) 1
2

+

(
m∑

i=d+1

biλ̂
2
i

) 1
2


where ξ and the bi’s are positive constants.

• Build emulator f̃ ≈ f̂ on low dimensional space B̂TX

• Approximation procedure:

f(X) ≈ f̂(B̂TX) ≈ f̃(B̂TX)

The choice of retained dimension d and hyperparameters is performance based (e.g. in the

quality of the predictions in a leave-one-out strategy) and can result in very large gains [14].

Recommendation: Investigate how to reduce dimensionality of inputs of key nuclear fusion

models such as the magnetic field modelled input of the anisotropic heat transfer model.

5.3 Linked GP for Non-intrusive ROM

Since fusion models are often multi-disciplinary and multi-physics, the recent advances on linked

Gaussian process surrogates [16] must be considered. The linked GP can be seen as a DGP

whose latent layers are fully observable (see [17] for details), and is implemented in the dgpsi

package3. As an illustration, consider a toy system that consists of two feed-forward connected

computer models shown in Figure 9. By directly applying conventional GP, one fails to capture

the extreme local feature (over [−1, 1]) of the underlying system with ten system runs, see

Figure 10(d). Similarly, the linked GP emulation with the static design, in which GP surrogates

of individual sub-models are built using the training points propagated through the system,

cannot reproduce the local feature of the system over [−1, 1] either, see Figure 10(c). This is

because the space-filling property of the static design for f2 is lost (see Figure 10(b)) when

the well-spaced design for f1 propagates through f1, which has a steep transition over [−1, 1].

However, if the linked GP is employed with the active learning to the system (see Figure 11(a)

and 11(b)), one could recover the extreme local feature of the overall system sufficiently (see

Figure 11(c)). Since the extreme local feature of the entire system over [−1, 1] is created by

the composition of simpler individual sub-models, constructing a system surrogate on the basis

of elementary emulators could achieve better emulation performance, in comparison to a GP

surrogate of the whole system. Besides, using the active learning one could optimise the designs

for individual sub-models, and thus obtain better corresponding GP surrogates, which in turn

produce a system surrogate with higher accuracy with less likelihood of missing extreme local

features.

3https://github.com/mingdeyu/DGP
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f1x f2 yw

Layer 1 Layer 2

Figure 9: An illustrative example of a system of two computer models f1 and f2. Note this is
only for illustration. Linked GP in [16] can work on any feed-forward computer systems.

(a) GP of f1 (b) GP of f2 (c) Linked GP of f2 ◦ f1 (d) GP of f2 ◦ f1

Figure 10: Linked GP (in (c)) and stationary GP (in (d)) emulators (with the static design) of a
feed-forward system (f2 ◦f1) of two computer models f1 and f2 connected as shown in Figure 9.
The filled circles are training points; the solid line is the underlying true function; the dashed
line is the mean prediction; the shaded area represents 95% prediction interval.

(a) GP of f1 (b) GP of f2 (c) Linked GP of f2 ◦ f1

Figure 11: Linked GP (in (c)) emulators (with the active learning) of a feed-forward system
(f2 ◦ f1) of two computer models f1 and f2 connected as shown in Figure 9. The filled circles in
(a) and (b) represent the initial design of the active learning to build GP surrogates of individual
computer models f1 and f2 for linked GP in (c); the filled triangles in (a) and (b) are training
points created by the active learning; the solid line is the underlying true function; the dashed
line is the mean prediction; the shaded area represents 95% prediction interval.

The toy example motivates further explorations of linked GP in constructing non-intrusive

ROM for fusion systems by linking non-intrusive ROM of individual sub-models. For example,

to construct the ROM of the two-layered system in Figure 9, one could first build GP-based

non-intrusive ROM (as demonstrated above) for all individual sub-models (f1 and f2) and then

construct the non-intrusive ROM of the whole system by linking the non-intrusive ROM of f1

to that of f2 through the reduced space w analytically. One key benefit of this approach for

system-wise reduced order modelling is that one only needs to do dimensionality reduction to

the outputs of sub-models. Whereas, to build intrusive ROM, one has to make extra challenging

efforts to reformulate the original high-fidelity model f2 under reduced input w and output y.
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Implementing the active learning for linked GP surrogates for systems of computer mod-

els with high-dimensional outputs is also challenging. In comparison to the static design (in

which the training input data of one sub-model matches the training output data produced

by the feeding sub-models), the active learning (e.g., the adaptive design introduced in [16])

could lose the input/output data matching (i.e., training input data of one sub-model may not

match the training output data of the feeding sub-models because in each iteration of the active

learning only one sub-model rather than the whole system is executed), and thus further explo-

rations are required to examine how to conduct dimension reductions for the internal sub-model

input/output so that all information contained in the training data of linked sub-models are

utilised.

Recommendation: Investigate how to jointly reduce dimensionality of outputs that are inputs

of key nuclear fusion models, such as the heat from the anisotropic heat transfer model propa-

gated to the wall heat transfer model. Emulation with high-dimensional outputs (GP-ROM) of

the first simluator and active subspace for dimension reduction of the subsequent inputs of the

following simulator should be used in synergy. To establish such a combined strategy will require

examining carefully how to weigh variations in outputs of the first model and the influence of

inputs for the second. The sampling approach of Section 4 needs to be tailored to this new

context as well. It is necessary to carry out such combination of methods and strategies due to

the very high dimensions, heavy data transfers, and extremely costly simulations.
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